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Abstract
Objective: To explore the feasibility of real-time
mortality risk assessment for ICU patients.
Design/Methods: This study used retrospective
analysis of mixed medical/surgical intensive care pa-
tients in a university hospital. Logistic regression
was applied to 7048 development patients with several
hundred candidate variables. Final models were se-
lected by backward elimination on top cross-validated
variables and validated on 3018 separate patients.
Results: The real-time model demonstrated strong
discrimination ability (Day 3 AUC=0.878). All mod-
els had circumstances where calibration was poor
(Hosmer-Lemeshow goodness of fit test p < 0.1). The
final models included variables known to be associ-
ated with mortality, but also more computationally in-
tensive variables absent in other severity scores.
Conclusion: Real-time mortality prediction offers
similar discrimination ability to daily models. More-
over, the discrimination of our real-time model per-
formed favorably to a customized SAPS II (Day 3
AUC=0.878 vs AUC=0.849, p < 0.05) but generally
had worse calibration.

Introduction
Estimation of risk for intensive care unit (ICU) pa-
tients has drawn considerable interest from the med-
ical community in recent decades. Most researchers
have focused on providing simplistic “severity of ill-
ness” scores, such as APACHE [1], MPM [2] or SAPS
[3]. While most models have been designed for risk
estimation at 24 hours after ICU admission, they have
been applied to subsequent days [4, 5]. However, if
risk estimates are to be used for individual care deci-
sions, more frequent—even real-time—estimates may
be helpful. Acute deterioration due to the onset of
septic shock, for example, could easily occur between
daily scores. Moreover, while others have taken com-
mon severity scores and augmented them with addi-
tional information [6, 7], the scores emphasize simple,
common ICU observations. However, in an era of dig-
ital information, computers should be able to assist the
caregivers in interpreting complex data patterns.
In this paper we explore models for predicting ICU

mortality. We create three types of models: (1) a sta-
tionary acuity score, SDAS, that uses daily summary
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data; (2) daily acuity scores, DASn, that use daily sum-
mary data for individual days n ∈ {1, 2, 3, 4, 5}; and
(3) a real-time acuity score, RAS, that uses all obser-
vations from all days. We compare the models against
each other and against a customized SAPS II score for
ICU days 1 through 5. If real-time ICU risk models are
feasible, they might eventually make their way to the
bedside and help caregivers interpret a wealth of ICU
data.

Methods
Study data were retrospectively extracted from the
MIMIC II database [8]. The MIMIC II database con-
tains medical ICU, critical care unit and surgical ICU
data collected from the Beth Israel Deaconess Medi-
cal Center, Boston, USA between 2001 and 2007. The
data were collected and analyzed with institutional ap-
proval by the local IRB.
Data inclusion/exclusion criteria We performed
retrospective analysis on 10066 intensive care patients.
Our selection criteria required patients to have at least
one valid observation for the following: (a) heart rate,
(b) Glasgow Coma Scale (GCS), (c) hematocrit, and
(d) BUN. Patients were excluded based on any of the
following, as they indicated significantly different risk
profiles: (a) an ICD9 code indicating Chronic Renal
Failure; (b) received neurological service (NSICU); or
(c) received trauma service (TSICU).
Additional limitations were placed on individual pa-

tients. If a patient had multiple hospital visits, only the
first ICU visit was included. Patient data were also
limited to the first 7 ICU days and episodes where the
patients received full treatment (i.e., full code). Peri-
ods after dialysis was started were also excluded.

Table 1: Demographics. Hosp=days in hospital prior to ICU
admission; ICU=days in ICU; ∗no type of admission
Age (y) Male Female Hosp (d) ICU (d) SAPS II∗

65 ± 16 59.7% 40.3% 1.8 ± 3.6 2.8 ± 2.1 36 ± 17

Study Outcomes Our study outcome was mortality
in the ICU or within 30 days of ICU discharge. If a pa-
tient was discharged from the hospital alive (censored),
survival was assumed.
Data preparation A large set of candidate variables
was considered for our models. Variables directly ex-
tracted from MIMIC II included real-valued nurse-
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charted observations (e.g., vital signs, lab values, etc.),
categorical nurse-charted observations (e.g., ventric-
ular fibrillation, ICU Service type, etc.), intravenous
medications, input/output variables, and demographic
variables.
From the variables directly extracted from MIMIC

II, a number of meta variables and derived variables
were added. These included binary indicator variables
that marked the presence or absence of non-uniformly
available measurements such as central venous pres-
sure. Other derived variables involved simple calcula-
tions such as pulse pressure. In addition, several vari-
ables generalized more specific variables, such as in-
dicators for type of medication (e.g., Neo-Synephrine
and Levophed both map to sympathomimetic agent).
A number of variables also sought to capture the tem-
poral dynamics of the values, such as the 28-hour
slope for blood pressure (from linear best-fit line) or
the cumulative time spent on vasopressor medications.
Other computationally intensive variables were also
included, such as the range (maximum-minimum) up to
the current point in a patient’s stay, the deviation of an
observation from the evolving patient baseline (using
prior information up to the current time), or the ratio of
the blood pressure value while on vasopressors to the
blood pressure value while not on pressors.
Additional variables were included based on litera-

ture suggesting their usefulness in predicting mortal-
ity. Rivera-Fernández et al. suggested several types
of events that help augment typical severity scores [7].
Similarly, Silva et al. suggest similar events that they
used with artificial neural networks to predict mortal-
ity [6]. Examples of variables based on these studies
include the number of minutes that the systolic blood
pressure (SBP) is continuously out of range (OOR)
within a two hour window, or the number of SpO2 ob-
servations that fall below a critical threshold.
Several demographic variables that might help de-

termine the risk level for patients were included. The
variables shown in Table 1 (with the exception of ICU
length of stay and SAPS II) and the ICU service type
were included, along with three chronic disease vari-
ables that were extracted from ICD9 codes: Metastatic
Carcinoma, Hematologic Malignancy, and AIDS.
Observation frequencies varied greatly between

variables. Some variables, such as chemistry labs,
were typically measured daily, while other variables,
such as blood pressure, were updated at least once
per hour. To limit sparseness, it was assumed that
variables were observed when necessary, and old ob-
servations were held until updated (with a variable-
dependent upper limit typically set to 28 hours). Some
variables, such as INR, were assumed normal when
absent. A detailed discussion of the data and the data
preparation can be found in [9].
Before multivariate modeling, we ranked the vari-

ables according to their performance using univariate
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logistic regression Wald Z scores (the coefficient es-
timate divided by the estimated standard error of the
coefficient). We discarded variables with p-values less
than 0.05 (i.e., Z2 < 3.841). Furthermore, we elimi-
nated variables with strong collinearity by keeping the
best univariate variable among variables with Spear-
man rank correlation coefficients greater than 0.8.

Model Selection We used logistic regression to cre-
ate our predictive models. In previous work, we ex-
plored the use of survival models, but found that with
limited followup information survival analysis meth-
ods provided no clear benefit over logistic regression at
predicting ICU mortality [10]. Others have made simi-
lar conclusions by noting that ICU patients who expire
in the ICU often experience prolonged ICU stays with-
out benefit [11].
The data used for our models are listed in Table 2.

For the aggregate data, the large number of variables
resulted from four functions used for daily summaries:
min, max, mean, and standard deviation (sd).

Table 2: Data for SDAS and DASn (Aggregated 24h), and
for RAS (Real-Time)

Patients Obs Vars
Aggregated 24h (Agg) Data 10066 32480 1752
Agg Development Partition 7048 22888 349
Agg Validation Partition 3018 9592 349
Real-Time (RT) Data 10066 1044982 438
RT Development Partition 7048 736218 200
RT Validation Partition 3018 308764 200

For each model, we performed five-fold cross val-
idation using backward elimination with Akaike’s In-
formation Criterion (AIC) on each fold of the devel-
opment data. By iteratively increasing the AIC thresh-
old, plots showing the sensitivity of the model to the
number of variables were analyzed for overfitting. Se-
lecting the best variables (best 25 for SDAS, best 20
for DASn, and best 60 for RAS) from the top 4 cross
validation models (least overfit), we fit the final model
using the entire development data and performed back-
ward elimination once more. A final refinement step
involved manually removing similar variables (such
as multiple output measurements that share influence
in the model) and manually adding AIDS, Metastatic
Carcinoma, and Hematologic Malignancy if their con-
tribution was significant at the p = 0.1 level. Further
details regarding the methodology can be found in [9].

Model Validation and Comparison Using the 30%
held-out validation data, we validated each model’s
performance on unseen data. This was done by ex-
amining the discrimination performance as measured
by the ROC curve area (AUC) and the model calibra-
tion as measured by the Hosmer-Lemeshow goodness
of fit (Ĥ). For the Ĥ statistic, deciles of risk were
used and the result was compared to the χ2 distribution
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Table 3: Acuity Model Characteristics (on training data)
Model (day) Train Obs Missing d.f. AUC R

2

RAS (1-5) 528850 207368 43 0.885 0.436
SDAS (1-5) 20130 2758 35 0.898 0.456
DAS1 (1) 6364 684 22 0.900 0.447
DAS2 (2) 5179 397 24 0.910 0.463
DAS3 (3) 3526 182 26 0.904 0.463
DAS4 (4) 2351 116 20 0.892 0.467
DAS5 (5) 1690 60 15 0.883 0.450

SAPSII (1) 6008 504 20 0.796 0.238
SAPSII (2) 5247 164 20 0.857 0.328
SAPSII (3) 3512 97 20 0.845 0.313
SAPSII (4) 2321 72 20 0.842 0.326
SAPSII (5) 1620 62 20 0.830 0.321

with 8 d.f. for training data and 10 d.f. for validation
data. A significant difference (e.g., p < 0.1) indicates
poor model calibration (i.e., a significant difference be-
tween the observed and the expected mortalities in the
risk deciles).
Models were compared against each other using

subsets of the development data that had predictions
available from each model for a given day. We also
looked at the performance on patients that remained in
the unit for at least five days and had valid predictions
from each model for each day.

SAPS II For comparison, we calculated pseudo-
SAPS II scores for the MIMIC-II patients. Cur-
rently MIMIC II does not contain the SAPS II “type
of admission” field. We omitted this contribution
to the score, but added the cardiac surgery recovery
unit service (svCSRU) and the medical ICU service
(svMICU) indicators to our SAPS II logistic equation
as proxies. To avoid confusion, we refer to our SAPS
II approximation as SAPSIIa.

Results
The characteristics of our seven trained models, along
with the SAPS II logistic models, are provided in Ta-
ble 3. Models 1 and 2 show the top 22 variables
(ranked by Wald Z score) for SDAS and RAS, respec-
tively. Positive Z scores indicate positive correlation
with mortality. Transformations applied to a variable
follow in parenthesis. The “dev” transformation mea-
sures the variable’s difference from the population’s
mean value. A number of predictive variables rep-
resent summaries of an observation over time, such
as the time SpO2 was out of range (OOR) during the
past 2 hours. Only one long-term slope was included
(Platelets over 28 hours), but it had a significant con-
tribution to all models except DAS1 and DAS2. All
models were heavily influenced by the Glasgow Coma
Scale (GCS) and patient Age. In comparing Models
1 and 2, it is important to note that the significance
of infrequently observed RAS inputs are likely inflated
due to the sample-and-hold approach taken for low-
frequency observations.

Validation on Held-Out Data Figure 1 shows the
ROC curves for RAS and SAPSIIa on day one. Table
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Model 1 SDAS (showing top 22 of 35 inputs)
Obs d.f. P C R2 Brier

20130 35 0 0.898 0.456 0.074
Wald Z P

Max GCS (squared) -12.85 0
Mean INR (inv) -12.85 0
Pacemaker -7.92 0
CSRU Service -7.31 0
Min Platelets Slope 28 hr -6.66 0
Mean Riker SAS -6.66 0
Mean Hourly Urine Out (sqrt) -6.18 0
... ...
Mean PaO2:FiO2 (if Ventilated) 6.16 0
Mean Na (dev) 6.45 0
Min Mg (squared) 6.46 0
Max Shock Index 6.49 0
Mean Platelets (inv) 6.76 0
Prior Hospital Time (sqrt) 7.05 0
ICU Day (squared) 7.17 0
Jaundiced Skin 7.18 0
Mean CO2 (inv) 7.23 0
Max Lasix (log dev) 7.33 0
Mean Beta-Blocking Agnt (log dev) 7.44 0
Min Sympathomimetic Agent 9.27 0
Mean SpO2 OOR past 30 m (sqrt) 9.83 0
Min BUN:Creatinine (sqrt) 12.05 0
Age (squared) 17.40 0

Model 2 RAS (showing top 22 of 43 inputs)
Obs d.f. P C R2 Brier

528850 43 0 0.885 0.436 0.084
Wald Z P

GCS (squared) -76.68 0
Intercept -61.51 0
CSRU Service -57.19 0
Pacemaker -45.04 0
All Output (log) -38.39 0
Pressors Start Day 1 -35.32 0
... ...
Lasix per Kg (log dev) 29.99 0
Hourly Urine OOR past 2 hr 30.28 0
Antiarrhythmic Agent 30.35 0
Na (dev) 30.66 0
Hematoligic Malignancy 30.87 0
Beta-Blocking Agent 30.96 0
SpO2 OOR past 2 hr (sqrt) 32.54 0
PaO2:FiO2 (if Ventilated) 36.49 0
Prior Hospital Time (sqrt) 38.44 0
Minutes in ICU 40.57 0
Jaundiced Skin 42.60 0
Std Pressor Sum (sqrt) 49.11 0
Creatinine (log) 50.31 0
INR (log) 62.11 0
BUN:Creatinine (sqrt) 69.45 0
Age (squared) 91.28 0

4 shows the AUC for each day on the subset of patients
with valid predictions from all models for that day.
One important consideration when comparing models
was the summary function used to compare multiple
RAS predictions against single predictions from daily
models. We used the mean prediction over each day.
Figure 2 graphically depicts the change in AUC over

time for matched patients. Similarly, Figure 3 shows
the performance on the subset of patients who are in
the ICU for at least 5 days and have predictions for
each day from all models.
Table 5 lists the Ĥ statistic p-values. As suggested

by [12], we combined adjacent deciles to make all ex-
pected frequencies at least 4 (the Ĥ statistic relies on
large expected frequencies). For each row merger, the
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Table 4: AUC by day on matched validation patients
Day RAS SDAS DASn SAPSIIa n
1 0.875 0.876 0.879 0.809 1954
2 0.880 0.885 0.881 0.839 1849
3 0.878 0.887 0.876 0.849 1245
4 0.871 0.878 0.871 0.826 836
5 0.853 0.863 0.858 0.805 596
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Figure 1: ROC Curves for RAS and SAPSIIa on Day 1
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Figure 2: AUC versus number of days in the ICU. Confi-
dence intervals (95%) are shown for RAS AUC values along
with a histogram showing the number of patients used by the
models on each day.

degrees of freedom for the χ2 comparison was reduced
by 1.

Discussion
Our model performed well at discriminating mortal-
ity on the separate validation data. In terms of AUC,
each model outperformed SAPSIIa across all days
(p < 0.05 for each comparison). The svCSRU and
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Table 5: Hosmer-Lemeshow calibration statistic Ĥ ,
matched validation patients

RAS SDAS DASn SAPSIIa

Day p (d.f ) p (d.f ) p (d.f ) p (d.f ) n
1 0.002 (7) 0.045 (7) 0.001 (7) 0.130 (9) 1954
2 0.006 (6) 0.018 (6) 0.008 (6) 0.439 (7) 1849
3 0.063 (6) 0.542 (6) 0.087 (6) 0.765 (7) 1245
4 0.097 (6) 0.110 (6) 0.064 (6) 0.884 (7) 836
5 0.143 (6) 0.183 (5) 0.248 (5) 0.275 (7) 596
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Figure 3: AUC versus number of days in the ICU for pa-
tients that stay at least 5 days and have predictions available
from all models for the first 5 days. Confidence intervals
(95%) are shown for RAS AUC values.

svMICU inputs greatly improved SAPSIIa discrim-
ination, increasing day 1 AUC from 0.680 to 0.809
and the Ĥ p-value from 0.0001 to 0.130. With this
correction, the performance of SAPSIIa aligns nicely
with SAPS II numbers found in literature, especially in
terms of calibration (e.g., see [13]). By using a subset
of patients with predictions available from all models,
the results were slightly biased towards the most input-
constrained model, SDAS, which retained nearly all of
its validation patients. When each model was validated
on all validation patients with valid predictions, only
marginal improvement against SDAS was observed,
except for Day 1 SAPSIIa, which performed worse
(AUC=0.781, and Ĥ p-value = 0.085). Further explo-
ration of the calibration, e.g., using cross validation,
is needed to better understand the sensitivity of the Ĥ

statistic within our results.
For days 3, 4, and 5, the models demonstrate rea-

sonable calibration (i.e., all p-values are > 0.05).
SAPSIIa, however, is the only model with strong cal-
ibration on days 1 and 2. The predictions from both
models have a large positive skew (most patients sur-
vive). RAS, however, has a much longer tail with
its 10th decile covering a probability of 0.690 (versus
0.562 for SAPSIIa). The SAPSIIa logistic regres-
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sion equation includes a logarithm of the the SAPS II
score, along with the SAPS II score, that helps its cal-
ibration performance.
On the training data the goodness of fit for the

model was much better in general, but still lacking
for RAS and SDAS on day 1. Furthermore, SAPSIIa

calibration on day 1 of the training data was weak
(p < 0.0001, 9 d.f.). This was surprising as SAPS
II was developed for use over the first 24 hours of an
ICU stay and performed well on our validation data.
In the original SAPS II model Le Gall et al. report
p-values of 0.883 and 0.101 on their development and
validation data, respectively [3].
Figure 2 shows that the models performed best on

days 2 and 3. For RAS and SDAS this observation
can be partly explained by the large number of obser-
vations available on days 2 and 3 biasing the model
against earlier and later days. DASn has little improve-
ment between days 1 and 3.
Early mortality discrimination for patients that stay

in the ICU at least five days is difficult. Figure 3 shows
that all of the models improve for these patients over
time. Patients with long stays likely fall in the difficult
middle risk group between the patients who recover or
expire within the first few days.
Limitations and Future Work A number of impor-
tant limitations exist in this work: (1) The results re-
flect only one hospital population. Validation on ex-
ternal data from a separate institution is necessary be-
fore fully generalizing the conclusions. (2) As done
with other severity of illness scores, missing obser-
vations could be considered normal in order to im-
prove the model’s coverage at the potential cost to
model performance [13]. This was done with negli-
gible change in performance with two variables, INR
and PaO2:FiO2, which were missing more frequently
than other variables (but were still present enough for
inclusion). (3) The models that we developed also in-
clude therapies which make them dependent on care-
giver practice. The influence of therapies, however,
was found to be small—possibly as a result of varia-
tion in practice between caregivers. (4) Future work is
underway to explore the performance of our real-time
acuity models in the context of secondary outcomes
such as septic shock or weaning of vasopressors.

Conclusions
Real-time acuity scores can offer similar discrimina-
tion performance (risk ranking) to daily acuity scores
with superior performance over customized SAPS II.
Calibration performance (adequacy of risk estimates)
was also similar between real-time models and daily
models. Furthermore, automatic variable selection
from several hundred candidates returned variables
known to be correlated with mortality (e.g., GCS) but
also a variety of other variables, including computa-
tionally intensive inputs (e.g., the time that SpO2 is out
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of range) and interventions (e.g., vasopressor medica-
tions). Many of these additional inputs are significant
contributors to mortality prediction models.
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