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ABSTRACT 
 
The wealth of medical information contained in electronic medical records (EMRs) and Natural Language 
Processing (NLP) technologies that can automatically extract information from them have opened the doors to 
automatic patient-care quality monitoring and medical-assist question answering systems. This thesis studies 
coreference resolution, an information extraction (IE) subtask that links together specific mentions to each entity.  
Coreference resolution enables us to find changes in the state of entities and makes it possible to answer questions 
regarding the information thus obtained.   

We perform coreference resolution on a specific type of EMR, the hospital discharge summary.  We treat 
coreference resolution as a binary classification problem. Our approach yields insights into the critical features for 
coreference resolution for entities that fall into five medical semantic categories that commonly appear in discharge 
summaries.  
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1 INTRODUCTION 

1.1 Motivation 

Healthcare providers around the world are starting to introduce electronic medical record 
(EMR) technology into their operations to improve medical records’ accessibility and quality.  In the 
United Kingdom, a national initiative is under way to deploy a nation-wide system for centralized storage 
of patient EMRs [25]. In the United States, congress has considered legislations to provide EMR service 
for all federal employees [5] in the wake of private efforts by large corporations such as Intel, Dell, and 
Wal-Mart [4].  

As adoption of EMRs continue and more hospitals begin to store clinical activities/courses of patients in 
EMRs, researchers can utilize information extraction (IE) and information retrieval (IR) methods that 
automatically seek out critical medical information in EMRs.  Each EMR holds critical information about 
how medical practitioners diagnose and treat a patient, the underlying reasoning for the practitioner’s 
decisions and actions, and the effect of the practitioner's recommendations on the patient.  Furthermore, 
an aggregate set of EMRs can yield frequency statistics for patient prescriptions, diseases, epidemics, etc.   

The wealth of information contained in EMRs and improving natural language processing (NLP) 
technologies make computer-assisted patient-care and quality assurance monitoring realistic possibilities.  
Such systems require accurate information extraction in order to locate relevant facts. Previous research 
efforts in medical informatics have found IE methods for extracting named entities and entity relations 
from one type of EMR, the hospital discharge summary [46]. We examine the next step in the IE process, 
coreference resolution.   

1.2 Coreference Resolution  

Coreference resolution is the effort to find nouns and pronouns that refer to the same underlying entity.  
Most coreference resolution systems have been developed for newspaper corpora [30, 36, 51].  In this 
thesis, we explore the application of coreference resolution techniques to medical corpora.   

Medical corpora differ from newspaper corpora in several ways. Newspaper articles are unstructured, 
grammatical pieces of text written by journalists.  In contrast, discharge summaries are usually semi-
structured documents scattered with domain-specific linguistic characteristics and incomplete, fragmented 
utterances.  Furthermore, these documents are based on doctor dictations rather than written text.  This 
last fact is particularly important because written and spoken texts are rather different from each other.  In 
addition, the authors of each corpus have different audiences.  Newspaper articles must be written so that 
an average person can understand the material, while discharge summaries are intended for use by 
medical professionals.  Due to this difference, discharge summaries contain extensive amount of domain 
specific vocabulary, short-hands, and abbreviations that are unlikely to appear in newspaper articles.  
These differences in structure, syntax, composition style, and vocabulary require adapting coreference 
resolution to medical records.   

Because of their differences from newspaper articles, EMRs contains some of the more challenging 
problems in coreference resolution.  While past research has found fairly accurate methods for resolving 
pronominal coreference [36, 11], it is generally accepted that noun phrase coreference resolution, 
particularly indefinite noun phrase coreference resolution, is a harder task [51, 60].  Indefinite nouns are 
generally more “ambiguous” than named-entities or proper nouns.  By ambiguous, we mean that the 
same noun can refer to several different entities as it appears in different parts of the same text.  For 
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example, a doctor may use the phrase “x-ray” to refer to two separate x-rays taken on two different 
days.  Named-entities and proper nouns are less likely to be ambiguous than definite nouns because two 
different individuals or two different organizations that appear in the same text rarely have the same 
name; therefore, traditional methods that are well-suited for named-entity and proper noun resolution 
(e.g., string-match and edit-distance) have resulted in only limited success (F-measures around .72-.74) 
when applied to indefinite nouns [51, 60].  In this thesis, we take into consideration the particular 
characteristics of hospital discharge summaries to create a noun phrase coreference resolution system for 
these documents.  We introduce new features and approaches to increase resolution performance for five 
different types of commonly found medical entities: diseases, symptoms, tests, treatments, and 
practitioners.   

1.3 Thesis Structure  

This thesis details our research efforts on the coreference resolution of five common medical semantic 
categories: medical practitioners (referred to as CONS in the rest of this document), treatments (referred 
to as MED), diseases (referred to as DIS), symptoms (referred to as SYMP), and medical tests (referred to 
as TEST).  We next present a broad overview of information extraction and coreference 
resolution, detail our experimental methods, analyze the results from our experiments and discuss future 
works and conclusions.     
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2 BACKGROUND 
 

2.1 Information Extraction Overview 

An information extraction system automatically extracts entities, relations, and/or other information 
from text.  Research efforts in IE intensified under a series of competitions called the Message 
Understanding Conference (MUC) [15].  In all, seven MUC conferences with foci in five different 
domains (naval operations message, terrorism in Latin America, business joint ventures, management 
change, satellite launch reports) were held between 1987 and 1998.  While the corpus topic/domain 
changed from competition to competition, the texts were all extracted from newspaper articles.  The 
grammatical, formal nature of newspaper articles provided a perfect starting point for exploring the 
information extraction task.  As a result, the MUC competitions not only gave rise to many modern 
approaches to IE [24, 21], the competition itself also provided standards, frameworks, and methods for 
preparing and evaluating various IE tasks [21,55]. 
 
Some of the most commonly researched IE tasks to date are named-entity recognition [35, 15], 
terminology extraction [16, 22], event extraction [59, 58], semantic categorization [46], temporal/causal 
relation extraction [44], and coreference resolution [51, 36].  Most IE systems perform more than just one 
IE task [21, 24].  In these systems, each IE task will have its own main processing module (MPM) [21, 
24].  In addition to the MPMs, systems employ preprocessing NLP modules to assist the MPMs in their 
IE task [21, 24]. 

2.1.1 Preprocessing Module    

Preprocessing modules normalize and prepare text for use by other modules in the IE system [9].  These 
modules are the building blocks that make IE possible.  Tokenizers, sentence splitters, part-of-
speech taggers, and syntactic parsers are examples of preprocessing modules.  Research in the past two 
decades has yielded powerful and reliable preprocessing tools such as the Brill part-of-speech tagger 
[10] and the Collins syntactic parser [20].  Table 1 explains the purpose of some of the most common 
preprocessing tools.  

Preprocessing Module Function 
Tokenizer  Separates the text into tokens (words, numbers, punctuation marks) 
Sentence Splitter  Assigns each individual sentence or statement block into its own line 
Part-of-Speech Tagger Assigns a part of speech for word tokens 
Syntactic Parser  Outputs a parse tree that shows the syntactic structure of the sentence 
Stemmer Maps morphological variations of words to a single root 

Table 1: Common NLP tools 

2.1.2 Main Processing Module  (MPM) 

An MPM contains the prediction model for the IE task.  Outputs from preprocessing modules are 
eventually routed to MPMs for processing.  Often, MPMs may also take as input the output from 
other MPMs [21].  For example, a typical IE system would have dependencies as shown in the system in 
Figure 1 below, where certain MPMs like the named-entity (NE) coreference module depend on the 
output of the Simple Disambiguation MPM in addition to outside knowledge provided by the Knowledge 
and Information Management (KIM) ontology & knowledge base. 
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Figure 1: KIM semantic IE flow diagram [40] 

2.1.3 A Sample IE System: CaRE 

CaRE [46] is a discharge summary IE system developed by the Clinical Decision Making Group at MIT.  
The system has three main functionalities handled by three separate MPMs.  The functionalities are: de-
identification, semantic categorization, and semantic relation extraction.   

The de-identification module replaces private information (e.g., dates, names, addresses, telephone 
numbers) with false data.  The semantic categorization module identifies entities in eight semantic 
categories: diseases, symptoms, tests, results, medical treatments, dosage, abused substances, and medical 
practitioners.  In addition, CaRE can also determine the presence-status of disease and symptom entities.  
Presence-status details whether a disease or symptom exists in the patient, possibly exists in the patient, 
does not exist in the patient, or exists in someone other than the patient.  CaRE’s semantic relation 
extraction module identifies semantic relations that exist between the entities in the eight semantic 
categories. 
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Semantic Category Type Description Abbrev 
PRACTITIONERS Physical Entity Medical teams and practitioners CONS 
DISEASES Event Disease, syndrome, or medical problem DIS 

TREATMENTS Physical Entity / 
Event 

A surgical/operational event or medication 
employed to treat a patient MED 

SYMPTOMS Event Signs or symptoms that describes the patient’s 
feelings and/or physical state SYMP 

TESTS Event An event that measures an attribute, condition, 
or status of the patient TEST 

SUBSTANCES Physical Entity Abusive substance used by the patient, 
(cigarettes, drugs, alcohol) SUBS 

DOSAGES Attribute 
Attributes for TREATMENTS that detail the 
quantity, frequency, and manner in which the 
drug is delivered/used by the patient 

DOS 

RESULT Attribute Attributes that detail the outcome of TESTS RESULT 

Table 2: CaRE semantic categories 

CaRE employs a suite of preprocessing modules including a stemmer, the Link Grammar Parser [47], and 
UMLS Norm [53].  The system then uses its MPMs which create predictive models using support vector 
machines (SVM).  The semantic categorizer is of particular importance for this thesis because the 
coreference resolution system uses the semantic categorizer output. 

2.2 Coreference Resolution 

Coreference occurs when two strings (referred in MUC convention as markables) in a text refer to the 
same entity [54].  Two or more markables that refer to the same entity form a coreference chain.  
Sometimes, the term “equivalence class” can also be used. In general, all entities in a coreference chain 
agree in number, person, and gender.  These entities have an equivalence relationship with each other and 
satisfy transitive closure.  In other words, if markable i corefers to j and j corefers to k, then i must 
corefer to k.    

As Jack was passing by the boutique store, an item in the display piqued his interest. 

((Jack)4 and the (store clerk)5)1 discussed the (price of the (item)6)2 at (great length)3.  After an 
(hour)3 of negotiations, (they)1 settled on an (agreeable number)2. The (clerk)5 congratulated (Jack)4 on 
the (great find)6. 

note: markables in the same coreference chain contain the same subscript.    

Figure 2: Examples of coreference in sentences 

While coreference resolution is often confused with anaphora resolution [54], the two tasks are different.  
An anaphoric relationship holds when the leading markable in a markable pair (i.e., the antecedent) is 
required for the interpretation of the second markable (i.e., the anaphor).  Because the antecedent is only 
needed for the contextual interpretation of the anaphor, it does not mean that they have to be equivalent to 
each other.   For example, “every dog” and “its” in the sentence “Every dog has its day” are in an 
anaphoric relationship but they do not corefer [23].   
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While the examples above seem straightforward, coreference resolution is not always so clear.  In fact, 
some relationships are open to interpretation depending on the reader’s objective and in what context the 
markables are used.  Consider the example of the closely related terms “cancer” and “tumor.”  A 
radiologist in his/her function may consider “tumor” and “cancer” to be equivalent terms because x-rays 
identifies the location of the tumor/cancer.  On the other hand, an oncologist who deals much more in 
detail with cancer is likely to see “tumor” as only an aspect of the patient’s cancer.  These minute changes 
are very difficult to detect and interpret.  In many cases, there is not a single right answer.  We take a fine 
grain, literal approach to coreference resolution.  Only in cases where it is obvious that two markables are 
coreferent, whether through syntax or context, do we draw coreference links.  This interpretation lowers 
the number of coreference links drawn in a data set, but has the benefit of being less ambiguous and a 
more clearly-defined task. 

2.2.1 Terms and Definitions 

In this thesis, we adopt terminology from MUC.  The only deviations from MUC convention are the 
terms antecedent and anaphor, which are normally used in anaphor resolution but are adapted to 
coreference resolution in this thesis for convenience.. 

Markable – a noun phrase that can be classified as one of CONS, DIS, MED, SYMP, or TEST as 
identified by CaRE. 

Entity – the object, concept, physical entity, or event that a markable refers to.  

Antecedent – in a pair of coreferent markables, the markable that appears earlier in text  

Anaphor – in a pair of coreferent markables, the markable that appears later in text. 

Coreference Chain – all markables within the scope of a single discharge summary that represent the 
same entity. 

2.2.2 Convention 

If two markables are represented by two letters, then the markable represented by the letter earlier in the 
alphabet is the antecedent, i.e., for a coreferent pair i and j, i is the antecedent and j is the anaphor.  

2.2.3 Past Research 

MUC-6 recognized coreference resolution as an independent IE task.  Early coreference resolution 
modules often used rule-based logic and regular expressions to locate coreference chains [29, 30, 1].  
These modules were high in precision and low in recall.  Most of them were domain dependent [30].  

McCarthy and Lehnert proposed applying a supervised machine learning approach to coreference 
resolution of nouns when they introduced RESOLVE [30]. They proposed a four step resolution process 
that became the standard framework used by machine learning approaches to coreference resolution: 
feature set determination, instance creation, learning, and clustering.  
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RESOLVE system was designed to handle four types of entities: organizations, facilities, persons, and 
products-or-services.  McCarthy and Lehnert paired all markables with each other, represented each 
markable pair by a feature vector of eight features (as shown in Table 3), and used the feature vector 
during training and testing.   

Feature Description Possible Values 
NAME-i Does reference I contain a name?  YES/NO 

JV-CHILD-i 
Does reference i reference to a joint venture child, i.e., 
a company formed as the result of a tie-up among two 
or more entities?  

YES/NO/UNKNOWN 

NAME-j Does reference j contain a name?  YES/NO 

JV-CHILD-j 
Does reference j reference to a joint venture child, i.e., 
a company formed as the result of a tie-up among two 
or more entities?  

YES/NO/UNKNOWN 

ALIAS 
Does one reference contain an alias of the other, i.e., 
does each reference contain a name and is one name a 
substring of the other name?  

YES/NO 

BOTH-JV-
CHILD 

Do both references, i and j, refer to a joint venture 
child? 

YES, if JV-CHILD-i and j == YES             
NO, if JV-CHILD-i and j == NO    
UNKNOWN, otherwise 

COMMON-
NP 

Do the references share a common noun phrase?  
Some references contain non-simple noun phrases, 
e.g., appositions and relative clauses. 

YES/NO 

SAME-
SENTENCE Do the references come from the same sentence? YES/NO 

Table 3: Features for the McCarthy and Lehnert coreference resolution system 
McCarthy and Lehnert used the C4.5 decision tree algorithm to train a model for predicting whether pairs 
of markables coreferred to each other.  They chose the C4.5 decision tree [42] “due to its ease of use and 
its widespread acceptance… ”.  The authors used 50-fold cross-validation to train and evaluate a data set 
with 1230 markable pairs (from 472 entities).  Because RESOLVE performed only pair-wise coreference 
prediction, violations of transitive closure occurred.  For example, if the system classified i as coreferent 
to j and j as coreferent to k, it was not necessarily true that it would classify i as coreferent to k.  To solve 
this problem, the authors use the aggressive-merge clustering algorithm to assign markables to 
coreference chains. In aggressive-merge, any markables linked together explicitly or implicitly are 
clustered into the same coreference chain.  

To evaluate RESOLVE’s performance, McCarthy and Lehnert used the model theoretic approach [55] of 
the MUC-6 and MUC-7 competitions [16, 52]. We detail the model theoretic approach in section 3.4.2 

System Recall Precision F-Measure 
RESOLVE (unpruned) .854 .876 .865 
RESOLVE (pruned) .801 .924 .858 
MUC-5 rule set .677 .944 .789 

Table 4: RESOLVE evaluation 

McCarthy and Lehnert compared RESOLVE to a rule-based system that was used in their MUC-5 IE 
system.  The rule-based system used lexical patterns to obtain information on markables (e.g., is the 
markable a company name, is it an alias, …). Then it ran markable pairs through a set of hard-coded rules 
to determine if the markables were coreferent.  McCarthy and Lehnert found the F-measures of the rule-
based system to be much lower than those of RESOLVE. Given the relatively small sample size used by 
McCarthy and Lehnert, however, it is possible that the differences in system performance were not, in 
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fact, statistically significant.  Even so, the results obtained by McCarthy and Lehnert were encouraging 
for a system that employed only eight features.  Overall, RESOLVE showed the great potential for 
applying machine learning approaches to the coreference resolution problem.  Various efforts based on 
RESOLVE followed [48, 36, 11].  Soon et al. [48] introduced the DSO system that extended the decision 
tree learning approach to include both noun and pronoun resolution.  The authors proposed many new 
features that did not exist in RESOLVE.  These features include sentence distance, number agreement, 
semantic category agreement, gender agreement, and various features to distinguish different types of 
references (i.e., appositives, pronouns, definite nouns, demonstrative nouns, and proper names).  The 
markable pairing approach was also markedly different from McCarthy and Lehnert’s exhaustive method.  
Soon et al. chose to limit the training data size so that training time could be cut down.  In a chain A-B-C-
D, the algorithm only selected neighboring entity pairs A-B, B-C, and C-D, as positive training examples, 
rather than all possible combinations .  If there were non-coreferent markables a, b, and c between A and 
B (e.g. A-a-b-c-B-C-D), then the negative examples A-a, A-b, and c-B would be generated.  As a result of 
this selectivity, each positive markable in a chain would appear in a maximum of two positive samples 
and any negative markables that appear between the antecedent and anaphor would only be paired with 
the closer of the two markables to generate a negative sample.   

During testing, the classifier found the closest satisfactory antecedent to each markable in the document, 
starting from the second markable.  As soon as the classifier found an antecedent candidate similar 
enough to the current markable, the classifier assigned a coreferent link between the antecedent and the 
markable, the classifier then moved to the next markable in the document.  In doing so, the algorithm 
assumed that the first antecedent to be accepted was probably the best possible antecedent for the current 
markable.   

Soon et al.’s algorithm presented results comparable to other non-machine-learning approaches on the 
MUC-6 and MUC-7 corpora. The authors compared the performance of their DSO system to that of 
RESOLVE and a RESOLVE-DSO hybrid (referred to as DSO-TRG).  The hybrid used RESOLVE’s 
exhaustive pairing method to train a prediction model on DSO’s feature set.  The authors, however, do not 
mention how prediction and clustering were done.   
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System Recall Precision F-Measure Description 
Complete systems 
DSO .586 .673 .626 The Soon, Ng, and Lim system 
DSO_TRG .526 .676 .592 DSO system using RESOLVE's 

method of generating positive and 
negative examples 

RESOLVE .442 .507 .472 The McCarthy and Lehnert system 
Baseline systems: DSO using just one feature 

DIST 0 0 0 Only "distance" feature is used 
SEMCLASS 0 0 0 Only "semantic class agreement" 
NUMBER 0 0 0 Only "number agreement" 
GENDER 0 0 0 Only "gender agreement" 
PROPER_NAME 0 0 0 Only "both proper names" 
ALIAS .245 .887 .384 Only "alias" 
J_PRONOUN 0 0 0 Only "j-pronoun", answers the 

question is markable j a pronoun? 
DEF_NP 0 0 0 Only "definite noun phrase" 
DEM_NP    Only "demonstrative noun phrase" 
STR_MATCH .457 .656 .539 Only "string-match" 
APPOSITIVE .039 .577 .073 Only "appositive" 
I_PRONOUN 0 0 0 Only "i-pronoun" 
Other baseline systems with DSO 
ALIAS_STR .515 .664 .580 Only the "alias" and "string-match" 

features 
ALIAS_STR_APP
OS 

.552 .664 .603 Only the "alias", "string-match", and 
"appositive" features 

ONE_CHAIN .889 .318 .470 All markables form one chain 
ONE_WORD .554 .336 .441 Markables corefer if there is at least 

one common word 
HD_WORD  .564 .504 .532 Markables corefer if their head words 

are the same 

Table 5: Performance of DSO on MUC-6 data 

Out of the three complete systems (see Table 5), DSO performed significantly better than RESOLVE.  
The primary reason cited by the authors for the difference in performance was that RESOLVE had a very 
low recall on the MUC data set because it was designed only to handle “persons”, “entities”, and 
“organizations”, whereas DSO handled resolution for all entity types specified by the MUC standard.  
DSO_TRG also performed worse than DSO.   

Soon et al. also evaluated how each of the features from their 12-feature set individually influenced 
DSO’s performance.  Out of the 12 features that were tested, only the single feature ALIAS, 
APPOSITIVE, and STR_MATCH systems resulted in non-zero F-measures.  Soon et al. then evaluated 
how a system with the previous three feature sets performs against the complete system with the full-
feature set.  The three feature system (ALIAS_STR_APPOS) did extremely well, performing only 2.3% 
worse than the 12 feature system.  In fact, features such as SEMCLASS, PROPERNAME, DEF_NP, and 
DEM_NP were not even used in the MUC-6 prediction tree model. 
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While the DSO approach seems to be better than RESOLVE in both performance and training time, it has 
a major flaw.  Its “closest satisfactory candidate” clustering approach causes a cascading error effect.  If 
the system assigns a markable to the wrong chain then all anaphors that are correctly classified as 
coreferent to the markable would also be assigned to the wrong coreference chain.    

In a series of papers from 2002-2005 [36, 37, 38], Ng and Cardie proposed several improvements over 
Soon et al.’s DSO algorithm. They explored modifications to Soon et al.’s sample selection process and 
the effect of an expanded feature set on resolution performance [36].  Rather than Soon et al.’s “closest 
satisfactory candidate” approach to assigning antecedents to anaphors, Ng and Cardie proposed “best-first 
clustering”.  In this approach, the machine finds the highest scoring candidate out of all antecedents 
(taken as the certainty of the machine’s prediction) rather than stopping at the candidate with a 
satisfactorily high score.  This modification eliminated DSO’s error propagation problem.  Both the 
training and testing pair selection process were modified to accommodate this change.  A further 
modification was the introduction of different string-match features for pronouns, proper names, and non-
pronominal noun phrases (NPs).  The authors observed that string-match worked better for certain 
categories of markables (proper names rather than pronouns, for example), and created separate string-
match features for indefinite nouns, definite nouns, and pronouns, thereby giving the system the option of 
using the appropriate string-match mechanism for each type of markable.  These modifications to the 
original Soon et al. framework did result in a slight system performance gain.   

Ng and Cardie also extended the features of Soon et al., creating a set of 53 features.  However, they 
observed mixed results in response to the added features.  When including all 53 features, the system’s 
recall increased but its precision fell dramatically, causing the system F-measure to be worse than the 
baseline.  In order to get the best performance (F-measure of 70.4% and 63.4% for MUC-6 and MUC-7 
respectively), the authors manually selected a subset of the features.   The selected features were ALIAS, 
SOON_STR_NON_PRO, ANIMACY, PRO_STR, PRO_RESOLVE, APPOSITIVE, GENDER, 
PRONOUN_1 MAXIMALNP, MNCLASS.  
 
Ng explored other add-ons to the learning-based coreference resolution approach [37, 38].  He [37] used 
the cost ratio, i.e.,  cost of misclassifying a positive instance / cost of misclassifying a negative instance, 
to improve performance of systems implemented with RIPPER [17], a constraint-based rule learning 
algorithm, and MaxEnt [6, 33], a probabilistic machine learner.  The cost ratio can be applied to 
algorithms during learning to adjust the algorithm’s preference to misclassify positive or negative 
instances. Ng reasoned that changing the cost ratio can fine-tune a system’s performance.  Ng termed the 
cost ratio adjustment a “global optimization” because rather than improving system performance by 
introducing new features, Ng is simply optimizing the entire system by finding the best cost ratio for 
training. In his follow up work, Ng expanded the global optimization approach one step further [38].  He 
gathered up a variety of methods for each of the four parts of his coreference resolution system (i.e., the 
learning algorithm, the instance creation method, the feature set, and the clustering algorithm).  He then 
used a SVM ranking algorithm to pick the combined system that performed best over 3 corpora from the 
ACE competition.     
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Coreference Step Method Relevant Literature 

Decision tree 
learners 
(C4.5/C5/CART) 

Aone and Bennet (1995), McCarthy and Lehnert (1995), 
Soon et al. (2001), Strube et al. (2002), Strube and Muller 
(2003), Yang et al. (2003) 

RIPPER Ng and Cardie (2002b) 

Learning Algorithm Maximum entropy Kehler (1997), Morton (2000), Luo et al. (2004) 
McCarthy and 
Lehnert McCarthy and Lehnert (1995), Aone and Bennett (1995) 
Soon et al. Soon et al. (2001), Strube et al. (2002), Iida et al. (2003) Instance creation 

method Ng and Cardie Ng and Cardie (2002b) 
Soon et al. Soon et al. (2001) 

Feature set Ng and Cardie Ng and Cardie (2002b) 
Closest-first Soon et al. (2001), Strube et al. (2002) 

Best-first 
Aone and Bennett (1995), Ng and Cardie (2002b), Lida et al. 
(2003) 

Clustering algorithm Aggressive-merge McCarthy and Lehnert (1995) 

Table 6: Methods at each step that were combined by Ng’s system [38] 

 

Coreference System 

Test Set 

Scoring  
Progra
m 

Average 
Rank 

Instance Creation 
Method 

Feature 
Set Learner 

Clustering 
Algorithm 

MUC 7.5249 
McCarthy and 
Lehnert 

Ng and 
Cardie C4.5 aggressive-merge BNEWS BCUBE

D 16.902 
McCarthy and 
Lehnert 

Ng and 
Cardie C4.5 aggressive-merge 

MUC 1.4706 
McCarthy and 
Lehnert 

Ng and 
Cardie C4.5 aggressive-merge NPAPE

R BCUBE
D 9.3529 Soon et al. Soon et al. RIPPER closest-first 

MUC 7.7241 
McCarthy and 
Lehnert 

Ng and 
Cardie C4.5 aggressive-merge NWIRE BCUBE

D 13.1379 Ng and Cardie 
Ng and 
Cardie MaxEnt closest-first 

Table 7: Best performing combined coreference system for each test set 
Ng evaluated systems resulting from various combinations of his coreference resolution system parts 
using both the MUC (Model-theoretic) and the B-CUBED metrics.  The MUC evaluation 
overwhelmingly favored McCarthy and Lehnert’s instance creation method, while the B-CUBED 
evaluation resulted in inconclusive findings.   

While Ng and Soon et al. addressed how to best formulate the coreference resolution problem into a 
binary classification problem, other researchers aimed to understand what types of features are best suited 
for coreference resolution in limited domains.  Of particular interest to this thesis are two pieces of 
research performed on biomedical corpora. 

Castano et al. [12] presented a sortal and pronominal anaphora resolution system for Medline abstracts 
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that detail biomolecular relations.  Sortal anaphors occur when a quantifier such as “both” is used to refer 
to two markables.  Castano et al. used MetaMap [27] to identify markables and their respective semantic 
types.  They then assigned pronouns and sortal nouns to the identified markables by computing a salience 
score using the metrics in Table 8: 

Feature Score 
Person/Number Agreement +1 
Person/Number Disagreement No Salience 
NP String Similarity (LCS) +1 to +3 
Semantic Type(s) Matching +2 per match 
Coercion Type(s) Matching +2 per match 
No Matching Semantic Types -1 
Bio. Antec. for Pronominal +2 
Non-Bio. Antec. for Pronoun -2 

Table 8: Features used to determine coreferent anaphor/antecedent pairs 

Each feature from the table above contributes to the salience score for an antecedent and anaphor pair.  
Person/Number agreement tests if two markables are both first, second, or third person pronouns and that 
both pronouns agree in terms of plurality.  NP string similarity uses the longest common subsequence 
(LCS) method to calculate string similarity between two markables. Semantic type matching assigns 
scores to each pair based on the number of matching semantic types that the two markables have in 
common.  Coercion expands on the semantic type matching feature by assigning additional implied 
semantic types to each markable.  Coercion occurs if a markable is a patient or agent of a biomedical 
verb.  The markable is coerced to bear the implied semantic types that are frequently associated with the 
agent or patient of the verb.  The “Biomedical Antecedent for Pronominal” feature increases the markable 
pair score if the antecedent is a biomedical term. 

Two features from Table 8 are noteworthy: NP string similarity and number of matching semantic types.  
Rather than traditional exact string-matching, Castano et al. used LCS for the string similarity metric so 
that morphological variants such as “grafts” and “xenografts” could be identified.  Castano et al. also 
made the observation that markables often receive more than one UMLS semantic type assignment.  They 
believed that the more semantic types two markables have in common the more similar they are.  To 
capture this belief, they assign a +2 salience score for every semantic type that two markables have in 
common.  While both features seem like good ideas, the paper did not evaluate individual feature 
contributions to the system’s performance to test this hypothesis. 

Yang et al. [61] presented a noun phrase resolution system for Medline abstracts.  They explored various 
methods of improving coreference resolution.  They distinguished antecedents and anaphors into different 
noun phrase types (definite, demonstrative, indefinite, pronouns, and proper noun).  Each markable was 
also assigned an attribute list that contained the various types of modifiers (number, comparative 
adjective, superlative adjective, etc.) which described it.  Like Castano et al., Yang et al. did not provide a 
detailed analysis of the contribution of each feature to the system performance.  Instead, Yang et al. 
focused on examining how different string-match methods altered the performance of the system.  In 
particular, they examined the following features: 
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Contain(S1, S2) – is S1 contained in S2 

ContainRatio1(S1, S2) – number of common tokens between S1 and S2, normalized to the number of 
total tokens in S1.  Tokens are assigned equal weights. 

ContainRatio2(S1, S2) - number of common tokens between S1 and S2, normalized to the number of 
total tokens in S1.  Tokens are assigned different weights based on frequency statistics. 

COS-Similarity(S1,S2) – commonly used information retrieval statistic for calculating similarity 
between documents and sentences. 

Yang et al. found using ContainRatio1 resulted in the highest recall, while COS-Similarity produced the 
highest precision.  In F-measure, ContainRatio1 performed better than the other systems. 

String-match is a powerful ally for coreference resolution systems [30, 61, 48], but exact string-match 
captures limited information.  As a result, various authors [51, 18, 19] have proposed using distance 
metrics to better model similarity between strings.  

Strube and Mϋller [51] used the minimum edit-distance along with features from [48] and [11] to perform 
coreference resolution.  They defined two minimum edit-distance features for each markable pair, one 
based on the anaphor and the other based on the antecedent.  The value for each is evaluated as: 

Minimum Edit Distance (i, j) = 
)(Length

),(Distance)(Length
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Equation 1: Minimum edit-distance 

The value is a word-length-normalized edit-distance for each markable. The added minimum edit-
distance features resulted in a .08 F-measure increase over the baseline features.  They specifically helped 
resolve definite nouns and named entities, improving each category’s F-measure by .18 and .11 
respectively. 

Research in Other Related IE Tasks 

Research results from other IE tasks like name-matching and name-disambiguation are also of use to 
coreference resolution.  Name-matching systems try to cluster similar names in a document.  These 
similar names may refer to different entities.  The name-matching task does not guarantee disambiguation 
of name markables into different entities.  However, it can be used to identify potentially coreferent 
markables. 

Cohen [42] first proposed employing the term frequency, inverse document frequency weighted (TFIDF-
weighted) cosine similarity metric to evaluate similarity between named markables.  The cosine similarity 
metric is a vector-based approach to evaluating similarity between markables.  A markable is represented 
by a token vector that contains a value for each unique token in the markable.  Tokens that do not exist in 
the markable have a value of 0.  The cosine similarity metric evaluates similarity between two markables 
by finding the cosine of the angle of separation between two token vectors.  TFIDF-weighted cosine 
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similarity metric simply uses the TFIDF method for determining the appropriate score for a token in the 
markable. 

The TFIDF-weighted cosine similarity score between two markables S and T can be defined as: 
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Where TFw,S is the frequency of word w in markable S, IDFw is the inverse of the fraction of markables in 
the entire corpus that contain w.  V(w, T) can be obtained analogously. 

Equation 2: TFIDF-weighted cosine similarity score 

In a follow up paper [19], Cohen proposed a variant of TFIDF called SoftTFIDF.  For two elements S and 
T, the SoftTFIDF score evaluated V not only on tokens that appear in both S and T, but also on tokens in 
S and T that are similar to each other.  The authors considered tokens that had a Jaro-Winkler score (for 
definition see [57]) greater than 0.9 to be “similar”.  SoftTFIDF proved to be extremely powerful for 
name-matching, resulting in F-measures of .89 and .85 for two different corpora, while the next best 
distance metric, TFIDF-weighted cosine similarity, had F-measures of .79 and .84 respectively. 
 
Li, Morie, and Roth [28] compared Cohen [19] and Bilenko’s [7] discriminative approaches of 
disambiguating names to an unsupervised generative approach they called LMR.  They proposed a system 
that “automatically [extracted] active features in a data-driven way for each pair of names.”  The system 
contained both relational and structural features.  Relational features detail how names are related to each 
other, while structural features detail the token structure similarities between the two names.  We give 
examples of relational features in Table 9 and then give further examples of structural features later.  
LMR employed 13 features in all, each representing a condition examined by the system.  If a particular 
condition is satisfied, then the corresponding feature is activated.   

Feature Activation Condition Activation Example 

Honorific Equal  both tokens are honorifics and equal “Mr.” and “Mr.” 
Honorific 
Equivalence  honorifics are not equal but equivalent “Professor”, “Prof.” 

Honorific Mismatch honorifics are not equal “Mr.” and “Professor” 

NickName  If one token is a nickname of the other “Thomas” and “Tom” 
Equality  both names are equal “Thomas” and “Thomas” 
Edit Distance  the tokens have an edit-distance of 1 “Edit distance of 1” 
Symbol Map  one token is a symbolic representative of the other “and” and “&” 

Table 9: Relational features used by LMR 

Relational features however do not completely disambiguate names.  The authors gave the example of 
two token pairs (“John Kennedy”, “John Kennedy”) and (“John Kennedy”, “John Kennedy Davis”).  Both 
pairs have the same active features; however, the two pairs are clearly different in structure.  Li et al.’s 
structural features captured this information by describing how tokens from two strings map to each 
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other. The previous examples would respectively have structure features “(1,2)”, “(1,2)” and “(1,ø,2)”, 
“(1,3)”. Each token’s structure value represents the token in the other string that it matches to.   

Li et al. evaluated their system on three types of named-entities: people, location, and organization names.  
For each of these three named-entity types, Li et al.’s generative approach was able to perform better than 
Bilenko’s Marlin [7] and Cohen et al.’s SoftTFIDF [18].   

 
F-measure of 
Marlin 

F-measure of 
SoftTFIDF 

F-measure of 
LMR 

People 88.3 89.0 90.5 
Location 77.3 90.5 92.5 
Organization 78.1 87.7 93.0 

Table 10: Pair-wise classification performance (F-measure) for three name-matching algorithms [28] 

While the aforementioned research primarily explore name-matching by exploiting various string-match 
distance metrics, Pedersen et al. [39] proposed using a lexical clustering approach to find coreferent 
markables.  In lexical clustering, a machine groups names together based on the similarity of their 
surrounding context.  Specifically, Pedersen et al. identify salient bigrams, consecutive words that appear 
in the text in a 50-word window around each name.  A bigram is salient if the log-likelihood ratio 
between the word pair is above a threshold.  Name occurrences are clustered based on common bigrams 
that they share when certain stop-words are removed.  The lexical clustering approach yielded 
encouraging results. 

Lessons from Literature 

Coreference resolution efforts historically have been performed on newspaper articles/corpora where a 
large proportion of coreferring distinct noun markables can be identified by using string-match and 
semantic features; but even so named-entity resolution is often considered “more problematic” than 
resolution of other types of markables [51].  While much progress has been made in the newspaper corpus 
domain, research has not yet diversified to other domains.   

In our literature search, we were only able to find two coreference resolution efforts that focused on the 
biomedical domain [12, 61].  These efforts used Medline abstracts for their research.  While Medline 
abstracts are more related to the corpora of this thesis than newspaper articles, they are still fairly different 
from discharge summaries.  Though they share vocabulary with medical discharge summaries, Medline 
abstracts are research abstracts that are written in a grammatical, scientific style, while medical discharge 
summaries are dictated by doctors in an informal style.  Furthermore, Castano et al. and Yang et al. 
presented relatively little information on how individual features contributed to their systems’ 
performance. Their focus was on problem solving approaches. 

It is still unclear what features are most powerful for resolving coreference of markables that appear in 
medical discharge summaries.  We believe the salience of the features (orthographical, grammatical, 
temporal, etc.) may vary depending on the type of coreferring entity involved.  For example, medical 
events such as surgeries and radiology investigations may rely heavily on semantic clues such as time, 
because practitioners may request the same type of medical treatment or investigation several times over 
the course of a patient's hospital stay.  In hospital discharge summaries, the dictating doctor may refer to 
these recurring events using the same noun, increasing the complexity of coreference resolution.  We use 
the C4.5 decision tree algorithm to train prediction models for nominal and named-entity coreference 
resolution in hospital discharge summaries.  Previous works identified string-match distance metrics as 
extremely important to the performance of a coreference resolution system [30, 48, 61].  Yang et al. 
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surprisingly found that token frequency statistics adjustments do not improve similarity metrics.  We 
employ a string-match distance metric that is equivalent to Yang et al.’s ContainRatio.  Our approach to 
resolving coreference is to present the system with a large feature set and use a “multi-perspective” 
approach to improve the salience of each feature.  Large feature sets have been known to improve system 
performance [36, 61].  Unlike previous feature sets that include only two or three types of features [61, 
12], our feature set includes features that detail orthographic, semantic, syntactic, lexical, morphological, 
temporal and domain specific information of our corpora. Many of these features (e.g., date-default-
unknown, word-distance, sentence-entity) did not appear in any previous literature we found. Our “multi-
perspective” approach (explained in the Feature Set section) also presents a new, yet simple way to 
present feature values to a system.  
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3 RESOURCES 

3.1 UMLS       

The Unified Medical Language System (UMLS) is an effort headed by the National Library of Medicine 
(NLM) to organize biomedical concepts and knowledge into a single comprehensive digital knowledge 
source [27].  NLM’s goal in developing UMLS is to provide working knowledge sources and tools to 
assist researchers in medical informatics.  UMLS consists of three main knowledge repositories:  the 
Metathesaurus, the Semantic Network, and the SPECIALIST Lexicon.   

The Metathesaurus is a database composed of biomedical concepts, concept names, and various 
relationships between concepts.  This information is compiled from various medical thesauri, 
classification standards, cataloged biomedical research and other source vocabularies such as ICD-9 and 
SNOMED CT.  Biomedical concepts are the atomic, distinct terms that make up the Metathesaurus.  
Different source vocabularies may refer to the same biomedical concept with a variety of concept names.  
It is also possible that they may use the same concept name to refer to different biomedical concepts in 
the Metathesaurus. The Metathesaurus does not attempt to resolve any such conflicts.  It simply stores all 
concept-to-name and name-to-concept mappings.   

The Semantic Network stores a set of UMLS semantic types (e.g., organisms, surgical procedures, and 
medical occupations) and any semantic relations that exist amongst them.  The semantic types in the 
Semantic Network are intended to be used to categorize Metathesaurus concepts, while the semantic 
relations detail how the semantic types are physically, spatially, temporally, functionally, and 
conceptually related to each other. 

The last knowledge repository is the SPECIALIST Lexicon.  The lexicon contains linguistic information 
on both biomedical vocabulary present in the UMLS Metathesaurus and on common English vocabulary.  
Specifically, it details the syntactic, morphologic, and orthographic information related to each entry it 
contains.   

NLM provides tools to help researchers extract information from these knowledge repositories.  A lexical 
tool called LVG contains various methods for matching spelling, derivational, or inflectional variants.  
The tool Norm is a specific set of LVG functions run in sequence to normalize a string.  Norm removes 
case, punctuation, possessive markers, and inflection from words; and as a final step, it sorts tokens in the 
string in alphabetical order.   

One tool that is particularly useful for this thesis is MetaMap.  MetaMap [2] is a NLP system designed to 
map text strings to concepts in the UMLS Metathesaurus. MetaMap uses a five step process to map 
concepts in UMLS to a given string input.  We include an excerpt from [2] that gives an overview of each 
step of the process. 
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1. Parse the text into noun phrases and perform the remaining steps for each phrase; 
 
2. Generate [a candidate set of Meta strings which contain] the variants for the noun phrase where a 
variant essentially consists of one or more noun phrase words together with all of its spelling variants, 
abbreviations, acronyms, synonyms, inflectional and derivational variants, and meaningful combinations 
of these; 
 
3. Form the candidate set of all Meta strings containing one of the variants; 
 
4. For each candidate, compute the mapping from the noun phrase and calculate the strength of the 
mapping using an evaluation function [UMLS Score]. Order the candidates by mapping strength; and 
 
5. Combine candidates involved with disjoint parts of the noun phrase, recompute the match 
strength based on the combined candidates, and select those having the highest score to form a 
set of best Meta mappings for the original noun phrase. 

Figure 3: Algorithm for Metathesaurus mapping [2] 
 

3.2 C4.5 Decision Tree 

The C4.5 [42] decision tree algorithm is a supervised machine-learning algorithm that improves upon the 
ID3 decision tree [41].  Generally, machine-learning algorithms have training and testing stages. During 
training, the learner trains a prediction model on an already classified data set.  During testing, the trained 
prediction model is used to classify new data points.  Data is presented to the learner in the form of 
feature vectors.  Each feature vector contains a set of n features that encapsulates a data point in a data set.   

A decision tree trains its predictive model by repeatedly examining and partitioning data on different 
features until a stop condition is satisfied.  The prediction model records the features that are examined 
and the chosen split for each step.   C4.5 determines which feature to partition by evaluating the 
information gain or the information gain ratio due to each feature.  Information gain, G(E,f), from a 
feature f is the change in the entropy of the data samples due to f.  In other words, information gain 
measures the amount of new information gained from partitioning on feature f.  However information 
gain is inherently biased towards features with multiple values, therefore, a normalized information gain 
metric, the information gain ratio is often used. 
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 P(c) = probability that an event in E has category c.   

Equation 3: The information gain ratio [62] 
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3.3 Kappa Statistic 

The Kappa statistic is the standard method used to evaluate inter-annotator agreement between annotated 
data.  It is a measure of annotator agreement beyond simple chance.  The Kappa statistic is often used as a 
measuring stick for the difficulty of a task.  A task that results in a high K (> .6) can be considered doable 
for machines.  A low K implies low inter-annotator agreement.  In such a case, the task is either too 
difficult or too subjective.   

K is defined as:  
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Where: 

P(A) is the observed agreement probability between two annotators  
P(E) is the expected agreement by pure chance.   

Equation 4: Kappa statistic 

To compute Kappa on our data set, we treat each markable pair as a data point for a 2x2 confusion matrix 
(see below). One axis of the confusion matrix represents how Annotator 1 marked the pair and the other 
axis represents how Annotator 2 marked the pair.  P(A) and P(E) can be calculated from the confusion 
matrix.   

Annotator 1 
  Coref Non-Coref   

Coref M N M+N = P 
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Non-Coref O L O+L = Q 

  M+O = R N+L = S M+N+O+L = T 

Table 11: Annotator agreement confusion matrix 

P(A), the observed agreement probability between two annotators, is simply (M+L)/T.  We calculate the 
expected agreement due to chance, P(E), using simple probabilities.  Assuming the probability that 
annotator i assigns a pair to a category z, P(i, z), can be calculated by the number of pairs the annotator 
assigned to z over the total number of pairs, then we simply need to find, for each category, the 
probability that all annotators assign a pair to that category.  We can then sum the probabilities to find the 
probability of annotator agreement over all categories, ! "Z I

ziP ),( .  For the two-annotator, two-class 

case, 
T
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Due to the nature of the coreference resolution task, the Kappa statistic is only a rough measure of inter-
annotator agreement.  Coreference resolution involves assigning a markable to a coreference chain; 
however, because the Kappa score evaluates coreference relationship in a pair-wise fashion, it over-
penalizes markables wrongly assigned or left out of long coreference chains.  For example, if a markable 
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is misplaced in a long coreference chain, then it will result in many disagreeing markable pairs.  As a 
result, the confusion matrix count will increase by more than 1.  However, a false alarm link that 
identifies two standalone markables as coreferent will only result in a single false alarm.  As a result of 
this over penalization, inter-annotator agreement may actually be higher than what’s indicated by Kappa.   

3.4 Evaluation Methods 

3.4.1 Precision, Recall, and F-measure  

In information extraction, the standard metrics of algorithmic performance are precision, recall, and F-
measure.  Precision measures the accuracy of the system's predictions, while recall measures the 
percentage of the gold standard accurately predicted by the system. F-measure is a single measure derived 
from combining precision and recall of a system.   

The most basic coreference resolution evaluation is to treat each markable pair as a data point and to 
predict whether they corefer or not.  A pair that is falsely predicted to be coreferent is called a false alarm, 
a pair that is falsely predicted to be non-coreferent is called a false negative, and a pair that is correctly 
predicted to be coreferent is called a hit.  Given statistics about hits, false alarms, and false negatives, 
precision, recall, and F-measure are defined as follows: 

Precision 

P = 
i classfor  alarms False  i classfor  Hits

 i classfor  Hits

+
 

 
Recall 

R = 
i classfor  negatives False  i classfor  Hits

 i classfor  Hits

+
 

 
F-measure 

F = 
R  P

 R))(P(1

+

!+ "
  

Equation 5: Traditional precision, recall, and F-measure evaluation 

F-measure uses !  to adjust the relative weight on precision and recall.  For our purposes, we give equal 
weight to precision and recall; therefore, we set !  to be equal to 1. 

For an n-class classification problem, n sets of precision, recall, and F-measures can be reported.  Even 
though coreference resolution is a binary classification problem, researchers only report the statistics for 
the coreferent class because non-coreferent prediction is almost always near 1. 

This approach to measuring coreference resolution system performance is clearly lax.  Because this 
metric is only a pair-wise evaluation, it does not penalize contradicting links that violate transitive 
closure.  That is, if a system outputs i as coreferent with j, and j as coreferent with k, but i as non-
coreferent with k, then the result would be two hits and a false alarm.  However, the result is somewhat 



 

29 

meaningless, since the system output contains contradictions. 
 
3.4.2 The Model Theoretic Scoring Method 

The most widely used evaluation standard is the model theoretic approach, also known as the MUC 
approach to evaluating coreference resolution [55].  This approach requires that the system output satisfy 
transitive closure.  It then computes the minimal number of links that would need to be added or taken 
away from the prediction so that it matches the gold standard.  The links that need to be added are treated 
as false negatives, while the links that need to be taken away are false alarms.   

Let Si contain markables in a coreference chain in the gold standard and P(Si) be Si partitioned into 
subsets containing the intersection of Si with the prediction coreference chains that contain markables in 
Si.   

For example, if a chain A-B-C-D is classified as A-B, C, D, then: 

Si = {A,B,C,D},  

p(Si) = {{A,B}, {C}, {D}} 
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The precision can be found by reversing the role of the gold standard and the prediction. 

Equation 6: Model theoretic approach to calculating recall and precision 

Bagga et al. [3] argues that model theoretic scoring is useful for information retrieval but inadequate for 
evaluating coreference resolution because of two major shortcomings.  First, model theoretic scoring does 
not give credit for correctly predicting standalone markables.  This problem occurs because the model 
theoretic approach evaluates the precision and recall of links that exist in the gold standard and the system 
prediction.  It therefore captures correctly assigned coreference links and any falsely assigned coreference 
links.  This method correctly accounts for any coreference chain in the gold standard with more than one 
markable, but what of the stand alone markables that shouldn’t be linked to any other markable?  If the 
system prediction incorrectly assigns the markable to a chain, then the mistake would be recognized, 
however if the system prediction is correct and leaves the markable by itself, then no credit is given for 
the correct classification! In addition, the model theoretic approach treats all links equally.  However, one 
can argue that certain link errors should be penalized more than others.  For example, Bagga et al. [3] 
argues that a spurious link that links two coreference chains with 10 items each should be penalized more 
than a link that connects two stand-alone markables.  

3.4.3 B-CUBED 

In response to the shortcomings of the model theoretic approach, Bagga et al. introduced the B-CUBED 
scoring metric. B-CUBED is an entity-based approach to evaluating system performance.  The algorithm 
computes the precision and recall for each entity in the document and then performs a weighted average 
calculation to find the overall precision and recall.   
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Precisioni = 
i

i

Markable contains chain that prediction in the markables ofnumber 

  Markable containingchain  prediction in the markablescorrect  ofnumber 
 

 

Recalli = 
i
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Markable contains chain that standard gold in the markables ofnumber 

  Markable containingchain  prediction in the markablescorrect  ofnumber 
 

Precision = ! i
Precisionw
i

 

Recall = ! i
Recallw
i

 
wi = 1/N, where N is the total markable count  

Equation 7: B-CUBED approach to calculating precision and recall 

The B-CUBED resolves both shortcomings of model theoretic scoring by calculating precision and recall 
based on the coreference chains that each markable belongs to.  In this manner, even stand-alone 
markables are taken into account.  By evaluating what percent of the gold standard and the system 
prediction are commonly shared markables, B-CUBED penalizes wrong assignments to long chains by 
assigning those markable a lower score.  The B-CUBED measure is more accurate than the model 
theoretic approach for ranking whether systems predictions are close to the gold standard.  However, the 
B-CUBED approach is not perfect.  While the B-CUBED F-measure is a good indicator for how system 
performance compare to each other [3], it sometimes yields very unintuitive precision and recall. 
Consider the examples below, 

Truth:  A-B-C D 

Prediction1:  A-B-C-D Precision = ¼(3 x (3/4) + 1 x (1/4)) = 5/8 

    Recall = ¼(3/3 + 1/1) = 1 

Prediction2: A B C D Precision = ¼(4 x 1/1) = 1    

    Recall = ¼(3 x 1/3 + 1/1) = 1/2  

Figure 4: Illustrations of B-CUBED evaluation 

Both sample evaluations showcase some unintuitive behavior when using the B-CUBED evaluation.  In 
both cases, the B-CUBED evaluation is overly optimistic.  In Prediction1, recall should certainly not be 
one because the gold standard states that there should be two chains (A-B-C and D) in the output, 
however only one chain (A-B-C-D) is predicted.  In Prediction2, the system predicts four chains (A, B, C, 
D), if each predicted chain can only be assigned to one coreference chain in the gold standard, then the 
prediction should have a lower score than 1.0.  These problems arise because when evaluating a 
prediction coreference chain, the B-CUBED algorithm considers each markable’s precision and recall 
separately.  As a result, multiple gold standard chains that contain the prediction chain’s markables will 
contribute to its precision and recall.  However, in reality, based on the definition of coreference 
resolution, there should be a one-to-one mapping between the gold standard and prediction chains.   
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3.5 Significance Testing - Wilcoxon signed-rank test 

We employ the Wilcoxon signed-rank test [56] to determine whether two scores are statistically 
significantly different from each other.  The Wilcoxon signed-rank test is a statistical test used to 
determine if there is significant difference between two dependent data sets.  It is the nonparametric 
equivalent of the paired Student's t-test.  Unlike a parametric test such as Student’s t-test, a nonparametric 
test does not assume that its data set has a specific distribution, e.g. normal, Gaussian, uniform, etc.  The 
Wilcoxon signed-rank test simply assumes that its data set is symmetric and that data points, Zi, are 
independent of each other.  

The Wilcoxon signed-rank test has been used extensively in NLP research.  Most recently, the NIST 2007 
Automatic Content Extraction Evaluation (ACE07), an NLP conference similar to MUC, used the 
Wilcoxon signed-rank test to evaluate the significance of score differences between different systems.  
Similar to previous works in NLP [49, 50, 43], we employ the Wilcoxon signed-rank test to determine if 
the F-measure scores between different configurations of our system result in significant changes in 
resolution performance.  

The Wilcoxon test validates the null hypothesis, H0 : *θ = 0 (there is no difference between the data sets 
Yi and Xi) against H1 : *θ > 0 or *θ < 0 (there is a difference between the data sets).  The test ranks the 
difference of each data points, |zi|, then calculates the Wilcoxon signed-rank statistic: 
  

   T+  =   

! 

z
i
"
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i
!  is an indicator function 

 
   

i
!   =    1, if zi > 0, 

              -1, if zi < 0 

Equation 8: Wilcoxon signed-rank statistic 

The calculated T+ value is then matched to a table to find the probability p, that the null hypothesis is 
false at a given confidence level alpha.  We set alpha = 0.05. 
 
We use the Wilcoxon signed-test as implemented by the Harvard Neural Systems Group [26].   
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4 COREFERENCE RESOLUTION 

We apply a machine-learning approach, along with an assortment of features that include lexical, 
syntactic, and orthographic information, to resolve selected entity markables that are in hospital discharge 
summaries.  We focus on coreference resolution of nouns that belong to five commonly appearing 
semantic categories in medical discourse.  We believe that different feature sets may be appropriate for 
different semantic categories.  The results from our experiment verify this hypothesis.  In addition, we 
perform experiments to find the most salient features for each semantic category. 

4.1 Task Definition  

Coreference resolution is the identification of markables in text that refer to the same entity.  In this 
thesis, we study coreference resolution in medical discharge summaries, construct a coreference 
resolution engine for this domain, and identify the most informative features for resolving coreferent 
markables in five semantic categories extracted by CaRE.  These categories are: CONS, DIS, MED, 
SYMP, and TEST.   

CaRE can identify three additional semantic categories which are not used in this thesis.  Two of these 
categories, DOS and RESULT, are usually descriptive prepositional/verbal attributes of MED and TEST, 
respectively.  Therefore, they are closely linked to the resolution of MED and TEST.  They are also more 
relevant to event extraction rather than coreference resolution because most markables in these categories 
are standalone instances.  Instances in the third omitted category, SUBS, occur rarely in the data set and 
do not show much variation in vocabulary or orthographic form.   

As mentioned earlier, CaRE can also identify the presence-status of SYMP and DIS markables.  SYMP 
and DIS markables can either be asserted to be present (pres), absent (abs), possibly present (poss), or 
present in someone other than the patient (some).  

For the five semantic categories studied in this thesis, we consider two markables to corefer to each other 
if: 

CONS – markables explicitly or implicitly refer to the same person, team, or organization 

DIS – markables refer to the same occurrence of a disease (if a disease reappears, after it was cured, then 
the two occurrences are treated as different entities) 

MED - 
(Medication) markables refer to the same medication or same exact equipment 
(Procedure) markables refer to the same occurrence of an invasive procedure or surgery 

SYMP – markables refer to the same occurrence of a symptom (if a symptom reappears, after it was 
cured, then the two occurrences are treated as different entities). 
 
TESTS - markables refer to the same occurrence of a laboratory or diagnostic test 

Figure 5: General coreference resolution rules 

We also define rules on resolving coreference amongst DIS and SYMP markables that refer to entities 
that are asserted to be absent or only possibly present.  In these cases, we consider markable pairs that 
have the same presence-status and refer to the same named-entity to corefer to each other.  For example, 
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“headache” in the sentences “the patient does not have a <dis-abs> headache </dis-abs> on 8/12” and “the 
patient does not have <dis-abs> headache </dis-abs> on 8/14” corefer to each other.  However, “some” 
presence-status is a special case because it is a declaration of presence in someone other than the patient. 
It, therefore, should follow the conventions of “pres” markable pair classification. 

In cases where markables that make up a markable pair have different presence-statuses, context is 
important in determining whether they corefer; it is not the case that all markables with differing 
presence-status are non-coreferent to each other.  For example, consider the sentences below: 

Sample sentences where coreferent markables do not have matching presence-status. 

S1.  Patient was checked for suspicion of <dis-poss> pneumonia </dis-poss> 

S2.  The patient was found to have <dis-pres> pneumonia </dis-pres> 

S3.  The <dis-abs> infectious disease </dis-abs> resolved on 12-10 

These sentences contain markables that have different presence-status, however, they all refer to the same 
instance of “pneumonia”. 

In general, because diseases and symptoms can recur, it is important to distinguish between phrases 
announcing newly arisen disease/symptoms versus those announcing a change in status of existing 
disease/symptoms.  External world knowledge on the usual duration of diseases and symptoms may help 
decipher whether markables are coreferent.  For example, mentions of AIDS in "AIDS in 2006" and 
"AIDS in 2002" are referring to the same disease because once a patient has AIDS it cannot be cured.  
But in the case of "pneumonia in 2006" and "pneumonia in 2002", the markables are likely referring to 
different underlying entities because pneumonia lasts much less than a year.   

The ambiguous cases from above illustrate that the interpretation and use of presence-status to resolve 
coreferent markables depends on the entity/event represented by the markable.  Uncertainty arises due to 
varying durations amongst different diseases and symptoms.  We take the conservative approach and 
assert that coreference relationships can only be drawn on markables that refer to the same exact 
entity/event. 

4.2 Data  

We perform our experiments over a collection of 47 hospital discharge summaries totaling 4978 lines of 
text.  The records have been previously tokenized, sentence split, and semantically categorized.  We 
annotate these records with coreference chains and time stamps.  

As mentioned previously, hospital discharge summaries are semi-structured texts.  In general, hospital 
discharge summaries are divided into sections that contain information vital to a patient’s medical care.  
Not all records have a standard format that contains the same set of sections.  Across medical records, 
doctors may also assign different names to the same section. The main sections that usually appear in all 
discharge summaries are listed below along with a description of the information that the sections contain. 

Section Description Example 
Past Medical 
History 

Significant surgeries, illness that occurred in 
previous hospital visits 

status post cerebrovascular 
accident 
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Allergies Allergic reactions peanut allergies 

Social History Family and social habits The patient has two daughters and 
smokes a pack a day 

History of 
Present Illness 

Any history related to the patient's current 
hospital visit, e.g. events leading up to the 
hospital visit, relevant past medical history 

The day prior to hospitalization, 
the patient was walking and 
slipped on the floor 

Physical 
Examination Results of the patient's physical examination Head, eyes, ear, nose, and throat 

Laboratory 
Results Results of laboratory tests Platelet count, Chem-7 test 

Hospital Course 

Actions taken by the Medical Practitioners 
during this hospital visit along with the 
results of the actions, patient's status and 
conditions are also updated 

A chest x-ray was taken on 6/17 

Discharge 
Medication 

Medications that the patient is discharged 
with Tylenol b.i.d. 

Table 12: Sections of a hospital discharge summary 

Within each section, information may be detailed in list, paragraph, or other structured formats.  “Hospital 
Course” and “History of Present Illness” are almost always in paragraph form.  They contain the narrative 
for the patient record; the other sections are often used mostly as data references. 

4.3 Annotation 

4.3.1 Coreference Resolution 

We modify the MUC SGML coreference annotation scheme [34] for our annotations. Like MUC we 
enclose all markables with “<COREF>” and “</COREF>” tags.  In MUC, the "ID" attribute of the 
<COREF> tag signifies the unique ID for a markable.  While the “REF” attribute is used to denote the 
markable’s antecedent.  Instead of this method, we simply use ID to identify the coreference chain the 
markable belongs to, removing the need for the REF tag.  The MUC coreference annotation scheme 
contains three additional attributes "TYPE", "MIN", and "STATUS"; these attributes are not useful for 
our purposes and therefore we omit them from our annotations.  "TYPE" details the relationship between 
the antecedent and the anaphor (e.g., identity, possessive, etc.).  In coreference resolution only the identity 
relationship can exist, making this attribute unnecessary. The MUC coreference task requires systems to 
identify markables in addition to performing coreference resolution over the identified markables.  The 
“MIN” attribute is used to denote the minimal string that needs to be enclosed within a system-predicted 
markable in order for the markable to be considered the same markable as the one in the answer key. In 
our data set, markables’ boundaries are predetermined, removing any boundary ambiguities and the need 
for “MIN”.  The last attribute is "STATUS".  It denotes any ambiguous/uncertain coreferent pairs so that 
during evaluation such cases can be included or excluded.  In our annotations, ambiguous cases also 
occur, however, there aren’t enough cases to warrant incorporating the feature.   

Sample Annotations: 

<COREF ID="1"> Chest x-ray </COREF> was taken on 2/14.  

<COREF ID=”1”> Chest x-ray </COREF> showed evidence of pneumonia. 

Figure 6: Sample coreference annotations 
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We use a JAVA graphical user interface (GUI) to improve the coreference annotation experience.  The 
GUI shows a block of 20 sentences to the annotator in the main text area.  In a separate pane, the 
GUI displays all identified coreference chains within the current record.  All markables that are part of the 
same chain are displayed in a single, selectable line as "mark1 -> mark2 -> mark3 ...".  When a 
coreference chain is selected, the GUI highlights any markable in the current sentence block that is in the 
selected chain.  The annotator can move to other sentence blocks by clicking the "Forward" or "Back" 
buttons.  Switching sentence blocks while a coreference chain is selected will highlight any markables 
from the chain that exist in the new sentence block.  The annotator can declare two chains coreferent by 
selecting both chains and clicking the "Link Existing Chains" button.  Conversely, a markable can be 
removed from a chain by selecting the chain, clicking the highlighted markable, and then clicking the 
"Split Chain" button.   

 

Figure 7: Screenshot of coreference annotation GUI 

We also include two features that reduce the likelihood of annotation errors.  A search box allows 
annotators to search for all coreference chains that contain a user inputted string.  This feature helps to 
find chains with similarly spelled markables to ensure that coreference links are not missed.  Also, the 
GUI can display all sentences that contain a markable from the selected coreference chain, allowing for 
easy context comparisons to ensure that the markables do, in fact, refer to each other. This feature was 
implemented by Sharon Zhang. 

We find that annotating each semantic category separately reduces confusion and shortens the search time 
when looking for potentially coreferent markables in the text.  Annotators, therefore, annotate a file five 
times, once for each semantic category.  To speed up the annotation process, we first run a program that 
assigns all exact-match markables to the same coreference chain so that the annotator starts with some 
coreference chains already annotated. 

We provide guidelines to two computer science students on what constitutes a coreferent markable.  After 
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some supervision to ensure the clarity of guidelines, the students annotate the data separately.  Upon 
completion, we evaluate the inter-annotator agreement between the students’ annotations using the Kappa 
statistic [45,32].    

We evaluate the Kappa statistic for each semantic category individually.  Annotator agreement varies 
greatly depending on the semantic category.  The annotators agree the most on CONS annotations and the 
least on TEST annotations.  TEST coreference resolution requires more thorough reading and 
interpretation of the surrounding text due to there being many non-coreferent, exact-match markables.  As 
a result, annotators are likely to make annotation errors.  In general, TEST markables are more 
ambiguous.     

  CONS DIS MED SYMP TEST ALL 
Kappa 0.9134 0.7829 0.8803 0.8293 0.7099 0.8363 

Table 13: Coreference Kappa statistics for each semantic category 

Annotator disagreements occur in three predominant forms.  A large number of disagreements are due to 
judgment error made by one of the annotators.  Judgment errors usually occur due to annotators 
overlooking a key piece of information (e.g., time information, co-occurring events, etc.) in the text 
surrounding the markables.  The other major disagreement factor is the confusion caused by some 
hypernymy relationships.  For example, an annotator would reason that an “eye examination” is part of 
HEENT and therefore coreferent to “HEENT” without thinking if the relationship is really equivalent.  
The remaining disagreements are due to differing interpretation of what makes two markables coreferent.  
For example, the annotators disagree on whether two diseases that have the same name and are asserted to 
be absent should be coreferent.  Because MUC rules do not specify how to handle such situations, the 
annotators eventually set their own standard.  Two markables with the same name that are asserted to be 
absent are coreferent to each other provided that contextual clues do not link one of the markables with 
another markable. Some other error factors include inherent ambiguity due to lack of context or ignorance 
of synonymy relationships by the annotators.  In the next few paragraphs, we highlight some examples of 
annotation disagreements for each semantic category.  Many of these examples highlight how ambiguities 
can often arise based on different interpretations and points of view (as mentioned in section 2.2). 

CONS 
 
The primary disagreements in CONS annotation occur when the text mentions a doctor's name as well as 
his/her medical group.  From an interpretational standpoint, the two markables may be referencing the 
same concept, but strictly speaking the doctor is only a single member of the medical group.  If there are 
two members in a medical group, then it would be incorrect to say that the medical group refers to any 
single member.  Therefore, we believe such situations should not result in coreferent markable pairs. 
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Example: 
 
The patient is to follow up with <cons> Dr. Ra Shuffburle </cons> in <cons> GI Clinic </cons> in one 
week , <cons> Dr. Telshey Patient </cons> in <cons> Cardiology Clinic </cons> in one week , <cons> 
Dr. _____________ </cons> in Lifairg Louen Likison Hospital Medical Center in three weeks . 
 
DIS 
 
Similar to the previous example, DIS markables with similar meaning or multiple name variations also 
cause confusion. In the example below, the dictating doctor identifies “stroke” in several different ways.  
However, one of the annotators was unsure of the synonymous relation and marked the markables as 
being non-coreferent.  
 
Example:  
 
S1. She was brought to the <cons> emergency room </cons> where she was <test> evaluated </test> and 
determined to have had a <dis-pres> cerebrovascular accident </dis-pres> . 
 
S2. Our leading theory at this point is that her <dis-pres> cerebellar dysfunction </dis-pres> relates to 
<dis-pres> perineoplastic syndrome </dis-pres> , relating to her history of <dis-pres> breast Ca </dis-
pres> . 
 
S3. <dis-pres> Small stroke </dis-pres> , nearly recovered , likely <dis-pres> embolic from carotid 
artery </dis-pres> . 
 
A more ambiguous example is when a disease and any resulting medical problems related to it appear 
near each other.  In the example below, annotators disagree on whether “adenocarcinoma” should be part 
of the coreference chain containing the tumor/mass markables.  While it may be tempting to say that the 
tumor is cancerous and therefore coreferent to adenocarcinoma, this interpretation is incorrect.  For 
example, what if the cancer spreads to other parts of the body?  In such cases, there may be multiple 
tumors. The cancer then would refer to the collection of tumors in the body, rather than any single tumor. 
 
Example:  
 
S1. On 12/23 , she was seen by <cons> Dr. Stonge </cons> at Bri Health where a <dis-pres> 3 x 7 cm left 
mid clavicular mass </dis-pres> was noted . 
 
S2. A <test> fine needle aspirate </test> of this <dis-pres> mass </dis-pres> reportedly revealed <dis-
pres> giant cell tumor </dis-pres> . 
 
S3. The patient was initially told that this was a <dis-pres> benign tumor </dis-pres> and that it could 
simply be watched and definitively treated after the delivery of her baby . 
 
S4. The <test> pathology </test> , unfortunately , revealed an <dis-pres> aggressive adenocarcinoma ( 
micropapillary type ; mucin producing ) </dis-pres> . 
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SYMP 
 
Unlike diseases, which have definitive diagnoses, symptoms are more ambiguous.  By definition, 
symptoms can only be felt by the patient and therefore symptoms can change locations and presence-
status quickly depending on the patient’s report.  Resolving SYMP markables, therefore, require careful 
interpretation and reading of the passage.  In the sentences below, an abdominal pain gradually changed 
into back pain.  The pain briefly receded and then came back in the form of “minimal back pain”.  Due to 
the close timing of the back pain to the abdominal pain and the abdominal pain having gradually shifted 
to back pain earlier, the annotators were unsure whether “some minimal back pain” is coreferent to the 
other markables.  We decided the “back pain” should not be corefent because the “back pain” in S4 
represents a new event, rather than a continuation of the old event. 
 
Example: 
 
S1. This is a 49 year-old male with a history of a <med> low anterior resection </med> in May of 1998 
and a recurrence of <dis-pres> metastasis </dis-pres> with <med> asleeve of section of left colon 
diverting ileostomy </med> for recurrent <dis-pres> metastasis </dis-pres> later in May of 1999 who 
presents with <symps-pres> anterior midepigastric abdominal pain </symps-pres> . 
 
S2. The patient states that the <symps-pres> pain </symps-pres> began at 10:30 on the day of admission 
with <symps-pres> increase </symps-pres> during the day of admission with <symps-pres> positive 
nausea </symps-pres> and <symps-pres> vomiting </symps-pres> , no <symps-abs> diarrhea </symps-
abs> , <symps-pres> decreased output from the ostomy </symps-pres> , and the <symps-pres> pain was 
radiating to the back </symps-pres> . 
 
S3. The <symps-pres> pain  </symps-pres> improved quickly and the patient was started on a <med> 
clear liquid diet </med> which was advanced as tolerated . 
 
S4. The patient had <symps-pres> some minimal back pain </symps-pres> that occurred after food but 
with <results> negative </results> <test> urinalysis </test> and negative <symps-abs> fever spikes 
</symps-abs> over the entire course of this stay . 
 
TEST 
 
The most common annotator disagreement for TEST markables is when one test is a sub-test of another.  
For example, HEENT incorporates a series of small examinations to check a patient’s head, eyes, ears, 
nose, and throat.  Even though each one of the examination procedures is part of the HEENT process, 
“HEENT” refers to the collection of exams rather than just any single exam.  We apply this reasoning to 
the example below and argue that guaiac is only a part of the rectal test and therefore should not be 
coreferent to rectal. 
 
Example: 
 
<test> Rectal </test> was <test> guaiac </test> <results> negative </results> . 
 
The example below demonstrates another TEST disagreement.  The annotators disagree on whether an 
exercise test can corefer to a standard/protocol.  We believe, in this case, that the protocol is coreferent to 
the exercise test because it is the name for a specific set of procedures for the test.  In this context, the two 
markables can be used interchangeably. 
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Example: 
 
S1. On 11-2-93 , the patient underwent a <test> low level treadmill exercise test with Thallium 
imaging </test> . 
 
S2. The patient was able to <results> exercise for approximately nine minutes </results> on a modified 
<test> Bruce protocol </test> , however , he <results> did not reach his predicted maximal heart rate 
</results> while he was on the <med> beta blockade </med> . 
 
MED 
 
MED disagreements arise due to the presence of both events (treatment procedures, treatment names) and 
entities (medication).  In the example below, one annotator marked “COUMADIN” as coreferring to 
“PROSETHETIC VALVE ANTICOAGULATION.”  However, Coumadin is the medication used to treat 
the patient, it does not refer to the process of anticoagulating the patient.  In general, we find that events 
and entities cannot corefer to each other. 
 
Example: 
 
HIS <med> COUMADIN </med> WAS RESTARTED FOR <med> PROSTHETIC VALVE 
ANTICOAGULATION </med> WITH A GOAL <test> INR </test> OF <results> 1.5-2.0 </results> . 
 
 
4.3.2 Time Stamp 

The discharge summaries were also manually tagged for date information so that the system can include 
some temporal features.  We assign each markable a time stamp based on the temporal reference frame 
under which it is discussed.  In cases where there are dates in the vicinity of the markable that assign a 
more specific date of occurrence for an event markable, we defer to the more specific date rather than the 
time frame of the passage.  The various forms of time stamps that can be assigned are detailed below: 

Type Annotation Format 
Single day [MM/DD/YYYY] 

Multiple dates [MM/DD/YYYY, MM/DD/YYYY,…] 

Date Range [MM/DD/YYYY-MM/DD/YYYY] 

Month and Year [MM/YYYY] 

Year [YYYY] 

Unknown [?] 

Possible date [?MM/DD/YYYY] 

Up to a certain date [-MM/DD/YYYY] 
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Starting a certain date [MM/DD/YYYY-] 

Table 14: Annotation formats for date information 

To facilitate date annotation, we first run a date recognition program to find explicit dates from the 
passage.  Then the annotators add in additional dates and check to ensure that the automatically tagged 
dates are correct.  The date recognition program is fairly useful because nearly a quarter of the documents 
have some form of explicit date clues.  However, the frequency of dates that appear in a record often 
depends on the narrator’s style.  There are many passages that do not have a clear date reference frame.  
For these cases, we ask the annotators to make a guess.  Guessed dates are identified by a “?” symbol near 
the date.  Date annotation is particularly time consuming due to the large amounts of guesswork and the 
many inferred dates that appear in the text.   

4.4 Initial Evaluation 

Preliminary Evaluation by Markable String-Match Type 

CONS DIS MED SYMP TEST 

  
  Count 

% of 
All 
Mark. 

% of 
All 
Coref 
Mark. Count 

% of 
All 
Mark. 

% of 
All 
Coref 
Mark. Count 

% of 
All 
Mark. 

% of 
All 
Coref 
Mark. Count 

% of 
All 
Mark. 

% of 
All 
Coref 
Mark. Count 

% of 
All 
Mark. 

% of 
All 
Coref 
Mark. 

Partial Match 
Coreferent 38 3.8 49.4 303 1.1 34.6 140 0.3 14.5 90 1.0 29.7 53 0.1 19.7 
Non-
Coreferent 167 16.9  524 1.9  281 0.5  204 2.2  1127 2.1  

Exact Match 
Coreferent 32 3.2 41.6 440 1.6 50.2 749 1.5 77.5 151 1.6 49.8 198 0.4 73.6 
Non-
Coreferent 0 0.0  55 0.2  29 0.1  46 0.5  643 1.2  

No Match 
Coreferent 7 0.7 9.1 133 0.5 15.2 77 0.1 8.0 62 0.7 20.5 18 0.0 6.7 
Non-
Coreferent 746 75.4  25716 94.6  50202 97.5  8719 94.0  52685 96.3  

Total 
All 990 100 100 27171 100 100 51478 100 100 9272 100 100 54724 100 100 

Table 15: Distribution of coreferent markable over different string-match types 

We evaluate the difficulty of the coreference resolution by examining string-match type and edit-distance 
of markable pairs. The three types of string-match that are found in pairs of markables are exact-match, 
partial-match, and no-match (we will examine a fourth type substring-match later).  A markable pair is an 
exact-match if the markables are exact copies of each other, while the pair is a partial-match if the two 
markables share at least one token in common.  All markable pairs that do not share any tokens in 
common are of no-match type.  Each semantic category contains a large proportion of coreferent exact-
match pairs.   More than 70% of TEST and MED markable pairs are exact-matches, while coreferent 
CONS, DIS, and SYMP markable pairs are exact-matches between 40-50% of the time.  TEST and MED 
have extremely high proportions of exact-match coreferent pairs because markables belonging to these 
two semantic categories are usually single token words.   

It is worth noting that simply having a large number of coreferent pairs of a string-match type does not 
mean that the string-match type is automatically a good indicator of coreference.  It is also important to 
examine if a large number of non-coreferent pairs are also of the same string-match type.  If so, a 
coreference system that uses the string-match type to predict coreference would suffer from precision 
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problems as it would misclassify many non-coreferent pairs as coreferent. 

To examine the usefulness of each string-match type for coreference resolution, we use the pair-wise F-
measure to evaluate system performance when all exact-match, partial-match, or no-match markables are 
classified as coreferent.   

  CONS DIS MED SYMP TEST 
RECALL 
Partial Match .494 .346 .145 .297 .197 
Exact Match .416 .502 .775 .498 .736 
No Match .091 .152 .080 .205 .067 
PRECISION 
Partial Match .185 .366 .333 .306 .045 
Exact Match 1.000 .889 .963 .766 .235 
No Match .009 .005 .002 .007 .000 
F-MEASURE  
Partial Match .270 .356 .202 .302 .073 
Exact Match .587 .642 .859 .604 .357 
No Match .017 .010 .003 .014 .001 

Table 16: Pairwise F-measure evaluation of classifying all markables of different string-match types as coreferent 

As expected, exact-match is a much better indicator of coreference than partial-match or no-match.  
However, its usefulness varies across semantic categories.  Exact-match information is extremely useful 
for MED markables, while it is much less helpful towards coreference resolution in TEST markables.  For 
the remaining categories, exact-match yields F-measures near .60.  

From these preliminary evaluations, simply evaluating the string-match types of markables can yield 
fairly high performance measures for a majority of the categories.  The lone exception is TEST, where 
prevalence of exact-match, non-coreferent markable pairs significantly reduces the power of using exact-
match as a predictor of coreference.  Though the high precision rates of exact-match CONS, DIS, and 
SYMP markable pairs suggest that exact-match is a good indicator of coreference, only half of the 
coreferent markables in these categories are exact-matches.  The other half contains mostly partial-match 
pairs; however, assigning partial-match pairs as coreferent without knowing to what degree they partially 
match is imprecise.  Additional features that examine the percentage token-match overlap between 
markable pairs may result in significant improvement on TEST, CONS, DIS, and SYMP resolution by 
eliminating false alarms on exact-match and partial-match pairs.  We believe these features are also likely 
to significantly increase the system performance on no-match coreference resolution.  

4.5 Semantic Coreference Resolver 

We treat coreference resolution as a binary classification machine-learning problem in the spirit of 
McCarthy and Lehnert.  Below, we detail each of the four steps of our algorithm: instance creation, 
feature set selection, machine learning algorithm, and output clustering.   

4.5.1 Instance Creation: 

Our instance creation method is akin to the one used by McCarthy and Lehnert [30].  We pair together all 
markables of the same semantic category within a record.  A record with four disease markables (i, j, k, l) 
would contain six markable pairs ([i,j] [i,k] [i,l] [j,k] [j,l] [k,l]).  A single record with n total markables 
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would result in !!
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 markable pairs.   

We choose the instance creation approach detailed above because it provides full information on the data 
set.  As mentioned in the related works section, instance creation methods used by Ng and Cardie and 
Soon et al. do not include all possible coreferent markables, which means their method may lose some 
valuable training instances.  Furthermore, there is no evidence that McCarthy and Lehnert’s approach is 
worse than the other two approaches [38].  Ng’s evaluation of McCarthy and Lehnert, Ng and Cardie, and 
Soon et al.’s approaches over three different data sets finds McCarthy and Lehnert’s MUC F-measure to 
be higher than those of the other two approaches.  When evaluating the system using B-CUBED F-
measure, Ng finds each approach to be superior in one data set.   

Another reason for choosing the McCarthy and Lehnert’s approach is the small size of our data set.  Even 
after pairing markables exhaustively, we are only able to produce 77 coreferent CONS pairs, 269 TEST 
pairs, and 303 SYMP pairs.  Compared to the MUC competition data set, which contains around 1300 
instance pairs, our data sets are relatively small [15].  We, therefore, need as much training data as 
possible.  

 CONS TEST SYMP DIS MED 
Total Markable 
Pairs 990 54724 9272 27171 51478 
Coref 77 269 303 876 966 
Non Coref 913 54455 8696 26295 50512 

Table 17: Total number of markable pairs 

4.5.2 Feature Set: 

We devise 57 features for use with a decision tree classifier.  These features are divided into seven 
different feature groups, based on how they attempt to resolve coreference.  The groups are orthographic, 
semantic, grammatical, lexical, morphologic, temporal, and miscellaneous.  Many of the features in these 
groups have different perspectives depending on their frame of reference, for example the token-match 
feature has four perspectives: token-match-anaph (anaphor-perspective), token-match-antec (antecedent-
perspective), token-match-greedy (greedy-perspective), and token-match-stingy (stingy-perspective).   

While other coreference resolution systems use a single-perspective approach that represent each feature 
with a single value (e.g., using the cosine-similarity metric to find how similar two strings are), we 
propose a multi-perspective approach for representing feature values.  In our system, there are many 
features that evaluate to different values based on whether the evaluation is done by comparing the 
anaphor to the antecedent or vice versa. For example, when calculating the percentage of overlapping 
tokens that exist between two markables, should the percentage token-match be with respect to the 
number of tokens in the anaphor or the antecedent? Both evaluations, or perhaps a greedy-perspective 
(taking the maximum score out of the anaphor and antecedent-perspectives) or stingy-perspective (taking 
the minimum score between the anaphor and antecedent-perspectives) may be more informative.  
Intuitively, a greedy-perspective would increase the system’s recall while decreasing its precision by 
classifying more coreferent pairs, while a stingy-perspective could potentially increase a system’s 
precision and decrease its recall.   

If our initial string-match based coreference resolution evaluation is any indication, features will impact 
different semantic categories in different ways.  While the overall system performance will likely increase 
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with the inclusion of a feature, there might also be some decrease in recall or precision.  By including 
different perspectives for a feature, we allow the system to optimize that feature’s contribution to the 
system.  These optimizations probably only slightly change a feature’s contribution to the overall system 
performance, but we hope that over the entire feature set, the slight gains from all the features will 
compound into a significant gain. 

A major drawback to the multi-perspective approach is that it dramatically increases the number of 
system features.  Out of the 57 entries in the table below, only 28 entries are distinct features; the rest are 
perspectives to distinct features.  Multi-perspective features are present in 5 out of the 7 feature groups, 
with the temporal and miscellaneous feature groups not containing any multi-perspective features. 

 
Feature And Feature 
Perspectives 

Possible 
Value Description 

Orthographic Features 
1 token-match-anaph [0,1] % of i's tokens that match j's tokens 
2 token-match-antec [0,1] % of j's tokens that match i's tokens 
3 token-match-greedy [0,1] MAX(feature 1, feature 2) 
4 token-match-stingy [0,1] MIN(feature 1, feature 2) 
5 normalized-token-match-anaph [0,1] After Norm, % of i's tokens that match j's tokens 
6 normalized-token-match-antec [0,1] After Norm, % of j's tokens that match i's tokens 
7 normalized-token-match-greedy [0,1] MAX(feature 5, feature 6) 
8 normalized-token-match-stingy [0,1] MIN(feature 5, feature 6) 
9 edit-distance 0,1,2... Levenstein Distance 
10 normalized-edit-distance 0,1,2... After Norm, Levenstein Distance 
Semantic Features (MetaMap) 

11 umls-concept-match-anaph [0,1] % of i's assigned UMLS concepts that matches j's 
UMLS concepts 

12 umls-concept-match-antec [0,1] % of j's assigned UMLS concepts that matches i's 
UMLS concepts 

13 umls-concept-match-greedy [0,1] MAX(feature 12, feature 11) 
14 umls-concept-match-stingy [0,1] MIN(feature 12, feature 11) 

15 umls-concept-token-match-
anaph [0,1] % of i's assigned UMLS concepts that matches j's 

UMLS concepts by words 

16 umls-concept-token-match-
antec [0,1] % of j's assigned UMLS concepts that matches i's 

UMLS concepts by words 

17 umls-concept-token-match-
greedy [0,1] MAX(feature 16, feature 15) 

18 umls-concept-token-match-
stingy [0,1] MIN(feature 16, feature 15) 

19 umls-type-match-anaph [0,1] % of i's UMLS Semantic Types assignment that 
matches j's assignment 

20 umls-type-match-antec [0,1] % of j's UMLS Semantic Types assignment that 
matches i's assignment 

21 umls-type-match-greedy [0,1] MAX(feature 19, feature 20) 
22 umls-type-match-stingy [0,1] MIN(feature 19, feature 20) 

23 umls-type-anaph 

Selected 
UMLS 
Semantic 
Types 

The semantic type for the antecedent 
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Lexical Features 

24 sentence-token-match-anaph [0,1] or 
Unknown 

% of tokens in i's sentence that matches tokens in j's 
sentence 

25 sentence-token-match-antec [0,1] or 
Unknown 

% of tokens in j's sentence that matches tokens in i's 
sentence 

26 sentence-token-match-greedy [0,1] or 
Unknown MAX(feature 24, feature 25) 

27 sentence-token-match-stingy [0,1] or 
Unknown MIN(feature 24, feature 25) 

28 sentence-stop-words-removed-
token-match-anaph 

[0,1] or 
Unknown 

After stop-words are removed, % of tokens in i's 
sentence that matches tokens in j's sentence 

29 sentence-stop-words-removed-
token-match-antec 

[0,1] or 
Unknown 

After stop-words are removed, % of tokens in j's 
sentence that matches tokens in i's sentence 

30 sentence-stop-words-removed-
token-match-greedy 

[0,1] or 
Unknown MAX(feature 30, feature 31) 

31 sentence-stop-words-removed-
token-match-stingy 

[0,1] or 
Unknown MIN(feature 30, feature 31) 

32 sentence-markable-all-category-
match-greedy 

[0,1] or 
Unknown 

% of other markables that match each other in i and j's 
sentence 

33 left-markable-all-category-
greedy 

True / False / 
Unknown 

% of tokens that match in i and j's left neighboring 
markable 

34 left-markable-all-category-
stingy 

True / False / 
Unknown 

% of tokens that match in i and j's left neighboring 
markable 

35 right-markable-all-category-
greedy 

True / False / 
Unknown 

% of tokens that match in i and j's right neighboring 
markable 

36 right-markable-all-category-
stingy 

True / False / 
Unknown 

% of tokens that match in i and j's right neighboring 
markable 

Syntactic Features 
37 noun-match-anaph [0,1] % of i's noun tokens that match j's noun tokens 
38 noun-match-antec [0,1] % of j's noun tokens that match i's noun tokens 

39 noun-match-greedy [0,1] MAX(feature 39, feature 40) 

40 noun-match-stingy [0,1] MIN(feature 39, feature 40) 

41 plurality-match True / False / 
Unknown Do i and j match in number? 

Morphological Features 

42 prefix-match-anaph [0,1] what % of i's tokens match j's tokens, when only 
considering the first 4 letters of each token 

43 prefix-match-antec [0,1] what % of j's tokens match i's tokens, when only 
considering the first 4 letters of each token 

44 prefix-match-greedy [0,1] MAX(feature 42, feature 43) 
45 prefix-match-stingy [0,1] MIN(feature 42, feature 43) 

46 last-name-match True / False / 
Unknown locate a last name, does it match? 

Temporal Features 

47 date-default-certain True / False / 
Unknown 

only match certain dates, all pairs with uncertain dates 
result in unknown value 
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48 date-default-unknown True / False / 
Unknown 

match certain dates with certain dates, uncertain dates 
with uncertain dates, all other matches are unknown 

49 date-default-false True / False / 
Unknown 

match certain dates with certain dates, uncertain dates 
with uncertain dates, all other matches are false 

50 date-ambig True / False / 
Unknown allow certain dates to be matched with uncertain dates 

Miscellaneous Features 
51 word-distance 0,1,2,… the number of words i and j are away from each other 

52 entity-distance-all-category 0,1,2,… the number of total markables from any sem class i 
and j are away from each other 

53 entity-distance 0,1,2,… the number of markables of the same category I and j 
are away from each other 

54 sentence-distance 0,1,2,… the number of sentences i and j are away from each 
other 

55 section-distance 0,1,2,… the number of sections i and j are away from each 
other 

56 section-type-match 

all pair-wise 
combinations 
of section 
types -- past, 
presenthistory, 
present, 
discharge, 
none 

a-b, a represent's i's section type, b represents j's 
section type. 

57 presence 

present, 
absent, 
possible, 
some, no-
match, 
unknown 

If both markables agree in presence, then they are 
assigned one of the first four values, if they do not 
agree then the result is a no-match, all categories other 
than DIS or SYMP will have unknown value for this 
feature 

Table 18: Features set 

Orthographic 

While there are ten entries in the orthographic section of the table above, there are only four distinct 
orthographic features: token-match, normalized-token-match, edit-distance, and normalized-edit-distance.  
We will examine the token-match feature perspectives, i.e., token-match-anaph, token-match-antec, 
token-match-greedy, token-match-stingy, in detail.  Assume markable i represents the antecedent 
markable and j represents the anaphor markable.  To find the value for each perspective of token-match, 
we first find t*, the number of tokens that appear in both i and j.  Token-match-anaph can be found by 
dividing t* by the total number of tokens in j.  Token-match-antec can be found by dividing t* by the total 
number of tokens in i.  Token-match-greedy is the maximum of token-match-antec and token-match-
anaph, while token-match-stingy is the minimum of the two approaches. The same approach is used to 
find the anaphor-perspective, antecedent-perspective, greedy-perspective, and stingy-perspective for the 
other multi-perspective features in the feature set. 
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Token i: Chest X-ray       Token j: Left Chest X-ray   

Token-match-anaph:  2/3     Token-match-antec:  2/2 

Token-match-stingy: 2/3   Token-match-greedy: 2/2 

Of the three remaining orthographic features, edit-distance is the Levenstein edit-distance for the two 
markables.  This calculation is symmetric and therefore the multi-perspective approach isn’t used.  
Normalized-edit-distance and normalized-token-match are the token-match scores of the markables when 
UMLS norm is first used to normalize the markables (see Resources 3.1 for how UMLS norm normalizes 
strings).   

Semantic  

We evaluate the semantic similarity of two markables in four ways: umls-concept-match, umls-concept-
token-match, umls-type-anaph, and umls-type-match.  These semantic features are derived from the 
output of MetaMap.  As mentioned in Resources 3.1, MetaMap can match a name (in our case, a token or 
sequence of tokens in a markable) to several UMLS concepts.  To reduce the number of matching UMLS 
concepts, we employ UMLS semantic type constraints and choose the top scoring UMLS concepts that 
have UMLS semantic types which are compatible with the semantic category of the markable in question 
(see Table 19).  We thus use both the UMLS score as detailed by Aronson [2] and UMLS semantic type 
constraints to limit the number of UMLS concepts matched to any markable. 

Semantic Category UMLS Semantic Type 

Disease Pathologic Functions, Disease or Syndrome, Mental or 
Behavioral Dysfunction, Cell or Molecular Dysfunction, 
Congenital Abnormality, Acquired Abnormality, Injury or 
Poisoning, Anatomic Abnormality, Neoplastic Process, 
and Virus/Bacterium. 

Treatment Therapeutic or Preventive Procedure, Medical Device, 
Steroid, Pharmacologic Substance, Biomedical or Dental 
Material, Antibiotic, Clinical Drug, and Drug Delivery 
Device. 

Practitioner Biomedical Occupation or Discipline, and Professional or 
Occupational Group. 

Test Laboratory Procedure, Diagnostic Procedure, Clinical 
Attribute, and Organism Attribute. 

Symptom Sign or Symptom. 

Table 19: UMLS semantic type mappings to CaRE semantic category [46] 

We use two heuristics to measure semantic similarity between two markables: semantic similarity based 
on the number of matching UMLS concepts (umls-concept-match) and the number of matching tokens 
between the markables’ UMLS concepts (umls-concept-token-match).  While matching tokens of 
concepts may seem aggressive, the example below illustrates why it might be useful. 
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Example: 

Markable: proximal femoral shaft fracture 
UMLS concept: Shoulder Fractures; Fracture of shaft of femur (disorder) 
 
Markable: a left femur fracture 
UMLS concept: Femoral Fractures 
 
umls-concept-match: 0 
umls-concept-token-match-antec: 1/8 
umls-concept-token-match-anaph: 1/2 
 
The umls-concept-match value for the two markables above is 0 because the UMLS concepts assigned to 
each markable are different.  However, the umls-concept-token-match value is greater than zero because 
the concepts assigned to the two markables share a matching token (“Fractures”).  umls-concept-token-
match-antec is assigned a value of 1/8 because there are 8 tokens for the two concepts assigned to the 
antecedent markable “proximal femoral shaft fracture” and one of these tokens (“Fractures”) appears in 
the concept assigned to “a left femur fracture”.  Similar logic yields an umls-concept-token-match-anaph 
of 1/2.  There are clear improvements that can be made to the exact-match approach to finding similarity 
between concepts.  For example, normalizing the MetaMap output would be helpful because “Fracture” 
and “Fractures” would match to each other.  Some other improvements include removing stop-words and 
normalizing the tokens.  The most promising tool for determining interconcept relationships is likely the 
UMLS Semantic Network (as mentioned in section 3.1).  These improvements, however, remain 
unexplored in this thesis.  

We also include an anaphor markable’s UMLS semantic type as a feature (umls-semantic-type-anaph) 
because grouping markables into smaller more homogeneous sets may improve the performance of the 
decision tree algorithm.  In particular, our MED category contains medicines and operational events 
which may be distinguished by their semantic types. 

Lastly, we include the umls-type-match feature to separate markables into even smaller groups.  Umls-
type-match is equal to 0 when two markables have different UMLS semantic types and 1 when two 
markables have the exact same UMLS semantic types.  We believe this feature may improve the precision 
of our output by separating markables pairs into even more homogeneous groups than umls-concept-
match. 

Lexical Features 

Up until now, the features that have been introduced are mostly markable-to-markable features that 
compare the characteristics of the antecedent markable to the characteristics of the anaphor markable.  
However, both markables’ surrounding context also offer clues about their similarities. We include lexical 
features in the hope of capturing additional contextual clues that markable-to-markable comparisons 
cannot provide.  These features are especially important for deciphering ambiguous nouns that refer to 
different underlying entities [39,3]. 

We perform lexical analysis on two window sizes: at the sentence level and at the neighboring markable 
level.  The sentence-token-match feature examines the number of shared tokens that exist between the 
two sentences that contain i and j.  If two markables are in the same sentence, their value for this feature 
is unknown.  Sentence-stop-words-removed-token-match only takes into account overlapping words that 
do not appear in a stop-list of common prepositions, articles, numbers, and other words. We argue that the 
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higher the overlap in tokens of sentences, the higher the contextual agreement.   

In addition to examining token overlap between two sentences, we also examine markable overlap.  
Intuitively, two coreferent markables will likely be surrounded by similar markables.  Unlike tokens, 
markables are rarer and therefore overlapping markables between sentences is a more reliable indicator of 
contextual agreement.  We also examine how much markables’ left and right neighbor markables match 
each other (left-markable-all and right-markable-all); matching markables that are in close proximity to 
the markables in question might be a better indication of coreference due to the smaller window size.  The 
table below reveals the weakness of token-matching sentences.  The pitfall for using token-match to find 
sentence content match is that if two sentences contain many common tokens such as “the” or “a” or other 
uninformative tokens, then it could still result in a high sentence-token-match or sentence-stop-words-
removed-token-match score. 

Example: 

S1. <test> x-ray </test> taken at Bayside Hospital revealed chance of <dis-poss> upper respiratory 
infection </dis-poss> 

S2. <test> Chest x-ray </test> taken at Bower hospital revealed <dis-pres> upper lobe collapse <dis-pres> 

Overlapping tokens: taken, at, hospital, revealed, upper 
sentence-token-match-antec:  5/10 
sentence-stop-words-removed-token-match-anaph:  4/8 
sentence-markable-all-category-greedy:  0/1 
right-markable-all-category-greedy:  1/3  

Syntactic and Morphological Features 

Syntactic and morphological features are introduced into the feature set to complement the orthographic 
features.  Orthographic features that rely on token-match to determine string similarity are not be able to 
recognize markables that are derivational, inflectional, or morphological variants of one another.  While 
using UMLS norm removes inflectional variants, it is sometimes too restrictive because it only removes 
suffixes and does not attempt to map roots together.  For example “operate” and “operation”, would result 
in different normalized forms (“operate” and “operat”, respectively).  We introduce features to locate 
markables that are derivationally or morphologically related to each other by introducing the prefix-match 
feature.  This feature considers a markable pair matching if the markables overlap in their first four 
letters.  There are many caveats and faults to this matching method. In particular, prefixes can cause both 
false alarms and false negatives.  For example, “understand” and “underhand” would match, while “true” 
and “truth” would not.  A better alternative would be to expand UMLS norm’s composition of LVG 
funtions to include derivational variant matching; however, this is to be explored in future research. 

We also include a feature to specifically help CONS coreference resolution.  Many CONS markables 
include names of people; we try to extract the last name from markables and examine if the last names 
from two markables are the same.  For this, we use last-name-match.  The last names are extracted using a 
small set of REGEX expressions. We employ this feature as a more precise predictor of CONS 
coreference than token-match.  

Another method for comparing similarity between markables is to only match their noun tokens.  
Introducing this feature allows “chest pain” and “sharp chest pain” to be recognized as a noun-match.  
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While traditional methods only match head nouns rather than all nouns, we believe that, for our purposes, 
matching all nouns is useful.  This is because many markables in our corpus include nouns referring to 
body parts, e.g., “chest” in “chest pain”.  Markables referring to different parts of the body often are not 
coreferent, regardless of whether or not the head noun is the same.  For example, “chest pain” is not the 
same as “knee pain.”  

In general, coreferent markables have to agree in number; therefore, we also use plurality-match to 
determine if two markables refer to the same entity or to different entities.   

Temporal Features 

We use temporal features to disambiguate commonly appearing event mentions, e.g., “x-rays”.  To obtain 
temporal information from text, annotators manually assign dates to each markable.  While the narratives 
provide explicit dates for some markables, annotators have to guess dates for other markables.  The two 
markables that make up a markable pair can both have explicit dates (type 1 markable pairs); both have 
guessed dates (type 2 markable pairs); or one markable can have an explicit date while the other can have 
a guessed date (type 3 markable pairs).  All four temporal features in the feature set evaluate temporal 
similarity by looking for exact-date match; however, they treat the previously mentioned three types of 
markable pairs in different manners.   

Date-default-certain only considers type 1 markable pairs, all other pairs are assigned a value of false.  
Date-default-unknown and date-default-false both evaluate type 1 and type 2 markable pairs.  The 
difference between date-default-unknown and date-default-false is how they treat type 3 markable pairs 
during training.  Date-default-unknown assigns type 3 markable pairs a value of “unknown”, while date-
default-unknown assign these markable pairs a value of “false.” Lastly, date-default-ambig evaluate all 
three types of markable pairs.  These distinctions are necessary because we are unsure of the quality of 
the annotators’ guessed dates.  If the quality of the guesses is bad, then only explicit dates may be useful; 
however, if the quality of the guesses is good, then they can be used for coreference resolution of 
markable pairs as well. 

Miscellaneous 

To complement the above features, we include features that examine the distance between markables and 
add to this group various corpora based features.  The distance between markables is evaluated by 
counting sentences, words, discharge summary sections, markables that are of the same semantic category 
as the markable pairs, and markables in all semantic categories.  The word-distance feature, for example, 
would count the number of words between the two markables in the markable pair.  The machine learner 
would then potentially find several word-distance thresholds to classify pairs in different ways.  Perhaps 
markable pairs that have large word-distance values would require higher token-match values than those 
markable pairs that have smaller word-distance values because coreferent markables that are far apart 
would need to refer to each other in explicit terms to cue the reader that they corefer. Because for DIS and 
SYMP markables, CaRE identified whether markables were asserted to be present, possibly present, or 
absent, we take advantage of this feature by examining whether markables refer to entities with same 
presence-status.  Another piece of information that may improve prediction accuracy is the section that 
markables belong to.  For example, a surgery mentioned in the PAST MEDICAL HISTORY section is 
more likely to be referred to in the HISTORY OF PRESENT ILLNESS section than the HOSPITAL 
COURSE section because both PAST MEDICAL HISTORY and HISTORY OF PRESENT ILLNESS 
contain past information, where as HOSPITAL COURSE describes mainly events that take place during 
the patient’s current visit.  Therefore, we use sections to approximate the time frame of each mentioned 
markable.  We group sections into four groups: past, past-present, present, and discharge.  These four 
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groups help us differentiate between the approximate time ranges of markables. 

4.5.3 Machine Learner 

We use the C4.5 decision tree algorithm to train our prediction model.  We select the algorithm for its 
flexibility, prediction model readability, and proven track record [30,36,48].   

Our feature set contains both numeric and categorical features.  The C4.5 algorithm is flexible enough to 
classify both types of features.  Furthermore, our system contains a variety features that serve different 
purposes.  Some features (stand-alone features) directly locate coreferent markable pairs, while others 
(complement features) improve the precision and recall of other features.  For each semantic category, 
different feature variants may perform better.  For example, normalized tokens are useful for removing 
irregularities.  Normalized-token-match therefore may help resolve TEST, MED, DIS, and SYMP 
coreference, but normalized-token-match can degrade CONS coreference because it may distort names 
that seem to be plural nouns.  On the other hand, token-match is likely more appropriate for CONS 
because it does not normalize each markable’s tokens before comparing them.  

While the algorithm’s run time is fairly slow, the C4.5 decision tree is able to deal with our relatively 
large and diverse feature set.  Furthermore, the C4.5 prediction models are simply a set of “if-then” rules 
that are easy to interpret.  These prediction models can provide an easy explanation for why the system 
makes classification mistakes during testing.  Many past research efforts in coreference resolution have 
used the decision tree as the learning algorithm of choice because of its flexibility and readability [30,48].   

Decisions trees however do have their disadvantages.  The generated tree is not always stable, especially 
when the dataset is small.  Our data set is small and dividing it into training and test sets would further 
decrease the data size.  We therefore opted to employ 10 fold cross validation so that all the data can be 
used for training and testing.   

Another problem with the C4.5 algorithm is that it only finds the optimal solution if its features are 
independent of each other.  However, our features are not independent of each other.  This problem is 
common in NLP because of the dependencies that naturally exist in language. However, there is no 
existing algorithm that can find the optimal solution other than exhaustive search.  The only feasible 
alternative is to use an algorithm such as C4.5 that can often get close to the optimal solution but with no 
absolute guarantees. 

In general, the advantages C4.5 outweigh its disadvantages.  We employ this classifier particularly 
because the results and the nature of the decision tree models should provide us with valuable insights 
while allowing us to compare our results with those of past research efforts.  

For our system, we run C4.5 with a confidence factor to .25 and minimum leaf size of 4  The confidence 
factor is used during pruning to remove branches that contribute minimally to the accuracy of the model.  
The minimum leaf size prevents the machine learning algorithm from over-fitting data by constraining the 
smallest number of instances that must be contained in a partition.    

4.5.4 Clustering Algorithm: 

We apply a clustering algorithm after classification.  Our C4.5 model is trained to predict whether two 
markables are coreferent based on their feature vectors.   Because this algorithm performs only pair-wise 
predictions, its output isn’t guaranteed to satisfy the transitive property and may contain contradictions.  
For example, if the system predicts i to be coreferent to j, j to be coreferent to k, then it is implied that i is 
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coreferent to k, but it is possible for C4.5 to predict i to be non-coreferent to k.   

Our clustering algorithm tries to eliminate these contradictions by assigning markables into coreference 
chains.  It executes the “aggressive-merge” of McCarthy and Lehnert.  This clustering approach assumes 
implied coreference links to be actual coreference links.  Other clustering algorithms such as “closest-
first” [51] and “best-first” [36] also exist.  These methods, however, have been shown to be inferior to the 
McCarthy and Lehnert instance creation method [38].  For more detail on each algorithm refer to the 
related works section. 

4.6 Evaluation 

We run several experiments to evaluate our system.  The experiments do not only evaluate system 
performance against a baseline, but also examine how individual features affect system performance for 
different semantic categories.  Specifically, we examine how each feature’s direct effect (a feature’s 
individual contribution to the system) and complementary effect (a feature’s ability to enhance other 
features) influence overall system performance. 

Because the data set contains relatively few positive training instances, we use cross-validation to 
estimate system’s performance over the entire data set.  In n-fold cross-validation, the entire data set is 
randomly divided into n partitions.  Each partition is used as the test set once.  When one of the partitions 
is used as the test set, the other n-1 partitions are used as the training set.  By the end of n cross-validation 
runs, the system has a prediction for each data point.  These predictions are used as the system’s output.   

When evaluating overall system performance in terms of B-CUBED and MUC evaluations, we run the 
clustering algorithm.  However, we do not run the clustering algorithm when evaluating the impact of 
individual features due to system and time constraints.  Instead, we run a pair-wise F-measure directly on 
the output of the machine learner.  We will examine the validity of this approach in the “complementary 
effect” section of this thesis. 

4.6.1 Overall System Performance 

Evaluation Method 

We begin with an evaluation of the C4.5 system used with all of our features, i.e., the all-feature system.  
We evaluate the all-feature system performance using the MUC and B-CUBED metrics.  We also 
examine how the system’s performance differs over markables of different string-match type.   

For the overall system evaluation, we run our all-feature system using 10-fold cross-validation.  We then 
perform aggressive-merge clustering to triangulate any inferred coreference links from the system 
predictions.  The system output is evaluated using the MUC and B-CUBED evaluation metrics.  We 
compare the results against the performance of a baseline decision tree system that contains two features 
previously used in the literature to resolve coreference, i.e., token-match-antec [61] and plurality-match 
[30]. This baseline system can correctly classify many markable pairs.  As indicated by our initial 
evaluation, many coreference pairs are either exact-match or partial-match pairs.  By including the token-
match-antec feature, the baseline system can distinguish between each of the three string-match types and 
perform resolution as is appropriate.  With this capability, the baseline system can classify most of the 
easy string-match related resolutions.  The plurality feature strengthens token-match-antec by preventing 
a match between markable pairs that do not agree in number.    
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We are unable to perform significance testing on the overall system evaluations because our experimental 
setup does not allow it.  We only get a full sense of our system’s performance level if all four steps of our 
algorithm are run sequentially and then the prediction outputs are evaluated against the gold standard.  
However because Weka’s cross-validation procedure randomly divides the data set into n-folds, it breaks 
up some coreference chains and destroys transitive closure as not all markable pairs in the same 
coreference chain will necessarily be placed in the same cross-validation run.  We, therefore, cannot use 
each validation run’s performance as an indicator of overall system performance. As a result, we must 
aggregate the system predictions at the very end, perform clustering, and evaluate the system predictions 
in one final step.    

However, in order to perform significance testing, we need more than a single data point.  If we can 
evaluate the MUC and B-CUBED system performance for each individual cross-validation run, then we 
would have 10 data points for our Wilcoxon test.  However, because both MUC and B-CUBED 
evaluations are based on evaluating overlaps between prediction chains and gold-standard chains, we 
would need to create 10 different gold-standards for each cross validation run. The creation of these gold-
standards is non-trivial because if we only include the markable pairs that appear in each validation run, 
then transitive closure is not preserved and MUC and B-CUBED evaluations cannot be performed.  
Including all markable pairs would be incorrect because we would be trying to evaluate the system’s 
prediction on 1/10 of the data points and comparing it against the wrong answer key that contains many 
markables that the system was not responsible for predicting.  So even if we are willing to accept the 
system performance for each run as an estimate, we have no means of evaluating the system performance 
at each run because we are unsure what the gold standard for each run should be.  We, therefore, reserve 
significance testing for when system evaluations are done using pair-wise F-measure because it does not 
require examining full coreference chains. 

We do note that while it is impossible to perform significance testing using the current setup, it is possible 
to perform significance testing if we manually select the data used for each cross-validation run.  Each 
cross-validation run can test one full hospital discharge summary record.  We would therefore, have 47 
cross-validation runs, rather than 50.  This setup would effectively resolve the transitive closure 
breakdown because each discharge summary is self contained and the system can make predictions on all 
possible pairings within the discharge summary.  The clustering algorithm can then be run for each 
validation run and the prediction can be compared with the annotations for that record.  We do not 
perform this experiment in this thesis, though a follow-up experiment is underway. 

Data Analysis 

  CONS DIS MED SYMP TEST 
Precision 
MUC (all-feature) .9348 .9076 .9361 .8307 .7297 
MUC (baseline) .9730 .8686 .9397 .8140 .0000 
B-CUBED (all-feature) .9682 .9355 .9605 .9268 .9832 
B-CUBED (baseline) .9920 .9351 .9661 .9370 1.0000 
Recall 
MUC (all-feature) .7818 .8912 .9638 .8533 .3876 
MUC (baseline) .6545 .8095 .8964 .7609 .0000 
B-CUBED (all-feature) .9473 .9486 .9857 .9618 .9293 
B-CUBED (baseline) .9160 .9111 .9557 .9282 .8900 
F-measure 
MUC (all-feature) .8515 .8993 .9498 .8418 .5063 
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MUC (baseline)  .7826 .8380 .9175 .7865 .0000 
B-CUBED (all-feature) .9576 .9420 .9730 .9440 .9555 
B-CUBED (baseline) .9525 .9229 .9608 .9326 .9418 

Table 20: All-feature and baseline system MUC and B-CUBED F-measures 

 
  CONS DIS MED SYMP TEST 
F-measure 
MUC 0.069 0.061 0.032 0.055 0.506 
B-CUBED 0.005 0.019 0.012 0.011 0.014 

Table 21: Difference between all-feature and baseline system 

In general, we have constructed a high precision system.  For example, even the extremely tough TEST 
markables, where 76.5% of the exact-match markable pairs are non-coreferent, achieve a MUC precision 
of .73 and a B-CUBED precision of .983.  The all-feature system performs better than the baseline in all 
categories regardless of which type of evaluation metric is employed.  However, the MUC improvements 
are larger than those of B-CUBED.  This phenomenon occurs because B-CUBED includes the correct 
prediction of standalone markables as part of its score where as MUC does not.  There is a fairly large 
number of standalone markables in the corpus so the B-CUBED statistics is automatically higher than the 
MUC evaluations from the start, and therefore there is less room for improvement of B-CUBED 
compared to MUC.  In other words, as long as the system continues to correctly predict standalone 
markables at a high rate, improvements in how the system predicts coreferent markable pairs would only 
slightly affect the B-CUBED F-measures.   

In terms of precision and recall, the addition of more features to the baseline results in large increases 
over the baseline’s recall, while the effect on the baseline’s precision is mixed.  MUC and B-CUBED 
precisions decrease for CONS and MED resolution, while they slightly increase for DIS resolution.  In 
the other two remaining semantic categories, SYMP and TEST, MUC precision is improved and B-
CUBED precision is worse.  We attribute this contradiction in the MUC and B-CUBED results to the 
difference in how the algorithm penalizes wrongly assigned links.  B-CUBED penalizes markables that 
are wrongly linked to longer coreference chains; MUC does not.  A decrease in B-CUBED score and an 
increase in MUC score indicates that the percentage of correctly predicted pairs rose from the baseline; 
however, the incorrectly predicted links are now connecting longer coreference chains, resulting in a 
heavier penalty to B-CUBED precision.   

In both the MUC and B-CUBED evaluations, TEST markable resolution improved more drastically than 
most other categories.  TEST resolution improved the second most in B-CUBED evaluations and the 
most in MUC evaluations. In categories other than TEST, MUC increased by .04-.06, while B-CUBED 
increased by .006 - .019.  The large increase is a strong indication that the all-feature system goes beyond 
simple string-match to identify coreferent markables.   

As expected, CONS markables experienced the least amount of system improvements (B-CUBED .006 / 
MUC .069).  While coreference resolution of other categories’ markables require contextual clues to 
disambiguate same nouns referring to different entities, CONS markables rarely have this problem.  There 
are relatively few doctor names mentioned in each hospital record; therefore, chances of different doctors 
having the same name are fairly small, making string-match an extremely strong indicator of coreference 
in CONS.   

Because exact-match markable pairs are easy to resolve, we extend our analysis to examine how our 
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system performs over three different string-match groups, i.e. no-match, partial-match, and exact-match. 
In order to evaluate B-CUBED and MUC F-measures to evaluate how well the system does on each 
string-match type, we need to split our gold standard into three different answer keys.  Each answer key 
would only contain coreference chains consisting of exact-match, no-match, or string-match markables.   

  CONS DIS MED SYMP TEST 

Feature Prec Rec F Prec Rec F Prec Rec F Prec Rec F Prec Rec F 

No-match .143 .143 .143 .638 .384 .479 .557 .701 .621 .378 .677 .486 .000 .000 .000 

No-match 
(baseline) 1.00 .143 .250 .571 .530 .571 .308 .104 .155 1.00 .161 .317 .000 .000 .000 

Partial-match .675 .711 .692 .674 .901 .772 .564 .921 .699 .524 .856 .650 .727 .302 .427 

Partial-match  
(baseline) .895 .447 .597 .601 .678 .643 .461 .597 .520 .504 .700 .586 000 .000 .000 

Exact-match 1.00 1.00 1.00 .895 .989 .9340 .963 1.00 .981 .851 .987 .914 .741 .404 .523 

Exact-match  
(baseline) 1.00 1.00 1.00 .889 1.00 .941 .963 1.00 .981 .767 1.00 .868 .000 .000 .000 

All .756 .779 .769 .782 .866 .821 .845 .965 .901 .619 .870 .723 .739 .357 .481 

All (baseline) .962 .649 .775 .774 .742 .758 .854 .871 .862 .666 .698 .682 .000 .000 .000 

Table 22: F-measure evaluation of all-feature vs. baseline system by string-match type 

By breaking down the comparisons into different string-match types, we show that our system improves 
coreference resolution on partial-match and no-match markable pairs.  In DIS, MED, and SYMP 
markables, the no-match resolution F-measures increased from the single digits to around 50-60%, while 
in every semantic category other than TEST, partial-match coreference resolution performance also 
improved more than exact-match resolution.  There appears to be no improvements in TEST no-match 
resolution and a decrease in performance for classifying CONS no-match markables.  We believe these 
are largely due to the lack of training data for these two categories, i.e., there are only 7 and 18 CONS and 
TEST no-match pairs respectively, while DIS, MED, and SYMP contain 133, 77, and 62 no-match pairs.   

The evaluations in this section show that our feature set greatly enhances the coreference resolution 
performance of the baseline system.  Much of the performance improvements come from better resolution 
of partial-match and/or no-match markables because the token-match baseline system does an excellent 
job of resolving exact-match resolutions.  We also find that the TEST and CONS markables are very 
different than the markables of the other three categories.  The system does not improve TEST and CONS 
no-match resolution, probably because of the lack of no-match training data.   

Having examined overall system performance and confirmed that the feature set improves on the 
performance of the baseline, we now examine what aspects of our system contribute to this improvement.  
There are two primary reasons for the improvement over the baseline.  First, the multi-perspective 
approach allows the system to adapt how it uses each feature to the semantic category under evaluation.  
Second, some features like sentence-markable-all-category can identify coreferent relationships in 
manners other than string comparisons.  We will analyze the multi-perspective approach and the power of 
features in the feature set in the section that follows. 
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4.6.2 Effect of the Multi-Perspectives Approach 

Evaluation Method 

We evaluate the effect of the multi-perspective approach by comparing the all-feature system with 
systems including four subsets of features.  The four sets are: anaph features alone (anaphor-perspective), 
antec features alone (antecedent-perspective), greedy features alone (greedy-perspective), and stingy 
features alone (stingy-perspective).  For each of these, the multi-perspective feature set is reduced to 
include only a single perspective.   

Data Analysis 

  CONS DIS MED SYMP TEST 

  MUC B-
CUBED MUC B-

CUBED MUC B-
CUBED MUC B-

CUBED MUC B-
CUBED 

Anaphor-
perspective .8545 .9508 .8977 .9373 .9380 .9695 .8329 .9415 .4774 .9534 

Antecedent-
perspective .8041 .9550 .8848 .9267 .9444 .9706 .8462 .9405 .4459 .9514 

Greedy-
perspective .8283 .9612 .8904 .9360 .9463 .9731 .8378 .9410 .5032 .9543 

Stingy-
perspective .8333 .9615 .8891 .9393 .9375 .9694 .8365 .9387 .4778 .9541 

All-Feature 
Set/Multi-
perspective 

.8515 .9576 .8993 .9420 .9498 .9730 .8418 .9440 .5063 .9555 

Table 23: Single perspective system MUC and B-CUBED evaluations  
Note: Darker highlight, with bold letters is the best performing feature set for the particular evaluation metric 

within a semantic category. The lighter highlight is the second best performing feature set. 

 
The all-feature system consistently performs at or above the level of each of the single-perspective 
systems.  The all-feature system contains the best or second best MUC and B-CUBED scores in 9 out of 
10 comparisons.  In the one exception, CONS B-CUBED, the all-feature system is the third best 
performing system.  The experiment data indicates that, in general, the all-feature system is preferred over 
the single-perspective systems.   

We also explore if any of the four single perspectives is better than the others.  We find no perspective 
that clearly dominates the others by F-measure.  However, the greedy-perspective seems most preferable.  
It is never the worst performing perspective; it performs the best out of all single perspectives for MED 
and TEST markables; and its MUC and B-CUBED scores in other categories are also in the upper half of 
the single-perspective systems.   

While the multi-perspective approach does improve system performance in most cases, how much of an 
improvement actually results?  To find out, we examine the performance gain of the all-feature system 
over the average performance of the single-perspective systems [Table 23].  We also examine the largest 
difference between the all-feature system and any one of the single-perspective systems and specifically 
compare with the antecedent-perspective.  The antecedent-perspective is chosen because Yang et al. 
employed it in their experiments.   
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CONS DIS MED SYMP TEST 
  

MUC B-
CUBED MUC B-

CUBED MUC B-
CUBED MUC B-

CUBED MUC B-
CUBED 

Average Difference 
Between All-Feature 
System and Single-
Perspective Systems 

.0214 .0005 .0088 .0072 .0083 .0024 .0035 .0036 .0302 .0022 

Largest Difference 
Between All-Feature 
System and Single-
Perspective Feature 
Systems 

.0474 .0068 .0145 .0153 .0123 .0036 .0089 .0053 .0604 .0041 

Difference Between 
All-Feature System and 
Antecedent Perspective 

.0474 .0026 .0145 .0153 .0054 .0024 .0044 .0035 .0604 .0041 

Table 24: Difference between all-feature and single-perspective system 

We are unable to obtain significance figures for the different systems because there is only one evaluation 
run on the data set.  We cannot split the data set into smaller data sets, because it already has a limited 
number of markables.  However, in the table above, we do show differences in system performance for 
each semantic category.  The increase in system performance is modest.  TEST and CONS coreference 
shows fairly large improvements in MUC measures, while DIS shows a large increase in B-CUBED 
measures.   

The differences in performance of the all-feature system from the antecedent-perspective come from two 
sources: the 28 features feature set and the additional 29 perspectives for the multi-perspective features. 
We can make a rough estimate of the multi-perspective approach’s contribution to the overall system 
improvements by examining the performance difference between the antecedent-perspective and the all-
feature system [Table 25]. 

  CONS DIS MED SYMP TEST 
F-MEASURE 
MUC 0.069 0.061 0.032 0.055 0.506 
B-CUBED 0.005 0.019 0.012 0.011 0.014 

Table 25: Difference between All-feature system and antecedent perspective 
4.6.3 Feature Contributions 

In examining the power of each feature for coreference resolution in a semantic category, we evaluate the 
feature’s direct and complementary effects on the system. The direct effect is how much the feature alone 
contributes to the system performance.  However, our features are not completely independent from each 
other so a feature’s actual effect on the system is also dependent on its interactions with other features.  
We call the side-effect from a feature’s interactions with other features its complementary effect.   

Consider the role that date features have in coreference resolution. The system cannot perform 
coreference resolution with only date information, however if the system knows that two markables have 
the same name and occurred on the same date, then it is likely the two markables are coreferent.  For 
example, on the same day a “Chest X-Ray” and a “CT Scan” can be done, but without knowing whether 
these two markables refer to the same concept, the temporal information is too vague to be of any help.  
However, if a string-match or umls-concept-match feature is also introduced, the temporal information is 
likely to improve the precision.  For example, a TEST such as an “X-ray” often refers to several different 
“x-rays” in a discharge summary, but a patient gets only a small number of “X-rays” taken on a given 
day.  As a result, temporal features have a weak direct effect but stronger complementary effect on system 
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performance.   

Evaluation Method 

Like the previous section, we evaluate our system on different combinations of feature sets.  However, 
due to the large number of features, we only find the features that are statistically significantly different 
from each other.  In order to perform significance testing, for each feature set, we perform 50-fold cross-
validation rather than 10-fold cross validation; this provides more data points for the Wilcoxon Ranked 
Test.  Furthermore, instead of the B-CUBED and MUC evaluation methods, we use precision and recall, 
as described in Section 3.1.1, by examining the correctness of the system’s prediction for each markable 
pair.  This approach is the most convenient, least-time-consuming way to achieve an estimation of system 
performance.   

Given a system with the right output features, we could have evaluated the system using the B-CUBED 
and MUC metrics.  Unfortunately, due to system constraints with Weka, preparing the output data for 
these evaluation metrics would have taken an immense amount of time, therefore this option was 
abandoned for a faster evaluation method.  We decided to use the pair-wise F-measure evaluation.     

Even though the pair-wise F-measure is only an approximation for MUC scores, we believe the 
approximation is highly correlated with actual MUC performance.  Inherently, good pair-wise coreference 
evaluation results implies that the prediction set is very similar to the gold standard.  Furthermore, a good 
pair-wise evaluation should result in good clustering output.  There are likely cases where a few 
misplaced categorizations can result in bad clustering that places many unrelated markables into the same 
coreference chain.  However, bad clustering only occurs if system predictions are not precise.  In the 
previous section, we found evidence that our system is a precision-biased system.  Therefore, we believe 
that the bad clustering effect is likely low. 
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Direct Effect Analysis 

We test the direct effect of features by evaluating the performances of single feature systems and 
comparing the F-measures of individual single feature systems with the F-measure of the system using 
only the token-match feature (Table 18: features 1-4). 

  CONS DIS MED SYMP TEST 
  F Conf F Conf F Conf F Conf F Conf 
date-match .000 .00 .000 .00 .000 .00 .000 .00 .000 1.00 
edit-distance .463 .00 .627 .00 .856 .00 .614 .92 .000 1.00 
entity-distance .000 .00 .000 .00 .000 .00 .000 .00 .000 1.00 
entity-distance-all .000 .00 .000 .00 .000 .00 .000 .00 .000 1.00 
last-name-match .000 .00 .000 .00 .000 .00 .000 .00 .000 1.00 
left-markable-all-
category, right 
markable-all-category .000 .00 .000 .00 .000 .00 .000 .00 .000 1.00 
normalized-edit-
distance .474 .00 .631 .00 .856 .00 .623 .52 .000 1.00 
normalized-token-match .688 .21 .776 0.1 .890 .34 .634 .06 .000 1.00 
noun-match .684 .26 .691 .00 .749 .00 .000 .00 .000 1.00 
plurality-match .000 .00 .000 .00 .000 .00 .000 .00 .000 1.00 
prefix-match .690 .18 .751 .00 .897 .68 .700 .00 .000 1.00 
presence .000 .00 .000 .00 .000 .00 .000 .00 .000 1.00 
section-distance .000 .00 .000 .00 .000 .00 .000 .00 .000 1.00 
section-type-match .000 .00 .000 .00 .000 .00 .000 .00 .000 1.00 
sentence-token-match .000 .00 .000 .00 .000 .00 .000 .00 .000 1.00 
sentence-distance .000 .00 .000 .00 .000 .00 .000 .00 .000 1.00 
sentence-markable-all-
category-match .000 .00 .000 .00 .000 .00 .000 .00 .000 1.00 
sentence-stop-words-
removed-token-match .000 .00 .000 .00 .000 .00 .000 .00 .000 1.00 
UMLS-concept .000 .00 .591 .00 .742 .00 .000 .00 .000 1.00 
UMLS-type .000 .00 .000 .00 .000 .00 .000 .00 .000 1.00 
UMLS-type-match .000 .00 .000 .00 .000 .00 .000 .00 .000 1.00 
UMLS-concept-token .000 .00 .639 .00 .742 .00 .000 .00 .000 1.00 
word-distance .000 .00 .000 .00 .000 .00 .000 .00 .000 1.00 

token-match .729 - .790 - .892 - .610 - .000 - 

Table 26: Single feature system pair-wise F-measure evaluation 
NOTE: Dark Highlight: F-measures significantly different from the token-match system 

 
There are several striking results from our experiment.  First and foremost, we notice that the number of 
features that directly affect coreference resolution varies over the different semantic categories.  MED and 
DIS semantic categories had three and four features, respectively, that had a direct effect.  On the low 
end, no feature by itself was able to help the system identify TEST coreference pairs. The dearth of useful 
features for TEST markables is another indication that resolution of TEST markables is more complex 
than other categories.  We believe resolving TEST markables, which often are nominal representations 
that refer to multiple underlying events, require more context than other categories.  No single feature 
captures enough context to make resolution of TEST markables possible. 
 
In terms of feature analysis, token-match, normalized-token-match, edit-distance, normalized-edit-
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distance are all orthographic features.  The direct effects of token-match and normalized-token-match on 
system performance are roughly similar (no differences were statistically significant).  The same can be 
said for edit-distance and normalized-edit-distance.  These results indicate that normalizing tokens does 
not enhance system performance in a significant manner.  Overall, the token-match feature highly 
influenced most semantic categories with the exception of TEST resolution. 
 
We use the UMLS and prefix features to capture morphological variants.  Prefix seems the more 
successful way for locating morphologically related markables.  It performs significantly better than all 
other features for SYMP markable resolution because SYMP markables have more variation than 
markables of other categories.  For example, “hypertension” in its adjective form “hypertensive” is often 
used to describe a patient’s high blood pressure.  Markables describing treatment procedures in MED also 
vary between noun and verb form, which likely explains why prefix performs slightly better than token-
match in MED in pair-wise F-measure evaluation. We also observe a very strong correlation between the 
above table and table 20.  When we rank all-feature system performance from highest to lowest by MUC 
F-measure (Table 20), we find the order to be MED, DIS, CONS, SYMP, TEST.  This same order 
corresponds to how the categories would be ranked, if they are sorted by the number of direct effect 
features they have!  This correlation could be an indication that the number of salient direct effect features 
is the primary driver influencing resolution performance. 
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Complementary Effect Analysis 
 
We evaluate the complementary effect by removing a feature from the all-feature system and evaluating 
the significance of the system performance changes.     
 

  CONS DIS MED SYMP TEST 
 F Conf F Conf F Conf F Conf F Conf 
date-match .759 .18 .837 .60 .920 .07 .773 .50 .374 .00 
edit-distance .733 .11 .838 .84 .924 .21 .766 .73 .502 .46 
entity-distance .759 .18 .838 .92 .922 .40 .773 .24 .470 .97 
entity-distance-all .759 .18 .837 .68 .920 .23 .769 .58 .492 .94 
last-name-match .767 .79 .838 .80 .919 .05 .764 .98 .498 .64 
left-markable-all-
category, right markable-
all-category .759 .18 .837 .66 .919 .03 .768 .73 .431 .14 
normalized-edit-distance .759 .18 .835 .39 .921 .09 .763 .75 .498 .67 
normalized-token-match .757 .55 .820 .01 .920 .05 .773 .73 .496 .61 
noun-match .732 .22 .837 .46 .917 .02 .755 .55 .513 .43 
plurality-match .759 .18 .834 .25 .918 .03 .763 .99 .500 .57 
prefix-match .749 .40 .836 .49 .919 .06 .771 .90 .498 .64 
presence .759 .18 .830 .19 .919 .25 .730 .05 .498 .64 
section-distance .759 .18 .839 .86 .919 .05 .766 .88 .470 .36 
section-type-match .750 .11 .831 .13 .918 .07 .765 .85 .506 .42 
sentence-token-match .767 .79 .837 .75 .919 .05 .774 .51 .454 .05 
sentence-distance .755 .11 .837 .70 .921 .08 .769 .46 .501 .48 
sentence-markable-all-
category-match .759 .18 .836 .52 .919 .05 .764 .98 .475 .55 
sentence-stop-words-
removed-token-match .759 .18 .838 .79 .919 .03 .779 .31 .475 .30 
UMLS-concept .759 .18 .838 .74 .921 .07 .751 .23 .500 .57 
UMLS-type .759 .18 .837 .54 .921 .08 .760 .86 .476 .41 
UMLS-type-match .759 .18 .835 .30 .920 .05 .753 .60 .502 .61 
UMLS-concept-token .759 .18 .835 .37 .921 .11 .765 .95 .497 .70 
word-distance .759 .18 .822 .01 .919 .05 .762 .95 .443 .04 
Baseline (All Features) .770   .838   .930   .763   .492   

Table 27: Leave-one-feature-out system performance 
NOTE:   Dark Highlight:  System performances significantly affected by feature removal.  

      Light Highlight:  System performances strongly affected by feature removal.      Significantly Affected: > .95 
confidence    Strongly Affected: > .90 confidence 

 
Two semantic categories (CONS and SYMP) are not significantly affected by the removal of any single 
feature from the all-feature system, while system performance on MED markables is extremely sensitive 
to changes in the feature set.  It is easiest to distinguish influential features for DIS and TEST resolution.  
For DIS, finding the word-distance between markables and normalizing the markables are crucial to 
system performance.  For TEST markables, withholding date and word distance information significantly 
reduced the performance of the system.    

Other semantic categories that were significantly effected by the removal of features from the all-feature 
set are DIS and TEST.  For DIS, finding the word distance between markables and normalizing the 
markables are crucial to system performance.  For TEST markables, withholding date and word-distance 
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information significantly reduces the performance of the system.    

The two semantic categories that were not significantly affected by the removal of any feature showed 
different reactions to feature removal.  In CONS, all-feature removals cause a negative effect on system 
performance, while in SYMP, the removal of features in a majority of cases (15/23) actually caused a 
slight increase in system performance.   

4.7 Discussion 

Our evaluations indicate that both the multi-perspective approach and the diversity of the very large 
feature set contribute to the superiority of the all-features system over the baseline.   
 
For all semantic categories, the multi-perspective approach contributes to only a fraction of the system’s 
improvement from the baseline.  There are two exceptions, however.  A majority of the increase in CONS 
resolution performance over the baseline seems to be due to the multi-perspective approach rather than to 
a larger feature set than the baseline (Table 26 and 27).  This result indicates that additional features did 
not contribute to the increase in the system’s ability to resolve CONS coreference, once again showing 
that the token-match feature is likely the most powerful feature for locating coreferent CONS markables.  
Evaluation data [Table 26 and 27] indicates that the large increase in B-CUBED score for DIS markables 
is also due to the multi-perspective approach  Further investigation will need to be conducted to find the 
disparity between the measures. 
 
When examining system performance changes for each type of string-match markables, we find that the 
all-features system improves partial-match and no-match markables resolution by a wide margin.  In fact, 
it is the system features that are included to better no-match and partial-match resolutions (e.g., edit-
distance, normalized-edit-distance, normalized-token-match, noun-match features, prefix-match, umls-
concept-match, and umls-concept-token-match) that significantly and directly affect system performance.   
 
In the complementary effect evaluation, we find that each semantic category has its own distinct reaction 
to feature removal.  SYMP resolution improves slightly when features are removed, while CONS 
resolution suffers slightly.  The feature removal tests find that only DIS, MED, and TEST coreference 
resolution have any significant changes.  Out of the three semantic categories, MED resolution is affected 
by the removal of many features, while DIS and TEST resolutions are affected by the removal of two 
features each 
 
Only two features consistently have a positive (significant or non-significant) contribution to system 
performance.  In particular, removing word-distance from the all-feature system causes a decrease in 
performance for resolving coreference in all semantic categories, though only in two of the semantic 
categories (TEST and DIS) is the decrease significant.   The removal of the other feature, umls-type, 
causes only a slight decrease in coreference resolution on all 5 categories.   
 
Our evaluations have found contributory features and the strengths of our system.  However, where are 
the weaknesses to our approach?  In what follows, we will analyze the system prediction errors for each 
semantic category.  For each category, we will give examples of the prevalent false alarm and false 
negative errors, why they occur, and any potential solutions to the problem. 
 
4.7.1 CONS 

Errors in CONS markable resolution mainly stem from the limitations of orthographic features.  The 
decision tree generated during the CONS resolution process (Appendix.A) reveals that features selected 
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by C4.5 are primarily those that use spelling to evaluate similarity between two markables: token-match-
antec, normalized-token-match-anaph-base, normalized-distance, prefix-match-antec, prefix-match-
greedy, noun-match-stingy, last-name-match.  The system relies heavily on spelling to discover 
coreference because CONS markables are all named-entities. 

4.7.1.1 False Alarm 

There are only a total of six CONS false alarms.  The six false alarms fall into two groups.  In 3 out of the 
6 cases, the markable pairs match in many uninformative tokens, e.g., honorifics, punctuations, etc. These 
token-matches result in a misleadingly high entity-token-match value, causing the system to believe that 
the markables corefer.  Example 1 demonstrates this problem.  In each markable, 3 out of 5 tokens match; 
however, comma, which is considered a token, is a punctuation mark and “M.D.” is an extremely 
common honorific.  These tokens should not be used as part of token-match evaluation because overlaps 
of these tokens do not increase the likelihood of markable pairs being coreferent. 

Example 1: 

“[Jack M. Brown] , M.D.” and “[Stanley M. Red] , M.D.” result in token-match-antec value of .6 

The remaining false alarms are due to ambiguous cases.  For example, our annotations indicate that 
“Hematology/Oncology Consultation” and “Hematology” are not coreferent.  However, depending on the 
interpretation of the “/”, the doctor could have mean that the Hematology and Oncology doctor are the 
same person.  There was disagreement during annotation about such assignments and we believe during 
evaluation such ambiguous cases should be evaluated separately from the markable pairs that are more 
straightforward. 

4.7.1.2 False Negative 

There are more CONS false negatives than false alarms; in 9 out of the 17 cases, elimination of common 
irrelevant tokens can correct the false negative errors.  Example 2 and 3 showcase false negative pairs that 
are results of noisy token-match evaluation.  These examples are essentially the same problems as 
mentioned in the false alarm section, however, instead of misleadingly high token-match values, 
unmatched irrelevant tokens causes misleadingly low token-match values.  
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Examples 2 and 3: 

<cons> primary care physician is Dr. [John] [Brown] </cons> vs. <cons>Dr. [John] [A.] [Brown] , 
M.D. </cons> 

<cons> Hematology/Oncology team </cons> vs. <cons> Hematology/Oncology consultation </cons> 

Another type of false negative error occurs when the system fails to recognize two completely unmatched 
markables as being coreferent.  For example, in one of the records, “primary care physician” and “Dr. 
[Brown]” corefer.  Usually in these cases there is a unifying markable that clarifies the coreference 
relationship (see Example 2); however, because it is so long, comparing “primary care physician” or “Dr. 
Brown” to it will evaluate to a low token-match score. 

If a program can identify the subject and object in an “is-a” sentence or the two parts of an apposition, 
then it can divide the unifying markable into two “sub-markables.”  Candidates that corefer to either sub-
markable can be accepted as being coreferent to the unifying markable.  This approach is valid because 
appositive relationships are equivalence relationships.  Even though “is-a” sentences are indications of 
hypernym/hyponym relationships rather than equivalence relationships, we observe that in our corpus, 
hypernyms/hyponyms are often used interchangeably to refer to a single entity.  As a result, “is-a” 
sentences are often indicative of coreference relationships.  If the system concludes that a markable is 
coreferent to one of the sub-markables, then it should follow that the markable is also coreferent to the 
other sub-markable.  With the low token-match score problem solved, unmatched markables can be 
coreferent to the same unifying markable.  Aggressive-merge clustering then will cluster the markables as 
being coreferent. 

CONS markables are different from the other semantic categories that we examine.  CONS markables 
represent people or organizations, while markables in the other categories represent events.  This 
difference means that exact-match CONS pairs are much more likely to be coreferent than exact-match 
markable pairs in any of the other categories.  CONS markables, however, are also longer than DIS, 
SYMP, TEST, and MED markables because CONS markables include honorifics and appositions.  There 
is, therefore, more noise in CONS markables than other semantic categories.  As a result, high token-
match scores for partial-match markables can be somewhat misleading. 

4.7.2 DIS 

4.7.2.1 False Alarm 

We find that DIS false alarms mainly fall into two categories of string-match markables.  46 of false 
alarm pairs are from exact-matches, while another 39 are substring-matches.  Substring-match is a more 
specific kind of partial-match where one markable in a markable pair is entirely made up of tokens from 
the other markable in the pair.  For example, “chest pain” is a substring of “left chest pain”.  Therefore, 
the two markables are substring-match pairs.  We now discuss string-match errors in more detail.  

Exact-match errors occur because it is difficult for the system to distinguish between coreferent and non-
coreferent exact-match pairs.  Example 4 demonstrates the problem of using high token-match value as an 
indication for coreference.  Both disease markables (“right upper lobe nodule” and “right upper lobe 
nodules”) are referring to the same type of disease; however, they are clearly not referring to the same 
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occurrence.  How can these two markables be distinguished?  We currently use temporal information.  
The temporal information we mark is based on when there is an update on the disease status.  Performing 
date-match based on this type of temporal information allows the system to identify disease markables 
mentioned on the same date; it does not help link disease updates across multiple dates. 

Example 4:  

S1. In September of 1999 , a <test> CT of the chest </test> show a <dis-pres> right upper lobe nodule 
</dis-pres> 

S2. In March of 2000 , two more <dis-pres> right upper lobe nodules </dis-pres> were found. 

The key to distinguishing these cases is in the article or modifier that describes each markable.  Definite 
and indefinite articles cue readers on whether markables refer to a previously mentioned entity or a newly 
introduced one.  Words such as “the”, “those”, “these” are usually used to refer to previously declared 
markables, while indefinite articles like “a” are often used to bring a previously unknown item into focus.  

Example 5 and 6: 

“… , which showed <dis-pres> three vessel disease </dis-pres> 50 to 80 <dis-pres> stenosis </dis-pres> 
in the left anterior descending and 95 <dis-pres> stenosis </dis-pres> in the D1 , 50 <dis-pres> stenosis 
</dis-pres> at the circumflex …” 

“it was believed that the cause of the <dis-pres> anemia </dis-pres> was likely multifactorial including 
<dis-pres> iron deficiency anemia </dis-pres> , <dis-pres> anemia of chronic disease </dis-pres> , and 
<dis-pres> anemia </dis-pres> due to <dis-pres> renal failure/diabetes </dis-pres> 

Example 5 and 6 show other cases where simple temporal reasoning information combined with token-
match is not informative enough.  In both cases, the markables listed are mentioned in the same time 
frame, but none refer to each other.  In fact, it is the syntax of the sentence, more specifically listing of 
markables, that implies these markables are distinct from each other. 

Additionally, the context in which the markables are used helps coreference resolution.  Errors often 
occur when the system concludes that past occurrences of diseases are coreferent to the current 
occurrence.  The system can use both the location of each markable within and the markable’s 
surrounding sentential context to locate temporal clues.  Past cases of a disease are often placed under the 
PAST MEDICAL HISTORY section and referred to with keywords such as “history of” or “recurrent”.  
The current case of the disease almost never appears in the PAST MEDICAL HISTORY section, unless it 
is a chronic disease.  From these trends, we believe the identification of temporal keywords surrounding a 
markable can help a system locate other coreferent markables.  Example 7 is an example in which the 
system classifies an old bout of pseudomonas with the current case. 

 

 

 

Example 7: 



 

65 

S1. History of <dis-pres> MRSA </dis-pres> , <dis-pres> pneumonia </dis-pres> and <dis-pres> 
pseudomonas pneumonia </dis-pres> that is resistant to …. 

S2. Her <test> sputum </test> was sent for <test> culture </test> and came back positive for <dis-pres> 
pseudomonas </dis-pres>.   

From our error analysis, we also find that even though markable pairs’ presence-statuses do not match, 
the system will still classify a pair of markables as coreferent (Example 8).  In Example 8, the best 
indication of non-coreference is the presence feature mismatch.   While presence is supposed to identify 
coreferent and non-coreferent markables by examining if markables have matching presence-status, we 
believe the quality of the value of the presence feature can improve from how it is derived now.  
Currently, any markables pairs that have different presence-status, e.g., possible (poss) vs. possessed by 
someone else (some), possible vs. absent (abs), absent vs. present (pres), etc., is assigned a presence value 
of 0.  While markable pairs that match in presence-status are assigned distinct presence values of 1-4 
depending on the type of presence-status match (e.g. both are “poss”, both are “abs”, both are “pres”, both 
are “some”).  These values are purely categorical representations of the different combinations of 
presence-statuses.  They themselves do not in any way represent likelihood for coreference.  We believe 
markable pairs possessing markables with different combinations of non-matching presence-status should 
also be assigned different values.  For example, if one markable is “poss” and another is “some”, then the 
presence value should be 5; if one markable is “poss” and another is “abs” then the presence value should 
be 6, and so on for other combinations.  The reason is that the coreference likelihood varies depending on 
what type of presence-status mismatch the markable pair contains.  For example, disease possessed by 
someone else is never matched with diseases of any other presence-status, but a disease that is asserted to 
be possibly present can be coreferent to another mention that is asserted to be absent or present.  By 
assigning all of these a value of 0, we ignore the information presented to us when markables have 
different presence-statuses. 

Example 8: 

S1. The patient is an elderly woman with an extensive cardiac history including <dis-pres> coronary 
artery disease </dis-pres> status post <med> coronary artery bypass grafting </med> … 

S2. Her brother has <symps-some> hypertension </symps-some> , and there is <dis-some> coronary 
artery disease </dis-some> in her brother and sister . 

4.7.2.2 False Negative 

Unlike the false alarm pairs where most errors stem from substring-match or exact-match markables, 
most false negatives come from no-match pairs.  69 of false alarms come from no-match markables and 
another 17 from partial-match markables that do not count as substring-matches.    

Errors from no-match usually come from the system’s lack of medical knowledge related to 
generalizations. For example, “pneumonia” is often referred to as an “infectious process”.  However there 
is no way for the system to know that the two are related. The lone hope for solving this problem is in 
UMLS MetaMap; however, the term “infectious process” is too broad even for UMLS to categorize as 
any specific concept.  Another common error is that the system doesn’t recognize the connection between 
“blood” and “bleed”.  These problems indicate the importance of having knowledge sources that 
recognize broader concepts that each markable can refer to.  Perhaps the use of the UMLS semantic 
network can help. 
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Besides medical knowledge shortage, the system also does not recognize abbreviations.  As a result terms 
like “MI” and “myocardial infarction” or “PE” and “pleural effusion” are not recognized as being related.  
Medical acronym lists exist.  We believe these lists, when coupled with a distance metric, may be able to 
resolve most abbreviation errors.  However, overlapping acronyms for different terms can cause 
ambiguity, for example, “breath sounds” and “bowel sounds” are both abbreviated BS.  This ambiguity 
only causes a problem if two overlapping terms both appear in the same discharge summary.  If we know 
how frequently co-occurrences of overlapping terms occur, we would have a better idea of the usefulness 
of acronym lists.     

The above cases mostly stem from no-match markables, in cases where there is some overlap between 
markables, the false negatives occur due to the lack of context.  For example, in the example below, 
recognizing that both ulcers are of the duodenum would have been enough for coreference resolution.  
However, the word “duodenum” does not appear in the first markable, rather it appears two words before 
the markable is mentioned.  We believe the key to recognizing these contexts for disease markables is in 
finding location/body-parts words around or in markables. Because many diseases affect isolated parts of 
the body, markables that match in body-part context and disease name are likely to be coreferent.  Of 
course, this method is not perfect.  There will certainly be cases like Example 4 where multiple 
occurrences of the same disease occur. 

Example 9: 

S1. … ; duodenum , multiple <dis-pres> cratered nonbleeding ulcers </dis-pres> ranging in size from 2 
to 5 mm were found in the duodenal bulb . 

S2. <dis-pres> Gastrointestinal bleed </dis-pres> , likely from <dis-pres> duodenal ulcers </dis-pres> 

It is also worth noting that both from examining the decision tree and our evaluation of feature 
contribution to system performance, we find word-distance (the distance between two markables as 
measured by the number of words in between them) to be of importance.  The reason for the importance 
of word-distance is likely due to the prevalence of substring-match markable pairs.  In these markables, 
the substring markable is often missing one key piece of information (such as location) that is preventing 
the system from identifying whether it corefers to an antecedent markable.  By using word-distance, our 
system treats substring markables similar to how pronouns are treated by other systems, assigning them to 
markables that are closest to the substring markable.   

4.7.3 MED 

While disease markable resolution places an emphasis on location and general temporal information, 
MED markable resolution can be done by examining the delivery method of medication and the time of 
medical procedures.   

4.7.3.1 False Alarm 

Like some of the other semantic categories, false alarms in MED markables are also dominated by exact-
match (33) and substring-match (44) markables.  As mentioned previously, MED entities consist of 
medical procedures and medications.  Errors are split into these two categories fairly evenly, 48 versus 52 
respectively. 

There are two primary causes of errors in MED markables.  The first type of error only applies to 
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medications. In our definition, different delivery forms of the same medication are non-coreferent.  For 
example, “Nitroglycerin sublingual” is different from “Nitroglycerin drip”.  We make this distinction 
because a patient may be treated with two different forms of the same drug at the same time, and other 
references may refer to only one type of medication.   

The other type of error is due to the lack of more contextual clues to help the system identify different 
instances.  Because many medical procedures are likely to be repeated several times, there are often 
related words surrounding the markables that identify whether they are identical cases to nearby 
markables.  In Example 10, the use of “Other” before “ablation” in the second sentence is an indicator of 
different references.  The solution to locating the coreference hint is once again to examine an n-word 
window around the markable. 

Example 10: 

S1. First <med> ablation </med> was <med> right bundle branch re-entry </med> vs. <med> 
nodofascicular BPT </med> . 

S2. Other <med> ablation </med> was an <med> AV NRT ablation </med> 

Furthermore, recognition of “is-a” syntactic structure would also help resolve coreferences for the 
markables within each sentence.  The first “is-a” sentence in Example 10 is a simple equivalence 
relationship, but the second sentence is non-trivial to resolve due to the comparison relationship.  

In general, false alarms occur because the prediction model is overly reliant on orthographic features as 
an indicator for coreference.  A look at the decision tree for MED shows that any markable pairs with 
edit-distance <= 1 will automatically be classified as coreferent.  This assignment causes 37 out of the 90 
false alarms.  While we have introduced measures that can potentially help improve coreference, it is 
possible they will not be used if the C4.5 algorithm deems the measures to be only slightly useful or if the 
pruning process groups together some paths.  The partition we just mentioned has an extremely good 
information gain ratio because it results in 796 correct predictions and 37 wrong predictions.  Because 
there is an overwhelming number of MED entities, correcting the 37 wrong predictions will make little 
difference in information gain, and the system will likely ignore that edit-distance <= 1 branch for further 
partitioning.  It is also possible that the system did find other features; however, the pruning process 
merged the features together.  

The problem with the above example is that the system gives equal credit for coreferent and non-
coreferent pairs.  Because, there are so many more non-coreferent pairs in the data set than coreferent 
ones, partitions that isolate a large number of non-coreferent pairs and some coreferent ones will 
dominate.  We believe training the system with a cost-matrix that assigns a heavier penalty for wrong 
coreferent classifications and gives less credit for correct non-coreferent pairs than coreferent ones could 
help offset the system bias towards non-coreferent pairs.  

4.7.3.2 False Negative 

False negatives in MED category seem to result primarily due to a lack of synonymy and hypernymy 
knowledge.  For example, the system did not realize that “plasma exchange” is just another term for 
“plasmapheresis” or that “resection” is a type of “surgery”. 

Other false negative errors may be resolvable by features we included such as using prefix-match to 
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resolve “diuresis” and “diurese.”  However due to the prediction model that is formed by important 
features to decipher coreference are not chosen.  We believe the primary problem is in how we have 
constructed these features.  In particular, token-match causes dependencies that will limit the ability of the 
system to decipher when it is appropriate to use a particular feature.  In the case of prefix-match, any 
strings that exactly match will have a prefix-match value of 1.  However, we intended to use prefix-match 
to locate markables that have similar spelling.  By including exact-match markables from this group, we 
remove the ability of using prefix-match as an indicator of coreference for only no-match markable pairs.  
To remove the dependence between token-match and prefix-match, we believe markable pairs that match 
exactly should have a prefix-match value of “?”.  Other features are likely to have dependencies that we 
accidentally introduced, and should also be modified accordingly for value assignment. 

4.7.4 SYMP 

4.7.4.1 False Alarm 

Unlike the other categories, the percent of false alarm SYMP markables that are exact-match pairs is 
relatively low at only 26.  The false alarm pairs that are substring-match or prefix-matches also each make 
up 26 of all false alarms.  Even though SYMP errors stem from more diverse types of markables, there is 
much less variety in terms of values assigned to features.  What we mean is most feature values are either 
going to be 0 or 1. This is because most terms are single token words, so as a result many exact-match 
and partial-match markable pairs will have prefix-match or either token-match-anaph or token-match-
antec value of 1.   

Instead, the prediction model uses normalized-edit-distance as an indicator of coreference.  Normalized-
edit-distance <= 2 is a good metric because there are quite a few cases of morphologically variant 
markable pairs.  Symptoms are often referred to in the noun and adjective forms, because they are as 
much concepts as they are descriptors of patient states.  For example, “hypertensive” appears just as often 
as “hypertension”.  However, locating morphological variants only identifies markables as being similar 
concepts.  The markables may still be referring to two separate occurrences of a symptom.  Therefore, we 
still need to use other contextual methods to determine coreference. 

4.7.4.2 False Negative 

There are 35 false negative pairs.  9 out of the 35 false negative pairs require world knowledge. Of these, 
6 are able to attain the knowledge from UMLS MetaMap. We define markables as requiring world 
knowledge if simply by examining two markables we cannot tell they are related.  Some examples are 
synonyms like “dyspnea” and “shortness of breath” or “fever” and “febrile”.  While the umls-concept-
match feature recognized these terms as the same, they were still classified as non-coreferent.  The 
decision tree path for these markables is shown below: 

normalized-edit-distance > 2 
|   normalized-token-match-stingy-base <= 0.166667 
|   |   prefix-match-greedy <= 0.666667: False (8714.0/18.0) 
 
Unfortunately, nowhere in this path does the decision tree use the umls-concept-match feature.  We 
believe this problem is the exact same problem as the one we described in the MED false alarms section; 
it is related to pruning and the prevalence of non-coreferent pairs.  Had the program decided to continue 
building the tree, 6 of the 18 errors would have been correctly predicted.  But because prefix-match-
greedy is able to correctly predict non-coreferent markables at such a high level, with relatively low error, 
no further actions were taken by the algorithm to partition the data further.  We believe the pruning 
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process merges too many leaf nodes. 

Part of the problem may also be that there are too many token-match related features.  Feature values for 
token-match, prefix-match, umls-concept-match, normalized-token-match, edit-distance, and normalized-
edit-distance are all correlated because if token-match is 1 then the other features will also be either 0 
(edit-distance features) or 1 (token/concept-match features).  We need to eliminate some of these features 
and assign values more selectively.  For example, umls-concept-match is useful only on exact-match 
markables because otherwise it has the same value as token-match.  So to make umls-concept-match and 
token-match more independent of each other, umls-concept-match should be assigned an “?” value for 
exact-match markable pairs. 

Example 11: 

S1. …who presents with a two to four week history of increasing <symps-pres> shortness of breath 
</symps-pres> 

S2. Approximately two to four week ago , the patient begin developing <symps-pres> dyspnea </symps-
pres> on exertion. 

Context is also important for removing SYMP false alarms. In the example below, we know “shortness of 
breath” and “dyspnea” are coreferent because the two terms are synonyms and both occurred “two to four 
week ago.”  Recognizing similar context can be done in a couple of ways.  The system may convert “two 
to four weeks ago” into an actual time and then compare the time stamps for each markable, similar to our 
date features.    Another way is to compare surrounding text in a way similar to [39]  As mentioned in the 
related works section, Pederson et al. used bi-gram matches around a 50 word window to identify 
coreferent named-entities.  We also believe that finding the length of the longest common subsequence of 
the sentences that contain each markable may be useful.  The key observation is that consecutive 
matching tokens in surrounding text are more likely to indicate coreference of two markables than 
multiple disconnected token-matches.  

The previous example demonstrates that sometimes more than one feature is needed to make coreference 
resolution possible.  We consider these to be difficult, multi-step cases for coreference resolution.  
Consider the example below, the system needs to first understand that “GI” stands for “gastrointestinal”, 
and then make the assessment that the “gastrointestinal area” is around the “abdomen”.   

Example 12: 

S1. Her <symps-pres> non-cardiac abdominal pain </symps-pres> was distinct form her prior <symps-
pres> angina </symps-pres> which lowered the suspicion for an <dis-poss> acute coronary syndrome 
</dis-poss> 

S2. She was also started on <med> Protonix </med> for her <symps-pres> GI symptoms</test> 

4.7.5 TEST 

Out of markables in all semantic categories, the system performed worst on TEST markables.  In all other 
categories, token-match is an extremely useful feature by itself, however, this is not the case for TEST 
which contains more non-coreferent exact-match pairs than coreferent ones.  In TEST, the combination of 
token-match, word-distance, date, and other contextual features results in improved resolution.   The 
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prediction model formed by these features has a relatively low recall, signifying that false negatives are a 
common problem.  False alarms, though not nearly as prevalent, also exist. 

4.7.5.1 False Alarm 

81 of TEST false alarms are exact-match pairs.  Through our error analysis we have found many ways to 
recognize non-coreference amongst exact-match pairs.  All such cases are related to contextual and 
lexical clues because non-coreferent exact-match markables cannot be identified through features that are 
derived directly from markables.  In the following error analysis we present some common problems, 
most of which involve exact-match pairs. 

Example 13:   

S1. Recent <test> echocardiogram </test> revealed an <test> ejection fraction </test> of <results> 55 
</results> . 

S2. Other studies of note were a recent <test> echocardiogram </test> from August 9, 2001 which 
revealed an <test> ejection fraction </test> of <results> 60 </results> . 

In many cases, if TEST markables have RESULT markables nearby, comparing the RESULT markables 
can help determine TEST coreference.  In the current feature set, left-markable-all-category and right–
markable-all-category may perform a similar function if a RESULT markable immediately precedes or 
follows the TEST markable; however, no feature specifically compares RESULT markables.  Also our 
neighbor matching strategy is somewhat faulty because certain markable pairs are likely to appear 
together.  For example, “echocardiogram” is used to find the “ejection fraction”.  This means, 
“echocardiogram” and “ejection fraction” will have a right-markable-all-category and a left-markable-all-
category value of 1.  These values falsely indicate coreference and contextual similarity.  In these cases, 
more precise neighbor matching can improve coreference.  In addition, frequency analysis using TFIDF 
or other methods can also discount overlaps between commonly appearing token pairs. 

As is with the case with many other indicators, RESULT matching is not a perfect indicator of 
coreference.  It is entirely possible for two different tests to return the same result.  Consider the example 
below: 

Example 14: 

S1. <test> Iron studies </test> revealed <test> TBC </test> <results> 228 </results> , <test> haptoglobin 
</test> <results> 451 </results> , … <test> total bilirubin </test> <results> 0.3 </results> , … 

S2. Was <results> positive </results> for <test> glucose </test> <results> of greater than 1000 </results> 
, … <test> total bilirubin </test> <results> 0.3 </results> 

Sentence 1 refers to results from iron studies, while sentence 2 refers to results from a urinalysis.  The 
system classified the “total bilirubin” markables as coreferent due to exact-match, a right-markable-all-
category value of 1, and umls-concept-match of 1.  However, the TEST markables are not coreferent to 
each other because they do not originate from the same test event.  In addition, the surrounding TEST 
markables for the markables in question do not match, yield a further clue that the TEST markables are 
not coreferent.   
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While it is possible to find heuristics and patterns that suggest coreference or non-coreference in most 
cases, certain ones require the system to have deep understanding of natural language and a degree of 
reasoning.  In Example 15, to resolve that “esophaogastroduodensocopy” in sentence 1 and sentence 2 are 
not coreferent to each other requires the understanding that in sentence 1 the operation had been done 
earlier in time because it appeared in the HISTORY OF PRESENT ILLNESS section.  The markable in 
sentence 2 is mentioned in the context of the current HOSPITAL COURSE.  In particular, the operation is 
being considered while the operation in sentence 1 has already been performed.  Therefore, to 
successfully resolve coreference of the markable pairs, the system needs to understand the contexts in 
which the markables are used and their temporal order. 

Example 15: 

S1. An <test> esophagogastroduodenoscopy </test> was done , and revealed <dis-pres> fresh bleeding 
</dis-pres> with large <dis-pres> blood </dis-pres> in the fundus of the stomach . 

S2. The patient understood that this eliminated the possibility of gaining control of <dis-pres> bleed 
</dis-pres> via <test> esophagogastroduodenoscopy </test> .  

4.7.5.2 False Negative 

TEST false negatives occur in similar fashions as false negatives in other semantic categories. The small 
data set and the large number of non-coreferent markable pairs compared to coreferent pairs cause the 
system to be biased towards classifying markables as non-coreferent.  The following example 
demonstrates how these two factors limit the effectiveness of our system:    

 

Example 16:  

S1. Prior to the <med> thoracentesis </med> she had a <test> chest CT </test> , which showed …. 

S2. A <test> CT </test> had been performed prior to her <med> thoracentesis </med> . 

The “CT” in sentence 2 and the “Chest CT” in sentence 1 obviously corefer.  However, the decision tree 
model indicates that any token-match value of half or less will automatically be non-coreferent.  Because 
test tokens are usually only one or two tokens, paired markables like “CT” and “Chest CT” are not 
processed.  Such shallow categorizations are bound to cause errors.  Modifications to the decision tree 
algorithm to ensure a certain level of depth to each leaf in the tree maybe useful.  Another alternative is to 
increase the data set size and use a cost sensitive matrix so that the system is not biased to assigning pairs 
to be non-coreferent because non-coreferent pairs are more prominent.    
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5 FUTURE WORKS 

This research has only scratched the surface of coreference resolution on medical discharge summaries.  
Future research that aims to optimize each step of the resolution process (pairing markables, feature 
evaluation and incorporation, training algorithm, and clustering) may improve system performance in 
dramatic ways.   

In this research, we used McCarthy and Lehnert’s method to pair markable pairs.  We found both 
advantages and disadvantages to this method.  Namely, this approach gave a large training set for the 
machine learner, but it also created predominantly non-coreferent pairs.  Depending on the type of a 
markable or markable pair being classified (indefinite nouns, proper nouns, exact-match, and substring-
match), the system can choose different pairing methods.  For example, indefinite noun coreferences are 
likely to span great distances, so a complete pairing approach might be better.  A noun that is a substring 
of a nearby markable, however, often acts more like a pronoun, and a pairing approach akin to Ng and 
Cardie’s may be more appropriate.  Further research into how to select and pair training data may 
improve prediction model output and system performance. 

This research is primarily aimed to discover insights on salient features for coreference resolution of 
different semantic categories that appear in hospital discharge summaries.  Through our error analysis, we 
have a better understanding of the limitations of the current approach and how it affects each semantic 
category.  Markables in different semantic categories have different characteristics and will benefit from 
different approaches. 

CONS often contain preposition and punctuation tokens.  These non-descript tokens should not be 
considered part of the markable.  To enhance token-match, a stop-list or frequency analysis can be used to 
disregard common, uninformative tokens.  In addition, from our analysis, the power of last-name-match 
feature has not been fully exploited.  Our system must be able to better recognize last names, and assign 
“?”, rather than “False” to markable pairs that contain markables with no last names.   

In addition, all semantic categories can benefit from adjustments to syntactic, temporal, and lexical 
approaches to resolving coreference.  Better syntactic analysis can improve system precision.  Definite 
and indefinite articles can be useful for resolving coreference of close distance markables.  Certain 
sentence structures, such as is-a and appositive sentences, are prone to containing coreferent markables.  
Other sentences with list structures can be strong indicators for non-coreference.   

Further research also needs to be done on tokens surrounding markables.  Some special cases are: 

• Unmatched markable tokens that appear in the surrounding text of the other markables, 
• Definite articles that indicate the current markable is referring to a previously introduced entity, 

and 
• Temporal tokens such as “again”, “repeat”, and “previous”. 

 
 
Separately, even though UMLS imparted some medical knowledge into our system, our attempt to use 
UMLS MetaMap for locating semantically similar markables is very basic.  Future efforts should leverage 
the UMLS Semantic Network to find related UMLS concepts.  
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As we have learned, string similarity is only an indication of coreference.  In the case of TEST, a majority 
of markable pairs that are similar to each other are not coreferent.  When analyzing MED markables, we 
also find markable pairs that evaluate to high token-match values, but are non-coreferent.  These 
markables often differ in one token, however the tokens that differ are extremely important to the 
interpretation of the markables.  These tokens often detail how a medication is delivered.  Our token-
match evaluation method assigns each token equal weight; however, in the case of MED markables, 
certain tokens that are particularly important should be weighted more.  Frequency analysis of token 
differences and similarities between coreferent and non-coreferent markables can help determine 
weighting.    

Another problem found during MED markable resolution is the system’s inability to recognize 
hypernyms. Hypernym relationships require world knowledge, however, the UMLS Metathesaurus only 
maps equivalence relationships. Determining how hypernym relationships can be located and using them 
to determine coreference will result in a more complete resolution system. 

As mentioned in the related works section, Pederson et al. used bi-gram matches around a 50 word 
window to identify coreferent same-name entities.  Similarly, finding the length of the longest common 
subsequence of the sentences that contain each markable may be useful because matching consecutive 
tokens are more likely to indicate coreference than matching non-consecutive tokens. In this experiment, 
the system evaluated markable similarity by considering token-match percentage without giving extra 
consideration for consecutive tokens.   

Simply examining the a priori coreference probabilities for different string-match types suggests that 
different string-match types require different resolution methods.  To incorporate consecutive token-
match in token-match evaluations, we believe partial-match markables should be further divided into 
substring-match and other-partial-match markables.  Separately resolving each type of string-match 
markables (exact-match, substring-match, other-partial-match, and no-match) will allow the system to 
optimize resolution by finding features that are useful for resolving each type of markable pairs.   

Many of our suggestions for improvement are modular approaches that improve on the current system.  
Any realizable gains from these improvements are contingent upon the system being trained on a larger 
data set.  Our data set contains too few coreferent pairs.  It is also important that any future methods 
remove the prominence of non-coreferent pairs to coreferent pairs in our data set.  This can either be done 
by removing non-coreferent data points from the data set or cost-sensitizing our approach.   

From our research, we have also found that C4.5 cannot find the optimal prediction model due to 
dependencies between features, the small data set, and dependencies as a result of natural language.  
Future research should first use larger data sets to train the prediction model so that the true limitations of 
C4.5 can be found.  Alteration to the decision tree algorithm or substitution of it for another algorithm 
that better suits the characteristics of the task is the next logical step.  An alteration that may improve 
system performance is hard-coding precedence of features used by the algorithm to reflect the 
dependencies of the feature set.  For example, in the current feature set, we know that certain features 
should be used before others, e.g., umls-type-anaph should be used before the umls-concept-match 
features.  During training, if both the umls-type-anaph and umls-concept-match features are used, then 
umls-type-anaph should be a parent node of umls-concept-match.  Users should also be allowed to tell the 
algorithm which features must be included in the prediction model.   

Our current greedy clustering approach to grouping predicted markables seems to work well.  However, a 
probabilistic approach to clustering may yield better results.  This would require machine learning 
approaches that assign probabilities to predictions.  Using such an approach not only improves clustering 
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but can yield new approaches to coreference resolution.  Current methods use a one iteration approach to 
resolve coreferences where the system examines all the text data once and attempts to classify coreference 
in one run through. However, human readers often reread a difficult passage several times to resolve 
coreference, each time incorporating some new knowledge or assumptions from other parts of the passage 
to improve their guesses.  A probabilistic learning approach can imitate such human behavior by first 
locating high probability coreferent markable pairs, clustering and extracting information from these 
markables pairs, and then iteratively improving its guess about coreference. 
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6 CONCLUSION 

We have presented a coreference resolution system modeled after the McCarthy and Lehnert approach 
with significant expansions in feature set.  We apply the system to each of five commonly appearing 
semantic categories in medical discharge summaries.  Initial evaluation on the data set finds that token-
match as a standalone feature can be extremely helpful in deciphering coreference in four of the five 
semantic categories.  Due to this evaluation, we use a token-match baseline to measure system 
performance on easily found coreferent markables.  MED coreference is easily identifiable, while TEST 
coreference is extremely difficult.   

Evaluation of the all-feature system finds the system to be fairly precise, with the lowest MUC precision 
being .730 and lowest B-CUBED precision of .983.  With the exception of TEST (recall = .388), the 
system also performs well in recall, with the lowest MUC recall being .782 and the lowest B-CUBED 
recall being .947.  TEST markables have the biggest MUC F-measure difference (.506) between baseline 
and all-feature system.  MED experiences the smallest difference (.032).  The other three semantic 
categories also have gains from the baseline.  The gains primarily come from improved coreference recall 
from the extra features.  

Our analysis of the system feature set finds the multi-perspective approach to be a useful addition that 
positively contributed to the performance of our coreference system.  Analysis of individual features’ 
impact shows edit-distance to significantly improve CONS, DIS, and MED coreference over the token-
match and plurality system baseline; noun-match and UMLS features to significantly increase DIS and 
MED coreference; and prefix-match to significantly increase DIS and SYMP coreferences.  The 
complexity of TEST resolution is demonstrated by the fact that no feature by itself significantly increases 
TEST resolution performance from the token-match and plurality system baseline.  Improved TEST 
resolution performance is caused by multiple features working together. 

To evaluate multiple feature interactions, we perform a leave-one-feature-out test on our all-feature 
system.  No significant system performance increases are detected from feature removal, however, there 
are some notable performance degradations due to feature removals.  System performance significantly 
decreased when left-markable-all-category, normalized-token-match, noun-match, plurality, sentence-
token-match, date, or word-distance is removed from the all-feature set.  Only the last two features affect 
resolution performance on non MED-markables.   

Our experiments indicate that token-match is an important feature for coreference resolution of discharge 
summaries.  However, incorporating contextual features into the feature set is important for further 
system performance gains.  In particular, the context of the sentence that contains the markable, the 
temporal time frame of the markable, and the distance between markables are all important.  None of 
these features, however, apply across all semantic categories.  The relevant features for coreference 
resolution do vary between different semantic categories,  We believe a reliable semantic categorizer, 
therefore, is an important precursor for any high performance EMR coreference resolution systems,   
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APPENDIX 

A. Decision Trees for each Semantic Category 

CONS 

token-match-antec-base <= 0.6 
|   prefix-match-greedy <= 0.5 
|   |   noun-match-stingy <= 0.2: False (791.0/5.0) 
|   |   noun-match-stingy > 0.2 
|   |   |   normalized-token-match-anaph-base <= 0.2 
|   |   |   |   normalized-edit-distance <= 18: True (4.0) 
|   |   |   |   normalized-edit-distance > 18: False (4.0/1.0) 
|   |   |   normalized-token-match-anaph-base > 0.2: False (112.0/6.0) 
|   prefix-match-greedy > 0.5 
|   |   prefix-match-antec <= 0.6 
|   |   |   last-name-match = True: True (11.0) 
|   |   |   last-name-match = False: False (7.0/1.0) 
|   |   prefix-match-antec > 0.6: False (12.0) 
token-match-antec-base > 0.6: True (49.0) 
 
Number of Leaves  :  8 
Size of the tree :  15 

 

DIS 

token-match-greedy-base <= 0.833333 
|   normalized-token-match-anaph-base <= 0.285714 
|   |   prefix-match-anaph <= 0.5 
|   |   |   umls-concept-token-match-antec-base <= 0.5 
|   |   |   |   sentence-match-stingy-base <= 0.52: False (25383.78/69.98) 
|   |   |   |   sentence-match-stingy-base > 0.52 
|   |   |   |   |   normalized-edit-distance <= 9 
|   |   |   |   |   |   edit-distance <= 9: False (6.08/.0) 
|   |   |   |   |   |   edit-distance > 9: True (4.01/.01) 
|   |   |   |   |   normalized-edit-distance > 9: False (53.12/.01) 
|   |   |   umls-concept-token-match-antec-base > 0.5 
|   |   |   |   normalized-edit-distance <= 33 
|   |   |   |   |   umls-type-match-anaph-base <= 0.75 
|   |   |   |   |   |   umls-concept-token-match-anaph-base <= 0.333333: False (23.0) 
|   |   |   |   |   |   umls-concept-token-match-anaph-base > 0.333333: True (6.0/1.0) 
|   |   |   |   |   umls-type-match-anaph-base > 0.75: False (286.0/3.0) 
|   |   |   |   normalized-edit-distance > 33: True (24.0/2.0) 
|   |   prefix-match-anaph > 0.5 
|   |   |   prefix-match-anaph <= 0.833333: True (8.0) 
|   |   |   prefix-match-anaph > 0.833333: False (49.0/8.0) 
|   normalized-token-match-anaph-base > 0.285714 
|   |   umls-concept-match-greedy-base <= 0.333333 
|   |   |   prefix-match-anaph <= 0.6: False (261.0/13.0) 
|   |   |   prefix-match-anaph > 0.6 
|   |   |   |   umls-type-match-antec-base <= 0.5 
|   |   |   |   |   noun-match-anaph <= 0.25: True (5.0/2.0) 
|   |   |   |   |   noun-match-anaph > 0.25: False (1.0) 
|   |   |   |   umls-type-match-antec-base > 0.5: True (5.0/1.0) 
|   |   umls-concept-match-greedy-base > 0.333333 
|   |   |   umls-type-match-greedy-base <= 0.666667: False (18.0) 
|   |   |   umls-type-match-greedy-base > 0.666667 
|   |   |   |   noun-match-stingy <= 0.5 
|   |   |   |   |   prefix-match-antec <= 0.666667 
|   |   |   |   |   |   umls-concept-token-match-stingy-base <= 0.6 
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|   |   |   |   |   |   |   normalized-token-match-stingy-base <= 0.6 
|   |   |   |   |   |   |   |   prefix-match-greedy <= 0.4: False (28.0/1.0) 
|   |   |   |   |   |   |   |   prefix-match-greedy > 0.4 
|   |   |   |   |   |   |   |   |   sentence-stop-words-removed-match-greedy-base <= 0.285714 
|   |   |   |   |   |   |   |   |   |   plurality-match = True 
|   |   |   |   |   |   |   |   |   |   |   token-match-anaph-base <= 0.4: True (9.93) 
|   |   |   |   |   |   |   |   |   |   |   token-match-anaph-base > 0.4 
|   |   |   |   |   |   |   |   |   |   |   |   noun-match-greedy <= 0.666667: True (9.0/3.0) 
|   |   |   |   |   |   |   |   |   |   |   |   noun-match-greedy > 0.666667: False (22.0/2.0) 
|   |   |   |   |   |   |   |   |   |   plurality-match = False: False (17.0/1.0) 
|   |   |   |   |   |   |   |   |   sentence-stop-words-removed-match-greedy-base > 0.285714: True (4.07) 
|   |   |   |   |   |   |   normalized-token-match-stingy-base > 0.6: True (6.0) 
|   |   |   |   |   |   umls-concept-token-match-stingy-base > 0.6 
|   |   |   |   |   |   |   word-distance <= 34: False (6.0/2.0) 
|   |   |   |   |   |   |   word-distance > 34: True (24.0/1.0) 
|   |   |   |   |   prefix-match-antec > 0.666667: False (24.0/2.0) 
|   |   |   |   noun-match-stingy > 0.5: False (57.0/5.0) 
token-match-greedy-base > 0.833333 
|   word-distance <= 7 
|   |   normalized-token-match-stingy-base <= 0.75: False (26.0/2.0) 
|   |   normalized-token-match-stingy-base > 0.75 
|   |   |   section-type-match = past-past: True (2.0) 
|   |   |   section-type-match = present-present: True (4.0) 
|   |   |   section-type-match = presenthistory-presenthistory: False (6.0) 
|   |   |   section-type-match = discharge-discharge: True (1.0) 
|   |   |   section-type-match = none-none: True (.0) 
|   |   |   section-type-match = presenthistory-present: True (.0) 
|   |   |   section-type-match = presenthistory-discharge: True (.0) 
|   |   |   section-type-match = presenthistory-past: True (.0) 
|   |   |   section-type-match = presenthistory-none: True (.0) 
|   |   |   section-type-match = present-presenthistory: True (.0) 
|   |   |   section-type-match = present-past: True (.0) 
|   |   |   section-type-match = present-discharge: True (1.0) 
|   |   |   section-type-match = past-presenthistory: True (.0) 
|   |   |   section-type-match = past-present: True (.0) 
|   |   |   section-type-match = past-discharge: True (.0) 
|   |   |   section-type-match = past-none: True (.0) 
|   |   |   section-type-match = discharge-present: True (.0) 
|   |   |   section-type-match = discharge-presenthistory: True (.0) 
|   |   |   section-type-match = discharge-past: True (.0) 
|   |   |   section-type-match = discharge-none: True (.0) 
|   |   |   section-type-match = none-present: True (.0) 
|   |   |   section-type-match = none-discharge: True (.0) 
|   |   |   section-type-match = none-presenthistory: True (.0) 
|   |   |   section-type-match = none-past: True (.0) 
|   word-distance > 7 
|   |   umls-concept-token-match-greedy-base <= 0.25 
|   |   |   edit-distance <= 15: False (18.0/2.0) 
|   |   |   edit-distance > 15: True (1.0/2.0) 
|   |   umls-concept-token-match-greedy-base > 0.25 
|   |   |   normalized-token-match-anaph-base <= 0.5 
|   |   |   |   presence <= 0 
|   |   |   |   |   umls-type-match-anaph-base <= 0.75: True (8.0/1.0) 
|   |   |   |   |   umls-type-match-anaph-base > 0.75 
|   |   |   |   |   |   umls-type-base = patf: True (6.05/1.05) 
|   |   |   |   |   |   umls-type-base = dsyn: False (13.32/4.0) 
|   |   |   |   |   |   umls-type-base = mobd: False (.0) 
|   |   |   |   |   |   umls-type-base = comd: False (.0) 
|   |   |   |   |   |   umls-type-base = cgab: False (.0) 
|   |   |   |   |   |   umls-type-base = acab: False (.0) 
|   |   |   |   |   |   umls-type-base = inpo: False (3.63) 
|   |   |   |   |   |   umls-type-base = anab: False (.0) 
|   |   |   |   |   |   umls-type-base = virs: False (.0) 
|   |   |   |   |   |   umls-type-base = bact: False (.0) 
|   |   |   |   |   |   umls-type-base = neop: False (.0) 
|   |   |   |   |   |   umls-type-base = topp: False (.0) 
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|   |   |   |   |   |   umls-type-base = medd: False (.0) 
|   |   |   |   |   |   umls-type-base = strd: False (.0) 
|   |   |   |   |   |   umls-type-base = phsu: False (.0) 
|   |   |   |   |   |   umls-type-base = bodm: False (.0) 
|   |   |   |   |   |   umls-type-base = antb: False (.0) 
|   |   |   |   |   |   umls-type-base = lbpr: False (.0) 
|   |   |   |   |   |   umls-type-base = diap: False (.0) 
|   |   |   |   |   |   umls-type-base = clna: False (.0) 
|   |   |   |   |   |   umls-type-base = orga: False (.0) 
|   |   |   |   |   |   umls-type-base = lbtr: False (.0) 
|   |   |   |   |   |   umls-type-base = fndg: False (.0) 
|   |   |   |   |   |   umls-type-base = sosy: False (.0) 
|   |   |   |   |   |   umls-type-base = bmod: False (.0) 
|   |   |   |   |   |   umls-type-base = prog: False (.0) 
|   |   |   |   |   |   umls-type-base = hops: False (.0) 
|   |   |   |   presence > 0: True (62.0/13.0) 
|   |   |   normalized-token-match-anaph-base > 0.5 
|   |   |   |   normalized-token-match-anaph-base <= 0.75: True (4.0) 
|   |   |   |   normalized-token-match-anaph-base > 0.75 
|   |   |   |   |   plurality-match = True 
|   |   |   |   |   |   word-distance <= 27 
|   |   |   |   |   |   |   entity-distance <= 1: True (1.0) 
|   |   |   |   |   |   |   entity-distance > 1 
|   |   |   |   |   |   |   |   section-type-match = past-past: True (1.0) 
|   |   |   |   |   |   |   |   section-type-match = present-present 
|   |   |   |   |   |   |   |   |   sentence-entity-allcategory-greedy <= 0.571429: True (5.0) 
|   |   |   |   |   |   |   |   |   sentence-entity-allcategory-greedy > 0.571429: False (5.0/2.0) 
|   |   |   |   |   |   |   |   section-type-match = presenthistory-presenthistory: False (12.0/1.0) 
|   |   |   |   |   |   |   |   section-type-match = discharge-discharge: False (.0) 
|   |   |   |   |   |   |   |   section-type-match = none-none: False (.0) 
|   |   |   |   |   |   |   |   section-type-match = presenthistory-present: False (.0) 
|   |   |   |   |   |   |   |   section-type-match = presenthistory-discharge: False (.0) 
|   |   |   |   |   |   |   |   section-type-match = presenthistory-past: True (2.0) 
|   |   |   |   |   |   |   |   section-type-match = presenthistory-none: False (.0) 
|   |   |   |   |   |   |   |   section-type-match = present-presenthistory: False (.0) 
|   |   |   |   |   |   |   |   section-type-match = present-past: False (.0) 
|   |   |   |   |   |   |   |   section-type-match = present-discharge: False (.0) 
|   |   |   |   |   |   |   |   section-type-match = past-presenthistory: False (.0) 
|   |   |   |   |   |   |   |   section-type-match = past-present: False (.0) 
|   |   |   |   |   |   |   |   section-type-match = past-discharge: False (.0) 
|   |   |   |   |   |   |   |   section-type-match = past-none: False (.0) 
|   |   |   |   |   |   |   |   section-type-match = discharge-present: False (.0) 
|   |   |   |   |   |   |   |   section-type-match = discharge-presenthistory: False (.0) 
|   |   |   |   |   |   |   |   section-type-match = discharge-past: False (.0) 
|   |   |   |   |   |   |   |   section-type-match = discharge-none: False (.0) 
|   |   |   |   |   |   |   |   section-type-match = none-present: False (.0) 
|   |   |   |   |   |   |   |   section-type-match = none-discharge: False (.0) 
|   |   |   |   |   |   |   |   section-type-match = none-presenthistory: False (.0) 
|   |   |   |   |   |   |   |   section-type-match = none-past: False (.0) 
|   |   |   |   |   |   word-distance > 27: True (567.0/51.0) 
|   |   |   |   |   plurality-match = False 
|   |   |   |   |   |   umls-type-match-stingy-base <= 0.75: False (9.0/2.0) 
|   |   |   |   |   |   umls-type-match-stingy-base > 0.75: True (1.0) 
 
Number of Leaves  :  112 
Size of the tree :  154 

 

MED 

edit-distance <= 1: True (796.0/37.0) 
edit-distance > 1 
|   token-match-greedy-base <= 0.5 
|   |   prefix-match-antec <= 0: False (50083.0/13.0) 
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|   |   prefix-match-antec > 0 
|   |   |   edit-distance <= 5 
|   |   |   |   edit-distance <= 2: False (19.0/3.0) 
|   |   |   |   edit-distance > 2: True (5.0/9.0) 
|   |   |   edit-distance > 5 
|   |   |   |   normalized-edit-distance <= 22 
|   |   |   |   |   prefix-match-greedy <= 0.8: False (216.0/3.0) 
|   |   |   |   |   prefix-match-greedy > 0.8 
|   |   |   |   |   |   edit-distance <= 15 
|   |   |   |   |   |   |   normalized-edit-distance <= 10: False (42.0/4.0) 
|   |   |   |   |   |   |   normalized-edit-distance > 10 
|   |   |   |   |   |   |   |   umls-type-match-stingy-base <= 0.75 
|   |   |   |   |   |   |   |   |   date-defaultfalse = True: True (5.33/2.07) 
|   |   |   |   |   |   |   |   |   date-defaultfalse = False: False (14.67/1.73) 
|   |   |   |   |   |   |   |   umls-type-match-stingy-base > 0.75: True (9.0/2.0) 
|   |   |   |   |   |   edit-distance > 15: False (16.0) 
|   |   |   |   normalized-edit-distance > 22 
|   |   |   |   |   umls-concept-match-antec-base <= 0: False (14.0/2.0) 
|   |   |   |   |   umls-concept-match-antec-base > 0: True (7.0) 
|   token-match-greedy-base > 0.5 
|   |   noun-match-greedy <= 0.666667 
|   |   |   umls-type-match-stingy-base <= 0.75: True (4.0/1.0) 
|   |   |   umls-type-match-stingy-base > 0.75: False (13.0/1.0) 
|   |   noun-match-greedy > 0.666667 
|   |   |   section-type-match = past-past: False (1.0) 
|   |   |   section-type-match = present-present 
|   |   |   |   normalized-edit-distance <= 9 
|   |   |   |   |   date-defaultfalse = True: False (11.57/4.71) 
|   |   |   |   |   date-defaultfalse = False: True (42.43/9.14) 
|   |   |   |   normalized-edit-distance > 9 
|   |   |   |   |   noun-match-stingy <= 0.666667 
|   |   |   |   |   |   sentence-distance <= 6: True (4.0/1.0) 
|   |   |   |   |   |   sentence-distance > 6: False (26.0/1.0) 
|   |   |   |   |   noun-match-stingy > 0.666667: True (11.0/3.0) 
|   |   |   section-type-match = presenthistory-presenthistory: True (3.0/1.0) 
|   |   |   section-type-match = discharge-discharge: True (4.0/1.0) 
|   |   |   section-type-match = none-none: True (.0) 
|   |   |   section-type-match = presenthistory-present 
|   |   |   |   entity-distance <= 14: True (15.0) 
|   |   |   |   entity-distance > 14: False (18.0/5.0) 
|   |   |   section-type-match = presenthistory-discharge: True (1.0) 
|   |   |   section-type-match = presenthistory-past: True (2.0) 
|   |   |   section-type-match = presenthistory-none: True (.0) 
|   |   |   section-type-match = present-presenthistory: True (.0) 
|   |   |   section-type-match = present-past: True (.0) 
|   |   |   section-type-match = present-discharge 
|   |   |   |   sentence-match-greedy-base <= 0.426966 
|   |   |   |   |   noun-match-stingy <= 0.5 
|   |   |   |   |   |   umls-type-match-stingy-base <= 0.25: True (1.0/2.0) 
|   |   |   |   |   |   umls-type-match-stingy-base > 0.25: False (8.0) 
|   |   |   |   |   noun-match-stingy > 0.5: True (4.0) 
|   |   |   |   sentence-match-greedy-base > 0.426966: True (19.0) 
|   |   |   section-type-match = past-presenthistory: True (.0) 
|   |   |   section-type-match = past-present: True (5.0) 
|   |   |   section-type-match = past-discharge: True (1.0) 
|   |   |   section-type-match = past-none: True (.0) 
|   |   |   section-type-match = discharge-present: True (.0) 
|   |   |   section-type-match = discharge-presenthistory: True (.0) 
|   |   |   section-type-match = discharge-past: True (.0) 
|   |   |   section-type-match = discharge-none: True (.0) 
|   |   |   section-type-match = none-present: True (3.0) 
|   |   |   section-type-match = none-discharge: True (.0) 
|   |   |   section-type-match = none-presenthistory: True (.0) 
|   |   |   section-type-match = none-past: True (.0) 
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Number of Leaves  :  46 
Size of the tree :  69 

 

SYMP 

normalized-edit-distance <= 2 
|   presence <= 0: False (37.0/6.0) 
|   presence > 0 
|   |   umls-concept-match-anaph-base <= 0: False (23.0/5.0) 
|   |   umls-concept-match-anaph-base > 0 
|   |   |   entity-distance <= 8: True (123.0/6.0) 
|   |   |   entity-distance > 8 
|   |   |   |   sentence-match-antec-base <= 0.196429 
|   |   |   |   |   sentence-match-antec-base <= .074074: True (16.0/2.0) 
|   |   |   |   |   sentence-match-antec-base > .074074: False (15.0/2.0) 
|   |   |   |   sentence-match-antec-base > 0.196429: True (41.0/4.0) 
normalized-edit-distance > 2 
|   normalized-token-match-stingy-base <= 0.166667 
|   |   prefix-match-greedy <= 0.666667: False (8714.0/18.0) 
|   |   prefix-match-greedy > 0.666667 
|   |   |   umls-type-match-anaph-base <= 0.666667: False (12.0) 
|   |   |   umls-type-match-anaph-base > 0.666667: True (16.0/5.0) 
|   normalized-token-match-stingy-base > 0.166667 
|   |   normalized-token-match-stingy-base <= 0.5 
|   |   |   section-distance <= 11 
|   |   |   |   prefix-match-anaph <= 0.5 
|   |   |   |   |   presence <= 1 
|   |   |   |   |   |   token-match-antec-base <= 0.2: True (9.0/2.0) 
|   |   |   |   |   |   token-match-antec-base > 0.2 
|   |   |   |   |   |   |   umls-concept-match-greedy-base <= 0 
|   |   |   |   |   |   |   |   presence <= 0: False (9.0) 
|   |   |   |   |   |   |   |   presence > 0 
|   |   |   |   |   |   |   |   |   entity-distance <= 1: False (5.0) 
|   |   |   |   |   |   |   |   |   entity-distance > 1 
|   |   |   |   |   |   |   |   |   |   date-defaultunknown = True: True (22.39/2.44) 
|   |   |   |   |   |   |   |   |   |   date-defaultunknown = False 
|   |   |   |   |   |   |   |   |   |   |   sentence-stop-words-removed-match-anaph-base <= 0.142857: True (4.06/1.28) 
|   |   |   |   |   |   |   |   |   |   |   sentence-stop-words-removed-match-anaph-base > 0.142857: False (4.56/0.28) 
|   |   |   |   |   |   |   umls-concept-match-greedy-base > 0 
|   |   |   |   |   |   |   |   entity-distance-allcategory <= 172 
|   |   |   |   |   |   |   |   |   umls-concept-match-greedy-base <= 0.5: False (4.0) 
|   |   |   |   |   |   |   |   |   umls-concept-match-greedy-base > 0.5 
|   |   |   |   |   |   |   |   |   |   plurality-match = True 
|   |   |   |   |   |   |   |   |   |   |   edit-distance <= 10: False (37.0/4.0) 
|   |   |   |   |   |   |   |   |   |   |   edit-distance > 10 
|   |   |   |   |   |   |   |   |   |   |   |   sentence-match-anaph-base <= 0.484848: True (8.27/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   sentence-match-anaph-base > 0.484848: False (4.73/1.73) 
|   |   |   |   |   |   |   |   |   |   plurality-match = False: False (16.0) 
|   |   |   |   |   |   |   |   entity-distance-allcategory > 172: True (1.0/2.0) 
|   |   |   |   |   presence > 1: False (17.0) 
|   |   |   |   prefix-match-anaph > 0.5 
|   |   |   |   |   sentence-match-stingy-base <= 0.291667 
|   |   |   |   |   |   presence <= 0: False (8.0/2.0) 
|   |   |   |   |   |   presence > 0 
|   |   |   |   |   |   |   edit-distance <= 9 
|   |   |   |   |   |   |   |   date-defaultunknown = True 
|   |   |   |   |   |   |   |   |   noun-match-anaph <= 0.666667: True (4.0/1.0) 
|   |   |   |   |   |   |   |   |   noun-match-anaph > 0.666667: False (9.59/1.0) 
|   |   |   |   |   |   |   |   date-defaultunknown = False 
|   |   |   |   |   |   |   |   |   token-match-anaph-base <= 0.666667: False (4.0) 
|   |   |   |   |   |   |   |   |   token-match-anaph-base > 0.666667: True (5.41/0.41) 
|   |   |   |   |   |   |   edit-distance > 9: True (11.0/1.0) 
|   |   |   |   |   sentence-match-stingy-base > 0.291667: True (9.0) 
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|   |   |   section-distance > 11: False (22.0) 
|   |   normalized-token-match-stingy-base > 0.5 
|   |   |   umls-concept-match-anaph-base <= 0.5: False (4.0/1.0) 
|   |   |   umls-concept-match-anaph-base > 0.5: True (11.0) 
 

Number of Leaves  :  32 
Size of the tree :  63 

 

TEST 

token-match-anaph-base <= 0.5: False (53703.0/4.0) 
token-match-anaph-base > 0.5 
|   right-entity-allcategory-greedy <= 0.888889 
|   |   word-distance <= 6 
|   |   |   token-match-greedy-base <= 0.75: False (9.0) 
|   |   |   token-match-greedy-base > 0.75: True (36.22/9.69) 
|   |   word-distance > 6 
|   |   |   date-defaultunknown = True 
|   |   |   |   umls-type-base = patf: False (.0) 
|   |   |   |   umls-type-base = dsyn: False (.0) 
|   |   |   |   umls-type-base = mobd: False (.0) 
|   |   |   |   umls-type-base = comd: False (.0) 
|   |   |   |   umls-type-base = cgab: False (.0) 
|   |   |   |   umls-type-base = acab: False (.0) 
|   |   |   |   umls-type-base = inpo: False (.0) 
|   |   |   |   umls-type-base = anab: False (.0) 
|   |   |   |   umls-type-base = virs: False (.0) 
|   |   |   |   umls-type-base = bact: False (.0) 
|   |   |   |   umls-type-base = neop: False (.0) 
|   |   |   |   umls-type-base = topp: False (.0) 
|   |   |   |   umls-type-base = medd: False (.0) 
|   |   |   |   umls-type-base = strd: False (.0) 
|   |   |   |   umls-type-base = phsu: False (.0) 
|   |   |   |   umls-type-base = bodm: False (.0) 
|   |   |   |   umls-type-base = antb: False (.0) 
|   |   |   |   umls-type-base = lbpr: False (123.81/27.03) 
|   |   |   |   umls-type-base = diap 
|   |   |   |   |   normalized-token-match-anaph-base <= 0.666667: False (8.53/0.7) 
|   |   |   |   |   normalized-token-match-anaph-base > 0.666667 
|   |   |   |   |   |   noun-match-stingy <= 0.666667: True (15.13/2.74) 
|   |   |   |   |   |   noun-match-stingy > 0.666667 
|   |   |   |   |   |   |   umls-concept-match-anaph-base <= 0.5: True (7.37/0.9) 
|   |   |   |   |   |   |   umls-concept-match-anaph-base > 0.5 
|   |   |   |   |   |   |   |   sentence-stop-words-removed-match-anaph-base <= .05: False (70.4/22.84) 
|   |   |   |   |   |   |   |   sentence-stop-words-removed-match-anaph-base > .05: True (17.62/6.35) 
|   |   |   |   umls-type-base = clna: False (67.43/9.95) 
|   |   |   |   umls-type-base = orga: False (12.71/1.85) 
|   |   |   |   umls-type-base = lbtr: False (.0) 
|   |   |   |   umls-type-base = fndg: False (.0) 
|   |   |   |   umls-type-base = sosy: False (.0) 
|   |   |   |   umls-type-base = bmod: False (.0) 
|   |   |   |   umls-type-base = prog: False (.0) 
|   |   |   |   umls-type-base = hops: False (.0) 
|   |   |   date-defaultunknown = False: False (545.8/43.7) 
|   right-entity-allcategory-greedy > 0.888889 
|   |   date-defaultfalse = True: True (62.33/12.53) 
|   |   date-defaultfalse = False 
|   |   |   left-entity-allcategory-greedy <= 0.333333 
|   |   |   |   noun-match-stingy <= 0.5: True (4.25/1.26) 
|   |   |   |   noun-match-stingy > 0.5: False (30.32/6.29) 
|   |   |   left-entity-allcategory-greedy > 0.333333 
|   |   |   |   sentence-match-anaph-base <= 0.642857: False (4.73/1.88) 
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|   |   |   |   sentence-match-anaph-base > 0.642857: True (5.35/.04) 
 
Number of Leaves  :  40 
Size of the tree :  54 
 


