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Abstract 

Real-time scalable predictive algorithms that can 

mine big health data as the care is happening can 

become the new “medical tests” in critical care. This 

work describes a new unsupervised learning 

approach, radial domain folding, to scale and 

summarize the enormous amount of data collected 

and to visualize the degradations or improvements in 

multiple organ systems in real time. Our proposed 

system is based on learning multi-layer lower 

dimensional abstractions from routinely generated 

patient data in modern Intensive Care Units (ICUs), 

and is dramatically different from most of the current 

work being done in ICU data mining that rely on 

building supervised predictive models using 

commonly measured clinical observations. We 

demonstrate that our system discovers abstract 

patient states that summarize a patient's physiology. 

Further, we show that a logistic regression model 

trained exclusively on our learned layer outperforms 

a customized SAPS II score on the mortality 

prediction task.  

Introduction 

Early recognition of clinical deterioration is an 

important problem because seventy percent of 

adverse events, which occur in about 16% [2] of 

hospital admissions, are preventable. The signs of 

clinical instability often precede an actual cardiac 

arrest or an unexpected critical event by a mean of 

6.5 hours [4]. Buist et al. [4] estimates that early 

recognition of decline in a patient’s baseline 

condition leads to a 50% reduction in the occurrence 

of cardiac arrest in general hospital wards, resulting 

in a decrease in overall hospital mortality. Though 

predictive scoring systems are gaining popularity in 

critical care, currently they are used in a very limited 

way, typically only to support staffing and census 

predictions even though data mining has been applied 

to ICU medical data for over two decades [6,15,16, 

22]. Some examples of ICU predictive scoring 

systems include: the SAPS II [14] and APACHE [12] 

scores as mortality predictors, and the sequential 

organ failure assessment (SOFA) [1] and multi organ 

dysfunction score (MODS) [1] for organ failure 

prediction.  

Most research in ICU data mining can be best 

classified as smart computation approaches with 

sparse sensing assumptions. For example, most 

research initiatives rely on building supervised 

machine learning models under an assumption of a 

resource-limited ICU environment and aim to select 

the fewest and best commonly measured clinical 

predictors for a particular outcome [1,12,14,16]. 

Work in multivariate unsupervised learning has 

predominantly used commonly measured signals 

such as the heart rate or the oxygenation level to 

generate clusters of similar patient states [19]. 

Scaling to consider many more clinical variables is 

not only computationally challenging, but it also 

becomes hard to define an appropriate number of 

informative physiological clusters without the advice 

of practicing physicians [7]. Not surprisingly, there 

has been a dearth of published literature on high-

dimensional multivariate unsupervised learning in 

Critical Care [3]. In this work, we assume an opposite 

scenario: a modern ICU with massive health data 

collection facilities, with a need for a scalable data 

analytic framework for evidence-based medicine.  

We propose to use unsupervised learning in a very 

different way, which we believe can dramatically 

improve the way physicians visualize patients’ 

evolving clinical states. We introduce a novel 

clustering algorithm, radial domain folding, which 

learns lower dimensional abstractions in an organ-

specific manner from routinely generated patient 

data. Then, we train a predictive model on our 

unsupervised feature layer to recognize and track 

critical conditions in ICUs in real-time. Our method 

takes advantage of the clinical knowledge that 

detailed measurements of sets of parameters are most 

useful to provide insight into the functioning of 

specific organ systems, but that overall patient 

mortality is best predicted by learning to aggregate 

the patterns of abnormalities in individual organ 

systems.  Our proposed system differs from existing 

approaches to predictive modeling in two main ways: 

1. We remove the feature selection step at the 

level of clinical observations: Feature selection 

is at the heart of every predictive model. 

However, when feature selection is performed at 

the level of clinical observations, the resulting 

predictive algorithm is constrained to a particular 

task. As a result, we see different predictors used 



  

in scoring systems for organ severity and for 

mortality.  Consequently, an organ severity 

prediction task is not technically a sub-task for 

mortality prediction, even though they share 

similar foundations and common characteristics 

of inferring patient severity. For example, it is 

confusing to see that the SOFA score uses Serum 

Creatinine for renal severity prediction whereas 

the SAPS II score does not consider Creatinine 

levels to be a significant predictor of mortality, 

but rather considers a patient’s Urea levels 

(BUN) and Urine Output. Further, SAPS II does 

not consider coagulation parameters such as 

platelet count for mortality prediction, whereas 

SOFA includes coagulation factors for 

calculating overall patient severity. In our 

system, feature selection is more appropriate on 

the learned unsupervised feature layer. 

2. We do not perform clustering in a traditional 

uniform way: Theoretically, it can be easily 

shown that clustering using traditional methods 

over high-dimensional big data is a 

computationally hard problem. Kshetri [11] 

demonstrated empirically that standard k-means 

(probably the most efficient clustering 

algorithm), without parallelism, fails on 

approximately 50,000 data instances in R [20] on 

a 192GB machine in a high dimensional MIMIC 

II clinical dataset [18]. To scale to a million data 

instances, Kshetri’s greedy algorithm [11] uses 

chunks of 30-40,000 rows of matrices iteratively. 

Moreover, the standard dimensionality reduction 

techniques, such as principal component 

analysis, do not work with incomplete datasets in 

which some values are missing. Our proposed 

clustering approach groups similar ICU patients 

based on abnormalities in specific organ systems 

and scales up to millions of patients’ data 

instances. 

Big Data: A Challenge to Clinical 

Decision Making 

Figure 1 depicts a patient’s ICU time course in 

multiple dimensions from the MIMIC II database 

[18]. Abbreviations around the periphery show some 

of the commonly measured clinical variables for 

understanding a patient’s health. The axis (-8, 8) 

shows the number of standard deviations from the 

normal range of each parameter (0 being normal). 

The line width captures time variation. This patient 

was admitted with heart failure, having a past history 

of chronic kidney failure. His health parameters at 

ICU admission are depicted by the red line, the 

thinnest line. As expected, some of the parameters 

are missing. The thickest line, pink, shows the health 

status of the patient near the discharge time. As 

evident from Figure 1, it is difficult to visualize, by 

the values of the individual parameters, if the 

patient’s overall condition actually improved with 

time. Imagine a million such lines for thousands of 

patients. How can an algorithm then create patient 

profiles by considering varied aspects and varied 

lengths of thousands of patients' hospital stays to 

provide individualized predictions in real time? In 

contrast to the current patient profiling systems, our 

system learns complex physiological concepts such 

as heart states or kidney states in real time from the 

data. We also hypothesize that organ-severity 

prediction is a sub-task of mortality prediction. 

 

 
 

Figure 1: Big data: a scalability challenge to clinical 

decision making 

Radial Domain Folding (RDF)  

We present a new multivariate clustering approach, 

Radial Domain Folding (RDF), that generates a 

layered grouping of patient states. We assume that 

each patient state (normally, the collection of data 

about a patient at a particular time) is associated with 

a set of data elements     where   identifies the 

measurement and   identifies the patient state. E.g., 

we might have that         is the value of the 24th 

measured parameter, say the serum sodium, for the 

300-th patient state. From the medical literature, we 

know that abnormalities in certain parameters are 

most closely related to the state of specific organ 

systems, types of therapy and patient histories (which 

we call domain foci). Therefore, we also assume that 

each patient state may be analyzed at two levels: 



  

1. Focus-specific clustering:  How each focus 

(organ system, therapy type, or patient history) 

can be assessed in terms of the directions and 

magnitudes of the deviations from normal of the 

data elements that bear on that focus, and 

2. Disease-state clustering: How the overall 

patient can be characterized as a function of the 

abnormalities noted in each focus. 

For both the focus-specific and the overall disease-

state levels of analysis, we perform two sub-analyses: 

a) We abstract the data from the previous layer to 

represent the direction and magnitude of 

abnormalities, and 

b) We cluster the resulting abstract patient states 

into a modest number of similar patient states 

that we believe correspond to different types and 

degrees of illness. 

We implement this method using three distinct 

layers, described in the sections following. 

Layer 0: Abstraction of primary data 

We first abstract each data point to a pair of 〈      〉 
where    is the scaled magnitude of that point’s 

deviation from normal and    is a direction of 

deviation. For each numerical data item,   , we 

normalize the value to something like a z-score,   , in 

which all values within the normal range of the 

variable are normalized to zero. Let      and      be 

the low and high ends of the normal ranges of 

variables    . 

 (   )               ⁄  (1) 

 

where    is the mean of the     and         is the 

their standard deviation.  Magnitude     is just 

   (   ) . Direction     is defined as 1, 0, -1, 

depending on whether   (   ) is positive, zero or 

negative, respectively.  

Our data also contain qualitative values, such as the 

reason for ICU admission, aspects of medical history, 

etc.  For now, we have not included these in the 

severity or direction calculations, though we plan to 

develop methods for doing so. 

Layer 1: Focus-specific clustering 

Our second step is to cluster the abstractions of 

variables that are relevant to a each specific focus,   . 

First, for each focus    the subset of measurements 

that bear on it is given by 
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(3) 

and is assumed to be given by background medical 

knowledge. 

Step1a: 〈                    〉 abstraction:  

We form clusters separately for the magnitudes of 

abnormalities and for their directions.  Unlike in the 

general case of clustering arbitrary data, in our case 

we know that the cluster near zero magnitude of 

abnormality along every component data direction is 

special –– it corresponds to the well patient.   

Therefore, we compute the sum of squares of the 

normalized deviations defined by Equation 2 for each 

patient state as a distance measure from the normal 

zero magnitude cluster, and then cluster the patient 

states using hierarchical clustering over this one-

dimensional measure 

     ∑   (   )
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We perform this clustering very efficiently by 

sampling only a small fraction of our data to create 

the clusters and assigning all other patient states to 

the nearest cluster center in this one-dimensional 

representation1. We order the resulting clusters by 

mean degree of abnormality, thus associating the 

clusters with an increasing measure of severity. 

The resulting clusters indicate how abnormal the 

patient is in relation to a particular focus, but this 

method collapses the specific nature of that 

abnormality, so that two patient states may share a 

common   but arrive there by very different 

abnormalities in the underlying data.  For this reason, 

we compute a second clustering for    based on the 

directions of abnormality of the individual data 

elements associated with that focus.  For these 

directions, we code the values 1, 0, -1 of each 

variable using a Jaccard representation, 10, 00, 01, 

concatenate the direction representations for all the 

parameters relevant to focus   , and then compute a 

                                                           
1 Although we could use a sophisticated adaptive 

method to determine the optimal number of clusters, 

we chose 6, given as an exogenous parameter 
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hierarchical clustering using a Jaccard score [21] over 

this representation.  This uses a distance function that 

is the ratio of the number of digits at which two 

vectors mismatch divided by the sum of those 

mismatches plus the number of matches at 1 

positions. The distance is 1 if no digits match and 

zero if they all do. 

In our domain, the number of unique direction 

vectors for patient instances tends to be small, so we 

are able to compute the full distance matrix and apply 

hierarchical clustering efficiently to create 8 direction 

clusters2 using the frequency counts of the unique 

direction vectors as starting points. This is like 

starting the weighted hierarchical tree construction in 

the middle rather than with a singleton set. We order 

the resulting clusters by their weighted mean distance 

from the normal direction vector, which is equivalent 

to counting the number of 1s in the Jaccard 

representation of directions. This creates a second, 

different measure of severity, based on the number of 

data element that are abnormal rather than the total 

degree of their abnormality. 

Step 1b: focus-specific severity: 

The result of focus-specific abstraction assigns each 

patient state to a magnitude cluster that indicates how 

severely abnormal that focus is, and a direction 

cluster that indicates the combination of data 

abnormalities that led to that severity.  We have thus 

created an abstract representation for each focus of 

each patient state. For each focus of each patient 

state, we thus obtain an assignment to one of six 

clusters for severity and one of eight for direction, or 

48 total possibilities.  We perform hierarchical 

clustering using a squared Euclidean distance on 

these focus-specific abstractions, using the 48 unique 

possibilities and their frequency counts as starting 

points. We order the resulting clusters by the average 

severities given by their magnitude and direction 

input clusters, and thus create an aggregate measure 

of focus severity. 

Layer 2: Disease-state clustering 

Step2a: 〈                    〉 abstraction: 

We currently use 8 foci, therefore we characterize 

each patient state by the identity of eight clusters for 

severity of each focus.  To characterize the overall 

nature of a patient state, we now apply a data 

abstraction and clustering algorithm similar to that 

described for Steps 1a and 1b, above. 

                                                           
2 The number of clusters is, as before, a tunable 

parameter of the method, where we have empirically 

determined that 8 seems to do well 

First, we apply formulas 1 and 2 to the focus-specific 

severities to again generate abstracted versions of 

these inputs. 

To calculate the aggregate magnitude of disease 

severity, we take the average magnitudes of the 

clusters assigned to the magnitudes of each focus as 

our input data. Thus, for each overall patient disease 

state, we have eight inputs, being the severities of the 

focus-specific clusters. We apply formula 4, and 

again apply hierarchical clustering to find patient 

disease states that are of similar severities. 

To cluster directions of abnormality among the 

different foci, we use a scheme similar to that used 

earlier to cluster directions of abnormality within 

individual foci, but with differences in detail.  

Because our input variables at the disease state level 

have no negative values (i.e., one cannot have 

negative abnormality in any focus), instead of using a 

1, 0, -1 scale to represent direction, we determine a 

“normal or nearly-normal” class, a “somewhat 

abnormal” class, and a ``highly abnormal'' class, 

giving us a 0, 1, 2 representation and a Jaccard 

encoding of 00, 01, 11. Direction distances are 

computed using this representation, and we again 

form direction clusters for the aggregate disease state 

in a manner similar to what we did for each focus. 

Step 2b: disease-state severity: 

As was the case for individual foci, this abstraction 

methods yields an assignment at the overall disease 

level of each patient state to one of a set of severity 

clusters aggregated from the severities of the various 

foci and another aggregated from the directions of the 

various foci.  We then compute an overall patient 

disease state severity using the method of Step 1b. 

Results and Discussion 

For the data available on patients in the MIMIC II 

critical care database [18], we identified a set of foci 

based on different organ systems, therapy types and 

patient history. Each clinical variable is assigned to a 

focus. Table 1 shows a few foci and a few of the 

clinical variables used in each focus. We studied a 

previously preprocessed dataset [10] of 

approximately ten thousand patients with a million 

chart events from the MIMIC II database. Each 

patient’s ICU stay is represented as multiple chart 

events or data records at an hourly time interval. 

Each record is nurse-verified and contains over two 

hundred clinical parameters. The missing parameter 

values were filled by repeating the last known value 

until a reasonable limit assumption, as described in 

Hug et al [9, 10]. We now show that our algorithm 

leads to the discovery of abstract patient states that 

summarize a patient's physiology. 



  

 

Domain Focus Clinical Variables 

Kidney Creatinine (Cr), BUN, BUN/Cr, 

Urine Out/Hr/Kg, eGFR 

Liver Bilirubin, AST, ALT, Albumin, … 

Cardiovascular MAP, HR, CVP, Cardiac Index, … 

Respiration RR, SpO2, FiO2, PEEP, PIP, … 

Hematology Hgb, RBC, WBC, INR, Platelets,… 

Electrolytes Na, K, Mg, Ca, Glucose, … 

Acid-base PaCO2, pH, CO2, Base Excess, … 

General GCS, Age, Temp, … 

Medication 

Type 

Diuretic, Antiarrhythmic, 

Antiplatelet,  Sympathomimetic, … 

Chronic AIDS, Metastatic Carcinoma, 

Hematologic Malignancy 

Location Unit Surgical, Medicine, Trauma, … 

EKG Rhythm types, PVC, … 

Table 1: Domain foci 

Patient Severity Visualization Using RDF 

Complex clinical data can lie in over a 100-

dimensional space and, as shown in Figure 1, it is 

difficult to get an intuitive feel for what the data 

looks like. Figure 2 shows the learned severity graph 

in different organ systems (Step 1b) using the Radial 

Domain Folding algorithm during the ICU time 

course of the patient in Figure 1. The radial axes 

capture organ severities from 1 (being normal) to 8 

(being the worst). The number of severities, 8, is an 

exogenous parameter indicating the number of 

clusters of severity to be found for each organ. 

Different colored lines depict different time points 

during the patient’s ICU stay, similarly to Figure 1. 

The line width captures time progression.  

At the time of admission, shown by the red line, this 

patient’s cardiac state was grouped into a high 

severity cluster 7 (he had heart failure).  His 

electrolytes and lung status were severe too (elytes 

cluster 7; lung cluster 6). The rest of the information 

was missing. The patient’s lung status worsened 

quickly (transition from lung cluster 6 to lung cluster 

7). Near the ICU discharge time, the pink line, this 

patient’s cardiovascular, lung and electrolytes status 

had improved (as shown by the respective transitions 

from a higher severity state to a lower severity state). 

The patient’s kidney status remained the same 

through his ICU stay (he had a history of a chronic 

kidney failure). This progress and improvement in  

 

Figure 2: Focus Severity Graph using RDF 

 

Figure 3: Overall Disease Severity using RDF 

the patient’s health status over time was difficult to 

visualize in Figure 1. 

Figure 3 shows the patient trajectory in terms of the 

RDF Layer 2 (Step 2b) summarization of overall 

physiological health and the mortality rates 

associated with ten learned health clusters, numbered 

in order of increasing severity. This patient gradually 

moves from a high mortality rate cluster 10 (at 

admission) to a lower mortality rate cluster 7 (near 

the time of discharge). By automatically discovering 

physiologically meaningful clusters, our algorithm 

enables a physician to visualize any patient’s 

evolving clinical condition. 



  

Figure 2 and 3 also show that it is relatively simple to 

define an appropriate number of clusters in our 

framework. If desired, one can also adopt a complex 

statistical technique, such as in Kshetri [11], to 

estimate the appropriate number of clusters 

mathematically. Further, in comparison to Kshetri’s 

greedy k-mediods approach [11] that took several 

hours to cluster only 40,000 data instances from our 

dataset on a 192GB machine, our new system is fast. 

The runtime depends on the focus. For example, RDF 

clustering on the kidney focus with over a million 

data instances took about 90 seconds in a non-parallel 

R-based implementation on the same machine.  

Theoretically, our algorithm clusters a patient’s 

health status in sub-linear time [17]. In the context of 

machine learning, our algorithm takes an approach 

similar to manifold learning [5] and our algorithm 

exploits computational advantages resulting from 

transforming each individual focus locally into a 

Euclidean plane, a 2-D manifold.  Our algorithm is 

fast because our low-dimensional manifold 

representation can be learned extremely efficiently 

and consequently, the later steps are also learned fast 

as only a core set of representative data points, a tiny 

fraction of the complete clinical set, is good enough 

to compute approximate patient clusters. In contrast, 

standard clustering algorithms, such as k-means, 

hierarchical clustering, and non-parametric Bayesian 

clustering [8] are extremely slow on large high-

dimensional clinical dataset because their complexity 

increases tremendously with an increase in the size of 

input data. Simply sampling few points to speed up 

standard clustering algorithm is not a good approach 

because there are no guarantees that the samples 

represent the entire space. Finding a “core” set of 

representative points using a low-rank matrix 

projection is a challenging problem that can 

potentially give sub-linear time speed ups [17] to a 

clustering problem. Our algorithm presents one such 

approach.    

Further, the empirical results in Kshetri [11] suggest 

that using clustering algorithms over all the features 

is also a naïve approach in terms of visualizing big 

high-dimensional clinical data. For example, 

clustering all features is equivalent to learning 

directly our Step 2b of RDF Layer 2, the overall 

health status graph, as shown in Figure 3. In contrast, 

our approach offers finer granularity visualizations of 

underlying organ-severities and their temporal 

transitions. Our algorithm, being fast, can both pre-

compute clusters and conduct clustering when patient 

data arrive in real time. 

Real-time Mortality Prediction using RDF Layers   

In the context of machine learning, our learning 

method is an unsupervised feature learning approach 

and can also be viewed as a preliminary feature 

extraction step, after which pattern recognition 

algorithms are applied. Therefore, we investigate the 

potential clinical value of our new abstractions by 

studying the performance of logistic regression (LR) 

classifiers built from these values compared to more 

traditional classifiers built from the original clinical 

data. We selected Logistic regression (LR) because 

we wanted to make a fair comparison between the 

LR-based gold standard SAPS-II model often used in 

ICUs and our learned lower-dimensional RDF layer; 

and to evaluate that the performance gain is due to 

the better informative features learned and not due to 

the difference in classifier. Further, Hug, in this PhD 

work [10], trained several models and demonstrated 

that LR, though considered not a highly sophisticated 

classifier, gives state-of-the-art results on the same 

dataset. We compare LR trained on: a) the degree and 

direction abnormalities of different foci (RDF Layer 

1:Step1a) together with qualitative information, such 

as ICU service location unit and past chronic 

diseases; b) the severities of the various foci (RDF 

Layer 1:Step 1b) and the same qualitative 

information; c) the 50 best clinical features selected 

using an information gain method [13] from over 200 

features using a feature selection method; d) the 

SAPS II features; and e) a customized SAPS-II gold 

standard model (SAPS II score by approximating the 

score of the missing “type of admission” field using 

the “service location unit”[9, 10]). We hypothesize 

that incorporating heart is failing should have a better 

discriminatory power than simply knowing that blood 

pressure is low. 

We followed a performance evaluation strategy 

similar to that described in Hug et al [9]. The data 

were divided into training and test data using a 70/30 

split strategy with ~12% of expired patients in both 

training and test data. We performed five-fold cross-

validation and repeated the evaluation five times. 

Figure 5 shows that both our new classifiers achieve 

surprisingly high Area under the ROC Curve (AUC) 

of 0.89. Hug et al [9, 10] has earlier shown that their 

best classifier achieves an AUC of 0.87, while an 

approximation to the SAPS II model achieves an 

AUC of 0.81 on the same dataset. Our algorithm 

achieves a similar AUC to that of Hug’s best 

classifier, but without incorporating specialized 

predictive variables representing summaries of an 

observation over time. We believe that the main 

advantage in our type of approach is that these results 

show that our layered representation can directly be  



  

 

Figure 4: Mortality Prediction Comparison 

used as an intermediate representation to create 

dynamic models of patient state transitions to predict 

impending adverse events or to forecast the course of 

disease progression given an intervention. We pursue 

this as future work. 

Mortality Prediction: High Severity Patients 

The patient in Figure 3 was admitted with high 

severity but recovered within a few days of ICU 

treatment. The current predictive models, such as 

SAPS II, are trained on admission data and are 

agnostic to ICU treatment strategies. Understanding 

real-time mortality risk in high severity patients is 

important to infer patients’ responses to therapies and 

treatments.  

To assess performance on the high severity group, we 

sorted all ten thousand patients into decreasing order 

based on their day one pseudo-SAPS II scores. Then, 

we selected the two thousand highest scoring 

patients. These patients had a minimum pseudo-

SAPS II score of 50. The mortality rate was about 

22% in this high severity group (nearly double that of 

the whole sample).  We evaluated the performance of 

two of the above classifiers using a similar strategy as 

above. We compared LR trained on the RDF Layer 1 

(Step 1b), the focus severities, with that of an 

approximate SAPS II model, which follows the Hug 

et al. [9] strategy to replace the missing “type of 

admission” field by the location unit indicators.   

Figure 5 shows that the approximate SAPS II model 

achieved an AUC of 0.77. In comparison, LR trained 

on focus severities (RDF Layer 1 Step 1b) achieved 

an AUC of 0.91. 

 

Figure 5: Mortality Prediction Comparison on High 

Severity Patients 

Limitations  

To model the holistic view of a patient’s ICU stay, 

we had to make certain assumptions in dealing with 

missing values and mixed data types (categorical and 

real-valued). For example, we assumed an organ to 

be normal and the missing observations to be in the 

normal range if all the relevant clinical variables of 

an organ were missing. Such strategies are often used 

in severity of illness scores in order to improve the 

model’s coverage at potential cost to model 

performance [15]. Further, we separated categorical 

and real-valued variables into different foci. One 

extension could be to use a generalized distance 

metric to overcome this limitation. Another 

interesting extension could be to automatically 

allocate features to domain foci through an 

optimization process on training data. We also 

observe that different runs of our clustering algorithm 

produce different clusters because of the sampling 

introduced in the RDF algorithm. In our experience, 

this can lead to assignment of slightly different 

severity scores to cases near cluster boundaries, and 

to small variations in the mortality statistics shown in 

Figure 3. This behavior seems innate to sampling 

methods and generates only small differences in our 

results. 

Conclusion 

This work describes a scalable data analytic 

framework that provides prognostic previews of 

patients’ clinical conditions in real-time. By 

computing similarities among the patients on the 



  

basis of organ systems abnormalities, we show that it 

is possible to use a scalable unsupervised learning 

approach to summarize a patient's physiology in a 

holistic way.  

Our framework exploits the availability of massive 

data sets using an outcomes-free approach, and 

consequently it enables a variety of clinical care 

applications, ranging from health profiling, triage, 

informed staffing and operational decisions, to real-

time therapy selection.  Unfortunately, there has not 

been much work in creating such “richer” 

representations for better situational awareness of 

patients’ critical conditions in ICUs.  We hope our 

paper will spur more research in this area.  
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