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Abstract
Tumor response to therapy is assessed by measuring the changes in lesion sizes
across consecutive imaging studies. This process is oftentimes inconsistent and time-
consuming even if official guidelines like RECIST exist. In this work, I develop a
pipeline, integrating 3D CNNs and conventional optimization algorithms to determine
changes in tumor sizes in consecutive MRI exams for patients with neuroendocrine
tumors.

The CNN is evaluated against a publicly available dataset – LiTS – that contains
201 abdominal CT scans, in terms of key design choices, including image augmen-
tation, network complexity, and loss functions. The best design is used to assemble
the system, which is finally trained and evaluated on a private MRI dataset with 145
total studies, each labeled by two board-certified radiologists. Metrics include Dice
score, sensitivity, and specificity of lesion detections on per-lesion, per-liver-segment,
and per-study bases. Concordance with the radiologists on the endpoint evaluation
according to RECIST is also evaluated.

The system is able to agree with radiologists in 91% of the cases, having a sen-
sitivity of 0.85 (95% CI: 0.77, 0.93) and specificity of 0.93 (95% CI: 0.87, 0.96) to
classify liver segments as diseased or healthy. The experimental evidence suggests a
potential for the automatic system to perform these routine tasks in conjunction with
clinicians. Moreover, the volumetric tumor burden change assessments showcased in
the work demonstrates extended capabilities of the system that are shown to correlate
with clinical endpoints better but are not feasible for radiologists in clinics.

Thesis Supervisor: Peter Szolovits
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Motivation and Contribution

Longitudinal assessment of tumor burden is a clinically important task to determine

whether the tumors have positive responses to the therapy. Both the tumor size

change and the time to develop disease progression are important endpoints in the

assessment from a cancer clinical trial perspective. As treatment response has direct

ties with mortality [4], it is becoming more and more imperative to establish an

objective evaluation of tumor responses that is universally accepted and comparable

across different studies.

Hence, in 1981 the World Health Organization (WHO) published the first tumor

response criteria [5], introducing a concept that utilizes the sum of products of bi-

dimensional measurements of lesions as a proxy for tumor burden, and that the

responses can thus be determined by the change of this surrogate. However, with

time, research groups had been encountering the need to re-interpret the original

specifications as the documents were not concise enough [6].

In response to the problem, RECIST (Response Evaluation Criteria in Solid Tu-

mours) guideline [7] was proposed in 2000, aiming at both maximizing reproducibil-

ity and clinical efficiency. RECIST features definitions that involve uni-dimensional

measurements and a limit on both the size and number of lesions that are taken into

account. Subsequently, the criteria were quickly adopted by academic institutions
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and industrial trials, and further revised into RECIST 1.1 [8].

All criteria mentioned above, in order to allow a reasonable trade-off between

evaluation effort and time, prescribe measurements of a limited number of lesions in

the 2-dimensional plane. Yet, there is evidence [9, 10, 11] suggesting that volumetric

assessments demonstrate superior performance in quantifying tumor burden. On top

of the matter, studies show [12] that following RECIST guideline does not guarantee

absolute agreement between evaluators as there are certain nuances and subtleties of

RECIST.

With the premise that manual annotation in the 3-dimensional space is imprac-

tical to be employed in day-to-day clinics, and that existing guidelines still are open

to some level of subjective evaluation, we ask the question:

Are automatic methods able to aid, if not replace, the diagnostic workflow of as-

sessing tumor burden changes in time from 3-dimensional medical images?

There are multiple challenges ahead with the attempt. Specifically, inhomogeneity

in operating equipment, different practices from operators and dissimilar processing

software suites all lead to non-trivial dynamics in the images. To put this problem

into the context of liver lesion detection, the intensity disparity between regular liver

tissue and lesions is highly variable [13] from lesion to lesion, so there is not a trivial

threshold we can apply directly.

Luckily, the aforementioned question has a positive outlook, and we all know

that is owing to the rapid growth of deep neural networks. Recent insights from the

computer vision domain of object detection in natural images have brought new ideas

and improvements to deep learning segmentation models for medical imaging [14]. In

the task segmentation, we wish to provide a classification for each and every image

element so that the resulting output has the same size as the input image. In 2-

dimensional (2D) images these elements are called pixels and in 3-dimensional (3D)

images like computed tomography (CT) and magnetic resonance imaging (MRI) they

are called voxels. One classic example is the segmentation of 2D cell microscopy
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images in which we wish to distinguish the cells from the background, thus creating

two classes for the classification problem. It is this problem formulation and the rise of

3D neural networks that are gradually enabling an automatic pipeline to first extract

lesion detection results from imaging studies and then to compare the detection across

consecutive imaging studies.

While it is fantastic for computer vision techniques to aim to improve the precision

of lesion detection on computation-oriented metrics [15], clinical utility arises only

from connecting the detection outcomes to diagnostic conclusions about the patient.

Following these lines, I concentrate this research on medical imaging, specifically for

3D imagery, CT and MRI included. This work proposes and evaluates a system

that detects liver lesions in neuroendocrine cancer patients, and provides diagnostic

descriptions across consecutive studies in time. To be concise, the contributions of

this work are that:

• I present a dataset of abdominal MRI scans with liver lesion annotations1.

• I demonstrate a workflow combining 3D convolutional neural networks (CNNs)

and conventional algorithms to speed up longitudinal lesion comparison studies.

• I offer an extensive ablation study on selected techniques used for 3D CNNs.

• I compare the performance of the proposed methods to expert interpretations

and showcase new evaluation targets for automatic methods in disease progres-

sion descriptions.

1.2 Literature Review

1.2.1 Conventional Liver Lesion Detection

The medical imaging community has been taking different approaches to accelerate

the process of liver lesion identification, be it semi-automatic or automatic. The

main roadblock in sight is that it significantly differs from object detection in natural
1I did not prepare this private dataset. See the data chapter for more information.
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images, in that the size of the lesions can easily take up a sizable portion of the organ,

but it can also be too tiny to be noticed/measured, which is without a doubt not a

scale of interest for natural object detection.

The very first works in this line are based on simple thresholding [16, 17, 18] of

image values. The choice of the threshold could be vulnerable to image noises, and

hence multiple refinements are proposed, each using variance maximization [19], cross-

entropy minimization [20], histogram equalization [21], and Isodata thresholding [22].

Due to the relatively low accuracy of the thresholding methods, some researchers [23,

24, 25] shift their focus to region-growing methods which also allows injection of

knowledge-based priors [26]. This family of methods are often used together with an

initialization based on threshold bootstraping [27, 20].

As previously explained in Section 1.1, the variability in the images are often-

times too great for unsupervised, or weakly-supervised method to generalize. Ma-

chine learning-based methods start to boom based off this observation, and the first

few works are using conventional machine learning techniques such as Bayesian clas-

sification [28], k-means clustering [29], fuzzy c-means clustering [30], hidden Markov

model [31], support vector machine (SVM) [32, 33, 34], or adaptive boosting (Ad-

aBoost) [35, 36].

With the development of neural networks starting in 2012 [37], recent efforts have

poured into neural network for image segmentation and lesion detection.

1.2.2 Deep Learning for Segmentation

The first few explorations focus on architectural advances such as U-Net [1] which

enables the model to learn spatial features on multiple spatial resolutions, while allow-

ing information to skip intermediate levels for faster training over a simple encoder-

decoder architecture. Fully-convolutional networks (FCN) [38] came out around the

same period and it allows inference to be made on variable-sized images as opposed

to only taking fixed-sized image patches. A classical benchmark in segmentation is

thus combining U-Net and FCN, the two earliest works in this field.

The overall network architecture as been through several generations of improve-
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ments while the most of them are eager to deal with the multi-scale problem. Some [39,

40] extracts deep features for images at different pyramid scales; Pyramid Scene Pars-

ing Network (PSPNet) [41] pools features into deeper levels of features with different

kernel sizes; and Feature Pyramid Networks (FPN) [42] effectively combines both

pursuits into a more performant model.

In the meantime, the backbone network, which is the network accounting for the

down-sampling path in a U-Net or similar architectures, received major improvement

owing to ResNet [2] that dramatically accelerates training furthermore. Following

ResNet, there has been a few more refinements building on top of it: ResNeXt [43],

Inception [44], and Inception-ResNet [45].

All of the frameworks mentioned above have been mainly applied on 2D images due

to their deeply rooted origin in natural images. With that said, a big game changer

found its way into the medical imaging society. 3D CNNs [46] were developed with

applications to videos, which is essentially a series of stacked 2D images, in mind, but

were adapted to deal with 3D medical images such as CT and MRI. DeepMedic [47]

achieved state-of-the-art brain lesion segmentation results with its 3D architecture

in the Ischemic Stroke Lesion Segmentation (ISLES) Challenge (2015, and then this

model was extended [48] to win another Brain Tumor Image Segmentation (BRATS)

Challenge 2016. Many works that followed were all based on a 3D U-Net framework

and received countless prizes in similar brain tumor challenges [49, 50, 51, 52].

A similar storyline happened with liver lesion segmentation as well. The first

work [53] in this line explored 3D segmentation for liver, heart, and blood vessel.

The appearance of Liver Tumor Segmentation (LiTS) Challenge [15] sparked interest

in advancing techniques for liver lesion detection [54, 55, 56, 57, 58, 59, 60]. The

best entry in the 2017 LiTS competition, H-DenseUNet [61], combines a 2D-learned

feature for faster learning in the 3D model.

1.2.3 Liver Lesion Segmentation Datasets

Compared to the brain and other organs, not too much effort has been put into the

making of publicly available liver lesion detection datasets, and has been a root cause
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of the slower growth in research works [13]. The major reason for this disparity is

that brain imaging suffers less from both motion artifact and examination length,

and hence the resulting quality is typically superior to abdominal imaging. To make

matters worse, out of the imaging modalities, only CT is standardized across different

machine manufacturers, meaning that we cannot easily combine data from different

sources into a larger data repository, nor can we compare performances across datasets

on a fair ground. Sliver’07 [62] was among the first liver datasets to be published, con-

taining 30 CT volumes, yet did not have any lesion labelings. 3Dircadb [63] released

22 CT volumes with full annotations including the liver and the lesion. TCGA-

LIHC [64] further extended the volume count to 116 but unfortunately did not attach

any ground truth.

The LiTS challenge in 2017, in response to the lack of useful public dataset,

published 201 volumes on CT. It is the latest and largest liver lesion dataset at the

time of writing2. Details of the dataset can be found in Section 2.1.

2The year of 2020 to be exact.
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Chapter 2

Data

This chapter will introduce two datasets used in this work: the Liver Tumor Segmen-

tation (LiTS) challenge dataset in the public domain, and the private Longitudinal

Liver Lesion MRI data. Both are datasets focused on liver imaging for lesion de-

tection purposes, with one in computational tomography (CT) and one in magnetic

resonance imaging (MRI). The former is used in a per-study evaluation since there

are no paired studies that follow up patients, while the latter is specifically curated

with longitudinal assessment in mind and is evaluated in terms of both per-study

metrics but also per-patient treatment response.

2.1 Liver Tumor Segmentation

LiTS challenge is a dataset released in 2017, containing 131 and 70 contrast-enhanced

3D abdominal CT scans for training and testing, respectively. The dataset was ac-

quired with varying scanners and protocols from six clinical sites. In-plane spatial

resolution varies from 0.55 mm to 1.0 mm and inter-slice spacing varies from 0.45

mm to 6.0 mm. The dimensionality of the images is 512 × 512 across x- and y- but

variable in the z-axis.

Some example images can be seen in Figure 2-1. The original challenge has mul-

tiple metrics to compete over, but in this work, for the sake of clinical efficacy, we

focus on the Dice score introduced in later sections.
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Figure 2-1: LiTS Data Sample. Red denotes the liver and green denotes the lesion.

2.2 Longitudinal Liver Lesion MRI

Collaborating with a board-certified radiologist1, we curate a dataset of 128 abdomi-

nal MRIs from 64 patients with neuroendocrine tumors. These patients have under-

gone at least two consecutive scans (pairs) of liver MRI in a large academic medical

center to be usable in our study.

To assemble this dataset, we first extract images from the institutional PACS for

the cohort and manually review the studies to ensure no severe artifacts, including the

motion of metallic implants, present. Note that during the extraction, aside from 64

pairs of studies, we involve 17 extra single studies that do not have follow-up scans,

mainly for the purpose of providing more training data. Overall, it sums up to a

total of 145 studies. The images are acquired using either Siemens or GE scanners,

with their resolutions ranging between 640 × 320 and 512 × 512. Examinations are

performed with a gadoxetate disodium contrast agent and four dynamic sequences

at different times are captured, including pre-contrast, 30 seconds, 70 seconds, and

20 minutes post-contrast. The raw DICOM images from four sequences are then fed
1Alex Goehler, M.D., Radiology, Beth Israel Deaconess Medical Center, Boston MA.
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Training Testing p-value

Subjects N 45 19
Age (years) mean ± std 58.7 ± 9.7 56.5 ± 11.8 0.43
Female N (%) 23 (51) 11 (58) 0.61
Follow-up in months median [min, max] 4 [1, 28] 4 [2, 37] 0.46
Studies N 90 38

Primary tumor site N (%) 0.15
Small bowel 21 (47) 13 (68)

Pancreas 13 (29) 5 (27)
Other or unknown 11 (24) 1 (5)

Study with any lesion N (%) 86 (96) 37 (97) 0.98
Study with lesion > 1 cm N (%) 78 (87) 31 (82) 0.46
Lesion per study median [min, max] 8 [0, 88] 10 [0, 89] 0.22
Lesion per study
(greater than 1cm)

median [min, max] 4 [0, 56] 5 [9, 23] 0.28

Number of lesions 0.47
< 10 49 19

10 - 30 24 9
> 30 13 9

Diameter in mm
(all lesions)

mean ± std 11.6 ± 11.2 8.4 ± 5.7 <0.05

Diameter in mm
(largest lesion per study)

mean ± std 33.9 ± 22.3 19.4 ± 9.4 <0.05

Table 2.1: Longitudinal Liver Lesion MRI Dataset Statistics. The table shows
the overview of our longitudinal MRI liver lesion dataset.

through a pre-processing pipeline as later described in detail in Section 3.2.1. Two

board-certified radiologists (IG and AG) manually annotate the images with liver and

lesion labels before finally arriving at a consensus, which we hereafter refer to as the

ground truth.

These studies are then randomly split between the training set and test set, with

the training set having 45 pairs of studies and 17 single studies and test set having

19 studies2. A summary of the statistics of the two splits is shown in Table 2.1. Note

that since patients are randomly allocated into the training and test sets, their lesion

diameters are not explicitly balanced, thus resulting in a discrepancy in the average

lesion diameters across the two sets.

2One test patient is in fact dropped later due to their surgical liver resection, which is not in the
training data.
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Chapter 3

Methodology

3.1 Overview

The overall method can be broken into two major disjoint sections: segmentation

module and longitudinal correspondence module. See Figure 3-1.

First of all, in the segmentation module, images have to go through a pre-processing

step for dataset curation from raw data. We feed the images through the model, while

optionally adding augmentation to training images for better model generalization.

Finally, there are some heuristics we can apply to the resulting output in the post-

processing step.

In the longitudinal correspondence module, we compare segmentation maps in the

3-dimensional space and identify individual corresponding lesion pairs.

These two modules are evaluated differently. The segmentation module is evalu-

ated on a single-image basis, whereas we compare the overall model against radiolo-

gists’ annotation of longitudinal studies that each contains two images.

3.2 3D CNN for Segmentation

This part of the workflow is relatively similar to previous computational efforts in

obtaining segmentation maps, taking the input in the form of 3-dimensional images

and predicting the resulting voxel-wise map describing to which label each voxel in
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the image belongs.

3.2.1 Pre-processing

As laid out in previous literature [65], after the acquisition of raw MRI/CT, there are

some steps required to prepare the images for later models: bias field correction and

channel co-registration.

Bias Field Correction

The bias field is a low-frequency intensity inhomogeneity across the whole image most

significantly present in MR images. At low acquisition magnetic field strength around

0.5T (Tesla), this effect is almost nonexistent, yet higher intensity scanners at 1.5/3T

introduce coupling effects in the reception coils [66]. The intensity inhomogeneity,

while introducing only minor effects to medical experts [67], would inevitably affect

the consequent numerical analysis. I apply N4ITK [68], a de facto standard in the

field for such bias corrections.

Channel Co-registration

Image registration is the process of spatially aligning two or more images. Application

scenarios include intra-patient image registration and inter-patient image registration.

In intra-patient registration, we obtain images from one or more image modalities

(e.g., MRI, CT, and/or PET) at different points in time, resulting in position differ-

ences due to substantial patient motions. Inter-patient registration is usually applied

when we want to study and compare specific organs with fairly similar shapes (e.g.,

brain).

The co-registration of multiple MRI series is needed as they are typically acquired

in sequences with different exposure times, and we refer to these series as channels

since they will act as the channel dimension in later neural networks. This step is not

required for CT, as we only obtain one series.

Registration involves finding a specific set of parameters that transforms a starting
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image in space to align with a second. To achieve that, we require a parameter

space for the transform, an initialization, and an objective for optimization [69].

Depending on the application, a rigid transformation with 6 parameters or an affine

transformation of 12 parameters might suffice, and yet in the case of soft tissues such

as the liver, we require non-rigid transformations such as free-form deformation [70,

71] and elastic deformation [72, 73]. Initialization of non-rigid transformations can

be done with simpler rigid transformations. As for the objective for alignment, there

are correlation-based methods [74, 75] which optimize for

Corr (X,Y ) =
E
[(
X − X̄

) (
Y − Ȳ

)]√
E
[(
X − X̄

)2]√E
[(
Y − Ȳ

)2] ,

where X is one image and Y is the transformed version of the second image. X̄ and

Ȳ are their respective means across the whole image.

Yet, most leading methods recently are based on the maximization of mutual

information (MI) [76] where MI is defined as

MI (X,Y ) = H (X) +H (Y )−H (X,Y ) ,

H (X) = −E [log p (X)] is the entropy of the probability distribution p of the random

variable X,

In this work, I use elastix [77], a toolbox for image registration with a sequence

of rigid, affine, then b-spline free-form deformations aimed at maximizing mutual

information [78].

Normalization

The span of values of the acquired images is the most prominent feature that distin-

guishes MR images and CT images.

In computational tomography (CT), Hounsfield Unit (HU) is a dimensionless unit

defined in terms of physical properties of air and water and it standardizes the value

across different machine manufacturers. Not only we can directly interpret data from
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(a) Before level clipping (b) After level clipping

Figure 3-2: Value Clipping for CT Images. In clinical practice, radiologists clip
values to [−150,+250] Hounsfield Unit to inspect the soft tissue for pathology. We
display the images before and after clipping, and it is clear that the image in (b) has
more contrast than in (a).

different sources in a uniform manner, but we do not require explicit normalization

except for z-scoring (i.e., rescaling to unit variance and zero mean). However, as the

organ of interest in this work is the liver and the soft tissue around it, a typical range

of interest in CT for radiologists is [−150,+250] HU [79]. Hence we clip the CT

images to this numerical range before z-scoring, as shown in Figure 3-2.

For MR images, we adopt a simple intensity scaling [80] with the minimum being

zero intensity and the maximum being the 99th percentile. Normalization is done

channel-wise since each of the channels (sequences) may have different numerical

ranges.

3.2.2 Segmentation Model

There are several design choices for the segmentation neural network. In general,

the input to the network is a 4-dimensional tensor consisting of multiple channels of

3-dimensional images. In particular, we have four dynamic contrast-enhanced MR

sequences or one CT sequence. On the other hand, the output should predict the

discrete label of each voxel.
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Convolution

Concatenate

Copy

Residual Blocks

MRI / CT Segmentation

Figure 3-3: Simplified Model Architecture. The U-Net [1] employs Residual
blocks [2] with padding in convolutions, hence the spatial sizes of feature maps stay
the same. The number of channels is labeled on each block.

Model Architecture

U-Net [1, 81] architecture has proven tremendous success for biomedical segmenta-

tion tasks. In Figure 3-3, we follow its design and employ a down-sampling path

and an up-sampling path. Different from the original U-Net, which uses 2D plain

convolutions, I use 3D residual convolutions with zero-padding. As the depth of the

network becomes deep enough to effectively hinder back-propagation, residual blocks

allow the magnitude of gradients to stay fairly constant rather than diminishing. The

padding allows the output feature map to possess identical sizes as the input image.

See Table 3.1 for two models with similar architecture but different depths.

Based on this architecture, I run two cascaded stages of segmentation prediction

for lesion detection. As indicated in the LiTS challenge [15], it is a good practice to

employ individual detectors that each focus on one task. As the input image size is

typically around 512× 512× 90, directly extracting lesions from the raw MRI/CT of

the abdomen is infeasible due to hardware constraints. Instead, a first liver detector

can focus on extracting a coarse liver bounding box out of the original image, using

a class count C = 2 in Table 3.1 and treating lesion labels as part of the liver. Since

the main objective of this stage is to roughly identify the location of the liver in the

whole abdomen so that the next stage is not constrained by hardware restrictions, we

do not require high resolution and hence I resample the image to a spatial resolution

of (4 mm)3.
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Layer Output size 32-layer
(ResNet18)

48-layer
(ResNet34)

conv0 224× 224× 32 3× 3× 3, 16, stride 1

conv1* 112× 112× 16
[
3× 3× 3, 32
3× 3× 3, 32

]
× 2

[
3× 3× 3, 32
3× 3× 3, 32

]
× 3

conv2* 56× 56× 8
[
3× 3× 3, 64
3× 3× 3, 64

]
× 2

[
3× 3× 3, 64
3× 3× 3, 64

]
× 4

conv3* 28× 28× 4
[
3× 3× 3, 128
3× 3× 3, 128

]
× 2

[
3× 3× 3, 128
3× 3× 3, 128

]
× 6

conv4* 14× 14× 2
[
3× 3× 3, 256
3× 3× 3, 256

]
× 2

[
3× 3× 3, 256
3× 3× 3, 256

]
× 3

conv5* 7× 7× 1

[
3× 3× 3, 512
3× 3× 3, 512

]
× 2

upconv5* 14× 14× 2

[
3× 3× 3, 512
3× 3× 3, 512

]
× 1

upconv4* 28× 28× 4

[
3× 3× 3, 256
3× 3× 3, 256

]
× 1

upconv3* 56× 56× 8

[
3× 3× 3, 128
3× 3× 3, 128

]
× 1

upconv2* 112× 112× 16

[
3× 3× 3, 64
3× 3× 3, 64

]
× 1

upconv1* 224× 224× 32

[
3× 3× 3, 32
3× 3× 3, 32

]
× 1

upconv0 224× 224× C 3× 3× 3, C

Table 3.1: 3D U-Net with Residual blocks. Residual building blocks are shown
in brackets following the ResNet paper. Down/up-sampling is performed on the
first residual block in conv/upconv layers with an asterisk. Output sizes are shown
assuming the input spatial dimension to be 224× 224× 32.

31



After the liver has been identified, I extract the cuboid bounding the liver as

the input for the second stage. This stage can then focus on detecting the lesions,

using a class count C = 3 in Table 3.1, and classifying each voxel as belonging to

background, liver, or lesion. As pointed out in previous works [82], simultaneously

predicting both the liver and lesion in a model gives better performance than simply

predicting lesions since the liver segmentation also provides a boundary within which

lesions can appear. In the second stage, I use images with the original resolution

to avoid artifacts introduced by the resampling operation [61]. As a final step, the

output segmentation of the second stage is padded to label as background the rest of

the abdomen.

Crop Size

While the formulation of fully-convolutional networks (FCN) [38] is able to handle

input of variable sizes, in modern neural network training, for the sake of efficiency

and stability, we typically use mini-batches of examples as the input, which would

then require the input images to be of the same shape. Hence the variable-sized

input images have to be transformed into a fixed shape to be batched. Here we adopt

random cropping that randomizes the location at which the image patches are being

extracted. Typically in 3D medical imaging, patches that are larger in the x and

y axes but smaller in the z-axis, or, image slabs, are preferred [61] due to several

reasons: (1) scans are conducted in sequence along the z-axis slices, and naturally

the voxels along x- and y-directions have the most consistency and coherence; (2)

the spacing along the z-axis is typically larger than that of the other two axes, if

not equal; and (3) from a computational perspective, the memory and computational

constraint is harsher for 3D networks than 2D, and reduction of input sizes is very

much desired. Practically, in the first stage, I use a crop size of 64× 64× 32, which

covers a volume of 25.6 cm×25.6 cm×12.8 cm; in the second, 224×224×32, covering

a variable-sized grid depending on the resolution.
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Loss for Imbalanced Labels

The vast majority of volume in the abdomen in the liver detection task belongs

to the background. Incidentally, in the lesion detection task, most of the voxels

belong to either the normal liver or the background. This creates very imbalanced

counts of labels, and simply enforcing cross-entropy loss on the resulting predictions

would implicitly bias the model towards dominant classes. We hence introduce loss

formulations that mitigate this problem.

Let R be the ground truth segmentation with rnc ∈ {0, 1} being the one-hot

encoding of voxel n and class c, P be the probabilistic segmentation map with pnc ∈

[0, 1], N be the total number of voxels, and C be the number of classes. Weighted

Cross-Entropy (WCE) can be defined as

WCE = − 1

N

∑
n

∑
c

wcrnc log (pnc) ,

where wc is a class-wise weight inversely proportional to the number of voxels with

that label wc = (N/C) / (
∑

n

∑
c rnc). This is a trivial extension from [1].

Another loss proposed to address the class imbalance problem is Generalized Dice

Loss [83, 84]. It extends the Dice overlap measure to a differential form which is able

to be optimized via back-propagation. It is defined as

GDL = 1− 2

∑
cwc

∑
n rncpnc∑

cwc

∑
n rnc + pnc

,

where wc is different from that in WCE. It is also used to provide invariance to

different label set properties. The GDLv version [83] uses wc = 1/ (
∑

n rnc)
2, aiming

at correcting the contribution of each label by the inverse of its volume.
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(b) LiTS test set axial slice spacing

Figure 3-4: Inter-slice Spacing in the LiTS Dataset. The physical gap between
the voxels presented in the volumes along the axial direction can vary dramatically,
and thus denser slices can then be subsampled to looser ones as an augmentation.

Input Augmentation

Image augmentation cannot be overemphasized in the context of deep learning, and

it is especially true in the case of segmentation networks where the output space

is large, easily leading to overfitting. On top of it, the difficulty of collecting large

segmentation datasets on medical images is expensive both monetarily and in terms

of time. Several augmentation techniques have been explored extensively comparing

their effectiveness [85, 86], and the augmentations used in my training pipeline are

listed below.

• Random Slicing: The inter-slice spacing along the axial (z) direction is greatly

inhomogeneous in the LiTS dataset. See Figure 3-4. I take an axial slice every

kth slice, where kmax ≥ k ≥ 1 and kmax allows the inter-slice distance to be

still smaller than 5 mm. As far as I am aware, I have not seen this type of

augmentation in the literature, and yet it is very intuitive in the case of 3-

dimensional convolutional neural networks. In the 2-dimensional counterpart,

since they only use single slices as the input, there is no need to augment along

the z direction.

• Random Rotation: In clinical practice, it is common for the inspected patients

to have a slight positional difference, and most specifically rotational. After
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consulting with a board-certified radiologist, a random rotation along the axial

direction of at most 15◦ is considered.

• Random Zooming: The physical size of the abdomen can vary from patient to

patient, and zooming in or out randomly by at most 20% is considered. Note

that some past works refer to it as scaling which I avoid using, as scaling can

also ambiguously indicate multiplying the voxel values by a constant factor.

• Random Contrast: To make the model more robust against the input value

range, I add at most 25% contrast changes to the images. This is also called

jittering.

• Random Blurring: The radiologist I consulted recommends a random Gaussian

blur at most 3 mm in radius to be added.

• Random Cropping: One of the main techniques to augment the input example

is in fact cropping the input image. This is significantly more important in 3-

dimensional networks since the parameter space of possible cropping positions

is proportional to the cube of input image size, allowing more augmentation

outcomes to be made.

Other types of image augmentation techniques such as elastic deformation [87]

have been explored, but for real-time training, it is relatively time-consuming [88]

compared to other augmentations, and hence I opt not to include it. A summary of

the augmentations is provided in Table 3.2.

3.2.3 Post-processing

Although the lesion detection problem is formulated as a segmentation problem in

which the labels of individual voxels are independently determined by the neural

network, there is an inherent structure: we are predicting several embedded objects

in a continuous volume. A very common phenomenon we observe with the predictions

is occurrence of straying volumes outside the main liver segment. See Figure 3-5. We

propose the following steps to remove the extraneous segments:
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Augmentation Operation Direction Parameter Range

Random slicing Along z axis
Uniform(1, kmax), where kmax

yields an inter-slice distance of 5
mm

Random rotation Around z axis Uniform(−15◦,+15◦)
Random zooming Along x and y axes Uniform(−20%,+20%)
Random contrast Voxel-wise Uniform(−25%,+25%)
Random blurring Along x and y axes Uniform(0 mm, 3 mm)

Random cropping Along all x, y, and z axes Uniform across all possible
cropping locations

Table 3.2: A Summary of Augmentation Operations.

1. Since lesions are in fact located within the liver, it should be temporarily con-

sidered as the liver while distinguishing the liver against the background. For

each of the voxels, we sum of probabilities of it being either liver or lesion as

p1, and assign it a temporary (liver + lesion) label if p1 > pliver, where pliver is

a predetermined hyperparameter.

2. Identify the largest connected volume with voxels assigned to (liver + lesion)

label in the previous step.

3. For each voxel within the largest connected volume of (liver + lesion), assign it

the lesion label if the probability being the lesion p2 > plesion; otherwise, assign

it as the liver. plesion is as well a predetermined hyperparameter.

4. For all other voxels outside the largest connected volume, assign them as the

background.

A good set of threshold values, as introduced later, is pliver = plesion = 0.8 if using

weighted cross-entropy for loss and pliver = plesion = 0.5 for generalized Dice loss.

This post-processing is applied to both the cascaded stages, with the first stage

model ignoring step 3 as the main mission is to only identify the raw location of the

liver.
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(a) Without post-processing (b) With post-processing

Figure 3-5: 3D Rendering of Predicted Segmentations. Red indicates liver and
green indicates lesion. Without the proposed post-processing there will be extra bits
of liver in the surrounding area, which lowers the performance.

3.2.4 Training Details

Model training with 3-dimensional U-Nets typically takes a few days on a fairly

powerful workstation (each job taking up an nVidia GeForce RTX 2080 Ti on an

Intel Xeon W-2195 with 36 threads). It is apparent that with the required run

time, running hyperparameter tuning is infeasible. Moreover, due to the memory

requirements of the networks, most experiments do not even support a training batch

size larger than 4.

In the training phase, images are fed through the augmentation pipeline, cropped

to identical input sizes, and concatenated along a new axis, forming a 5-dimensional

tensor (3-dimensional image, the channel size, and the batch size). In the evaluation

and test phase, I adopt a fully-convolutional network [38] that feeds the entire input

image without cropping. It is easy for images to overwhelm a single GPU and hence

we carry out all operations on CPU only in these phases.

As for the hyperparameters used in the experiments, I determine them empirically

with a few pilot tests on the LiTS dataset. See Table 3.3. I proceed to use this setting

for later experiments on the longitudinal MRI dataset.
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Hyperparameter Value Criteria

Batch size As large as possible
(typically 4)

As many examples as a GPU can
accomodate in the training loop

Initial learning rate
10−3 for generalized Dice
loss, 10−4 for weighted
cross entropy

The maximum learning rate for
each loss type that allows
convergence

Learning rate decay 0.5 over 65536
optimization steps

A reasonably large step count to
allow models to come close to
convergence

Weight decay 10−6 A reasonable weight decay to
prevent exploding weights

Table 3.3: A Summary of Hyperparameters. Since an extensive search of hyper-
parameter is overly time-consuming, I apply some simple heuristics to obtain a set of
reasonable base hyperparameters used in all experiments including ablation studies.
This set of hyperparameters is used in both LiTS dataset and the longitudinal MRI
dataset unless otherwise stated.

3.3 Longitudinal Lesion Correspondence

The previous section lays out the methods that identify, in a scanned image, whether

individual voxels are lesions, ordinary liver tissues, or irrelevant background. A very

important problem in the clinics is whether the disease has progressed in between two

imaging studies, and one of the easiest ways of assessing this is to look at the overall

volume of the lesions, also called the tumor burden. However, such a metric would

easily overlook the development of individual lesions as the disease might be partially

progressive (i.e., growing) while being responsive (i.e., shrinking) to the treatment

elsewhere. On top of the lack of granularity in characterizing the disease, the actual

volumes of the lesions are hard to obtain due to the intensive requirement of expert

annotations, and thus there are proxy standards such as the WHO tumor response

criteria [89, 5] and the RECIST criteria [8]. They first identify lesions presented in

two different studies, obtain simple measurements from them, and quantify the tumor

changes with metrics and categorizations in a standardized way.

Other than just acquiring the measurements, the radiologists who inspected the

studies are in fact implicitly trying to pair up lesions from both of the studies by

reading two studies side by side. While automated methods are excellent in delivering
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results for well-defined problems, this task of finding correspondences in two studies is

non-trivial. Hence, in this section, I focus on comparing two images that are already

segmented. Rather than comparing voxel-wise, a connected volume consisting of

voxels of an identical label are grouped into lesion objects, and the analysis in this

section is primarily done on these objects.

3.3.1 Lesion Co-registration

As the main goal is to compare two imaging studies, the baseline study and the follow-

up study, done at different points in time, usually months apart, the lesions identified

are inherently from different patient positions and different spatial coordinate systems.

One immediate task is to align two images in a lesion-aware manner as opposed to only

maximizing the image correlation. Solely applying the image registration techniques

described in 3.2.1 would not necessarily transform lesions correctly onto another study

as the previous co-registration technique focuses more on the organ boundaries and

silhouettes.

In that regard, there is a very similar problem in the context of computer graphics.

Registration of two different 3-dimensional free-form shapes, specifically represented

by a set of points, has been widely investigated. Iterative Closest Point (ICP) [90,

91] takes two sets of points without any correspondence and iteratively figures out

(1) the one-to-one correspondence relationship between the two groups and (2) the

transformation from one space to another which minimizes the distance of the paired

points. See Algorithm 1 for the complete algorithm.

Taking that into the context of lesion registration, we can utilize the ICP algorithm

in the following manner to obtain a rigid transform from two segmentation maps:

1. Find all connected lesion volumes in both the baseline and follow-up segmen-

tation maps.

2. Calculate the centers of mass for each of the lesion objects.

3. Apply ICP to two sets of centers of mass.
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Algorithm 1: Iterative Closest Point for Lesion Co-registration
Input : Two sets of center of mass X = {xi}|X |

i=1 from baseline and
Y = {yj}|X |

j=1 from follow-up.
Output: Rigid transformation T : Y → X , T (y) = Ry + t.
R← I3, t← 0;
x̄← 1

|X |
∑|X |

i=1 xi, ȳ← 1
|Y|
∑|Y|

j=1 yj;
while not converged do

// Find correspondence
ci ← argminc ∥(xi − x̄)− T (yc − ȳ)∥;
x̄← 1

|X |
∑|X |

i=1 xi, ȳ← 1
|X |
∑|X |

i=1 yci ;

// Obtain optimal transform
W←

∑|X |
i=1 (xi − x̄) (yci − ȳ)⊤;(

U,S,V⊤) = SVD (W);
R← UV⊤, t← x̄−Rȳ

end

An example of the problem at hand is shown in Figure 3-6, which compares two

studies of the same patient in time. The main subjects of investigation in this section

are the individual lesions as labeled in different colors. Note that typically radiologists

do not look at direct 3-dimensional rendering but scroll through a sequence of 2-

dimensional slices of the image.

3.3.2 Correspondence Refinement

The ICP described in the previous section, while being able to roughly align the spa-

tial transformation of the lesions in the baseline and follow-up studies, fails to capture

some realistic constraints in real-world scenarios. Since the two studies in consider-

ation look at snapshots at different points in time, we can expect lesions to more or

less have a one-to-one relationship, except in the case of progressive disease where

new lesions are formed or complete response where the lesions completely vanish. On

top of that, the relative sizes of the lesions are likely to stay similar: larger lesions

will remain the dominant lesions in a follow-up examination in most of the cases.

With the above observation, I hence propose to apply some heuristics and rules to

refine the lesion correspondences so that they end up being one-to-one. The following
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(a) The baseline study lesions

(b) The follow-up study lesions

Figure 3-6: 3D Rendering of Individual Lesions for Two Associated Studies.
Different color indicates different lesion objects. Two different viewpoints are shown.

rules define a reward between a pair of lesions (i, j) from the baseline and follow-up

studies, respectively, and the objective function will be finding a mapping to allow

maximization of the corresponding rewards.

Affinity Reward

While ICP should achieve most of the lesion alignment, it is not perfect. I allow

lesions in the vicinity of another to be matched with it, preferring closer ones, thus I

define an affinity reward

Raffinity (x̄i, x̄j) = exp

(
−1

2

|x̄i − x̄j|2

σ2
a

)
, (3.1)
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where σa is a hyperparameter which I set to be 5 mm empirically.

Volumetric Similarity Reward

As laid out before, across different studies of the same patient, we expect the lesions

to be stable in terms of size, except for the case where there are partial response

or progression and we expect lesions to somewhat grow/shrink at a similar rate. I

encourage lesions of similar volumes to be matched, thus I define the volumetric

similarity reward which describes a similarity between lesion volume pairs to be

Rvolume (Vi, Vk) = exp

(
−1

2

(log (Vi/Vj))
2

σ2
v

)
, (3.2)

where σv is a hyperparameter controlling how much logarithmic difference is tolerable

and is set to be 0.5 empirically.

The rewards defined here are applied to a pair of detected lesions in a baseline

i and a follow-up study j. Overall, there will be |X | × |Y| reward values R (i, j) =

Raffinity (x̄i, x̄j)+Rvolume (Vi, Vj), and the goal is to find a one-to-one relationship i↔ j

so that
∑

(i,j) R (i, j) is minimized, i.e., the similarity is maximized.

To achieve this, we feed the kernel matrix into the Kuhn-Munkres algorithm [92],

also known as the Hungarian algorithm, which looks for a minimization/maximization

of objectives between two sets of items while deriving one-to-one correspondences

between the two. After finding the pairs, any unmatched lesion, depending on whether

it belongs to the baseline or follow-up study, is categorized as resolved or newly

developed.

3.4 Evaluation

3.4.1 Accuracy

In evaluating multi-class classification, there are several categories of classification

results depending on what the ground truth and the predictions are. We calculate
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Ground truth

Positive Negative

Prediction
Positive True positive (TP) False positive (FP) Precision = TP

TP+FP
(PPV)

Negative False negative (FN) True negative (TN)

Recall = TP
TP+FN

(Sensitivity) Specificity = TN
FP+TN

Acc = TP+TN
TP+FN+FP+TN

Dice = 2×TP
2×TP+FP+FN

Table 3.4: Metrics Used in Classification Evaluation. PPV stands for positive
predictive value.

true positive (TP), false negative (FN), false positive (FP), and true negative (TN)

counts. There are also several derivative metrics from these raw counts listed in

Table 3.4. These metrics are used in two different contexts for evaluation: voxel-wise

and lesion-wise.

Voxel-wise Accuracy

The output of the segmentation module can be easily evaluated on a voxel-wise basis.

Since there are two classes other than the background, namely the liver and the lesion,

the following metrics are evaluated over all voxels in the image of interest for both of

the classes: precision, recall (sensitivity), specificity, accuracy, and Dice coefficient,

treating other classes as negative.

The main issue here is that most evaluation units here belong to TN, which would

make metrics such as accuracy and specificity indistinguishably close to one regardless

of classifier quality. Hence it is more desired to focus on other metrics.

In the case of Dice coefficient, since it is evaluated based on the overlap of ground

truth and predicted outcome, the resulting number can be noisy for cases with only

a small number of voxels labeled as positive. To mitigate having highly variable

statistics, I evaluate Dice with two versions.

• Per-study Dice (macro Dice): This is the most naïve way of calculating a

single Dice score for multiple studies, derived as Dicemacro = 1
N

∑
n

2×TPn

2×TPn+FPn+FNn

where N is the total number of studies. The metric is simply averaged across
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all studies.

• Global Dice (micro Dice): Instead of averaging after the division in evaluat-

ing per-study Dice score, we sum up the raw counts by calculating Dicemicro =∑
n 2×TPn∑

n 2×TPn+FPn+FNn
.

It is easy to tell that the difference between the per-study and global metrics is

whether the averaging happen pre- or post- Dice calculation. The same computation

applies to other metrics.

Lesion-wise Accuracy

The evaluation with individual voxels, while depicting the overlap fraction between

predictions and radiologist labelings, fails to capture a critical problem in a clinical

setting: how many lesions are there and how many have been captured by the algo-

rithm? In reaction to that, a metric on the lesion level is needed to describe this

correctly.

I define the lesion-wise accuracy by first looking for segmentation regions, labeling

them into distinct objects1, and only operating on top of these disjoint objects in the

calculation of accuracy. To be specific, any predicted lesion is labeled TP as long as

the predicted lesion overlaps with a ground truth lesion. The ground truth lesion then

becomes claimed by a prediction and any subsequent matches to it will be invalidated.

I repeat this matching pursuit until every predicted lesion has been addressed, and

any predicted lesion that has not been matched to a ground truth is considered FP.

Aside from unmatched predictions, unmatched ground truth lesions are labeled FN.

Varying Overlap Due to the nature of the lesion matching process being fairly

similar to object detection in computer vision [93], we consider altering the threshold

above which the prediction is considered a match with the ground truth. The main

idea behind this is that by raising the intersection-over-union (IoU), we raise our

bars for a detection to be considered successful, and thus create a harsher evaluation
1One way of doing it is via scipy.ndimage.label.
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Figure 3-7: An illustration of the Couinaud liver segment system2. Note that while
only eight segments are shown, we use an alteration that subdivides segment 4 into
sub-segments, forming a total of nine.

criterion. By inspecting the performance change with respect to varying overlap

levels, we obtain a sense of how spatially accurate the detections are – a more spatially

accurate prediction is more resistant to high overlap thresholds.

The matching process as described earlier would then correspond to an IoU of 0,

as all matches are accepted as long as the overlap is nonzero. A typical set of values

used as the threshold is {0, 0.25, 0.50}.

Performance dependence on lesion size Besides an overview of all lesions, we

are also interested in how well lesions can be discovered depending on their sizes. In

response to that, we bin lesions into three categories by their diameter similar to [94]:

(1) < 10 mm, (2) 10 – 20 mm, and (3) > 20 mm. Aside from global metrics that

cover all lesions, the metrics are then reported additionally in these categories.

The definition of the accuracy is not as straightforward as the conventional binary

classification and the sum of three count bins (TP/FN/FP) is not constant, but the

intention of defining these baskets is that we are able to define precision and recall

(sensitivity). This family of metrics, as informed by a radiologist, suffices to provide

basic clinical understanding about the performance of the system.
2Generated by Database Center for Life Science (DBCLS) - Polygon data is from BodyParts3D,
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Couinaud Segment Accuracy

One major drawback of the voxel-wise evaluation as mentioned above is the extreme

imbalance incurred by the majority of the background voxels. On top of the im-

balance, Dice score is typically used in the context of computer scientific evaluation

while it lacks a direct clinical meaning. The evaluation by lesion as proposed above

partially mitigates this problem by only looking at lesions as a whole and not by its

voxels, and yet it is still missing a critical clinical interpretation of true negatives

(TN): how non-diseased patients can be accurately diagnosed as disease-free. The

lack of the notion TN also disables one of clinicians’ favorite tools – specificity, and

thus there is a need to push for analyses at a disease level.

It is possible to define a cohort of both diseased patients with lesions in the liver

and another group of disease-free patients, followed by checking, in a per-patient

manner, if any lesion is detected correctly by the system in a patient in which le-

sions should be present. However, the cohort defined in the data I investigate only

includes patients that have metastatic neuroendocrine tumors, rendering the per-

patient TN evaluation impossible. Hence, I turn to using an evaluation based on

the 9-segment Couinaud system for liver [95] as shown in Figure 3-7. I provide a

diagnostic characteristics comparison between the algorithm and the ground-truth as

manually identified. This approach would allow a definition of TP, FN, TP, and TN

in a more balanced manner on the liver segments3, thus deriving both sensitivity and

specificity on a predefined clinically meaningful liver segment.

In the Couinaud system, a segment is deemed positive if at least one lesion is

found within the said segment, and this rule applies to both the ground truth and the

predictions. Should any lesion be found on the border, it is assigned to the Couinaud

segment that overlaps with it the most. The absence of lesions in the segment is

naturally negative. Across all patients, the classification buckets (TP/FN/TP/TN)

are then calculated and metrics such as sensitivity and specificity are derived.

CC BY-SA 2.1 jp.
3Note the Couinaud liver segments here differ from the task of segmentation, which refers to the

classification of image elements.
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We used the variance estimator derived in [3] to estimate the 95% confidence

interval, as this accounts for the interdependence of the data on the Couinaud segment

level.

3.4.2 Interval Change Assessment

To assess the lesion detection and correspondences output by Section 3.3.2, two ra-

diologists were asked to use RECIST 1.1 [8] restricted to the liver to annotate the

diagnosis. The process was carried out in the following manner.

• Two dominant lesions are identified as target lesions in the baseline study, deter-

mined by their size and suitability to be repeatedly measured accurately. The

diameters of these target lesions are measured and classified into categories

below.

– Complete Response: If all target lesions disappear.

– Partial Response: If the sum of the longest diameters decreases by over

30% or more.

– Progressive Disease: If the sum of the longest diameters increases by at

least 20% and at least 5 mm.

– Stable Disease: Otherwise.

• Other lesions with a diameter greater than 10 mm are considered non-target

lesions whose diameters are not recorded, yet their presence and disappearance

are noted across the baseline and follow-up studies and classified as follows.

– Complete Response: If all non-target lesions disappear.

– Non-Complete Response/Non-Progressive Disease: If persistence of one or

more non-target lesions is observed but no new lesions.

– Progresive Disease: If appearance of one or more new non-target lesions

is observed.
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Target Lesions Non-Target Lesions New Lesions Overall Response

Complete Response Complete Response No Complete Response
Complete Response Non-Complete Response

Non-Progressive Disease
No Partial Response

Partial Response Non-Progressive Disease No Partial Response
Stable Disease Non-Progressive Disease No Stable Disease
Progressive Disease Any Any Progressive Disease
Any Progressive Disease Any Progressive Disease
Any Any Yes Progressive Disease

Table 3.5: RECIST 1.1 Criteria. The overall response is determined based on
three aspects of evaluation on target lesions, non-target lesions, and new lesions.

• Note if there is appearance of new lesions.

• Combine the observations above and refer to Table 3.5 for the overall evaluation

of response.

The evaluation of the automatic methods is compared against the overall RECIST

criteria as annotated by two radiologists on the hold-out set of 18 longitudinal cases.

Kohen’s kappa is used to determine the concordance between the two.
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Chapter 4

Results and Discussion

In this section, I present the results for experimentation on the segmentation mod-

ule including different modeling choices and losses laid out in Section 3.2 and the

longitudinal correspondence module as described in Section 3.3.

4.1 Segmentation Model Design

The end goal of this work is to build a full framework capable of detecting lesion

changes in time, and the segmentation model that generates a single point estimate

is, without a doubt, a critical piece in the pipeline. It not only has to perform

reasonably well in terms of concordance with the radiologists but be consistent and

stable enough. There are a few model choices described in Section 3.2.2 where it is

not immediately clear what performs better. I hereby present some experimentation

on the publicly available dataset LiTS, comparing the designs in Table 4.1, and the

results and discussion are elaborated below. Note the model here is not state-of-

the-art if compared on the LiTS challenge website1 where several works such as 3D

AH-Net [96], H-DenseUNet [61], and V-Net [97] top the leaderboard. However, the

main objective here is not achieving the highest scores but to perform a comparative

study on which components of a neural network design help the most in the learning

process.
1LiTS Challenge Leaderboard: https://competitions.codalab.org/competitions/17094.
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Model
Arch Aug Crop Size Loss

Func Steps Loss Acc Dice

Augmentation

ResNet18 – 224 × 224 × 32 GDL 200k 0.385 0.979 0.601
ResNet18 Slicing 224 × 224 × 32 GDL 200k 0.545 0.977 0.599
ResNet18 Rotation 224 × 224 × 32 GDL 200k 0.458 0.981 0.643
ResNet18 Zooming 224 × 224 × 32 GDL 200k 0.343 0.980 0.652
ResNet18 Contrast 224 × 224 × 32 GDL 200k 0.417 0.979 0.586
ResNet18 Blur 224 × 224 × 32 GDL 200k 0.338 0.979 0.640
ResNet18 All 224 × 224 × 32 GDL 200k 0.291 0.981 0.684

Crop Size

ResNet18 All 224 × 224 × 32 GDL 100k 0.328 0.979 0.652
ResNet18 All 112 × 112 × 64 GDL 100k 0.339 0.976 0.630
ResNet18 All 112 × 112 × 32 GDL 100k 0.425 0.977 0.619

Model Architecture

ResNet18 All 112 × 112 × 64 GDL 100k 0.338 0.976 0.630
ResNet34 All 112 × 112 × 64 GDL 100k 0.339 0.974 0.631
ResNet50 All 112 × 112 × 64 GDL 100k 0.345 0.977 0.624

Loss Function

ResNet18 All 112 × 112 × 64 GDL 200k – 0.979 0.664
ResNet18 All 112 × 112 × 64 WCE 200k – 0.979 0.631

Table 4.1: LiTS Model Design Experiments. Multiple sets of component choices
are presented here, with each varying one parameter. The Model Arch column repre-
sents the down-sampling branch; in Aug I compare augmentations, all denotes that all
augmentations are used; Crop Size is the random cropping output size in the training
phase; GDL stands for generalized Dice loss and WCE means weighted cross-entropy.
Steps are the number of optimization steps. All numeric values are reported on the
LiTS test set. Dice score is the per-study version.

As found in a few pilot tests, the first stage of the pipeline, which is responsible for

locating the liver, proves to be rather insensitive to parameter choices and consistently

yields a Dice score above 0.99. I do not evaluate this stage and focus on the second

that detects lesions.

Augmentation

I begin by using each augmentation technique on the baseline model. In Table 4.1

under the augmentation section, random cropping is always applied since it produces

identical shapes for images in the same batch. With the addition of different augmen-
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tation, we find that random slicing and random contrast do not contribute in terms

of Dice score, which is the most important indicator for efficacy. It is also interesting

to note that the test loss and test accuracy are not too indicative as the loss spans a

wide range for different experiments, and accuracy is almost always close to one.

The most useful augmentations to add are, ordered by Dice increment, random

zooming, random rotation, and then random blurring. They respectively increase the

Dice score by 0.051, 0.042, and 0.039 points. Practically, combining all would give

the best Dice score (0.684) as shown in the last row in the group, in exchange for

some input pipeline slowdowns.

Crop size

The crop size controls how much memory is used in training, thus allowing a dif-

ferent number of images in a mini-batch. Note that in the test phase I use a fully-

convolutional network (FCN), thus waiving the need to crop images for input.

I try three random crop sizes, with the largest being 224×224×32 and the smallest

being 112 × 112 × 32. Note that due to the discrepancy in memory consumption,

112 × 112 × 32 is, in fact, able to facilitate a batch size of 16 as opposed to 4 on

other runs, and hence we allow the model to be trained with that batch size. The

reason for allowing a bigger batch size is that the smaller input crop size is already

a disadvantage from a field-of-view perspective (i.e., it is only observing a smaller

region of the image), we compensate by offering it more examples per batch to learn

from in order for the version to be compared fairly.

Even with the ability to see more examples, 112×112×32 still fails to outperform

other crop sizes. 224 × 224 × 32 performs the best with a significant gap ahead of

others. Due to memory constraints, I have not tested larger crop sizes. In subsequent

experiments in the next section, I will use 224× 224× 32 by default.

Model Architecture

I compare three different depths of ResNet [2] on their performance used as the down-

sampling branch in Figure 3-3. Two (ResNet18 and ResNet34) of the three are laid
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out in detail in Table 3.1 and ResNet50 is constructed similarly to the original ResNet

paper, except that it is in 3D.

Refer to the architecture section in Table 4.1. ResNet34 yields just marginally

better performance on Dice score compared to ResNet18, while ResNet50 seems to

be overkill. Based on the observations above, using ResNet18 is typically sufficient.

Loss Function

Comparing two loss functions from Section 3.2.2, we have the results in Table 4.1 in

the last group, loss function. The loss values are not listed as the two have different

ranges, but it is clear that GDL is slightly better. In fact, there is another advantage

to GDL, which will be further discussed in depth below.

4.2 Segmentation Accuracy on MRI

Now that I have established the basic reasoning of parameter choices in the neural

network, I turn to concentrate my focus on the longitudinal lesion dataset in the

modality of MRI.

The immediate difference as we can observe here is the change in the number

of channels. In LiTS data, we have only one CT channel, which becomes four in

the dynamic contrast MR acquisition. First, I am interested to see if performance

changes at all between the two datasets. I train a base model on 105 training images

and evaluate on 38 hold-out images. Note that out of the 105 training images, 17 are

unpaired (i.e., studies without prior or later studies from the same patient) and that

there are no patient overlaps between the two splits.

On the test images, I compute the metrics including their per-study and global

versions as described in 3.4.1. As there are two important parameters, namely the

thresholds in the post-processing pliver and plesion, the metrics are provided on a grid

of these parameters. As the first stage of the model, which locates the liver within the

abdomen, is found to be very insensitive to the configuration (Dice score is consistently

above 0.99), we do not explicitly evaluate this stage and only focus on the lesion
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detection model.

The base model uses a ResNet18 backbone, a crop size of 224 × 224 × 32, an

augmentation pipeline consisting of random rotation, random zooming and random

contrast, a batch size of two2, and an initial learning rate of 10−3 using the Adam

optimizer. The learning rate is decayed by 0.5 every 216 steps until 4 decays, when I

stop training.

4.2.1 More on Loss Functions

I conduct experiments with two loss functions again: weighted cross-entropy (WCE)

and generalized Dice loss (GDL) as defined in Section 3.2.2. The per-study test set

metrics are provided in Figure 4-1. The most critical metric to which to pay attention

here is the Dice score of lesion detection, which is presented in the second row in each

of the sub-figures: while WCE achieves a higher Dice score of 0.646 at its plateau,

better than the 0.637 for GDL, it is easily seen that the score is extremely sensitive

to the choice of parameters.

To arrive at a good set of hyperparameters, one can look at both rows of contour

plots, using the top row to select pliver and the bottom to select plesion. An optimal

choice of for WCE is plesion ∼ 0.8 and pliver ∼ 0.8 where the Dice score plateaus. As

for GDL, selecting pliver = plesion = 0.5 is a fair balance among Dice, precision, and

recall.

Owing to its relative stability, I favor GDL models and use them in subsequent

analysis and longitudinal lesion studies.

4.2.2 Global and Per-study Voxel-wise Accuracy

Aside from the per-study metrics, if we also compare the global metrics in Figures 4-

1b and 4-2c, we can identify the scores in the global case to be generally higher (e.g.,

for lesion Dice, 0.726 in global vs. 0.636 in per-study). This is because cases with

minor lesions, which are in fact harder to detect, are down-weighted in the global
2The most images I can fit in an nVIDIA GTX 2080 Ti with this input size.
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Figure 4-1: Per-study Segmentation Performance for Different Loss Func-
tions. In each plot grid, the top row shows the metrics for liver detection and the
bottom shows lesion detection. Metrics are shown for hyperparameters pliver and
plesion which determine the post-processing probability thresholds.
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Figure 4-2: Global Segmentation Performance Contour Plot on MRI
Dataset. Continued from Figure 4-1. Global means that the TP/FN/FP/TN counts
are first aggregated over the entire dataset and then the metrics are calculated ac-
cordingly. Larger lesions will be up-weighted in this manner.

case where the raw voxel counts are aggregated globally.

4.2.3 Detection of Liver Lesions

To evaluate the efficacy of the segmentation algorithm, I follow the descriptions in

Section 3.4.1 and derive detection results for lesion objects. In Table 4.2, I present the

sensitivity, the positive predictive value (PPV), and the Dice score. In total, there

are 618 lesions in the dataset, among which 437 are detected along with some false

positives that are not present in the ground truth. This is a global sensitivity of 0.707

(95% CI: 0.617, 0.798) and a PPV of 0.857 (95% CI: 0.792, 0.922).

As the metric version changes from per-study, to per-patient, then to global, the

metrics gradually increase due to the up-weighting of the larger and easier-to-detect

lesions. Easier detection for larger lesions can be also observed in the global metric
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Sensitivity
Overlap TP FN FP TN Per-segment

0.00 160 28 13 141 0.851 (0.773, 0.930)
0.25 139 49 13 141 0.739 (0.654, 0.825)
0.50 97 91 13 141 0.516 (0.344, 0.688)

Positive Predictive Value
Overlap TP FN FP TN Per-segment

0.00 160 28 13 141 0.925 (0.870, 0.980)
0.25 139 49 13 141 0.914 (0.850, 0.979)
0.50 97 91 13 141 0.882 (0.790, 0.974)

Specificity
Overlap TP FN FP TN Per-segment

0.00 160 28 13 141 0.916 (0.871, 0.961)
0.25 139 49 13 141 0.916 (0.870, 0.961)
0.50 97 91 13 141 0.916 (0.869, 0.962)

Table 4.3: Detection Result on Liver Lesions (Cuoinaud Segment). All
metrics are derived per-segment: a Couinaud segment with at least one lesion is
categorized as positive. See Table 4.2 for definition for overlap. 95% confidence
interval is calculated according to [3] and is marked in parentheses.

columns. For example, sensitivity is only 0.487 for lesions less than 10 mm in diameter

but rises to 0.938 for lesions larger than 20 mm in diameter. This phenomenon is

even clearer with PPV where it becomes 1.00 for large lesions. Since overlap controls

the level above which we recognize a prediction to be a valid detection (i.e., it is

sufficiently close to the actual lesion labeled by the radiologist), the larger it is the

tougher the detection problem is and hence sensitivity and PPV are expected to be

lower with increasing overlap requirements. Dice score in the context of detection is

different from that of Section 4.2 since only voxels counted towards a valid detection.

Hence Dice score in fact increases when increasing the overlap threshold. With that

said, it is still apparent that larger lesions have higher Dice scores in general.

I then attribute the lesions to their Couinaud liver segment and the results are

shown in Table 4.3. In this experiment, there are 188 positive and 154 negative liver

segments in the ground truth, among which the model detects 160 to be true positives.
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Figure 4-3: Lesion Volume Comparison per Lesion. Volumes for individual
lesions are plotted, detector-generated against radiologist-annotated. Two scales are
shown here due to the wide span of lesion volumes. Intraclass correlation coefficient
is 0.958 (95% CI: 0.950, 0.965).

This is a sensitivity of 0.851 (95% CI: 0.773, 0.930), a PPV of 0.925 (95% CI: 0.870,

0.980), and a specificity of 0.916 (95% CI: 0.871, 0.961).

4.3 Interval Change Assessment

For evaluation of the overall lesion detection pipeline including the segmentation

model and the longitudinal lesion correspondence model, I continue to use the lon-

gitudinal MRI dataset as it provides paired studies that enable comparison across

time.

4.3.1 Liver Tumor Burden

To quantify changes of lesion volumes across different studies of a single patient in

time, I am first interested in how the predicted volumes correlate with the annotated

volumes. See Figures 4-3 and 4-4, where each point represents a lesion and a study

respectively. The volumes from the detector show high concordance with the ground

truth, yielding an intraclass correlation coefficient (ICC) [98] of 0.958 (95% CI: 0.950,

0.965) in the per-lesion case, and 0.962 (95% CI: 0.927, 0.980) when we sum lesion

volumes per study. Note that since there lacks a correspondence between the ground

58



0 10000 20000 30000 40000 50000 60000

Manual Volume (mm3)

0

10000

20000

30000

40000

50000

60000
A

ut
om

at
ic

V
ol

um
e

(m
m

3
)

Lesion Volume Comparision

Study

(a) Linear Scale

100 1000 10000

Manual Volume (mm3)

100

1000

10000

A
ut

om
at

ic
V

ol
um

e
(m

m
3
)

Lesion Volume Comparision

Study

(b) Log Scale

Figure 4-4: Lesion Volume Comparison per Study. Volumes for lesions in 36
individual studies are plotted, detector-generated against radiologist-annotated. Two
scales are shown here due to the wide span of lesion volumes. Intraclass correlation
coefficient is 0.962 (95% CI: 0.927, 0.980)

truth lesions and the predictions, we use the same scheme as described in Section 3.4.1

to find pseudo-correspondences.

4.3.2 Longitudinal Assessment

Following techniques described in Section 3.3, we obtain correspondences of lesion

across different studies in time.

There are 19 patients in total in the original test set, but after a closer inspection

from the radiologist, one patient went through liver resection and is not suitable for

evaluation because resection cases do not exist in training data. See Figure 4-5. In

comparing the assessment of tumor burden changes across consecutive studies, 17

out of 18 total examined cases show agreement, corresponding to a Kohen’s kappa of

0.909 (95% CI: 0.736, 1.000).

Furthermore, besides a standard evaluation using RECIST criteria, which is de-

signed for efficient clinical evaluation with reasonable fidelity, now that we have an

automated system capable of giving volumetric assessment within minutes, I am also

interested in how volume-based evaluation compares.

From Figure 4-6, I plot the fractional volumetric changes in the lesions from base-

line studies to the follow-up against radiologist-annotated RECIST. The more to the
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right, the more clinically problematic the cases are. There is a clear trend that with an

increase in clinical severity of the interval changes, the higher the fractional changes

are in the lesion volumes, regardless of whether we focus on Couinaud segments or

entire studies. An ANOVA (analysis of variance) analysis shows p = 0.04 in the

per-segment case and p = 0.01 in the per-study case, which suggests a fair amount of

significant difference between the categories.

However, as we can also identify in the Stable Disease and Progressive Disease

columns, there is not a hard cutoff distinguishing the two clinically different categories.

The evidence suggests that I also look at another dimension that is also factored in

while deriving the RECIST result: the absolute sizes of lesions.

In Figure 4-7, the y-axis remains similar and the RECIST responses are still

color-coded. The x-axis now shows the absolute values of the volumes inferred by

the automated system. It is interesting to see that it is required not only to have an

increase of tumor burden over a certain threshold fraction but to have larger lesions

to begin with, in order to be diagnosed as progressive. Though I do not plan to con-

cretize the thresholds on volumetric analysis, yet the chart shows a remote connection

with the actual RECIST criteria, which is in fact simply based on the 2-dimensional

analysis. More thorough research effort will have to be put into annotating and re-

lating the RECIST criteria and volumetric studies to accurately define the borders

according to which we can be confident to assert diagnosis.
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Figure 4-5: RECIST Evaluation against Radiologists. Top row shows three
aspects of how RECIST criteria is evaluated on 18 test cases for both radiologists
and the automated method.
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Figure 4-6: Tumor Burden Change vs. RECIST. On the y-axis is the volume
change in tumor burden as evaluated by the automatic method while on the x-axis
is the RECIST evaluated by radiologists. In (a), each dot is a Couinaud segment in
the baseline studies that contain lesions; in (b), each dot is for a study. Dashed lines
indicate key levels.
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Chapter 5

Conclusion

Longitudinal assessment of tumor burden from the liver is a clinically important

task but suffers from both inconsistency and time consumption. Guidelines such as

RECIST aim to relieve these problems for human evaluators, but these need not apply

for machine-based methods as they can reproducibly produce tedious assessments

much faster than human experts. Hence I have set the goals in this work to verify the

feasibility of such a system, compare how concordant the system is with radiologists

on existing evaluation guidelines, and what additional value we can obtain from it.

In all, I present an abdominal MRI dataset, on which I develop a workflow that

detects liver lesions and subsequently compares lesions from two studies of the same

patient in time to determine the tumor responses to the treatment during this period.

As far as I know, this is the first work to develop an algorithm to perform the task

in an automated way.

In the benchmarking process of the framework, I have some key findings regarding

both the model selection, how the outcomes of this system correlate with existing

guidelines, and how it provides insights beyond the guideline. I summarize these as

follows:

• Do perform an extensive search over the parameters used in the CNN model.

Factors like augmentation, complexity of the network, and loss function can

have an apparent impact on the model performance. For example, in lesion

63



detection when the lesions are typically sparse, use generalized Dice loss, which

proves to be stable.

• The lesion detection results, on a per-study basis, match closely to the annota-

tion of experts on a cohort of 18 test subjects.

• On the ability to follow the guidelines that define tumor responses, the system

agrees with expert annotation on 17 out of 18 patients, showing the potential

to augment clinician decisions routinely.

• The system is able to produce volumetric tumor burden assessment that is not

feasible to perform manually outside of small exploratory research trials.

There are very promising signs from this work on the possibility of automatic

systems aiding radiologists. With that said, the sample size of this work can be a

shortcoming, but I am fairly certain that researchers in this field will come up with

larger datasets and clinical trials of greater scale that further verify the efficacy and

usability of such automatic systems, both in terms of guidelines that are currently in

use and more complex volumetric criteria that would eventually benefit clinicians in

their everyday assessments.
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