
Incremental Bayesian Segmentation for Intrusion

Detection

by

Joseph R. Hastings

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2003

c© Massachusetts Institute of Technology 2003. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

September 8, 2003

Certified by. .
Peter Szolovits

Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Incremental Bayesian Segmentation for Intrusion Detection

by

Joseph R. Hastings

Submitted to the Department of Electrical Engineering and Computer Science
on September 8, 2003, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis describes an attempt to monitor patterns of system calls generated by a
Unix host in order to detect potential intrusion attacks. Sequences of system calls
generated by privileged processes are analyzed using incremental Bayesian segmenta-
tion in order to detect anomalous activity. Theoretical analysis of various aspects of
the algorithm and empirical analysis of performance on synthetic data sets are used
to tune the algorithm for use as an Intrusion Detection System.

Thesis Supervisor: Peter Szolovits
Title: Professor

3

4

Acknowledgments

I would like to thank Professor Peter Szolovits for initially suggesting the use of IBS

and for his advice and support during the past 18 months. I would like to thank Dr.

Marco Ramoni for all of his help in explaining the algorithm, helping me to debug

my enhancements, and suggesting interesting avenues of research. I would like to

thank Professor Alan Edelman for his advice in implementing the MPI version of the

code as well as helping me to prove several of the mathematical results. I would like

to thank Professors Leslie Kaelbling, Tomas Lozano-Perez, and Tommi Jaakkola for

their help in answering questions about machine learning. Finally I would like to

thank Ben Richardson, Dave Milavich, Dave Wilson, Mark Rosen, Erica Peterson,

Sid Sen, and Eric Jonas for all of their help and support throughout the course of

the thesis. This research was supported in part by the Cyber Command and Control

Program of the Defense Advanced Research Projects Agency under contract number

F30602-99-1-0509.

5

6

Contents

1 Introduction 15

1.1 Intrusion Detection Systems . 16

1.1.1 Misuse and Anomaly Detection 17

1.1.2 Intrusion Prevention Systems 18

1.1.3 General Issues for Machine Learning Approaches to Anomaly

Detection . 19

1.1.4 General Operating System Architecture 20

1.1.5 Analyzing Sequences of System Calls 23

1.1.6 Comparison of Previous System Call Analyses 24

1.1.7 Modeling Server Processes As Markov Chains 24

1.2 Bayesian Segmentation . 26

1.2.1 Bayesian Inference . 26

1.2.2 Conjugate Priors . 28

1.2.3 Modeling a time-series for Bayesian Segmentation 31

1.3 The Markov Property . 32

1.4 Bayesian Model Selection . 33

1.4.1 Off-line and On-line Model Selection 33

1.4.2 Partitioning and Clustering 34

1.4.3 Executions and Clusters . 35

1.5 An Optimal Clustering Algorithm . 36

1.5.1 Maximum Likelihood Matrices 37

1.5.2 Bayesian Parameter Estimation 38

7

1.5.3 A Bayesian Approach to Model Evaluation 39

1.6 Bayesian Clustering by Dynamics . 40

1.6.1 Evaluating a clustering . 41

1.6.2 Generating a Space of Potential Models 43

1.6.3 Complexity and Effectiveness of BCD 44

1.7 The IBS Algorithm . 44

1.7.1 IBS Motivation . 44

1.7.2 Structure of IBS . 46

1.7.3 Break Point Detection . 47

1.7.4 IBS Clustering . 48

1.7.5 An Alternative Clustering Scheme 49

1.7.6 IBS Summary . 50

1.8 Applying IBS to IDS . 50

1.9 Random Probability Distributions . 51

1.9.1 A Naive algorithm for producing probability vectors 52

1.9.2 Russell’s Algorithm . 53

2 Implementation 57

2.1 Building an IDS Using IBS . 57

2.1.1 An IBS Monitor . 58

2.2 Pre-processing Implementation . 61

2.2.1 Parsing truss files . 65

2.2.2 Pre-loading the library of Matrices 66

2.3 Project History . 66

2.4 Code Overview . 67

2.5 Command line arguments . 72

2.6 Optimization . 73

2.7 Training vs Classification . 73

2.8 Priors . 75

2.9 Parallel MPI Version of IBS . 75

8

2.9.1 Code Modifications . 76

2.10 MPI Performance Results . 79

3 Experiments 81

3.1 Analyzing Sendmail . 81

3.2 Synthetic data-sets . 90

3.3 Determining β . 92

3.3.1 Optimal β based on segment length 92

3.3.2 Clustering accuracy . 93

3.4 Pre-loaded Libraries . 96

4 Conclusion 99

A Experimental Results 103

A.1 Average segment length vs. β . 103

A.1.1 Summary . 109

A.2 Clustering Performance . 111

A.3 Pre-loading Effectiveness . 123

9

10

List of Figures

1-1 Normal and abnormal resposes to an agent 17

1-2 A Markov chain representation of a typical server process 25

1-3 An oracle produces S using the set M of Markov matrices. Bayesian

segmentation algorithms attempt to reverse-engineer M 34

1-4 Segmentation of S into 8 segments and clustering into 3 clusters . . . 36

1-5 A count matrix and the induced transition probabilities 38

1-6 The count table and induced probabilities with a prior estimate . . . 39

1-7 Definitions used in the derivation of BCD 41

1-8 Xt−1 and Xt are conditionally independent given Ct−1, taken from [6] 42

2-1 System calls made by sendmail during normal operation 64

2-2 The 50.lisp, 100.lisp, and 150.lisp data-sets 80

2-3 Elapsed time of IBS MPI code run on 1-4 processors 80

3-1 System calls made by the main sendmail process 82

3-2 System calls made by a sendmail child process 82

3-3 System calls made by a second sendmail child process 83

3-4 System calls made by a third sendmail child process 84

3-5 PDF of KL as a function of states for matrices generated using Russell’s

algorithm. The higher the number of Markov states, the more the

shape resembles an impulse at 1 . 86

3-6 PDF of KL as a function of states for sendmail processes. Note that

the density is focussed around 0.45 and that the shape is highly irregular 87

3-7 Unnormalized histogram of system calls per child process 88

11

3-8 Unnormalized histogram of unique system calls per child process . . . 89

3-9 Synthetic data-sets . 91

A-1 Average segment length vs. β for matrices with 6 states 104

A-2 Average segment length vs. β for matrices with 12 states 105

A-3 Average segment length vs. β for matrices with 18 states 106

A-4 Average segment length vs. β for biased (KL < 1) matrices with 18

states . 107

A-5 Average segment length vs. β for biased (KL < 0.75) matrices with

18 states . 108

A-6 Optimal choice of β for matrices with 6 states 109

A-7 Optimal choice of β for matrices with 12 states 109

A-8 Optimal choice of β for matrices with 18 states 110

A-9 Clustering performance for uniformly sampled matrices with 6 states 112

A-10 Clustering performance for biased matrices (KL < 1) with 6 states . 113

A-11 Clustering performance for biased matrices (KL < .75) with 6 states 114

A-12 Clustering performance for uniformly sampled matrices with 12 states 115

A-13 Clustering performance for biased matrices (KL < 1) with 12 states . 116

A-14 Clustering performance for biased matrices (KL < 0.75) with 12 states 117

A-15 Clustering performance for uniformly sampled matrices with 18 states 118

A-16 Clustering performance for biased (KL < 1) matrices with 18 states . 119

A-17 Clustering performance for biased (KL < 0.75) matrices with 18 states 120

A-18 Clustering Performance Summary for matrices with 6 states 121

A-19 Clustering Performance Summary for matrices with 12 states 121

A-20 Clustering Performance Summary for matrices with 18 states 122

A-21 Pre-loading Results for uniformly sampled matrices with 6 states . . . 123

A-22 Pre-loading Results for biased (KL < 1) matrices with 6 states 124

A-23 Pre-loading results for biased (KL < 0.75) matrices with 6 states . . 125

A-24 Pre-loading results for uniformly samples matrices with 12 states . . . 126

A-25 Pre-loading results for biased (KL < 1) matrices with 12 states . . . 127

12

A-26 Pre-loading results for biased (KL < 0.75) matrices with 12 states . . 128

A-27 Pre-loading results for uniformly sampled matrices with 18 states . . 129

A-28 Pre-loading results for biased (KL < 1) matrices with 18 states . . . 130

13

14

Chapter 1

Introduction

Intrusion detection systems (IDS) have become an important part of security systems

in use by institutions of all sizes. The concept and terminology of intrusion detection

is widely attributed to J. Anderson [1] and the concept introduced in 1980 has grown

into a multi-billion dollar industry. Due to the massive amounts of data available for

monitoring the behavior of a complex computer system, the problem is well suited

to computerized automation in conjunction with limited human interaction. Various

machine learning techniques have been applied to intrusion detection in order to

create classifiers that automatically distinguish between normal and abnormal system

behavior. D. Denning is recognized as one of the pioneers of applying machine learning

to intrusion detection in 1986 [8]. This thesis follows in that tradition and describes an

attempt to apply Incremental Bayesian Segmentation (IBS), a relatively new machine

learning algorithm, to the domain of intrusion detection. In particular, IBS is used to

construct a real-time monitor that continually assesses the likelihood that a computer

system is behaving abnormally.

This thesis is organized as follows: the remainder of the introduction describes

general IDS, previous attempts to use system calls to identify attacks, the deriva-

tion of the IBS algorithm, and the construction of a real-time IDS using IBS. The

implementation section discusses an IDS written using IBS. The experiments section

describes various tests that were performed to tune the IBS algorithm for the par-

ticular domain of intrusion detection. Finally, the conclusion section discusses the

15

advantages and disadvantages of IBS and its role as part of a hypothetical IDS suite.

1.1 Intrusion Detection Systems

For the purposes of this thesis, the term intrusion refers to the deliberate and success-

ful altering of the behavior of a computer system such that it produces effects unin-

tended by its owner.1 This differs slightly from previously used definitions [1, 4, 9] as

it simplifies the concept of an owner to a single entity that can perfectly characterize

system behavior as normal or abnormal. Let the term agent refer to any entity that

has the capability of altering the behavior of the computer system being considered.

Agents may be in the form of human users, other computer systems, or even portions

of the computer system itself. Define users to be agents whose intentions, for the

relevant time-frame being considered, are consistent with those of the owner of the

computer system. Agents that are not users are referred to informally as attackers.2

The actions of attackers are known as attacks when they have the intent of altering

the behavior of the computer system. Note that all of these definitions rely on the

intentions of the agents involved and not on their actions or effects. For this reason

these terms are difficult to interpret in any real-world scenario in which intentions

themselves have no clear definition.3 This thesis quickly shifts the focus away from

the intentions of the agents to the actual response of the computer system.

In general, there are many types of agents and many degrees to which their in-

tentions may disagree with those of the owner of a computer system. Any particular

security system identifies a threat model stating which types of actions it is inter-

ested in detecting. For most IDS, the threat model is implicit in the modeling of

the dynamics between the computer system and its agents. In this section the terms

computer system, agents, attacks, and intrusions are used in a generic manner. In

practice, each IDS must further clarify its threat model in order to be useful to the

1Owner is used in a general sense, and refers to the institution interested in detecting intrusions
2Note that the connotation of an attacker as sentient is not necessarily valid
3Whether or not some agents are capable of having intentions is another issue that is avoided by

this thesis

16

owner of the computer system. Finally, let the term flaw refer to an unintended re-

sponse of the system that is not the direct result of a malicious agent. Examples of

flaws include hardware or software errors, environmental effects, and user mistakes.

Normal Response Abnormal Response
User (Benevolent Intent) normal flaw
Attacker (Malicious Intent) unsuccessful attack intrusion

Figure 1-1: Normal and abnormal resposes to an agent

In any real-world system the responses are likely to depend on complex interactions

between multiple agents. Furthermore, interactions may produce temporal effects

such that the response of a system at any given time depends on events in the distant

past. For the moment, assume that a computer system interacts with only one agent

at any given time and that its response can immediately be classified as normal or

abnormal. Note that this classification of behavior must be made external to the

system as it depends on the intentions of the owner.

As a thought experiment, one could construct an optimal IDS in which the com-

puter system alternates between communicating with an unknown agent and its

owner. After each potentially malicious interaction, the owner communicates to the

IDS whether the system has produced a normal or an abnormal response. Such a

setup is obviously impractical for any real-world system. However, it may be rea-

sonable for the owner to classify some subset of the system’s responses as normal or

abnormal. The role of machine learning in IDS is to take this set of classifications

and to produce a classifier that does not require constant interaction with the owner.

1.1.1 Misuse and Anomaly Detection

In a general sense, an intrusion detection system is a means of classifying the system in

question as being in one of the four categories shown in figure 1-1. Different means of

modeling the system and its input/output characteristics generate the wide range of

IDS systems that are used in practice. One of the most general branches in approaches

is the distinction between misuse and anomaly detection. Approaches that attempt

17

to recognize known patterns of activity in system input/output behavior are known

as misuse detection or template-based systems. Although they are not necessarily

implemented in this manner, they can be viewed as consisting of a library of known

attacks and a means of deciding if new data belongs to one of the templates. In

general such approaches are extremely effective at detecting known attacks but have

no ability to detect novel abnormalities. Approaches that attempt to learn normal

patterns of behavior and then detect abnormalities in the system response are known

as anomaly detection. Such systems assume that the responses to novel events differ

from some model of normal operations, without specifying the actual deviations a

priori.

1.1.2 Intrusion Prevention Systems

Rather than attempting to detect intrusions, intrusion prevention systems (IPS) take

steps to limit the extent to which intrusions can cause damage. Although IPS systems

are not directly relevant to the remainder of this thesis, their existence affects the

choices about which types of attacks to include in a threat model. In general, IPS and

IDS have different strengths and weaknesses. The successful implementation of an IDS

suite requires an integration of all available tools for system security. Certain types of

attacks are best thwarted through IPS. Examples of IPS include file-system integrity

checking, periodic system updating, and forcing information such as passwords to be

periodically changed. For a large institutional network, screening incoming emails

and file-transfers for known viruses or even for all executables is often performed to

reduce the likelihood of the accidental release of a virus. Devices known as firewalls

block system inputs that violate known protocols or contain suspicious data. A

firewall can be thought of as a special form of misuse detection which discards invalid

inputs rather than analyzing their effects. The sandbox style of designing modern

operating systems can also be viewed as a form of IPS in which subsystems have only

limited capabilities to interact with other subsystems. Each piece of the operating

system is viewed as operating in its own sandbox with a highly arbitrated means

of communicating with other sandboxes. Finally, the careful design of software is

18

considered a form of IPS. Designs that use languages such as java, that provide

various forms of built-in protection, can theoretically limit the damage that can be

caused by an intrusion.

In the real world, large institutions address computer security by employing fire-

walls, misuse detection, anomaly detection, and a wide range of IPS. Firewalls, IPS

and misuse detection are able to prevent many well-known threats and have an excel-

lent record of helping institutions to thwart intruders. However, anomaly detection is

the only portion of the defense capable of preventing novel attacks that are unknown

to the misuse templates. The remainder of this thesis focuses on anomaly detection.

1.1.3 General Issues for Machine Learning Approaches to

Anomaly Detection

Virtually every known machine learning technique has been applied to anomaly detec-

tion. However, several important distinctions can be made in their approaches. The

types of attackers that are modeled and the particular data that are analyzed make a

large difference in the predictive power of the IDS. One important consideration is the

granularity at which measurements are made, both with respect to time and to the

operations of the computer. Some approaches model time as a continuous variable

while others consider only the probability that the system is under attack during a

particular time interval such as seconds, minutes or hours. Due to the nature of com-

puter design, the types of measurements that can be made follow a highly hierarchical

structure. At the lowest level, one could examine machine instructions executed and

the contents of particular memory addresses. At another level, system calls or high-

level programming language procedure calls could be recorded. At an even higher

level, the aggregate time and memory spent in individual tasks or the amount of

hard-drive access or network activity could be analyzed. Various automated methods

have been developed for selecting the optimal granularity for a particular domain. In

particular S. Raghavan and B. Balajinath discuss a genetic algorithms approach to

selecting measurement granularity that could, in principle, be applied to the choices

19

made by hand in this thesis [20].

Traditional machine learning trade-offs such as those between supervised and un-

supervised learning, off-line and online learning, and classification and regression all

have relevance with respect to anomaly detection. In addition, many types of data

pre-processing have been applied to intrusion detection. A recent survey by S. Axels-

son gives an excellent overview of existing machine learning approaches to intrusion

detection and discusses many of the trade-offs involved [2]. W. Lee and S. Stolfo

discuss the systematic application of data-mining techniques to intrusion detection

[16]. The trade-offs made in IBS are highlighted and compared to other common

techniques where considered appropriate. Pre-processing is discussed at length in the

implementation section.

1.1.4 General Operating System Architecture

Processes and the Kernel

In order to motivate the analysis of sequences of system calls, a brief overview of

modern computer architecture is given. First, the operations of a computer system

consist of the interleaving of instructions generated by separate processes. Processes

generate a stream of low-level instructions that the computer hardware is able to

perform. A typical computer system has two general modes of operation: user mode

and kernel mode. A special hardware switch is used to change between modes and

control to this switch is highly regulated. A special type of software known as the

operating system regulates this access as well as general access to shared resources.

The operating system contains a piece of software known as the kernel which is

the most trusted component of the system. This piece of software controls access to

the kernel-mode switch, which in turn controls access to memory and other hardware

devices. A memory space refers to the set of memory addresses that a given process is

able to legally access. One of the most important roles of the kernel is to ensure that

processes do not access memory outside of their memory space, which is regulated by

hardware accessible only in kernel mode. In addition to segregating memory spaces,

20

the kernel also allows processes to cooperatively share resources such as the central

processing unit (CPU), physical storage devices, network devices, and the display. As

part of the memory protection scheme, each process has several regions of memory

called stacks that control the sequence in which instructions are executed. One of

the most common types of intrusions, a buffer overrun, involves an attacker causing

malicious content to be written onto a process’s stack. In this manner, the attacker

may be able to cause the process to execute arbitrary instructions when the corrupt

portion of the stack is used to determine the location of the next instruction.

System Calls

The operating system provides an Application Programming Interface (API) for pro-

grams to access shared resources as well as to request that various services be per-

formed. This API consists of a set of system calls, which are a means for a normal

process to pass control to the operating system in order to perform some restricted

activity. Not every process is allowed to call the full range of system calls. A set of

programs, known as privileged, or root processes, is given special permission to make

certain system calls. Running a privileged process generally requires that either the

operating system itself creates the process for some specialized transient purpose or

that a special type of account be used. Such an account is known as the administrator

or root user. This special account is able to run administrative programs that typical

users are generally not allowed to execute. In general, attackers wish to gain the

ability to execute such instructions.4

Client-server architectures

Two common types of processes are servers and clients. In general, server processes

are able to perform activities that a user would not be able to perform directly. For

this reason, many server processes operate as a privileged process, and attempt to

decide which actions are allowed for particular users. A client process operates on

4Or in some cases, to prevent any agent from being able to perform activities, known as a Denial
of Service (DOS) attack

21

behalf of a user and performs the communications necessary to instruct the server

process to perform some activity.5 In general, server processes are passive and perform

activities only when instructed by a client process. Furthermore, they generally use

a special system call known as fork in order to create a child process that services

the client.6 This approach is used in order to allow the parent process to continue to

receive new requests as the child process interacts with the client.7 From a security

standpoint, privileged server processes are one of the most vulnerable components as

they have privileged access to the machine and also depend heavily on external agents.

The computer code related to communications between server and client processes

is notoriously difficult to debug and most exploits take advantage of flaws in server

processes. For this reason, the remainder of this thesis focusses on privileged server

processes.

The goal of many intrusions is to gain root access to a machine in order to perform

actions requiring privileged status. While the layer of protection provided by the

kernel and the kernel-switch is generally strong, many operating systems provide

weaker protection over the privileged status of a process. The means by which an

attacker may assume privileged control over the system are generally referred to as

an exploit as they require taking advantage of an error in the operating system.8 For

this reason, analyzing the behavior of privileged processes is particularly interesting

as a means of detecting many types of attacks. The fundamental goal of anomaly

detection is to recognize that the behavior of a process has changed. Presumably,

when such a change occurs, the owner of the system should be notified or a pre-

specified set of actions should be performed. This section has given only a cursory

overview of operating system design. More details can be found in standard operating

system texts [3, 14, 22, 18].

5Note that malicious actions by a client could be caused either by a malicious user, or by malicious
code in the client itslf

6This is becoming less common with time, as more advanced techniques are developed. However
the basic idea of using system calls to support servicing multiple clients remainds the same

7In addition, the newly forked process generally sheds as much of its privileged status as possible,
in order to reduce the likelihood that it will create a security hole

8Taking operating system to include the system programs that run with privileged status

22

1.1.5 Analyzing Sequences of System Calls

As mentioned in section (1.1.3), the choice of granularity with which system behavior

is modeled plays an important role in the effectiveness of an IDS. Given the description

above of the role of operating systems and system calls, this thesis takes the stance

that sequences of system calls generated by privileged server processes provide an

appropriate approximation to system behavior. Unfortunately, for mainly historical

reasons, the API provided by most modern Unix systems has become extremely

complicated. The behavior of a system call, in general, depends on a number of

arguments and even the context in which it is executed. For example, some system

calls change the behavior of future system calls by overriding the values of arguments.

Some of these complications are addressed during the pre-processing stage discussed

in the implementation section. In general, the goal of pre-processing is to create a set

of functional states that loosely correspond to the functionally differentiable pieces of

the system call API.

On modern Unix systems, system calls are encoded as an integer reference into a

large table of functions. These tables have grown to contain about 250 entries. As

mentioned above, many system calls are functionally equivalent, and several system

calls have very different behavior depending on context or arguments. However the

number of functional states is roughly equal to the number of system calls. Therefore,

a sequence of integers encoding system calls can be viewed as a rough approximation

to the functional behavior requested by the process through the operating system.

The degree to which this is a rough approximation is discussed in the implementation

section, and again in the experiments section.

In 1996 Forrest, Hofmeyr, and Somayaji wrote a seminal paper on computer im-

munology [12] suggesting that researchers attempt to mimic natural immune systems

in computers. They noted that biological systems are able to distinguish between

self and not-self much better than computer systems. Shortly after, they began a

series of papers outlining approaches to detecting abnormalities in process behav-

ior based on various observable qualities of the process. They introduced the idea

23

of using sequences of system calls for identification [13], in which they argue that

sliding-window based analysis of sequences of system calls could be executed in a

massively distributed manner, similar to the operations of a biological immune sys-

tem. Although the monitor developed in this paper does not use a sliding-window

approach, the concept of using sequences of system calls has it roots in these papers.

1.1.6 Comparison of Previous System Call Analyses

In 1999 Warrender et. al. presented a survey of existing methods of analyzing se-

quences of system calls [23]. They compared the performance of IDS using simple

enumeration of sequences, frequency analysis, a rule induction program (RIPPER),

and a Hidden Markov Model (HMM). Lee and Helmer each presented alternative

rule-based approaches, similar to RIPPER [17, 15]. Unfortunately, they concluded

that none of these approaches were clearly an optimal analysis of the system call

traces. HMMs have the greatest performance at an extremely high computational

expense while less time-consuming methods produce higher false-alarm rates for the

same sensitivity. One goal of current IDS research is to develop algorithms with

similar performance to HMM but without the extremely high computational costs.

1.1.7 Modeling Server Processes As Markov Chains

In principle, the behavior of a computer process can be viewed as the execution of

a finite state machine (FSM).9 As discussed previously, the level of granularity with

which states are measured can range over several orders of magnitude. For some

appropriate granularity, many processes can be viewed as Markov chains. This term

is defined rigorously in section (1.3) but loosely means that all information affecting

the future behavior of the system is contained within the label of the current state.

Server processes generally have a simple input/output centered loop that receives

requests and then branches into a different region of the code depending on the type

9This is true both in an absolute sense, in which a computer is simply an FSM, as well as in a
more practical sense in which states are abstractions used by computer programmers in the design
of software

24

of request. This section avoids probabilities, as they are treated much more rigorously

in subsequent sections. However, each of the transitions in a server process can be

viewed as occurring with a certain probability that depends on events external to the

system. Figure 1-2 shows one means of viewing a simple server process as a Markov

chain.

Figure 1-2: A Markov chain representation of a typical server process

The process in figure 1-2 consists of a sleep-accept-fork loop. That is, it

waits for new connections and then forks off a helper process in order to service each

incoming request. If an error occurs in the communication at any step of the process,

it reverts back to the sleep state. In addition, steps requiring communications with

external agents may involve polling loops, represented in the figure as self-arrows.

Several of the steps, most notably the check integrity step, may involve privileged

access to the operating system. In addition, several of the steps listed above, such

as sleep, accept, and fork, correspond to actual system calls. Other states, such as

the helper process, may be composed of many system calls. In many cases the helper

process is intended to run without privileged status, using the identity of the client.10

Many exploits involve overriding this protection or taking advantage of flaws in the

communication steps earlier in the process.

10For example, many sendmail implementations assume the identity of the client in order to write
mail to his mailbox and then terminate

25

1.2 Bayesian Segmentation

As alluded in the previous section, the behavior of a computer process often involves

uncertainty generated by the rest of the universe. One branch of mathematics that

studies sources of uncertainty is Bayesian statistics. The IBS algorithm is part of a

family of Bayesian segmentation algorithms that aim to describe a time-series of data

in terms of generative probability distributions. In general these algorithms classify

various pieces of the time-series as being generated by distinct discrete probability

distributions. In other words, they view the sequence as being characterized by a set

of distributions as well as a state variable that picks which distribution is active at

any given moment.11 In general, any number of different distributions may be used

to generate the series. In addition, the portions generated by each distribution may

be interleaved in an arbitrary manner. The term segmentation refers to partition-

ing a time-series. The term clustering refers to classifying the segments generated

by the segmentation. In other words, segmentation attempts to find break-points

in the sequence at which the underlying distribution was changed, while clustering

attempts to find segments that were generated by the same underlying distribution.

The algorithms’ goal, given a time-series, is to produce a set of distributions as well

as the break-points where the driving distribution switched between members of the

set. The next section provides a brief overview of Bayesian statistics and subsequent

sections discuss Bayesian segmentation and clustering algorithms.

1.2.1 Bayesian Inference

Bayesian statistics, in the most general form, provides a framework for combining

observed data with prior assumptions in order to model stochastic systems. As stated

in chapter 2 of Intelligent Data Analysis [5], Bayesian methods are characterized by

the assumption that it is meaningful to consider the distribution of parameters defining

a distribution, given observed data. In Bayesian statistics, the parameters defining a

11This thesis assumes that all probability distributions are time-invariant. This distinction is not
restrictive as an arbitrary number of such distributions is allowed

26

probability distribution can be estimated. The notation p(y|θ) denotes a probability

density function (PDF) of the vector of samples y given a particular estimate θ of the

underlying probability distribution generating that data. The parameterization may

consist of a single value or a vector of values. For example, a Gaussian distribution is

parameterized by two values: θ =<µ, σ>, the mean and variance. Classical statistics

allows hypotheses to be generated and tested that relate this PDF to a particular

estimate of θ. However, classical approaches do not allow θ itself to be a random

variable. Bayesians allow θ to be treated as a random variable by applying Bayes

Rule to obtain:

p(θ|y, I0) =
p(y|θ, I0)p(θ|I0)

p(y|I0)
, (1.1)

where p(θ|I0) is known as the prior estimate of θ and p(θ|y, I0) is known as the

posterior distribution after considering the evidence y. The prior estimate provides a

means of combining exogenous information with observed data in order to estimate

parameters of a probability distribution. The denominator, p(y|I0) is known as the

marginal density of the data and does not condition on θ. It can be calculated using

the law of total probability as:

p(y|I0) =

∫

p(y|θ, I0)p(θ|I0)dθ, (1.2)

which integrates over all possible values of θ. (1.2) can be interpreted in a slightly

different way, viewing y as future data and I0 as available knowledge. If Ik represents

all knowledge available until time k and y is a vector of observations after time k,

then (1.2) can be written as:

p(y|Ik) =

∫

p(y|θ, Ik)p(θ|Ik)dθ (1.3)

For many purposes, it is reasonable to assume that y depends on I only through

the parameter θ. In other words, y and I are conditionally independent given θ. In

this case, p(y|θ, I) = p(y|θ). This assumption is reasonable when θ can be viewed as

completely capturing the state of the stochastic process generating y, such that once

27

the information is used to estimate θ it can no longer provide additional information.

If this assumption is made, (1.1) can be re-written as:

p(θ|y, I) =
p(y|θ)p(θ|I)

p(y|I)
, (1.4)

where I represents knowledge already incorporated into θ and y represents new ob-

servations. This new θ can then be used to consider future data. The next section

discusses an assumption, known as conjugacy, that can often be used to simplify this

calculation.

1.2.2 Conjugate Priors

If the prior estimation p(θ|I0) has a property known as conjugacy, the quantity p(θ|Ik)

computed from (1.1) is closely related to the prior in that it can be calculated di-

rectly without actually applying (1.1). This means that the posterior distribution

could be used again as a prior distribution, similar to the original prior in form, but

updated to reflect accumulated evidence. As the result of conjugacy, evidence can

be added to any posterior distribution in order to form an updated estimate without

re-consideration of previous evidence. Although prior conjugacy is simply a mathe-

matical convenience for avoiding recalculations in (1.1), families of distributions with

this property can be made sufficiently rich that they can capture a wide range of

prior distributions. For this reason priors are often assumed to be of the form of

a conjugate distribution. When estimating a single parameter, a Beta distribution

is often used. A brief example of repeatedly applying (1.1) to a Beta prior will be

described as an introduction to the more complicated Dirichlet distribution used in

IBS.

The Beta distribution is a family of distributions parameterized by two positive

real numbers a and b as defined below:

p(θ|I0) = B(θ, a, b) =
Γ(a + b)

Γ(a)Γ(b)
θa−1(1 − θ)b−1 (1.5)

28

Pr{(It = 1)} = θ (1.6)

Pr{(It = 0)} = 1 − θ (1.7)

where Γ(·) represents the well-known gamma function. For example, θ could represent

the probability of a particular coin coming up heads when flipped. A Beta distribution

has the conjugate property, such that if p(θ|I0) has the form B(θ|a, b) then applying

(1.1) will result in a posterior that is also a Beta and is closely related to the prior.

Suppose that the information I consists of a series of coin flips and that a heads is

represented as a 1 and a tails as a 0. Conjugacy enables the coin flips to be considered

incrementally in an attempt to estimate θ, the probability that any future flip is a

heads. Note that the assumption that y is conditionally independent of I given θ

is equivalent to the assumption that the probability of flipping a heads is the same

for all flips. However, the estimate of the probability of flipping heads depends very

greatly on the previous flips. The following three equations derive the conjugacy of

the Beta distribution. After observing the first flip, with value I1 ∈ {0, 1}, applying

(1.1) yields:

p(θ|I1, I0) =
p(I1|θ)p(θ|I0)

p(I1|I0)
(1.8)

The denominator is obtained from (1.2) as:

p(I1|I0) =
Γ(a + b)

Γ(a)Γ(b)

∫

p(I1|θ)
(
θa−1(1 − θ)b−1)dθ, (1.9)

where p(I1|θ) is given by (1.6) or (1.7). Consider the case in which I1 = 1:

29

p(θ|I1 = 1, I0) =
Γ(a + b)

Γ(a)Γ(b)









θ · θa−1(1 − θ)b−1

(

Γ(a+b)
Γ(a)Γ(b)

)
∫

θ · θa−1(1 − θ)b−1dθ









=

θa(1 − θ)b−1

(
Γ(a+1)Γ(b)
Γ((a+1)+b)

) = B
(

θ
∣
∣
∣(a + 1), b

)

(1.10)

By symmetry, if I1 were a 0, (1.10) would yield B(θ|a, (b + 1)). In either case,

the posterior distribution is a beta distribution that can be calculated directly from

conjugacy, without having to actually apply (1.1). By repeatedly applying (1.10), and

writing αh and αt in place of a and b, the estimate for the probability of flipping heads

after observing h heads and t tails is: B(θ|αh + h, αt + t). Note that the parameters

αh and αt can be viewed as hypothetical coin flips that occur prior to the experiment.

The section above derived the conjugacy of the Beta distribution when estimating

a single parameter. However, in many cases, as is the case in IBS, multiple parameters

must be estimated. A conjugate distribution known as the Dirichlet is a generalization

of the Beta distribution that can be viewed as parameterizing an n− sided die rather

than a coin. The following notation is used:

p(θ|I0) = Dir(θ|α1, α2, ..., αn) =
Γ(
∑

αk)
∏

Γ(αk)

∏

θαk−1
k , (1.11)

where θ1, θ2, ..., θn are parameters that sum to 1. Note that the Beta distribution

has n = 2 and estimates a single parameter. In general, the condition requiring all

probabilities to sum to 1 reduces the number of free parameters to n−1. Rather than

a single parameter θ representing the probability of flipping a heads, the parameter θi

represents the probability of rolling a particular face of a die. Similarly, the parameters

αi represent the number of times each face has been rolled. Applying the process

outlined in the previous three equations, the posterior probability obtained from

(1.1) after observing r1, r2, ...rn rolls of each face is:

Dir(θ|α1 + r1, α2 + r2, ..., αn + rn)

30

In both the Beta distribution and the Dirichlet distribution, setting each αi equal

to 1 forms a uniform prior. Any Dirichlet distribution with symmetric parameters has

a symmetric distribution across the space of all tuples of θ. However, the higher the

counts, the less variance in the estimate around a fair die. That is, Dir(1, 1, 1, ..., 1) has

a uniform distribution over all possible dice while Dir(100, 100, 100, ..., 100) is strongly

biased towards a fair die, and symmetric about 1/n for each of the parameters.

1.2.3 Modeling a time-series for Bayesian Segmentation

This thesis now shifts focus to developing IBS as a means of analyzing a time-series

of data. The length of the series is referred to as N and its members can be modeled

as a set of random variables X1, X2, ...XN where Xi ∈ {1, 2, ..., s}. The constant s

represents the number of discrete states present in the time-series. A particular model

Mc describes how the Xi’s are related. Mc is a set of discrete probability distributions,

along with a mapping from intervals in the time-series to members of the set. This

mapping is referred to as a hypothetical sequence C where each element specifies the

distribution responsible for generating the corresponding element in S. To give an

example, a time-series with 5000 elements may be modeled as being generated by

5 different distributions that each produced intervals of length 1000. Alternatively,

it could be modeled by a set of 2 distributions that alternated producing intervals

of length 100. As extreme examples, it could be modeled by one distribution that

produced 5000 samples or 5000 distributions that each produced 1 sample. The

purpose of a Bayesian segmentation algorithm is to generate a set of candidate models

and to evaluate them according to some criteria, in an effort to provide an estimate

of the underlying model.

A model Mc provides a mechanism for determining Xi. The notation xi is used

to represent the actual value drawn from Xi. To avoid confusion between the time-

series and the random variables representing the time-series, the letter S is used to

represent the actual data as a sequence S = {Si} where Si ∈ {1, 2, ..., s}. Without

loss of generality, the sequence can be encoded using the integers between 1 and s.

Si and xi both refer to the ith element of the time-series. Si views this number as

31

encoding the state of a physical process while xi views this number as a sample from

the random variable Xi.

1.3 The Markov Property

In full generality each Xi could have a different distribution. Furthermore, Xi could

depend on all previous values of x. However, in IBS and related algorithms, models

are limited to those that impose the Markov property on the Xi’s. The Markov

property states that the probability distribution Xt depends only on the previous k

values {xt−1, xt−2, ..., xt−k} for some value of k. The value k is called the Markov

order of the series. The first major division of Bayesian segmentation algorithms is

between those that consider k = 1 and those that consider arbitrary values of k. IBS

is part of the subset that only allows for k = 1, a condition that is typically called

Markovian. When k = 1 the resulting distribution is called a first-order Markov chain

or simply a Markov chain.

The series S is viewed as the concatenation of samples from various Markov chains.

An additional parameter θ is necessary in order to specify which of the chains is used

to generate a particular Xt. The parameter θ represents the hypothetical members of

C as random variables. For IBS, the Markov condition on the Xi’s is equivalent to:

∀t > 0, P r{(Xt = j|(x0, x1, ..., xt−1), θ)} = Pr{(Xt = j|xt−1, θt−1)}. (1.12)

A Markov probability distribution can be represented concisely as a matrix of

state transition probabilities. The entry M [i][j] contains Pr{(Xt = j|xt−1 = i)}. Mc

can be represented as an array of matrices indexed by θ such that:

Mc[t] ≡ Pr{(Xt = j|xt−1, θt−1)} = Mθt−1
[xt−1][j], (1.13)

where Mθ indicates the θth matrix in the array M . This equation defines a PDF over

possible values of Xt that depends on the previous state and the cluster membership at

32

time t− 1. Note that in Mθ the rows sum to one and have non-negative components.

In general, the notation Mc refers to both the array of Markov matrices and the

vector θ. In other words, Mc completely parameterizes the Xi’s. Therefore, the

role of a Bayesian segmentation algorithm is to produce an Mc given a time-series

S. Note that the distinction between segmentation and clustering can be viewed as

a transformation of one Mc to another in which several (possibly not-contiguous)

distinct segments are combined to have the same value of θ.12

1.4 Bayesian Model Selection

Given the constraint on Mc that the Xi’s be Markovian, the universe can be viewed

as consisting of some set M of Markov processes and an oracle13 that chooses when

and for how long each process is allowed to generate samples. Bayesian segmentation

algorithms attempt to find some set of matrices M̂ that approximates the true set M ,

as well as to estimate the break-points produced by the oracle. Note that estimated

break-points correspond to points at which θ̂ changes values. The selection of Mc was

first viewed as a Bayesian model selection problem by the creators of IBS [6] and the

remainder of this section outlines the derivations presented in that paper.

1.4.1 Off-line and On-line Model Selection

A Bayesian approach to model selection compares two possible models M1 and M2

in terms of their likelihood given the data. Let p(Mc|S) be the likelihood of the

particular model Mc given the sequence of observations S. This term is at the heart

of Bayesian segmentation and appears in most of the equations derived below. In

general these algorithms can be grouped into off-line and on-line versions. Off-line

variants are allowed to consider the entire sequence S of data while on-line variants

attempt to approximate the solution by incrementally considering new data. Both

12In many contexts this transformation is known as lossy-compression, but the relationship be-
tween segmentation, clustering, and compression is not discussed any further in this thesis

13An oracle is a source of randomness that is external to the system and observeable only through
S

33

types of analysis are important to fully describe IBS.

IBS is an on-line approximation to Bayesian clustering by dynamics (BCD), which

is a Bayesian clustering Algorithm. Clustering algorithms generally start with a set

of segments and attempt to group similar segments together, rather than attempting

to produce the clusters directly from the original sequence. In other words, by con-

vention, clustering algorithms assume that the sequence has already been segmented

and we evaluate their performance independent of the performance of the segmen-

tation. Before discussing IBS in detail, an optimal clustering algorithm is derived.

Next, BCD is presented as an approximation to the optimal algorithm. Finally, IBS

is derived as an approximation to BCD.

m111 m112 … m11s
m121 m122 … m12s

… … … …

m1s1 m1s2 … m1ss

… … … …

… (N total) …

… … … …

mN11 mN12 … mN1s
mN21 mN22 … mN2s

… … … …

mNs1 mNs2 … mNss

M =

oracle

S

m111 m112 … m11s
m121 m122 … m12s

… … … …

m1s1 m1s2 … m1ss

… … … …

… (N total) …

… … … …

mN11 mN12 … mN1s
mN21 mN22 … mN2s

… … … …

mNs1 mNs2 … mNss

^ ^ ^

^ ^ ^

^ ^ ^

^ ^ ^

^ ^ ^

^ ^ ^

(ma,lengtha)

(ma,lengtha)

...

IBS ^ ^ ^

^

Figure 1-3: An oracle produces S using the set M of Markov matrices. Bayesian
segmentation algorithms attempt to reverse-engineer M .

1.4.2 Partitioning and Clustering

The information encoded in θ can be viewed as a type of partioning of S into equiva-

lence classes. θ maps each element of S to a member of the set of Markov matrices.14

Note that there must be between 1 and N different matrices. θ is by definition piece-

14It is really a mathematical partition combined with a mapping from partitions to one of the
matrices within the model

34

wise constant. Also note that the distinction between segmentation and clustering

can be viewed as whether θ can be written as a monotonic sequence or if it requires

returning to previously used values.

Subsequences of S that are assigned to the same equivalence class are known as

executions or episodes. This terminology emphasizes the fact that an oracle chooses

a stochastic process and allows it to generate samples. Let Sθ refer to the set of

subsequence of S such that every member is mapped to the same matrix within Mc.

This notation is defined more formally in the next section. Informally, Sθ contains

all of the executions assigned the θth matrix in M̂ .

1.4.3 Executions and Clusters

Unfortunately, the definition of an execution is slightly complicated by boundary

conditions. Note that in (1.13) Xt depends on θt−1. Therefore the transition between

the last element of one execution and the first member of the next execution is assigned

to the first execution’s matrix. That is, at the point at which the oracle chooses a new

matrix, the value of θ changes. However, the transition between the previous state

and the new state depends on the old value of θ. Similarly, an execution does not

contain a transition into its starting state. The definition of Sθ is therefore amended

to include the boundary-case conditions. In order to specify that the transition into a

state is included, but not the transition out of that state, Sθ contains an extra 0 after

the first element of the next execution. Also, let Sθ contain the concatenation of all

executions that share the same value of θ within S. The concatenation preserves the

artificial 0’s. In other words, Sθ is a sequence containing the transitions hypothesized

to have been generated while the oracle was using the matrix M̂θ.

The definition of Sθ is illustrated with an example. In figure 1-4, A,B, ..., H are

executions, and (AB) is also an execution, demonstrating that any subsequence of an

execution is also an execution. In this model there are 3 equivalence classes. Viewing

the model Mc = {M1,M2,M3} as generating S, {A,B,D,G} is a cluster, {C,E} is

another cluster, and {F,H} is the final cluster. Sθ1
would be the sequence containing

A then the first element of B, followed by a 0, all of B, followed by the first element

35

A B C D E

1 1 2 1 2
S

M1 M2

partitioning

{A, B, D, G} {C, E}

clustering

F

3

G

1

H

3

M3

{F, H}

Figure 1-4: Segmentation of S into 8 segments and clustering into 3 clusters

of C and then a 0. The next element would be the first element of D. After the first

element of E a 0 would follow and the next element would be the start of G. Sθ1

would conclude with the end of G. Ignoring transitions into or out of 0, the transitions

contained by Sθ1
are the same as those generated while M1 was used by the oracle.

Note that the fact that A and B were actually contiguous was preserved by the fact

that both the transition into and out of the first element of B were included once.

The process of partitioning S into A,B, , ..., H is known as segmentation and the

process of grouping {A,B,D,G} is known as clustering.

1.5 An Optimal Clustering Algorithm

In principle, one could generate all possible partitions of S. There are g(n) of them, as

defined below, and each one implies a particular θ. One could enumerate all possible

partitions, generate the best model given each partition, and then select the globally

optimal model through an exhaustive search. However, the total number of ways to

partition S is related to the Stirling numbers of the second kind and is given by:

g(n) =
n∑

k=1

1

k!

k−1∑

i=0

(−1)i

(
k

i

)

(k − 1)n (1.14)

This quantity (1.14) is known to be super-polynomial. Clustering algorithms are

36

heuristic searches through this space of all possible partitions.15 However, before

discussing BCD, it is necessary to derive the means of producing a model given

a partition. Furthermore, a method for comparing the models generated by two

different partitions is required. The next several sections provide a framework for

answering these questions.

1.5.1 Maximum Likelihood Matrices

The first step in solving the optimal clustering problem is deriving a process for pro-

ducing a model, given a particular partition. Encoding the executions Sθ1
, Sθ2

, ..., Sθc

as Markov matrices requires the estimation of c matrices. The Markov assumption

implies that each matrix only depends on the transitions to which it is assigned. As

likelihood will later be used to compare models, the maximum likelihood estimate for

each matrix can be shown to generate the best possible model, given a partition. The

transitions stored in Sθ can be stored in a count matrix which is an s × s matrix Nθ

in which nij is the number of times that a transition from state i to state j occurred

in the execution.16 One implication of the Markov assumption is that the storage

required for a cluster depends only on s2 and not on the number of transitions.17

The optimal transition probability matrix for generating a particular count matrix

is formed by normalizing each of the rows as follows:

P̂ = (p̂ij) =
nij

∑

j

nij

. (1.15)

15Assuming that each partition can be mapped to an optimal clustering, which is discussed in the
next section

16Parsing the artificial 0’s as described above
17Assuming that none of the entries would overflow, which is addressed briefly later in the paper

37

For example, referring back to figure 1-4, if s = 5, C = {1, 2, 3, 4, 5, 1} and E =

{5, 1, 3}, then the count matrix and associated probabilities are:

1 2 3 4 5
1 0 2 1 0 0
2 0 0 1 0 0

NAC = 3 0 0 0 1 0
4 0 0 0 0 1
5 1 0 0 0 0

1 2 3 4 5
1 0 2/3 1/3 0 0
2 0 0 1/1 0 0

⇒ P̂AC = 3 0 0 0 1/1 0
4 0 0 0 0 1/1
5 1/1 0 0 0 0

Figure 1-5: A count matrix and the induced transition probabilities

1.5.2 Bayesian Parameter Estimation

(1.15) can be extended, as motivated in the introduction to Bayesian analysis, to

include prior knowledge of the probabilities for each of the transitions. This Bayesian

approach not only allows for the incorporation of exogenous data, but also prevent

0’s from occurring in the transition probability matrices (as they do in figure 1-5).18

Prior knowledge is incorporated by creating a hypothetical time-series of length α+1

in which the α transitions create a hypothetical count matrix with entries αij. The

count matrix N is formed by adding αij to each of the entries. The new estimate for

P is known as the Bayesian estimate and has:

P̂ = (p̂ij) =
αij + nij

∑

j

(αij + nij)
. (1.16)

Suppose that the example given above had a uniform prior with every αij = 1.19 The

modified count table would be:

The α’s are known as hyper-parameters and are viewed as free parameters for the

algorithm. The are generally domain-dependent but viewed as constants within a

particular domain.

18A probability matrix with 0’s is troublesome because it is not known if the oracle will eventually
provide a sequence that would be classified using a 0-probability transition

19This prior is the Dir(θ|1, 1, 1..., 1)

38

1 2 3 4 5
1 1 3 2 1 1
2 1 1 2 1 1

NAC + Nα = 3 1 1 1 2 1
4 1 1 1 1 2
5 2 1 1 1 1

1 2 3 4 5
1 1/8 3/8 2/8 1/8 1/8
2 1/6 1/6 2/6 1/6 1/6

⇒ P̂AC = 3 1/6 1/6 1/6 2/6 1/6
4 1/6 1/6 1/6 1/6 2/6
5 2/6 1/6 1/6 1/6 1/6

Figure 1-6: The count table and induced probabilities with a prior estimate

1.5.3 A Bayesian Approach to Model Evaluation

Using the formulas derived above, an optimal model can be generated from any

partition of S. All that remains to be derived for an optimal algorithm is a means of

comparing two models. A Bayesian method for comparing models is now developed.

The first step applies (1.1) to the likelihood of a model to obtain:

p(Mc|S, I0, α) =
p(S|Mc, α)p(Mc|I0)

p(S|I0)
(1.17)

The denominator p(S|I0) is constant for each of the prospective models. In order

to maximize (1.17) the numerator must be maximized. p(Mc|I0) is a measure of

the a priori probability for the particular clustering Mc. Some Bayesian clustering

algorithms treat this calculation as a free-parameter in order to favor different types of

clustering. However, without any reason to favor a particular clustering, this quantity

can also be considered a constant. Section (1.9) discusses the consequences of this

assumption. For now, this quantity is treated as a constant and applying (1.13) gives

an optimal model that maximizes:

p(S|Mc, α) =
∏

θ

∏

t∈tθ

P̂θ[St][St+1]. (1.18)

While mathematically correct, the above formulation is subject to underflow as the

result of multiplying many small numbers. Logarithms can be applied to the terms

in the product above without changing the maximization process. As the result, the

optimal clustering algorithm enumerates over all possible partitions, generating an

optimal model for that partition according to (1.16), and chooses the model that

39

maximizes:

l(S|Mc, α) = log(p(S|Mc, α)) =
∑

θ

∑

t∈tθ

log(P̂θ[St][St+1]). (1.19)

The optimal algorithm described above is clearly super-polynomial. BCD is an at-

tempt to apply a heuristic search to the space of all possible models in order to make

the algorithm more feasible.

1.6 Bayesian Clustering by Dynamics

BCD operates in two phases. In the first phase a break-point detection algorithm is

applied to S. The algorithm itself is not specified by BCD, but a particular variant

used in IBS is discussed in (1.7.3). The break-point detection algorithm produces a

set of segments that are stored as count matrices with the possible addition of priors.

The second phase of BCD takes a set of segments and attempts to form an optimal

set of clusters by combining segments. In other words, it modifies the θ vector by

taking segments with different values of θ and assigning them the same value. This

process is known as subsumption and has the property that the count matrix of the

subsumed cluster is the sum of the count matrices for each of the original clusters.

In practice θ is not stored explicitly as only count matrices are ever needed for the

actual computations.

The process of combining segments to form clusters is agglomerative, meaning that

segments are never broken apart but can be subsumed together. Finding the optimal

agglomeration of segments into clusters forms a much smaller solution space than

the set of all models considered in the optimal algorithm, but is again intractable.

BCD uses a heuristic search through the space of possible subsumptions to find an

approximately optimal solution.

The heuristic search has three important components: a metric for evaluating

whether a particular subsumption improves the model, a method of generating po-

tential pairs to subsume, and a termination condition. Various choices for these

40

criteria give rise to a family of related algorithms.

1.6.1 Evaluating a clustering

As in the optimal clustering algorithm, the parameter optimized in BCD is l(S|Mc).

However, rather than evaluating all possible models, this score is used to incrementally

improve the clustering. Given the current set of clusters Mc = {M1,M2, ...,Mc}

the algorithm tests whether some particular pair of clusters Mi and Mj should be

combined into Mij. The clusters Mi and Mj are subsumed if:

l(S| {M1, ...,Mij , ...,Mc}
︸ ︷︷ ︸

c−1

)
?
> l(S| {M1, ...,Mi, ...,Mj , ...,Mc

︸ ︷︷ ︸

c

}) (1.20)

In the optimal algorithm, l(S|Mc) was calculated directly from S and θ. However,

the authors of BCD show that it can be calculated from count matrices as well[6].

The derivation given in the original paper is outlined in the remainder of this section.

Expression Meaning
S ≡ {S1, ..., Sk, ..., Sc} executions having same transitions

Sk 7→ Nk 7→ P̂ k cluster produces counts and a Markov matrix
αkij = αij in cluster k
nkij = nij in cluster k

αki =
∑

j αkij row precision in cluster k

nki =
∑

j nkij occurrences of i in cluster k

mk =
∑

i nki = |Sk| length of cluster k
m =

∑

k mk = |S| length of S
α =

∑

k αki global precision
C = {C1, ..., Cm}, Ci ∈ {1, 2, ..., c} Ci = j if Si is a member of cluster j

Figure 1-7: Definitions used in the derivation of BCD

The quantity α is called global precision and represents the influence of the prior

estimates on the probabilities. The remainder of this paper assumes that the αkij

follow a Dirichlet distribution. If the priors did not have conjugacy, each transition

would require re-calculating equations based upon (1.1) and (1.2). Referring back to

(1.12), p(Xt = j|xt−1) is conditionally independent of t given Ct−1. In other words,

41

Ct−1 can be viewed as a state variable, specifying which model to use to generate Xt

given xt−1.

@
@
@R

Xt
- vv

vC
'

&

$

%
Xt−1

Figure 1-8: Xt−1 and Xt are conditionally independent given Ct−1, taken from [6]

This observation, first made in 1992 by Cooper and Herkovits [7] motivates writing

p(S|Mc) as a function of S and C as follows:

p(S|Mc) = f(S,C)g(S,Xt−1, Xt, C). (1.21)

Where:

f(S,C) =
Γ(α)

Γ(α + m)

c∏

k=1

Γ(αk + mk)

Γ(αk)
. (1.22)

This expression comes from the assumption that the lengths of clusters obey a Dirich-

let distribution. Note that this expression does not depend on actual values within

S but only on the number and relative lengths of the clusters. Treating the α’s as

a Dirichlet probability distribution, this term gives the a priori likelihood that the

sequence would be partitioned in k clusters each with length mk. Alternatively, this

can be viewed as a penalty term that discourages S from being overly partitioned.

In this light, this term is an application of Occam’s razor, causing BCD to favor the

smallest number of free parameters that adequately describe the sequence.

g(S,Xt−1, Xt, C) =
c∏

k=1

s∏

i=1

Γ(αki)

Γ(αki + nki)

s∏

j=1

Γ(αkij + nkij)

Γ(αkij)
. (1.23)

Here the first product is over the set of clusters, the second is over the rows of the

associated count matrices, and the third is over each of the entries in that row. This

formula comes from the assumption that the parameters in the c Markov matrices

follow Dirichlet distributions which follows from applying Bayes rule to a conjugate

42

distribution.

Unlike the optimal algorithm, BCD evaluates likelihood solely on the basis of

the priors and the generated count matrices. The equations above are converted

into their log form for actual numerical computation. This conversion introduces the

log-gamma function, lgf, leading to:

lf(S,C) =
lgf(α)

lgf(α + m)

c∑

k=1

lgf(αk + mk)

lgf(αk)
. (1.24)

lg(S,Xt−1, Xt, C) =
c∑

k=1

s∑

i=1

lgf(αki)

lgf(αki + nki)

s∑

j=1

lgf(αkij + nkij)

lgf(αkij)
. (1.25)

l(S|Mc) = lf(S,C) + lg(S,Xt−1, Xt, C). (1.26)

1.6.2 Generating a Space of Potential Models

In BCD the calculation of l(S|Mc) is performed on only a subset of all possible models.

Given an initial segmentation, it calculates a pair-wise distance between each pair of

distributions and builds a sorted list of all such pairs. The first two entries have the

globally smallest distance, and every subsequent pair has the next smallest distance.

Note that each matrix appears c − 1 times in this list. The distance used by BCD is

based on the Kullback-Leibler distance (relative-entropy):

d(p1, p2) =
s∑

i=1

p1i
log

p1i

p2i

(1.27)

This equation is not necessarily symmetric, but can me made into a valid metric by

calculating:

KL(p1, p2) =
d(p1, p2) + d(p2, p1)

2
(1.28)

BCD walks along the sorted list and tests whether subsuming the first two matrices

would produce a better score according to (1.26). If the matrices are subsumed, it

then re-scans the list removing the original matrices and merging in pairs including

43

the newly created matrix. If the resulting score of the subsumption is lower, it does

not perform the subsumption, drops the pair from the list, and moves to the next pair.

BCD terminates when it does not find any pair that can be subsumed to increase the

score.

1.6.3 Complexity and Effectiveness of BCD

The implementation of the BCD algorithm involves several important decisions. First,

the method of choosing an initial partition is extremely important (and not specified

by BCD itself, as it is a clustering algorithm and not a segmentation algorithm).

Additionally, if a particular number of clusters is desired, this initial partition can

be chosen to optimally partition the space. In many cases, if clusters are short, they

will be subsumed with nearly any other short cluster, meaning that the order that

this space is searched can have a large effect on the final clustering. Finally, the

choice of priors and their relative weights can bias the algorithm towards particular

ends of the solution space. The authors point out that uniform priors encourage

clusters to be subsumed into a single cluster despite the intuitive notion that they

are uninformative. They also prove that the time complexity of the algorithm is

O(c4s2) where s is the number of total unique states and c is the number of initial

clusters. The IBS algorithm is an attempt to approximate the behavior of BCD while

operating in an on-line fashion, meaning that the average incremental work required

when given a new sample from S is O(1).

1.7 The IBS Algorithm

1.7.1 IBS Motivation

Unlike the optimal clustering algorithm and BCD, the IBS algorithm attempts, in

theory, to operate on an infinite sequence of data. Rather than viewing S as a data-

set, it views the sequence as samples from some infinite process. In addition, the

samples are generated at a particular time frequency such that IBS must be able to

44

completely process a state transition before receiving the next data point. In principle

a buffer could be employed to smooth any temporal variations in processing speed, but

this buffer must be finite. While BCD was given the task of explaining S by some

agglomerative combination of clusters, IBS is responsible for both segmenting the

series and then grouping the segments into related clusters, all in amortized constant

time.

The motivation behind IBS is rooted firmly in a Bayesian view of the world. If

the oracle producing the infinite sequence has a finite set of time-invariant Markov

processes, and he uses a time-invariant probability distribution to choose the order in

which the processes execute, and the execution time itself is produced according to a

time-invariant probability distribution, then maximum likelihood estimates for each

of those parameters have a logical interpretation. Unfortunately, it is not feasible

to allow all of those parameters to range over arbitrary values. Instead IBS relies

on prior estimates for each of the parameters in the traditional Bayesian fashion. In

particular, the matrices are assumed to follow Dirichlet distributions,20 the selection

by the oracle is assumed to be uniform across the set M ,21 and the probability of a

break-point is assumed to be constant, yielding an exponential distribution over time

between break-points. Also, the data available for IBS at any given transition is only

the most recent sample from the time-series, the current count matrix, and the library

of existing clusters. All other knowledge must be contained in the updated posterior

estimates. In other words, with each transition, IBS incorporates the knowledge into

its prior assumptions about the next transition and can never undo the effects of this

calculation.22

20The Dirichlet family is sufficiently rich that this assumption asymptotically approaches the true
set M with infinite data

21If a different assumption were made, p(Mc|I0) could be included in the optimization, instead of
treated as a constant

22One potential strategy to combat early mistakes would be to prune away clusters that have
very few transitions after a suitable length of time, but this technique is not implemented or further
mentioned

45

1.7.2 Structure of IBS

IBS consists of several tiers of nested loops. At the highest level, it processes samples

from the infinite sequence and runs a break-point detection algorithm. Each time it

decides that it has reached a break-point, it attempts to classify the latest segment.

This classification must consider subsuming the latest segment into each of the pre-

vious clusters. In addition, it must test the likelihood that the segment has come

from a previously unobserved process. In theory, if the number of distinct processes

were known, or conjectured, the probability that a new segment is novel could be

made conditional over all of the finite values for the number of processes. However,

in general, it is difficult to parameterize this distribution and p(Mc|I0) is assumed to

be a constant.

As a further complication, it is not clear whether the probability of seeing a

new cluster is constant or decreases with time. If the oracle is indeed using a time-

invariant method of choosing which process to execute then intuitively this should be

a decreasing function and this fact should be accounted for. If instead the oracle is

viewed as constantly generating new matrices, or using a time-dependent means of

selecting which matrix to execute, this parameter should be constant. The remainder

of this thesis assumes that this parameter is constant, rather than decreasing, which

allows the likelihood calculations derived in BCD to be used without modification.

In general, without making assumptions about the distinct probability distribu-

tions used by the oracle, it is difficult to know whether the distance between two

estimated probability distributions is due to a fundamental difference in the driving

process or in sampling variation.23 The current version of IBS assumes that the set M

of matrices is generated to uniformly sample the space of all s−dimensional matrices.

By assuming that the true set M uniformly samples the space of all possible Markov

matrices, the algorithm looses the ability to discern between matrices that are close in

probability space. However, this difficulty can be overcome by pre-loading the library

23For example, consider observing 100 coin flips with 51 heads and 49 tails. The MLE for the
probability of heads would be 0.51. However, conditional on the probability being .50, the probability
of observing this data would still be very high

46

with known matrices if the assumption is invalid for a particular domain.24

1.7.3 Break Point Detection

The outer loop of IBS runs a break-point detection algorithm designed to divide

the time-series into segments. The break-point algorithm works by accumulating

the cumulative probability of the sequence and breaking when it exceeds certain

bounds. The bounds are based on the expected value of the cumulative probability,

conditional on the assumption that the probabilities being used are correct. In other

words, a particular model is used both to accumulate probabilities and to accumulate

expectation. As long as the assumption that the model is accurate holds, these

quantities should, on average, stay within a reasonable distance. However, if the

assumption is wrong and a new process is driving the samples, the distance should

diverge quickly (assuming that the two matrices are not too close in probability space).

At each transition three variables are updated: the actual cumulative probability,

the estimated expected value of this probability, and the estimated variance of this

quantity. A break-point occurs when the actual cumulative probability deviates from

the expected value by more than β standard deviations. A closed form for the optimal

value of β is not known and section (3.3) attempts to use empirical evidence to

determine an appropriate value for various sizes of matrix.

A major consideration in the break-point detection is how to estimate the prob-

ability of a particular transition. This choice is made by building a count matrix for

the current segment, including a hypothetical sequence of priors, and using (1.16).

For each transition, the corresponding entry in the P̂ matrix is used as an estimate

of the probability of that transition occurring. A variable known as score is updated

by adding the log of P̂ [xi−1][xi]. score is known as the log-likelihood of the sequence,

although the fact that P̂ changes at every point makes this value an estimate. Simul-

taneously, the expected value and variance of this parameter are updated using the

24For example, if it were known that two types of dice existed: fair dice and dice with a .60
probability of flipping a heads, pre-loading the library with these two matrices would help a sequence
with 58 heads and 42 tails be classified in the .60 category rather than being subsumed with another
sequence containing a 50-50 split

47

standard definition of expectation and variance.

c = − log(P̂t−1[xt−1][xt]) (1.29)

E[c] =
∑

j

p(cj)cj = −1 ·
∑

j

(P̂t−1[xt−1][j]) · log(P̂t−1[xt−1][j]) (1.30)

var(c) =
∑

j

p(cj)(cj − E[c])2 =

∑

j

(P̂t−1[xt−1][j]) · (− log(P̂t−1[xt−1][j]) − E[c])
2

(1.31)

scoret = −1 ·
t∑

i=1

log(P̂i−1[xt−1][xt]) (1.32)

meant = −1 ·
t∑

i=1

s∑

k=1

P̂i−1[xt−1][k] · log(P̂i−1[xt−1][k]) (1.33)

variancet =
t∑

i=1

s∑

k=1

(− log(P̂i−1[xt−1][k]) − meant)
2
· (P̂i−1[xt−1][k]) (1.34)

sdt =
√

variancet (1.35)

The break-point criteria is to break if:

|scoret − meant| > βsdt (1.36)

Each time a break-point is triggered, the count matrix used to generate P̂ is then

passed to the clustering stage of the algorithm.

1.7.4 IBS Clustering

The clustering phase of IBS is similar to the clustering performed in BCD. However,

rather than taking a set of segments as an argument, IBS considers each segment

incrementally. It generates a likelihood score in which the latest segment is added

as a novel cluster against the set of scores obtained by subsuming the cluster into

each existing cluster. Previous discussions about the probability of observing a novel

cluster and the method used by the oracle to choose which matrix to execute are

48

both important for the calculation of these scores. In the actual implementation, the

probability of observing a novel cluster is viewed as constant with respect to time

and the probability that the oracle chooses a particular matrix is uniform over the

set of matrices. However, more complicated calculations using Bayesian mixing could

be used at the clustering phase to incorporate a different set of assumptions.

1.7.5 An Alternative Clustering Scheme

As a potential alternative to the clustering scheme described in BCD, a standard non-

Bayesian clustering algorithm was also implemented. Rather than clustering based

upon likelihood as defined in (1.17), clustering is performed based upon a minimum

description length (MDL) for the data. In such a scheme, the subsumption of two

clusters is performed if the combined cluster can be described using fewer bits of

information than the sum of the two clusters. Let S1 and S2 be two sequences of

lengths N1 and N2 and θ̂1 and θ̂2 be the estimated probability distributions used to

describe them. Let d represent the degrees of freedom of θ̂. The MDL for S1 and S2

is defined as:

DL(S1)+DL(S2) = − log(P (S1|θ̂1))+
d

2
log(N1)+− log(P (S2|θ̂2))+

d

2
log(N2) (1.37)

If S1 and S2 are subsumed, creating the sequence S12 and a new probability distribu-

tion θ̂12, its new MDL is defined as:

DL(S12) = − log(P (S12|θ̂12)) +
d

2
log(N1 + N2) (1.38)

The alternative clustering scheme performs subsumptions that produce a smaller

MDL. The intuition behind this clustering is that θ̂ could be used, in an information-

theretic sense, to encode the sequence S using − log(P (S|θ)) bits. However, as θ̂ is

a maximum likelihood estimate, the value of P (S12|θ12) will always be greater than

P (S1|θ1)+P (S2|θ2). In order to correct for this effect a penalty term is added to each

49

of the description lengths. The term d
2
log(n) is known as the Bayesian information

criteria (BIC) and is one possible choice of penalty terms. Several logical choices exist

for d. If the matrices are assumed to be a uniform sampling as discussed in (1.9),

then a value of s(s − 1) would be appropriate as the matrices have full flexibility. If,

however, attacks are assumed to differ from normal activity only with respect to a

single system call, then a value of s would be more appropriate. Finally, if attacks

are assumed to differ from normal behavior only in a single type of transition, then a

value of 1 would be appropriate.

1.7.6 IBS Summary

For the practical application of IBS to a real-world problem, a number of issues need

to be considered. In particular, the value β of the break-point detection threshold

and the usage of priors are free-parameters. In addition, preloading the library of

matrices with domain-specific distributions can be necessary if the sequences are too

short to fully characterize the underlying probability distribution. Also, the length

of sequences needed grows as a function of s because the number of independent

parameters in each matrix grows. In general, the longer the length of each execution,

the more power IBS has to differentiate between clusters. Also, if executions are short

and the information content is dominated by priors, all resulting matrices look similar

and are subsumed together.

1.8 Applying IBS to IDS

In order to apply IBS to sequences of system calls a number of decisions must first be

made. First, the encoding of a trace of system calls into a suitable sequence S may

include several forms of pre-processing. Next, the methods of training the algorithm

to optimally detect intrusions must be investigated. Finally, the algorithm must be

interfaced with suitable controls in order to make it a useful part of an IDS suite.

The remainder of the introduction focuses on these practical issues and presents the

development of a hypothetical IDS suite using IBS for anomaly detection.

50

Ideally, an IDS built for the real-time monitoring of system calls would be inte-

grated into the system kernel in order to have access to the largest set of knowledge

about system state and the exact order of system call execution. However, as a close

approximation, most operating systems provide a utility by which the system calls

generated by a particular process and its child processes may be logged to a file. For

example, the SunOS operating system contains a utility known as truss that was used

to generate the data-sets examined in the experiments section. Most versions of linux

have a similar utility known as trace or strace. In general, running such a process

requires root access. The actual implementation of IBS requires several preprocess-

ing steps discussed in the implementation section. Next, matrices may be chosen to

preload the library used for clustering. If known patterns of attacks are available,

either by off-line analysis or by the results of previous trials, they can be added to the

library along with a flag that denotes that they are abnormal patterns. In addition,

normal behaviors corresponding to different pieces of code, or different types of oper-

ation could be used.25 Preloading of the library helps IBS to reach a more accurate

description of the world as initial data points are not accidentally clustered together.

A practical IDS would require that the output from IBS be filtered for interesting

events. Unfortunately, the definition of interesting must be made external to IBS

due to the great diversity of types of computer systems and the degree to which one

is interested in their security. One strong benefit of IBS is the fact that abnormal

activities that are detected and reported can easily be laballed as normal clusters such

that subsequent activity that was attributed to that cluster would no longer trigger

an alert.

1.9 Random Probability Distributions

As mentioned in the derivation of p(Mc|S, I0), the implementation of IBS makes the

assumption that the Markov matrices generated by the oracle are uniformly dis-

tributed over the space of all such matrices. In other words, the parameterization of

25such as Monday vs. Tuesday, day vs. night, etc

51

those matrices is assumed to be generated by a uniform sampling over all such sets of

parameters. As noted previously, if this assumption were violated, p(Mc|I0) in (1.17)

would not be a constant. This section addresses the meaning of a uniform sampling

of Markov matrices.

A Markov matrix with s states contains s(s − 1) independent parameters. Each

row of the matrix contains s − 1 independent parameters because any given entry

can be determined uniquely by the constraint that the row sums to 1. The Markov

assumption, which allows the distribution to be represented by a matrix, also implies

that the rows of the matrix are independent probability distributions. In other words,

knowledge of one row does not provide knowledge of another row. For this reason,

uniformly sampling Markov matrices can be reduced to uniformly sampling potential

rows and then combining them in an unbiased manner.

A row of a Markov matrix represents a discrete probability distribution and has

the property that its entries are all non-negative and sum to one. The term probability

vector is used to refer to such a row, and in general, this vector can be represented

geometrically as a point on the s − 1 dimensional simplex.26 Each point on the

simplex represents a unique probability vector. A uniform sampling of probability

vectors corresponds to a uniform sampling of points on the simplex. The next section

provides such an algorithm and proves its correctness.

1.9.1 A Naive algorithm for producing probability vectors

An obvious attempt at creating uniform probability vectors is to generate n random

numbers at uniform between 0 and 1.27 This vector can then be normalized by divid-

ing each entry by the total vector sum. Unfortunately, such an algorithm produces a

highly biased sampling of the simplex. Informally, the sum of n numbers generated

by such a process is likely to be near n/2, which makes the entries generated after

normalization more likely to be near 1/n than near 0 or 1. Interestingly, variations

26An n-degree simplex is embedded in n + 1 dimensional space
27Such machinery is assumed to be present, and for the purposes of this section no distinction is

made between random and pseudo-random numbers

52

of this algorithm are widely used, as evidenced by their frequent description in pub-

lications. The next section provides a superior algorithm and provides a proof of

correctness based on differential topology.

1.9.2 Russell’s Algorithm

Rather than simply normalizing a random vector, as described in the previous sec-

tion, Russell’s algorithm sorts a vector of length n − 1 and considers the differences

between successive elements. The vector of differences can be used as an unbiased

sampling of the simplex, yielding the first n − 1 components of the desired output.

The final element is 1 minus the sum of the previous elements. Note that this algo-

rithm produces a vector of length n by generating n − 1 random numbers, reflecting

the dependence of the final parameter upon the previous values.

Russell’s algorithm [11] can be viewed as a mapping φ from points in the n-

dimensional cube, [0, 1]n to the n-dimensional simplex Sn. Sn is a subspace of [0, 1]n+1

with rank n. A probability measure on [0, 1]n can be defined using the standard

Lebesgue (volume) measure µ. This measure defines probability of an event E as the

Lebesgue measure of E, normalized by the measure of the entire space [0, 1]n:

p(E) ≡
µ(E)

µ([0, 1]n)
(1.39)

The initial selection of n points at uniform on [0, 1] produces a uniform sampling

of [0− 1]n.28 This is true because the probability that a point is chosen in any hyper-

cube F is equal to the ratio of the volume of F to the volume of [0, 1]n. However, as

the first algorithm demonstrated, the fact that the algorithm samples uniformly from

[0, 1]n does not imply that it samples uniformly on Sn. For any region F ∈ Sn, µ can

be used to define a probability just as in (1.39). In order for φ to be an unbiased

sampling of Sn, the probability of the pre-image of F must be equal to the probability

of F . In other words:

28This n is the previous n − 1, but the -1 is dropped for convenience

53

p(F) ≡
µ(F)

µ(Sn)
?
= p(φ−1(F)) ≡

µ(φ−1(F))

µ([0, 1]n)
(1.40)

The mapping φ can be decomposed into two steps: sorting the n numbers, and then

mapping from the sorted list to Sn. Let Tn denote the space of all sorted vectors, as

produced by the first step of Russell’s algorithm. Tn can be viewed geometrically as

the set of all skewed tetrahedrons in which the coordinates are sorted. The following

definitions are used throughout the remainder of the proof:

[0, 1]n ≡ {(x1, ..., xn) | ∀i, 0 ≤ xi ≤ 1} (1.41)

Tn = {(x1, ..., xn) | 0 ≤ x1 ≤ x2 ≤ ... ≤ xn ≤ 1} (1.42)

Sn = {(x1, ..., xn) | 0 ≤ xi ≤ 1,
∑

xi = 1} (1.43)

µ : R
n → R (1.44)

[0, 1]n
f
−→ Tn

g
−→

︸ ︷︷ ︸

φ

Sn (1.45)

The first step of the proof demonstrates that f is measure preserving. In other

words, if E is a measurable subset of Tn, the measure of the pre-image of E must

be proportional to the measure of E. Note that [0, 1]n and Tn are related through

permutations. Let P be the set of all permutations, then:

⋃

π∈P

πTn = [0, 1]n (1.46)

If x ∈ πTn then f(x) = π−1x.29 Note that for two distinct permutations π and π′,

the set πTn ∩ π′Tn has measure 0, by Sarg’s theorem, as it would require repeated

elements prior to sorting.30

29π permutes Tn, therefore π−1 is the permutation that performed the sort.
30Repeated elements implies a condition of the form xi = xj which is at most an n−1 dimensional

subspace of R
n

54

f(x) ≡ π−1x, for x ∈ πTn (1.47)

∀π, π′, π 6= π′, µ(πTn ∩ π′Tn) = 0 (1.48)

For any measurable E ⊂ Tn:

µ(f−1(E)) =
∑

π∈P

µ(f−1(E) ∩ πTn) =
∑

π∈P

µ(πE) =
∑

π∈P

µ(E) = (n!)µ(E)

The second step uses the fact that f−1(x) = πx. The third step uses the fact that

|det(π)| = 1. The final step uses the fact that |P | = n!. Now that f has been shown

to be measure preserving, g is also shown to be measure preserving. Note that g can

be written:

g1 = x1

g2 = x2 − x1

...

gn = xn − xn−1

gn+1 = 1 − xn

In order to show that g is measure preserving, it is sufficient to show that the Jacobian

matrix, | ∂g

∂x
| has a constant determinant. Unfortunately, attempting to write the

Jacobian directly yields the following (n + 1) × n matrix:

Jg =

















1 0 0 0 . . . 0

−1 1 0 0 . . . 0

0 −1 1 0 . . . 0

0 0 −1 1 . . . 0
...

...
...

.
...

0 0 0 . . . 0 −1

















This matrix is (n + 1) × n and has 1’s along the main diagonal and -1’s along the

sub-diagonal until the bottom row. The last row has a single -1 in the last position.

Unfortunately this matrix is not square and hence has no determinant. However, as it

55

has rank n, row and column operations could be performed to produce an upper n×n

matrix and a lower row filled with 0’s. Let κ be the determinant of that matrix. It is

clear that this determinant does not depend on x as all of the entries are constants.

By linearity:

∃κ > 0,∀F ∈ Sn, F measureable, µ(g−1(F)) = κν(F) (1.49)

and referring back to (1.40):

p(F) =
ν(F)

ν(Sn)
=

µ(f−1(g−1(F)))n!
κ

µ([0, 1]n)n!
κ

= p(f−1(g−1(F))) = p(φ−1(F)) (1.50)

as desired.

56

Chapter 2

Implementation

This chapter describes the implementation of an IDS using IBS. It focuses mainly on

the theoretical aspects of its design. Portions that were physically implemented are

highlighted throughout the chapter. It is organized as follows: first the architecture

of an IDS and the role of IBS monitors are described. Second, the pre-processing

steps necessary in order to run IBS are described. Third, the history of IBS and its

development is detailed. Fourth, a general overview of the code written for this thesis

is given, highlighting the changes and optimizations made, with a brief description

of a side-project that aimed to parallelize the code. Finally, the machine learning

aspects of the setup are described.

2.1 Building an IDS Using IBS

Many IDS are built by combining a set of data-monitors with a top-level monitor that

interacts with the owner of a computer system in order to help the owner to prevent

unauthorized activities. The Monitoring, Analysis, and Interpretation Tools Arsenal

(MAITA) project [10] at the MIT Laboratory for Computer Science (LCS) provides

a framework for integrating multiple monitors in order to construct such a system.

A complete IDS would feature many different types of monitors, combining both

anomaly and misuse detection, in order to best assess the likelihood that the system

is behaving abnormally at any given time. IBS monitors built upon the algorithm

57

described in the previous chapter would form a piece of such a suite. For this thesis,

an IBS monitor was implemented that had full algorithmic functionality. However,

it lacked many of the interfaces that would be necessary to fully integrate it into the

MAITA framework. The design of such a monitor is now developed.

2.1.1 An IBS Monitor

As discussed in the previous chapter, sequences of system calls generated by privi-

leged unix processes are believed to characterize the most error-prone operations of a

computer system. For this reason, an IBS monitor would be designed to analyze the

sequence generated by each such relevant process. Relevant processes would include

those that are sufficiently complex and whose behavior depends upon actions made

by agents. Such processes are generally server processes using the terminology of

section (1.1.4). For each such process, an IBS monitor would be instantiated and the

output of all such monitors would be used by the top-level monitor.

The appropriate level of sophistication for each IBS monitor can vary greatly de-

pending upon various assumptions that must be made. In the crudest form, traces of

system calls generated by a process could be used as input into IBS with the number

of Markov states set equal to the number of system calls that the operating system

allows. Unfortunately, as demonstrated in the experiments chapter, IBS performs far

better with a number of states between five and 15 than it would with 250 states.

This difference is due to the relationship between the influence of priors on estimated

probabilities and the ratio of observed data to the number of parameters being es-

timated. For a very small number of states, IBS views all matrices as coming from

different stochastic processes even when they should in fact be subsumed. For a very

large number of states there is simply not enough data to fully characterize each ma-

trix and they are all subsumed together, as priors dominate the information content.

Therefore, a sensible pre-processing step would be to avoid allocating a Markov state

for calls that are never used by a particular process. This form of pre-processing, as

well as several others, is described in the next section.

Assuming that a suitable set of pre-processing rules has been determined, the

58

next step in the setup of an IBS monitor would be the actual integration between

the operating system and the monitor. In the most unsophisticated approach, system

calls could be logged into a file that was then polled for changes and used to generate

the time-series required by IBS. Unfortunately, this method introduces a sizeable lag

between the actual system call and the appearance of that data-point in the time-

series (and ironically, would involve dozens if not hundreds of system calls made by

other processes). Also, the system call logging software is generally optimized for

performance rather than reliability and is known to drop system calls from the log

on a fairly regular basis. Finally, although the logging software attempts to correctly

interleave the system calls made by child processes of the server process, the logging

software again favors performance over reliability and does not always produce a

true ordering of events. For these reasons, a more sophisticated monitor should be

integrated directly into the kernel. For the purposes of this thesis, data was collected

via standard system-call logging utilities such as truss for the Sun operating system.

Along with pre-processing decisions, the appropriate priors and β must also be

determined. These parameters must be communicated from the IDS to the individual

monitors. Similarly, the output of each monitor must be interpreted by the IDS top-

level monitor. Fortunately, the communications necessary to perform these tasks are

generally handled by a generic framework such as the previously mentioned MAITA

project. The remainder of the thesis ignores the communication difficulties that arise

when trying to coordinate multiple asynchronous processes and assumes that the IBS

monitors are able to easily communicate with the top-level of the IDS.

The output of an IBS monitor is viewed as a time-series of cluster membership

(along with the implied mapping from cluster identifiers to the time at which the

cluster was first created). In other words, at each point in time IBS produces a value

that classifies the recent state of the system as being in a particular cluster. This value

is piece-wise constant, changing only at break-points. The library of clusters grows

over time but should eventually reach a steady-state in which the vast majority of

system behavior agrees with previously observed patterns. While this is not true in the

most general case, it is likely to be true for computer programs that are intentionally

59

designed to behave systematically. The most interesting events are the creation of new

clusters. This occurs when the system behaves in a manner that cannot be explained

by previously observed behaviors. Observing such an event should increase the top-

level monitor’s belief that the system is behaving abnormally. Similarly, observing

the subsumption of a new segment into a cluster labeled as abnormal or into a rarely

used cluster indicate interesting events to the IDS. In general, the top-level of an

IDS uses multivariate analysis of each of its monitors in order to make decisions

regarding how to react to changes in system state. Such decisions are an active

research topic by themselves but are ignored for the remainder of this thesis. The

actual implementation had no official top-level monitor and was run in an interactive

manner, requiring the user to type commands into a terminal. However, the level

of interaction required during operation was minimal and could be automated using

pre-recorded files as input.

One interesting feature of combining IBS monitors with a top-level monitor is the

possibility for feedback. For example, parameters such as β and the usage of priors

could evolve dynamically over time. In general, the role of the top-level monitor is

to tune the system’s overall specificity and accuracy. Adjusting β is one means of

making the system more or less likely to report anomalous activity as it determines

how quickly break-points are detected after system behavior appears to change. The

experiments chapter explores the relationship between β and the overall accuracy

and specificity of IBS. The top-level monitor is also in a position to trade-off CPU

usage versus monitor accuracy. For instance, when it notices that the system has idle

cycles, it could direct an IBS monitor to optimize itself by running an iteration of

BCD clustering or pruning out rarely used clusters.1 In general, the IDS provides a

gateway for the owner of the system to change the parameters of IBS either directly

through human intervention or through an AI interface.

One additional possibility for feedback between the IDS and IBS is the addition of

new matrices based upon information that surfaces in the real-world after the analysis

1As discussed in the derivation, such clusters may have resulted from incorrectly combining
segments during the initial few subsumption tests.

60

has begun. For example, the discovery of new attacks may warrant instructing IBS

to add new matrices to its library of clusters. In addition, the creation of new system

calls or the deprecation of older calls may necessitate changes to the internal data-

structures. Finally, if the IDS were integrated with the kernel, it may be feasible

to halt the operations of a suspicious process pending a more complete analysis of

its recent behavior by a set of monitors. In the case of IBS it may be possible to

re-run analysis on a recent subset of the time-series using BCD clustering in order to

double-check the decisions that were made regarding its behavior.

2.2 Pre-processing Implementation

As described in previous sections, a great deal of data pre-processing is required before

IBS can be run. First, the file format produced by the system call logging utility must

be transformed into a suitable format for reading by IBS. Second, the system calls

must be encoded from their original format onto the integers between 1 and N . The

proper choice of N must be made in a manner that is both backwards and forwards

compatible (A commercial application would most likely need to deal with updating

the learned data when new system calls were adopted by the operating system). Also,

if N is determined by scanning a finite length sequence of system calls, it is possible

that it does not contain system calls sufficiently rare that they never occur in the

sequence. In such cases it would be most appropriate to view the pre-processing as

a particularly naive form of IPS in which it triggers an alert whenever it encounters

a system call that it cannot map. In order to motivate the need for additional forms

of pre-processing, actual data collected from the sendmail process is analyzed.

Figure 2-1 shows a chart of the system calls made by sendmail.2 The entries are

sorted by the number of times that each call was made. The cumulative column

shows the cumulative density function (CDF) beginning with the first entry. The

entropy column shows the entropy of the corresponding row in a maximum-likelihood

2This data-set was collected by the University of New Mexico and is available at http://www.

cs.unm.edu/~immsec/papers.htm

61

transition probability matrix generated from this data. Lower entropy indicates that

observing the system call gives a better prediction for the next system call, and

conversely, creates a larger surprise when the next system call is not consistent with

previously observed data. First, note that 30% of calls are made by the most common

call, 50% by the top two, 96% by the top six and 99% by the top seven. Also note

that the entropy increases dramatically after the 7th call and again after the 19th call.

Finally, note that sendmail uses 48 of about 250 system calls but that only 36 of

them occur more than 10 times. As described in the previous section, system calls

like setpgrp, getpagesize, and getrlimit should never appear after sendmail has

started servicing client requests and should therefore be detected using an IPS rather

than including them in the list of Markov states used by IBS.

Several important conclusions are drawn from this analysis. First, the number of

times that each system call is made and how informative it is about the next system

call range very widely. Second, the process does not use all available system calls and

of the calls that it uses a significant proportion are called only several times. Next,

system calls that are sufficiently rare provide very little predictive power for the next

system call, as the row estimate is completely dominated by the prior. Fortunately,

such system calls can easily be detected using a much less sophisticated IPS (and

in fact, can be detected while performing the necessary pre-processing). Finally,

although not evident in this particular histogram, many different system calls that

are functionally similar, such as open and open64, are used by the same application in

different portions of the code. Given that an attacker could choose to use either open

or open64, it seems prudent to collapse them into the same Markov state rather than

relying on him choosing to favor one method over the other. These facts suggest that

pre-processing should be used to achieve some level of state-reduction before calling

IBS. Therefore, the goal of pre-processing is to reduce the set of all possible system

calls into a set of pseudo-calls that best characterize the behavior of a process.

For this thesis, pre-processing re-classified the 48 system calls in figure (2-1) into

13 pseudo-states representing the top 10 system calls and 3 pseudo-calls referred to as

rare1, rare2, and rare3. The mapping was performed by hand, based upon points

62

rank calls name cumulative entropy

1 158474 sigvec 0.3186 1.00573117772406

2 95139 sigblock 0.5098 0.661528809757723

3 79250 sigsetmask 0.6692 1.41357321988662

4 47994 getpid 0.7656 1.02059643778272

5 47874 gettimeofday 0.8619 0.963031265149759

6 47495 setitimer 0.9574 0.996698250292566

7 15889 sigstack 0.9893 0.0806804236458789

8 1253 close 0.9918 2.75063890220242

9 560 read 0.9929 2.64182447937747

10 465 open 0.9939 2.98540336365839

11 427 write 0.9947 2.67895483583741

12 415 socket 0.9956 1.97804136640904

13 404 ioctl 0.9964 1.98160610920957

14 244 sendto 0.9969 2.24142212675598

15 211 fstat 0.9973 2.88029625284931

16 207 bind 0.9977 1.7412091223398

17 206 recvfrom 0.9981 1.71879570959752

18 206 select 0.9985 1.71879570959752

19 206 connect 0.9990 1.71879570959752

20 72 unlink 0.9991 4.17018857760515

21 52 wait4 0.9992 4.32594971174418

22 44 lseek 0.9993 4.23980416979795

23 39 fork 0.9994 4.43062123711694

24 38 dup 0.9994 4.66446938748727

25 36 stat 0.9995 4.6742561250704

26 36 chmod 0.9996 4.6742561250704

27 27 accept 0.9996 4.82336955390068

28 25 getuid 0.9997 4.80066448703563

29 25 link 0.9997 4.8444624674873

30 24 access 0.9998 4.8336551032247

31 14 getdtablesize 0.9998 5.11378153077665

32 13 getgid 0.9998 5.10933215172954

33 12 pipe 0.9999 5.10512865667795

34 12 creat 0.9999 5.10512865667795

35 12 vfork 0.9999 5.10512865667795

36 12 rename 0.9999 5.10512865667795

37 7 mmap 1.0000 5.4767253953035

38 6 getdents 1.0000 5.481648844716

39 3 fcntl 1.0000 5.53997656741928

40 2 setsockopt 1.0000 5.56385618977473

41 2 getdomainname 1.0000 5.56385618977473

42 1 setpgrp 1.0000 5.5738935175846

43 1 getpagesize 1.0000 5.5738935175846

44 1 getrlimit 1.0000 5.5738935175846

63

45 1 listen 1.0000 5.5738935175846

46 1 chdir 1.0000 5.5738935175846

47 1 umask 1.0000 5.5738935175846

48 1 gethostname 1.0000 5.5738935175846

Figure 2-1: System calls made by sendmail during normal operation

at which the entropy changed dramatically. A number of automated approaches were

considered but fell outside of the possible scope of the thesis.

Several other pre-processing steps were used. Although not relevant for sendmail,

any system call ending with a 64 was equated with the non-64-bit version. Points

at which the process identifier (PID) of the system calls changed were annotated in

the data-set. Such changes occur when the operating system chooses to preempt one

child (forked) process in favor of another (preempting to an unrelated process would

not be visible in the trace). The IBS implementation allowed for such annotations to

be treated as forced break-points with the understanding that this would be roughly

equivalent to performing a multivariate analysis in which one stream of data consisted

entirely of PIDs. Also, for training data, the interleaving of child processes was undone

by collating the calls made by each child process. In other words, the data-set was

re-ordered as if each child process ran to completion before another was allowed to

run. This step was made to avoid contaminating the data for each child process with

the first few system calls made by the next process each time the operating system

performed a context switch. Finally, it was observed that traces of system calls

often contain long series in which the same call repeats many times. For example,

many unix processes attempt to close every possible file-descriptor at various stages

in the code in order to guarantee that no descriptors can be inherited when they fork.

Similarly, a long string of read or write system calls could indicate reading or writing

a large file. In these cases, it would be most natural to assign a label to the behavior

that is not the same as the label of an individual system call. As an approximation

to modeling this behavior, experiments were performed in which all such series were

reduced to contain a single element. Such experiments performed consistently worse

than their counterparts and this form of pre-processing was abandoned.

64

The following additional types of pre-processing were considered but not imple-

mented:

1. Standard state reduction techniques such as singular value decomposition or

principal component analysis

2. State reduction using grammar learning to equate common patterns of system

calls with a single pseudo-state

3. Working with domain experts to create synthetic matrices that would be in-

dicative of an attack

4. State reduction using cross entropy between normal and attack traces (removing

system calls that were not informative about whether the system was in a normal

or attack state for a pre-specified list of known attacks)

2.2.1 Parsing truss files

Perl code was written to parse truss files generated by the standard SunOS system

call logging utility. Although not a part of IBS itself, these scripts are an important

part of the IDS. In a full implementation they would most likely be moved inside of

the main parsing loop for efficiency. The following options are currently available:

1. System calls present in a set of logs are mapped from their original encoding on

[1,250] to [1,N] where N is determined empirically.

2. System calls ending with 64 can optionally be treated as equivalent to the

original version.

3. Changes between PID can be annotated in the file. In addition, the sequences

for each PID can be collated. For training data, it is reasonable to perform

collation to diminish the noise introduced by the operating system scheduler.

This collation is not performed after the training phase.

65

4. State reduction through explicit mapping, e.g. treating fork and rfork as equiv-

alent.

5. Optionally collapsing repeated system calls into a single call, for example map-

ping close,close,close,...,close to a single close.

2.2.2 Pre-loading the library of Matrices

As discussed in the derivation of IBS, the initial subsumptions are likely to contam-

inate the true probability distributions as they do not contain enough information

to correctly classify the segments. Given an infinite amount of data, these initial

mistakes would not affect the final matrices. However, for any finite time-series

there is incentive to avoid such mistakes. One means of avoiding these initial mis-

classifications is to pre-load the library of clusters with pre-created matrices known

to match patterns of system behavior (either normal or abnormal). These matrices

could be created as a side-effect of the pre-processing steps described in the previ-

ous section, or by other means. One method of obtaining a set of matrices would

be to perform IBS segmentation to obtain a set of segments and then to use BCD

rather than IBS clustering. The BCD clustering, which is much more computation-

ally expensive, would result in a better set of clusters than would be created by IBS’s

incremental approach.

2.3 Project History

The IDS built for this thesis is based upon code written in common LISP by Marco

Ramoni in 1998. His Dyncoscope program implemented IBS as discussed in the deriva-

tion, using the standard clustering algorithm and taking a single argument specifying

the equivalent sample size. Unfortunately, the LISP code pre-scanned the entire data-

set in order to determine the total number of discrete Markov states. In addition, the

LISP parsing code created a monolithic list in memory. This method did not work

when applied to the IDS data sets as they were too large to be read into memory

66

prior to processing. For this reason, the code was ported to java and changed to take

the number of states as an additional parameter.

The java version of the code was originally written as a nearly exact duplicate of

the LISP code, with no attempts made to optimize the code for java-specific features.

However, it was able to process much larger data sets than the LISP version as

it read through the data-set incrementally rather than pre-scanning the entire file

into memory. After the java code was carefully verified to produce duplicate output,

experimental changes and optimizations were made in order to pursue the experiments

performed in this thesis.

Although the java version was able to read much larger data-sets than the LISP

version, it was still extremely slow. Training on a 500,000 transition data-set took

approximately 10 hours. Upon a closer profiling of the code, it was determined that

the algorithm exhibited a high degree of parallelism and an experiment was performed

to determine if the algorithm could be effectively parallelized using MPI, the stan-

dard super-computing communication scheme. In order to perform the experiment,

the code was ported again, from java to C++, as the MPI libraries were C/C++

compatible. This port had the added benefit of making the execution considerably

faster, even when running on a single processor. Finally, the C++ version was ported

to pure C in order to facilitate testing using the Cilk parallelization toolkit. Cilk is an

experimental project at the MIT Laboratory for Computer Science. Unfortunately

its compiler supported only C at the time when this experiment was performed. The

MPI version of the parallelized code outperformed Cilk but the final version of the

IBS code is written in C.

2.4 Code Overview

The C version of IBS is written as a single executable that takes a number of

command-line arguments discussed in the following section. It is broken into three

source files: ibcd.h, ibcd.c and ibcd main.c. The main entry point of the code, lo-

cated in ibcd main.c, parses the arguments and enters the file parsing loop. At

67

this time, the data-set is read sequentially from a single file, although in principle

the code could easily be adapted to read from a network device or through other

means. Each transition causes the count matrix, known in the code as a process

struct, to be updated in a function called update current process. Next, a function

known as update current score is used to perform the break-point detection as de-

scribed in section (1.7.3). Finally, the function process under control determines

if a break-point has been detected. Relevant portions of the code are shown below

with error-checking and other non-algorithmic sections removed:

typedef struct process {

int position;

bool type;

int frequencies[STATES][STATES+1];

double probabilities[STATES][STATES];

int transitions;

double likelihood;

} process;

This data structure stores a count matrix and the associated transition proba-

bilities. It also records the type of process in the field type. Currently this is a

boolean indicating only normal or abnormal. However, future implementations may

have more than two values for this variable. The matrix frequencies, implemented

as a doubly-referenced array, stores an extra element in each row. The extra element

stores the row sum, which is used to calculate probabilities. This tradeoff between

space and time was clearly favorable after initial testing. The variable likelihood

is used to cache the value of the likelihood score for this matrix. This optimization

is discussed in the following section.

void update_current_process(const int prev,

const int val,

process* proc) {

proc->frequencies[prev][val]++;

proc->frequencies[prev][STATES]++;

proc->transitions++;

}

68

This function updates the count matrix after a transition. It increases the row

count as well as the total number of transitions.

void update_current_score(const int prev,

const int val,

const process* proc) {

double score = (-log(proc->probabilities[prev][val]));

double mean = 0;

double variance = 0;

double c = 0;

double diff;

for(i=0; i<STATES; i++) {

c = proc->probabilities[prev][i];

mean += (c * -1 * log(c));

}

for(i=0; i<STATES; i++) {

c = proc->probabilities[prev][i];

diff = (-1 * log(c)) - mean;

variance += diff * diff * c;

}

v.score += score;

v.mean += mean;

v.variance += variance;

}

This function performs the segmentation described in (1.7.3). The global data

structure v stores the scoret, meant, and variancet variables.

bool process_under_control() {

double sd = sqrt(v.variance);

double margin = sd * ibcd.cutoff_shold;

double lower = v.mean - margin;

double upper = v.mean + margin;

if(v.score <= upper &&

v.score >= lower) {

return true;

}

return false;

}

69

This function checks whether the difference between scoret and meant has ex-

ceeded the required threshold for a break-point. Each time that the main parse loop

detects a break-point, the current count matrix is passed to the clustering portion of

the algorithm. The clustering is performed by a function known as check out process.

This function computes the likelihood of the model in which the new process is added

to the library of matrices as a new entry. It then computes the likelihood of each possi-

ble subsumption of the new segment into an existing cluster. It chooses the best possi-

ble model and updates the library accordingly. In addition, command-line arguments

can be used to specify that MDL clustering be performed rather than the standard

likelihood clustering. Both the Bayesian approach and the MDL approach take advan-

tage of a function called compute marginal likelihood, which returns the score of a

library of matrices. A helper function known as compute subsumed marginal likelihood

handles the temporary modifications necessary to alter the library for calculating

the score of a given subsumption. Therefore, check out process is written as a

loop around calls to compute subsumed marginal likelihood, which in turn calls

compute marginal likelihood to loop over the library. Fortunately, this n2 opera-

tion can be made a linear operation by caching the likelihood scores for each process.

70

process* check_out_process(process* proc,

const int start,

const int end,

process_list* processes) {

double best_score = 0.0;

const int stored_processes = processes->length;

process* best_cluster = NULL;

process* candidate = NULL;

int i;

process* cluster = NULL;

process* subsumed_result = NULL;

double score = 0.0;

// temporarily add this process to library to get the score

addHead(processes,proc);

best_score = compute_marginal_likelihood(processes);

removeHead(processes,proc);

// now calculate each subsumed score

for(i=0; i<stored_processes; i++) {

cluster = get(processes,i);

score = compute_subsumed_marginal_likelihood(proc,

cluster,

&subsumed_result,

processes);

if(score >= best_score) {

best_score = score;

best_cluster = subsumed_result;

candidate = cluster;

}

}

if(best_cluster == NULL) {

return store_new_process(proc,processes);

}

else {

return store_subsumed_process(proc,

candidate,

best_cluster,

processes);

}

}

71

double compute_subsumed_marginal_likelihood(process* proc,

process* cluster,

process** subsumed,

process_list* processes) {

int i,j;

double score;

*subsumed = make_process2(cluster->type,

cluster->index);

// combine the two count matrices

for(i=0; i<STATES; i++) {

for(j=0; j<=STATES; j++) {

(*subsumed)->frequencies[i][j] =

proc->frequencies[i][j] +

cluster->frequencies[i][j];

}

}

(*subsumed)->transitions = proc->transitions + cluster->transitions;

// switch the new matrix into the library

replace(processes,cluster,*subsumed);

score = compute_marginal_likelihood(processes);

// replace the original matrix back into the library

replace(processes,*subsumed,cluster);

return score;

}

The code for compute marginal liklihood is omitted for brevity but follows

directly from (1.26).

2.5 Command line arguments

The free parameters for the algorithm are listed below. At the present time some of

these options are available only through re-compilation rather than as actual com-

mand line arguments.

1. The number of states: s

2. Whether forced break-points are allowed (based upon data-set annotation)

72

3. Whether only forced break-points are allowed (disables normal segmentation)

4. The break-point threshold: β

5. The value of αkij, either a constant or loaded as a matrix

6. The type of clustering: Bayesian or MDL (the degrees of freedom are also

variable)

2.6 Optimization

Several major optimizations were made to the IBS code that were not described

in the original paper[21]. First, the count matrices were extended to contain row

totals. This tradeoff between space and time was clearly optimal in the C version.

Second, the struct process storing the count matrix also caches the value of its

transition probabilities and log likelihood. These values are discarded whenever the

matrix is permanently updated, which occurs only in the temporary matrix used

for segmentation or when a subsumption occurs. Finally, many memory oriented

optimizations were made using advanced pointer techniques such as reference counting

and copy-on-write. In the single-processor version, a single matrix library is used and

pointer manipulations are used in order to avoid copying the count-matrices in order

to test a subsumption. This implementation uses far less memory than the java or

LISP versions which required copying the count matrices each time a subsumption

was tested. The parallelization optimization is discussed in section (2.9).

2.7 Training vs Classification

An important factor in the utility of an IDS is the amount of required interaction

with the owner of the computer system. In order to distinguish between normal and

abnormal behavior, some decision has to be made regarding the interpretation of the

system’s output. In IBS several interesting types of events occur. First, the creation

of a novel cluster indicates that the time-series contained a set of transitions unlike

73

any previously observed. Second, the subsumption of a new segment into an existing

cluster that has relatively few transitions is also a rare event. If the target cluster

is sufficiently rare compared to the total length of the sequence, this event may also

indicate abnormal system behavior. Implicit in the interpretation of these events is a

distinction between the training and classification phases of the IDS. A special flag,

the type field in the process struct, is used to indicate whether a cluster is considered

normal or abnormal. By default this value is set to normal for all clusters created

during training and to abnormal otherwise.

The training phase of IBS is the initial period of its execution. During this time,

the data may receive extra pre-processing, as by definition, this is the phase in which

human interaction is feasible. This phase may also use a carefully controlled or

synthetic data-set rather than sampling directly from the oracle. Furthermore, this

phase, as it is of finite length, may consume more time per transition than the eventual

O(1) time required to analyze an infinite sequence. The goal of the training phase is to

tune IBS to most effectively detect interesting events during the classification phase.

In the current implementation the distinction between training and classification is

annotated in the time-series.

The beginning of the classification phase is the point at which the goal of the IDS

shifts towards avoiding human interaction while detecting interesting events. The

key measures of performance are the sensitivity and specificity of the classification

of segments as normal or abnormal. Unfortunately, as IBS classifies segments of

transitions rather than individual transitions, the standard metrics are difficult to

apply. In general, the goal of the IDS is to detect a break-point as quickly as possible

following the beginning of an attack and to minimize the number of segments and

transitions that are incorrectly labeled as abnormal. Unfortunately there are many

ways in which a sequence can be abnormal. The IDS must provide a means for

the owner to specify if an abnormal sequence should, in the future, be considered

abnormal, or it should be treated as a rare but expected feature. In general, an

IDS suite consists of many algorithms like IBS and uses higher-order algorithms to

interpret their results. However, this thesis implements only the IBS portion of the

74

suite.

2.8 Priors

Several choices exist for defining the priors used in IBS. First, an (approximately)

uninformative prior of Dir(1, 1, ..., 1) could be used at every point of the process.

Without making any assumptions about the types of processes likely to be observed,

this is the logical choice. However in an actual IDS it may be feasible to make further

assumptions. The most basic assumption would be that processes generally follow the

global histogram of all system calls across all computer processes. Such a histogram

could easily be obtained by recording every system call made by a computer for

some arbitrary length of time sufficient to produce an estimate of suitable accuracy.

Another related assumption would be that behaviors vary from computer program

to computer program, and that the histogram obtained from the specific computer

process should be used. Finally, sophisticated analysis of the computer code for a

process could be used to determine a set of suitable priors. Such analysis could

either be performed by hand or by scanning the executable for system calls. In

certain domains, experts may be able to provide suitable estimates for the prior

probabilities. In the case of computer systems, certain system calls are much more

dangerous than others, and this level of importance could be used to bias the priors

towards responding more quickly to changes in dangerous system calls. Finally, hybrid

methods exist in which an uninformative prior is gradually mixed with the observed

histogram. The IBS implementation developed for this thesis uses the uniform priors

approach. However, it supports reading the priors from files that could be generated

using any of the methods listed above.

2.9 Parallel MPI Version of IBS

The C/C++ code for IBS was also ported to support MPI parallelization of the

algorithm. This effort was not a focus of the thesis, but it did provide a means of

75

reducing computational time for performing training.

2.9.1 Code Modifications

Three major code modifications were necessary to write an MPI version of IBS. First,

marshaling code was written in order to broadcast a segment from the root node to

each of the other nodes. Second, the main loop was modified so that the root node

parsed the file and performed the break-point detection while each of the other nodes

waited to be sent a segment. Finally, compute subsumed marginal likelihood was

modified to perform only a subset of the computations based upon the rank of the

processor. At the end of this function, MPI Allreduce was used to calculate and

distribute the globally optimal index of the matrix subsumption.

Marshalling

It was necessary to write functions to broadcast a count matrix between the root

node and all of the other nodes. Portions of this code are shown below:

#define BROADCAST_SIZE 7600

int broadcast_buffer[BROADCAST_SIZE];

typedef struct broadcast {

int start;

int end;

process* proc;

bool done;

} broadcast;

void broadcast_segment(process* proc,

const int start,

const int end,

bool done) {

int i,j,k;

broadcast_buffer[0] = start;

broadcast_buffer[1] = end;

broadcast_buffer[2] = proc->index;

broadcast_buffer[3] = proc->position;

broadcast_buffer[4] = proc->type;

76

...

MPI_Bcast(broadcast_buffer,BROADCAST_SIZE,MPI_INT,0,MPI_COMM_WORLD);

}

broadcast* receive_broadcast(int r) {

int i,j,k;

process* proc = make_process2(-1,-1);

if(rank == 0) {

die(__LINE__,__FILE__);

}

MPI_Bcast(broadcast_buffer,BROADCAST_SIZE,MPI_INT,0,MPI_COMM_WORLD);

bc.start = broadcast_buffer[0];

bc.end = broadcast_buffer[1];

bc.proc = proc;

bc.done = broadcast_buffer[k++];

return &bc;

}

Main Control Loop

The outer main loop was altered slightly such that only the root node began parsing

the input file. The other nodes entered an infinite loop where they waited to receive

broadcasts in order to do subsumption work. They exited the loop when a flag was

set in the broadcast structure.

if(rank == 0) {

db = fopen(argv[1],"r");

...

}

else {

while(true) {

pBC = receive_broadcast(rank * 17);

...

}

}

check out process

check out process performs the segment classification and was re-written slightly

to perform the broadcast and then calculate only a subset of the subsumption scores.

77

MPI Allreduce was then used to find the global optimum and the relevant changes

were made to the library of matrices.

broadcast_segment(proc, start, end, done);

local_score.score = compute_marginal_likelihood(processes);

local_score.index = -1;

for(i=0; i<stored_processes; i++) {

if(i % np != rank)

continue;

score = compute_subsumed_marginal_likelihood(proc,

get(processes,i),

&subsumed_result,

processes);

if(score >= local_score.score) {

local_score.score = score;

local_score.index = i;

best_cluster = subsumed_result;

candidate = cluster;

}

}

...

MPI_Allreduce(&local_score,

&global_score,

1,

MPI_DOUBLE_INT,

MPI_MAXLOC,

MPI_COMM_WORLD);

if(global_score.index == -1) {

ret = store_new_process(proc,processes);

}

else {

candidate = get(processes,global_score.index);

ret = store_subsumed_process(proc,

candidate,

best_cluster,

processes);

}

...

Similar code appeared in the branch of the main loop executed on the non-root

nodes. In this manner the subsumption was performed in parallel after the broadcast

of the latest segment. Each node performed the same actions on its local library of

78

matrices and the result was a distributed and replicated set of matrices.

2.10 MPI Performance Results

The MPI version of IBS produced a linear speedup when the first additional processor

was added. However for more than 2 processors, while there was a slight speedup,

the effect was negligible. This is probably due to the fact that the broadcast between

the first two processors occurred on the same machine while adding more processors

required using TCP/IP. Also, the marshaling code was highly un-optimized and re-

quired sending 7600 bytes. More tuning could have been performed to lower this

number by sending only the count matrices and re-generating the associated prob-

abilities at each node. However, for the purposes of this thesis a 2x speedup was

sufficient. Figure 2-2 shows the contents of the data-sets while figure 2-3 shows the

results.

79

File Matrices States Execution length Cycles Transitions
50.lisp 16 50 100 20 32,000
100.lisp 32 50 100 20 64,000
150.lisp 64 50 1000 40 2,560,000

Figure 2-2: The 50.lisp, 100.lisp, and 150.lisp data-sets

Time to Run IBS MPI Code

0

100

200

300

400

500

600

700

MPI-1 MPI-2 MPI-3 MPI-4

Number of Processors

S
e
c
o

n
d

s 50.lisp

100.lisp

150.lisp

Figure 2-3: Elapsed time of IBS MPI code run on 1-4 processors

80

Chapter 3

Experiments

This chapter describes experiments that were performed in order to assess the effec-

tiveness of IBS as part of an IDS. Three major types of experiments were performed:

exploring the relationship between β and other parameters, measuring clustering ac-

curacy, and testing the effectiveness of library pre-loading. In addition, several tests

were performed to analyze the sendmail traces used to produce the histogram in

the previous section. The analysis of sendmail is presented first, followed by the β

experiments, the clustering experiments, and the pre-loading experiments.

3.1 Analyzing Sendmail

The sendmail program is one of the most popular targets of computer crackers due

to its enormous complexity and wide installation base. It serves two basic purposes:

delivering email to a local user’s mailbox, and forwarding mail that doesn’t belong

to a local user to another mail server. In order to deliver mail to a user’s mailbox it

must be able to assume the identity of that user, and therefore it must run as a privi-

leged process. It also performs other privileged actions such as listening to privileged

networking ports and authenticating local users. Figure (2-1) in the previous chapter

detailed a histogram of system calls made by sendmail. The following histograms

show similar data for traces collected on a machine at MIT (medg.lcs.mit.edu):

The observation that different child processes exhibit very different histograms is

81

fid count %calls CDF fname

12 1960 21% 21% time

224 1391 15% 37% xgetid

5 1089 12% 49% close

217 956 10% 59% xctl

222 932 10% 69% xstatvfs

143 932 10% 79% poll

219 776 8% 88% xwait

220 387 4% 92% xfork

92 363 4% 96% accept

38 363 4% 100% pipe

Figure 3-1: System calls made by the main sendmail process

fid count %calls CDF fname

217 30 19% 19% xctl

216 23 14% 33% xstat

224 22 14% 47% xgetid

2 16 10% 57% read

3 12 8% 64% write

4 11 7% 71% open

218 9 6% 77% xseek

5 9 6% 82% close

12 8 5% 88% time

111 6 4% 91% getsockopt

98 4 2% 94% setsockopt

223 2 1% 95% xconnect

220 2 1% 96% xfork

143 2 1% 98% poll

225 1 1% 98% xsetuid

222 1 1% 99% xstatvfs

206 1 1% 99% _exit

9 1 1% 100% unlink

Figure 3-2: System calls made by a sendmail child process

82

fid count %calls CDF fname

216 99 25% 25% xstat

217 70 17% 42% xctl

224 49 12% 54% xgetid

5 38 9% 63% close

4 27 7% 70% open

2 27 7% 77% read

218 19 5% 81% xseek

12 16 4% 85% time

3 12 3% 88% write

143 6 1% 90% poll

111 6 1% 91% getsockopt

225 5 1% 93% xsetuid

98 4 1% 94% setsockopt

41 4 1% 95% setgid

63 3 1% 95% mmap

9 3 1% 96% unlink

223 2 0% 97% xconnect

220 2 0% 97% xfork

186 2 0% 98% sysconfig

72 2 0% 98% setgroups

65 2 0% 99% munmap

219 1 0% 99% xwait

206 1 0% 99% _exit

190 1 0% 99% sysinfo

135 1 0% 100% getrlimit

121 1 0% 100% rename

38 1 0% 100% pipe

Figure 3-3: System calls made by a second sendmail child process

83

fid count %calls CDF fname

216 64 31% 31% xstat

224 48 23% 55% xgetid

217 25 12% 67% xctl

5 18 9% 76% close

4 13 6% 82% open

218 8 4% 86% xseek

12 8 4% 90% time

2 8 4% 94% read

3 3 1% 95% write

223 2 1% 96% xconnect

225 1 0% 97% xsetuid

220 1 0% 97% xfork

206 1 0% 98% _exit

140 1 0% 98% getsockname

132 1 0% 99% getpeername

111 1 0% 99% getsockopt

72 1 0% 100% setgroups

35 1 0% 100% kill

Figure 3-4: System calls made by a third sendmail child process

favorable for IBS, as it shows that the Markovian model of sendmail is justified. The

first histogram shows the top-level process while the other histograms show several

forked processes. A quick experiment showed that IBS was able to form separate

clusters for each of the processes above when the data was collated, but not when it

was interleaved. Given that these processes each represent functionally different pieces

of the code, this result inspired the collation of traces by PID during pre-processing

of training data.

The next aspect of sendmail that was analyzed was the distribution of KL dis-

tances between the clusters generated by each of the separate processes. A histogram

of such distances is shown in figure (3-6). A similar figure is shown for matrices

generated using Russell’s algorithm in figure (3-5). Several conclusions can be drawn

from these figures. First, the sendmail histogram shows that sendmail processes ex-

hibit a wide range of KL distances, with no obvious concentration of mass in the

histogram. The figure for randomized processes is very different with a large concen-

tration around 1. Theoretical analysis can be used to show that the expected value

84

of the KL divergence between two random vectors in n-space is n
n+1

, which is verified

by this figure, as the curves for matrices with a higher number of states are more

concentrated at 1. Unfortunately, these figures show that the assumption that the

matrices chosen by the oracle are a random sample of all possible matrices is very

inaccurate for sendmail. Instead, there are many similar matrices as well as many

matrices that are extremely distant from one-another in KL space. This result means

that the IBS segmentation is based upon a faulty assumption, although the data does

not suggest any particular changes to make. Nevertheless, these observation inspired

adding an “optimal” category to the experiments performed later in this chapter in

which segmentation was performed based upon data-set annotations rather than us-

ing IBS segmentation. These “optimal” results show a theoretical upper-bound on

performance that could be achieved by IBS.

Finally, the distribution of the lengths of executions was analyzed. Figures (3-7)

and (3-8) show the distribution of the number of system calls (transitions) as well as

the number of unique calls made per process. The first figure shows that most exe-

cutions are around 200 system calls. On average, each process was interrupted about

three to four times, for an average execution length between 50 and 100 transitions.

The second figure shows that the vast majority of processes use around 20 system

calls. These two figures, along with the previous observations, were used to choose

values of 10, 50, 100, and 1000 for test execution lengths and 6, 12, and 18 for the

number of states. 10 was chosen as a minimum length to demonstrate the debilitat-

ing effects of switching processes before enough data has been collected, while 1000

was chosen to establish an upper-bound on performance. Similarly, 6 was chosen as

a lower bound on the amount of state reduction that could be performed, while 12

and 18 represent reasonable Markov representation of the behavior of sendmail. The

remainder of this chapter uses synthetic data sets that have properties inspired by

this analysis.

85

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

6
8

10
12
14
16
18
20
25
30
50

Figure 3-5: PDF of KL as a function of states for matrices generated using Russell’s
algorithm. The higher the number of Markov states, the more the shape resembles
an impulse at 1

86

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

sendmail

Figure 3-6: PDF of KL as a function of states for sendmail processes. Note that the
density is focussed around 0.45 and that the shape is highly irregular

87

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300 350 400 450 500

child processes

Figure 3-7: Unnormalized histogram of system calls per child process

88

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35

child processes

Figure 3-8: Unnormalized histogram of unique system calls per child process

89

3.2 Synthetic data-sets

In order to create synthetic data-sets perl programs were written using Math::Random,

available from http://www.cpan.org. Russell’s algorithm (1.9.2) was implemented

in order to create random matrices of an arbitrary size. Figure 3-9 describes the data-

sets used in this section. The sampling column describes filtering that was applied

to the matrices generated. A sampling of “uniform” indicates that all matrices were

accepted into the library. A sampling of KL < 1 indicates that matrices were chosen

with the condition that the pair-wise KL scores all be less than 1. Similarly, KL < .75

indicates that the matrices had pair-wise KL scores of less than 0.75. These conditions

were met incrementally, meaning that the first matrix was always added to the library,

and each subsequent matrix was added only if the condition held with the existing

matrices.

90

File Matrices States Sampling Execution length Cycles Transitions
ds1 10 6 uniform 1000 10 100,000
ds2 10 6 uniform 100 10 10,000
ds3 10 6 uniform 50 10 5,000
ds4 10 6 uniform 10 10 1,000
ds5 10 12 uniform 1000 10 100,000
ds6 10 12 uniform 100 10 10,000
ds7 10 12 uniform 50 10 5,000
ds8 10 12 uniform 10 10 1,000
ds9 10 18 uniform 1000 10 100,000
ds10 10 18 uniform 100 10 10,000
ds11 10 18 uniform 50 10 5,000
ds12 10 18 uniform 10 10 1,000
ds13 10 6 KL < 1 1000 10 100,000
ds14 10 6 KL < 1 100 10 10,000
ds15 10 6 KL < 1 50 10 5,000
ds16 10 6 KL < 1 10 10 1,000
ds17 10 12 KL < 1 1000 10 100,000
ds18 10 12 KL < 1 100 10 10,000
ds19 10 12 KL < 1 50 10 5,000
ds20 10 12 KL < 1 10 10 1,000
ds21 10 18 KL < 1 1000 10 100,000
ds22 10 18 KL < 1 100 10 10,000
ds23 10 18 KL < 1 50 10 5,000
ds24 10 18 KL < 1 10 10 1,000
ds25 10 6 KL < .75 1000 10 100,000
ds26 10 6 KL < .75 100 10 10,000
ds27 10 6 KL < .75 50 10 5,000
ds28 10 6 KL < .75 10 10 1,000
ds29 10 12 KL < .75 1000 10 100,000
ds30 10 12 KL < .75 100 10 10,000
ds31 10 12 KL < .75 50 10 5,000
ds32 10 12 KL < .75 10 10 1,000
ds33 10 18 KL < .75 1000 10 100,000
ds34 10 18 KL < .75 100 10 10,000
ds35 10 18 KL < .75 50 10 5,000
ds36 10 18 KL < .75 10 10 1,000

Figure 3-9: Synthetic data-sets

91

3.3 Determining β

The first parameter that was tuned was the cutoff threshold, β, used in break-point

detection. This parameter specifies how many standard deviations are required be-

tween the scoret and meant variables as discussed in (1.7.3). Its optimal value is

viewed as a function of the size of the matrices (s), the length that the oracle allows

each matrix to execute (k), and the level of similarity between the matrices, as mea-

sured by pair-wise KL distance. In principle, if the set M of matrices were known

and k could be parameterized, break-point detection could be phrased in terms of

a simple frequentist hypothesis test. Given a set of Markov matrices, a sequence of

transitions, and a cost function associated with changing between matrices,1 an opti-

mal value of β could be determined based upon the desired specificity and accuracy.

However, given that these assumptions do not hold in the real-world, β was set based

upon the following experiments.

3.3.1 Optimal β based on segment length

Setup

In the first experiment, s × s random matrices were generated and executed for k

transitions. The output was evaluated solely on the basis of the segmentation phase

of IBS. β was allowed to range over a wide range of values for each data-set. The

average segment length generated by IBS was compared to k for various values of s,

k, and β. Ideally, if segmentation were perfect (and non-causal in the sense that it

anticipated decisions made by the oracle), the average segment length would match

k exactly. The value of β used by the original authors was 2.58 (which was optimized

for 5×5 matrices). This value, along with the integers between 1 and 7, was tested for

each data-set with k ranging from 10 to 1000. In this and all subsequent experiments

s was 6, 12, or 18.

1A penalty for switching matrices is necessary because the optimal solution would otherwise
choose the matrix at each step with the highest value for the particular transition involved

92

Results

Section A-1 of the appendix show the optimal value of β within each sub-experiment.

The optimal choice for β appears to depend much more upon k than upon s. Un-

fortunately, k is not known to the algorithm, making the choice for β much more

complicated. However, several conclusions can be made from these results. First, it

appears that a value between 2 and 3 is optimal for reasonable values of s and k.

Second, the biased matrices (results are shown only for s = 18 but were similar for 6

and 12) did not behave significantly differently from the uniformly sampled matrices.

This means that the segmentation phase of IBS was relatively unaffected by the bias

introduced in certain data-sets.

3.3.2 Clustering accuracy

Setup

This set of experiments evaluated each of the data-sets used in the preceding sec-

tion by measuring overall clustering accuracy. Accuracy was defined as the number

of transitions that were correctly labeled. Each data-set consisted of 10 matrices,

meaning that the correct label for each transition was an element of [1 − 10]. The

label was relative to the the position of the cluster within the library of matrices.

In other words the first segment and all subsequent subsumptions into that segment

were labeled as a 1, while the second novel cluster was labeled as a 2. This form of

measuring accuracy is particularly strict because it relies upon the algorithm discov-

ering the 10 distinct clusters, which requires both effective segmentation and effective

clustering. Each sub-experiment contains an entry labeled “optimal” which tested

only the clustering portion of the algorithm. These tests were implemented by using

data-set annotations rather than IBS segmentation. IBS was run with three forms of

clustering: the standard Bayesian approach as described in the derivation, an MDL

algorithm with s2 degrees of freedom called MDL1, and an MDL algorithm with s

degrees of freedom called MDL2.

93

Results

Section A-2 of the appendix shows the results of this set of experiments. The first

conclusion drawn from this experiment is that the MDL approach to clustering is

effective under a much smaller range of conditions. It had been hoped that MDL

would provide a second means of running IBS in order to operate two monitors that

were fairly independent of one-another. However, the poor results of MDL on these

data-sets suggests that the Bayesian approach should be used at all times. The MDL

approach has been extremely effective in analyzing sequences of DNA in which the

number of states for each transition is 4. The fact that this clustering approach is

optimized for 4 states may explain why it performed relatively well on the data-sets

with 6 states while failing to perform any better than random guessing when s was

12 or 18.

Ignoring the MDL results for the remainder of this thesis, many other conclusions

can be made. First, the results show that IBS is highly ineffective when k = 10, as

expected. At this value of k even the optimal segmentation fails to produce good clus-

terings. This terrible performance is due to the fact that 10 transitions is not enough

information to distinguish between two stochastic processes that are characterized

by many independent parameters. Similarly, the results are exceptionally promising

when k = 1000. For an appropriate value of β, IBS was able to achieve over 80%

accuracy each time that unbiased matrices were used. However, the most relevant

values of k are 50 and 100, which are meant to simulate conditions that would be

present in sendmail traces.

Results for k = 50 and k = 100 are broken into two types: those with unbiased

matrices and those with biased matrices. The unbiased case is discussed first. Figures

A-9, A-12, and A-15 show the results when IBS is applied to uniformly sampled

matrices. Unfortunately, despite performing extremely well with optimal clustering,

IBS achieves only 10-20% accuracy for these values of k. These results indicate

that the segmentation portion of the algorithm is failing to find the appropriate

break-points. Referring back to the previous experiment, which showed that the

94

average segment length in these conditions was roughly correct, this indicates that

the lag between true break-points and their detection introduces enough noise to fool

the clustering portion of the algorithm. This result is excellent motivation for the

next experiment, in which pre-loaded matrices are used to prevent such noise from

destroying clustering accuracy.

A comparison of results for biased matrices to the uniformly sampled matrices

shows that the bias does indeed hinder IBS performance. Although the previous

experiment showed that the biases do not systematically increase average segment

length, they are detrimental to the clustering phase of the algorithm. The topic of

optimal clustering when the stochastic processes are known to be biased is a very

active area of mathematical research, and will likely produce better algorithms at

some point in the future. However, for the purposes of this thesis, these results are

taken as further incentive to use pre-loaded matrices in order to increase clustering

performance.

95

3.4 Pre-loaded Libraries

As discussed previously, the concept behind library pre-loading is to prime the set

of clusters with suitable matrices such that the initial subsumptions that IBS makes

do not combine segments that should be placed into different clusters. When the

library is small and segments are short, all of the generated matrices are dominated

by priors and therefore look very similar in KL space. However, introducing matrices

into the library helps segments to be added to the appropriate cluster rather than

combined with unrelated segments to produce clusters that represent a hybrid of

separate stochastic processes.

Matrix pre-loading was accomplished through data-set annotations that disabled

IBS segmentation during the pre-loading phase. In other words, a data-set was con-

structed that contained a series of transitions generated by each underlying process.

These data-sets were annotated such that IBS would automatically assign each one

to its own cluster. The strength of the pre-loading could be adjusted by varying the

length of each such sequence. After the pre-load sequences, the data-set was anno-

tated to instruct IBS to begin normal segmentation, with the effect being as if the

earlier transitions had been hard-coded into its internal matrices.

Setup

In this experiment 10 matrices were generated using the same types of biases as the

previous experiments. For each library, data sets were constructed in which each

matrix had a pre-load execution length of 0, 10, 100, 1000, or 10000. After the

pre-load transitions, each matrix was again executed for 0, 10, 100, 1000, or 10000

transitions for a total of 10 cycles. The experiment was repeated for s = 6, 12, 18, for

uniform sampling and both types of bias, and for values of 2, 2.58, 3, 4 and “optimal”

for β.

96

Results

The results of this experiment are shown in figures A-21 - A-28. Unfortunately, results

are not available for s = 18 and KL < 0.75 because this experiment was terminated

after 2 weeks of execution time. Overall this experiment consumed over 2 months

worth of computer time, split across 16 processors (8 computers) each running for

significant portions of a 2 week period. The results of this experiment suggest that

an appropriate level of pre-loading can be used to increase the performance of IBS.

However, they also show that incorrect usage of pre-loading can actually diminish the

clustering accuracy in the long-run, which was an unexpected result. The discussion

is divided into the case in which s = 6 versus s = 12 and s = 18.

In the case where s = 6, shown in figures A-21 through A-23, a pattern emerges

that adding pre-loading sequences of length 100 or 1000 increases performance while

adding 10 or 10000 hurts performance. Initially, these results were believed to be

flawed, but careful analysis suggests a reason for this pattern. When no pre-loading

is used, the first segment is always labeled “1”, and similarly, subsequent clusters

are numbered in sequence. However, when a very small amount of pre-loading is

used, the pre-load matrices occupy the first 10 positions. Should the first segment

of real data not be subsumed into any of the pre-load matrices, it will be labeled

as “11” and forever lower accuracy even when the algorithm correctly attributes

later segments generated from the same stochastic process to that segment. This

phenomenon explains why having very short pre-load sequences can hurt performance

as an artifact of the manner in which performance is measured. Similarly, adding

pre-load sequences that are too long produces a type of over-fitting in which short

segments produced later in the data-set may not be added to the correct cluster due

to sampling variations. For example, if the pre-load length is 10000 but the execution

length is only 10 or 100, it is likely that some of the segments will be incorrectly added

as new clusters simply because they happen to diverge from the strongly entrenched

cluster. Again, they are added with values greater than 10 and will forever hurt

accuracy when subsequent segments are subsumed into them. Comparing uniformly

97

sampled matrices to biased matrices for the case in which s = 6 shows that the effects

of the bias are strongest when pre-loading is not used. This is a very fortunate result

as the concept of pre-loading was introduced to combat the problem that sendmail

processes tend to be highly biased.

When s = 12 or s = 18, similar patterns emerge except that the optimal threshold

for pre-loading move up from 100 or 1000 to 1000 or 10000. This phenomenon makes

sense as larger matrices require much more data in order to become stable. A 6x6

matrix has 30 parameters while a 12x12 has 132 and an 18x18 has 306. Given these

relationships, and the arguments in the previous paragraph, it is reasonable that

larger pre-loading strengths should be used when the number of states is higher.

Unfortunately, not enough computer time was available to fully explore the space of

parameters in order to fully optimize the process for use in an IDS.

98

Chapter 4

Conclusion

I began this thesis with the intention of constructing an IDS using the MAITA frame-

work and data-monitors built around the IBS algorithm. However, the entire task

of constructing an IDS according to the priniciples outlined in the first chapter was

too complex of an undertaking for an MEng thesis. Therefore, I decided to focus on

the analysis of IBS and its performance on synthetic data-sets under a wide range

of inputs and parameterizations. This chapter summarizes the chief contributions of

this thesis.

The first major contribution of this thesis is the porting of the IBS algorithm from

common-LISP to java, C++, and C. In addition, the parsing engine for the code was

substantially re-written in order to support many types of data-set annotation. Such

annotations were used, for instance, to distinguish between training and classification

data, to allow for forced-break points in the segmentation portion of the algorithm,

and to inject pre-loaded matrices into the algorithm’s library. In addition, the C ver-

sion of the code was written to support parallelized operations on an MPI-compatible

super-computer such as beowulf.lcs.mit.edu. Such parallelization was used to reduce

training time and made several of the experiments described in the previous chapter

much more feasible.

Several algorithmic options were added to the implementation of IBS. First, the

concept of forced-break points was added in order to take advantage of the fact

that system call traces also contain a time-series of PIDs. The points at which PID

99

changes represent known discontinuities in the time-series and IBS was made aware of

these events through data-set annotations. In addition, the option to perform MDL

clustering rather than the standard Bayesian clustering was added. This option makes

sense only for very small values of s, which is not particularly relevant for use in an

IDS, but could be very useful if the code were applied to genomic data-sets.

A large corpus of code was written for this thesis that related to pre-processing of

system-call traces. Initial analysis indicated that a great deal of state reduction would

need to be performed in order to make use of the IBS algorithm on system-call data.

Code was written in order to parse SunOS truss files, applying a number of rules

discussed in the implementation chapter, in order to produce files suitable for input

to IBS. Finally, a great deal of code was written in order to develop synthetic data-

sets such as those used in the experiments section. The construction of “random”

matrices turned out to be a much more subtle problem than originally believed, as

discussed in section (1.9.2).

Unfortunately, the largest obstacle between the current implementation and a

complete IDS is the need for automated data-pre-processing. This thesis has demon-

strated that the number of Markov states used to characterize process behavior must

be reduced significantly below the number of system calls that a process actually

makes. A great deal of state reduction was performed manually for sendmail, as

described in the experiments section. However these steps would need to be made

more rigorous and mathematically justified before expanding the code to analyze

other unix processes. In addition, tools would need to be developed for scanning

executable programs for the set of system calls that they make.1

One possible avenue for state reduction that is particularly appealing is the use

of grammar-learning algorithms such as sequitur [19]. Such algorithms attempt to

describe a time-series by learning common types of components that are used to

construct the series. The assumption is that the series contains sub-structures that

are combined in a systematic manner. For example, a sendmail trace contains many

1Although this scanning is not possible in the most general sense, it should be possible to establish
a superset of the calls that a program will make, assuming that it does not use self-modifying code

100

sections that correspond to reading a file from a socket and then writing that file to

disk. These sections would appear in the trace as a long series of read calls followed by

a long series of write calls. Unfortunately, this higher level pattern is not evident to

IBS, which only looks at the transition probabilities between consecutive pairs of calls

when trying to characterize the process. A grammar learning approach could be used

to form a better set of pseudo-states than those used by the current implementation

of IBS.

101

102

Appendix A

Experimental Results

A.1 Average segment length vs. β

The following experiments show the relationship between β and the average segment

length produced by the segmentation portion of the IBS algorithm. The value k

represents the actual value of the segment lengths used to generate the data-sets. It

ranges from 10 to 1000. Ideally, one would expect the average segment length to

match k. The optimal value of β is defined to be the choice that produces an average

segment length that is closest to k.

103

File States β Average Segment Length k
ds1 6 1.0000 7.0781 1000
ds1 6 2.0000 302.1118 1000
ds1 6 2.5800 523.5550 1000
ds1 6 3.0000 704.2183 1000
ds1 6 4.0000 1162.7791 1000

ds1 6 5.0000 1515.1364 1000
ds1 6 6.0000 1886.7736 1000
ds1 6 7.0000 2272.7045 1000
ds2 6 1.0000 5.9624 100
ds2 6 2.0000 90.0811 100

ds2 6 2.5800 133.3200 100
ds2 6 3.0000 192.2885 100
ds2 6 4.0000 285.6857 100
ds2 6 5.0000 384.5769 100
ds2 6 6.0000 499.9500 100
ds2 6 7.0000 769.1538 100
ds3 6 1.0000 5.8060 50
ds3 6 2.0000 69.4306 50

ds3 6 2.5800 108.6739 50
ds3 6 3.0000 131.5526 50
ds3 6 4.0000 192.2692 50
ds3 6 5.0000 238.0476 50
ds3 6 6.0000 384.5385 50
ds3 6 7.0000 833.1667 50
ds4 6 1.0000 4.8495 10

ds4 6 2.0000 37.0000 10
ds4 6 2.5800 49.9500 10
ds4 6 3.0000 66.6000 10
ds4 6 4.0000 99.9000 10
ds4 6 5.0000 142.7143 10
ds4 6 6.0000 333.0000 10
ds4 6 7.0000 999.0000 10

Figure A-1: Average segment length vs. β for matrices with 6 states

104

File States β Average Segment Length k
ds5 12 1.0000 6.2499 1000
ds5 12 2.0000 383.1379 1000
ds5 12 2.5800 813.0000 1000
ds5 12 3.0000 917.4220 1000
ds5 12 4.0000 999.9900 1000

ds5 12 5.0000 1030.9175 1000
ds5 12 6.0000 1282.0385 1000
ds5 12 7.0000 1612.8871 1000
ds6 12 1.0000 5.7499 100
ds6 12 2.0000 88.4867 100

ds6 12 2.5800 156.2344 100
ds6 12 3.0000 172.3966 100
ds6 12 4.0000 256.3846 100
ds6 12 5.0000 312.4688 100
ds6 12 6.0000 370.3333 100
ds6 12 7.0000 476.1429 100
ds7 12 1.0000 6.2960 50
ds7 12 2.0000 64.0897 50

ds7 12 2.5800 104.1458 50
ds7 12 3.0000 124.9750 50
ds7 12 4.0000 178.5357 50
ds7 12 5.0000 227.2273 50
ds7 12 6.0000 294.0588 50
ds7 12 7.0000 333.2667 50
ds8 12 1.0000 4.5409 10

ds8 12 2.0000 43.4348 10
ds8 12 2.5800 71.3571 10
ds8 12 3.0000 83.2500 10
ds8 12 4.0000 142.7143 10
ds8 12 5.0000 166.5000 10
ds8 12 6.0000 249.7500 10
ds8 12 7.0000 249.7500 10

Figure A-2: Average segment length vs. β for matrices with 12 states

105

File States β Average Segment Length k
ds9 18 1.0000 26.0958 1000
ds9 18 2.0000 515.4588 1000
ds9 18 2.5800 781.2422 1000
ds9 18 3.0000 943.3868 1000
ds9 18 4.0000 999.9900 1000

ds9 18 5.0000 1011.9900 1000
ds9 18 6.0000 1098.8901 1000
ds9 18 7.0000 1388.8750 1000
ds10 18 1.0000 22.3691 100
ds10 18 2.0000 109.8791 100

ds10 18 2.5800 163.9180 100
ds10 18 3.0000 212.7447 100
ds10 18 4.0000 270.2432 100
ds10 18 5.0000 344.7931 100
ds10 18 6.0000 416.6250 100
ds10 18 7.0000 476.1429 100
ds11 18 1.0000 19.8373 50

ds11 18 2.0000 81.9508 50
ds11 18 2.5800 104.1458 50
ds11 18 3.0000 151.4848 50
ds11 18 4.0000 208.2917 50
ds11 18 5.0000 263.1053 50
ds11 18 6.0000 333.2667 50
ds11 18 7.0000 384.5385 50
ds12 18 1.0000 18.8491 10

ds12 18 2.0000 62.4375 10
ds12 18 2.5800 99.9000 10
ds12 18 3.0000 142.7143 10
ds12 18 4.0000 166.5000 10
ds12 18 5.0000 249.7500 10
ds12 18 6.0000 333.0000 10
ds12 18 7.0000 333.0000 10

Figure A-3: Average segment length vs. β for matrices with 18 states

106

File sampling States β Average Segment Length k
ds21 KL < 1 18 1.0000 24.8321 1000
ds21 KL < 1 18 2.0000 440.5242 1000
ds21 KL < 1 18 2.5800 740.7333 1000
ds21 KL < 1 18 3.0000 943.3868 1000
ds21 KL < 1 18 4.0000 990.0891 1000

ds21 KL < 1 18 5.0000 1020.3980 1000
ds21 KL < 1 18 6.0000 1149.4138 1000
ds21 KL < 1 18 7.0000 1428.5571 1000
ds22 KL < 1 18 1.0000 23.1458 100
ds22 KL < 1 18 2.0000 112.3483 100

ds22 KL < 1 18 2.5800 153.8308 100
ds22 KL < 1 18 3.0000 204.0612 100
ds22 KL < 1 18 4.0000 285.6857 100
ds22 KL < 1 18 5.0000 357.1071 100
ds22 KL < 1 18 6.0000 416.6250 100
ds22 KL < 1 18 7.0000 499.9500 100
ds23 KL < 1 18 1.0000 22.1195 50

ds23 KL < 1 18 2.0000 94.3208 50
ds23 KL < 1 18 2.5800 124.9750 50
ds23 KL < 1 18 3.0000 151.4848 50
ds23 KL < 1 18 4.0000 208.2917 50
ds23 KL < 1 18 5.0000 277.7222 50
ds23 KL < 1 18 6.0000 333.2667 50
ds23 KL < 1 18 7.0000 384.5385 50
ds24 KL < 1 18 1.0000 20.8125 10

ds24 KL < 1 18 2.0000 58.7647 10
ds24 KL < 1 18 2.5800 76.8462 10
ds24 KL < 1 18 3.0000 90.8182 10
ds24 KL < 1 18 4.0000 142.7143 10
ds24 KL < 1 18 5.0000 199.8000 10
ds24 KL < 1 18 6.0000 199.8000 10
ds24 KL < 1 18 7.0000 333.0000 10

Figure A-4: Average segment length vs. β for biased (KL < 1) matrices with 18
states

107

File Sampling States β Average Segment Length k
ds33 KL < 0.75 18 1.0000 26.9612 1000
ds33 KL < 0.75 18 2.0000 298.5045 1000
ds33 KL < 0.75 18 2.5800 529.0952 1000
ds33 KL < 0.75 18 3.0000 757.5682 1000
ds33 KL < 0.75 18 4.0000 970.8641 1000
ds33 KL < 0.75 18 5.0000 999.9900 1000

ds33 KL < 0.75 18 6.0000 1125.9900 1000
ds33 KL < 0.75 18 7.0000 1249.9875 1000
ds34 KL < 0.75 18 1.0000 22.3691 100
ds34 KL < 0.75 18 2.0000 106.3723 100

ds34 KL < 0.75 18 2.5800 151.5000 100
ds34 KL < 0.75 18 3.0000 192.2885 100
ds34 KL < 0.75 18 4.0000 270.2432 100
ds34 KL < 0.75 18 5.0000 333.3000 100
ds34 KL < 0.75 18 6.0000 399.9600 100
ds34 KL < 0.75 18 7.0000 476.1429 100
ds35 KL < 0.75 18 1.0000 22.0220 50

ds35 KL < 0.75 18 2.0000 86.1897 50
ds35 KL < 0.75 18 2.5800 116.2558 50
ds35 KL < 0.75 18 3.0000 147.0294 50
ds35 KL < 0.75 18 3.0000 147.0294 50
ds35 KL < 0.75 18 4.0000 227.2273 50
ds35 KL < 0.75 18 5.0000 277.7222 50
ds35 KL < 0.75 18 6.0000 357.0714 50
ds35 KL < 0.75 18 7.0000 454.4545 50
ds36 KL < 0.75 18 1.0000 21.7174 10

ds36 KL < 0.75 18 2.0000 62.4375 10
ds36 KL < 0.75 18 2.5800 90.8182 10
ds36 KL < 0.75 18 3.0000 142.7143 10
ds36 KL < 0.75 18 4.0000 199.8000 10
ds36 KL < 0.75 18 5.0000 249.7500 10
ds36 KL < 0.75 18 6.0000 333.0000 10
ds36 KL < 0.75 18 7.0000 333.0000 10

Figure A-5: Average segment length vs. β for biased (KL < 0.75) matrices with 18
states

108

A.1.1 Summary

File Sampling States β Average Segment Length k
ds1 uniform 6 4.0000 1162.7791 1000
ds2 uniform 6 2.0000 90.0811 100
ds3 uniform 6 2.0000 69.4306 50
ds4 uniform 6 1.0000 4.8495 10
ds13 KL < 1 6 3.0000 952.3714 1000
ds14 KL < 1 6 2.0000 87.7105 100
ds15 KL < 1 6 2.0000 59.5119 50
ds16 KL < 1 6 1.0000 3.9801 10
ds25 KL < 0.75 6 4.0000 1282.0385 1000
ds26 KL < 0.75 6 2.0000 84.0252 100
ds27 KL < 0.75 6 2.0000 51.5361 10
ds28 KL < 0.75 6 1.0000 4.6037 1000

Figure A-6: Optimal choice of β for matrices with 6 states

File Sampling States β Average Segment Length k
ds5 uniform 12 4.0000 999.9900 1000
ds6 uniform 12 2.0000 88.4867 100
ds7 uniform 12 2.0000 64.0897 50
ds8 uniform 12 1.0000 4.5409 10
ds17 KL < 1 12 4.0000 990.0891 1000
ds18 KL < 1 12 2.0000 78.1172 100
ds19 KL < 1 12 2.0000 69.4306 50
ds20 KL < 1 12 1.0000 5.9112 10
ds29 KL < 0.75 12 4.0000 1010.0909 1000
ds30 KL < 0.75 12 2.0000 91.7339 100
ds31 KL < 0.75 12 2.0000 78.1094 50
ds32 KL < 0.75 12 1.0000 4.0445 10

Figure A-7: Optimal choice of β for matrices with 12 states

109

File Sampling States β Average Segment Length k
ds9 uniform 18 4.0000 999.9900 1000
ds10 uniform 18 2.0000 109.8791 100
ds11 uniform 18 1.0000 19.8373 50
ds12 uniform 18 1.0000 18.8491 10
ds21 KL < 1 18 4.0000 990.0891 1000
ds22 KL < 1 18 2.0000 112.3483 100
ds23 KL < 1 18 1.0000 22.1195 50
ds24 KL < 1 18 1.0000 20.8125 10
ds33 KL < 0.75 18 5.0000 999.9900 1000
ds34 KL < 0.75 18 2.0000 106.3723 100
ds35 KL < 0.75 18 1.0000 22.0220 50
ds36 KL < 0.75 18 1.0000 21.7174 10

Figure A-8: Optimal choice of β for matrices with 18 states

110

A.2 Clustering Performance

The following charts explore the relationship between β and the clustering perfor-

mance of IBS. The accuracy of clustering is defined as the total number of transitions

that are correctly labeled. MDL1 refers to MDL clustering with s2 degrees of free-

dom while MDL2 refers to MDL clustering with s degrees of freedom. There are 10

matrices in each experiment, meaning that random guessing should produce an ac-

curacy of 10%. The optimal row in each of the charts refers to optimal segmentation

based upon break-point annotation in the data-sets. In other words, these particular

executions of IBS do not use the segmentation portion of the algorithm and therefore

provide a baseline accuracy based solely on the clustering portion of the algorithm.

After performing the experiment on the data-sets with 6 states, the number of β

values was reduced based upon the observation that values below 2 or greater than 4

were clearly sub-optimal.

111

File Sampling States k β Bayesian MDL1 MDL2
ds1 uniform 6 1000 1.00 0.0135 0.0747 0.0835
ds1 uniform 6 1000 2.00 0.0918 0.0918 0.2145
ds1 uniform 6 1000 2.58 0.2396 0.1821 0.3411
ds1 uniform 6 1000 3.00 0.8149 0.7397 0.3332
ds1 uniform 6 1000 4.00 0.1279 0.1279 0.3486

ds1 uniform 6 1000 5.00 0.0697 0.0697 0.0957
ds1 uniform 6 1000 6.00 0.0285 0.0685 0.1248
ds1 uniform 6 1000 7.00 0.0428 0.0428 0.0979
ds1 uniform 6 1000 optimal 0.9990 0.9990 0.0999

ds2 uniform 6 100 1.00 0.0172 0.0892 0.1053
ds2 uniform 6 100 2.00 0.1311 0.0999 0.1000
ds2 uniform 6 100 2.58 0.2138 0.0999 0.1000
ds2 uniform 6 100 3.00 0.2088 0.0999 0.1000
ds2 uniform 6 100 4.00 0.0621 0.0999 0.1000
ds2 uniform 6 100 5.00 0.0554 0.0999 0.1000
ds2 uniform 6 100 6.00 0.0999 0.0999 0.1000
ds2 uniform 6 100 7.00 0.0999 0.0999 0.1000
ds2 uniform 6 100 optimal 0.8119 0.1989 0.1990

ds3 uniform 6 50 1.00 0.0770 0.0996 0.0956
ds3 uniform 6 50 2.00 0.2178 0.0998 0.1000
ds3 uniform 6 50 2.58 0.0540 0.0998 0.1000
ds3 uniform 6 50 3.00 0.0752 0.0998 0.1000
ds3 uniform 6 50 4.00 0.0676 0.0998 0.1000
ds3 uniform 6 50 5.00 0.0998 0.0998 0.1000
ds3 uniform 6 50 6.00 0.0998 0.0998 0.1000
ds3 uniform 6 50 7.00 0.0998 0.0998 0.1000
ds3 uniform 6 50 optimal 0.8724 0.0998 0.1000

ds4 uniform 6 10 1.00 0.0591 0.0991 0.0991
ds4 uniform 6 10 2.00 0.1011 0.0991 0.1001
ds4 uniform 6 10 2.58 0.1061 0.0991 0.1001
ds4 uniform 6 10 3.00 0.0991 0.0991 0.1001
ds4 uniform 6 10 4.00 0.0991 0.0991 0.1001
ds4 uniform 6 10 5.00 0.0991 0.0991 0.1001
ds4 uniform 6 10 6.00 0.0991 0.0991 0.1001
ds4 uniform 6 10 7.00 0.0991 0.0991 0.1001
ds4 uniform 6 10 optimal 0.3524 0.0991 0.1001

Figure A-9: Clustering performance for uniformly sampled matrices with 6 states

112

File Sampling States k β Bayesian MDL1 MDL2
ds13 KL < 1 6 1000 1.00 0.0191 0.0828 0.0146
ds13 KL < 1 6 1000 2.00 0.1190 0.1196 0.0571
ds13 KL < 1 6 1000 2.58 0.9042 0.9089 0.0843
ds13 KL < 1 6 1000 3.00 0.8840 0.8840 0.1070
ds13 KL < 1 6 1000 4.00 0.7845 0.7845 0.1612
ds13 KL < 1 6 1000 5.00 0.4733 0.3945 0.3765
ds13 KL < 1 6 1000 6.00 0.0765 0.1427 0.3319
ds13 KL < 1 6 1000 7.00 0.0921 0.1143 0.1555
ds13 KL < 1 6 1000 optimal 0.9990 0.9990 0.0009

ds14 KL < 1 6 100 1.00 0.0273 0.0973 0.0995
ds14 KL < 1 6 100 2.00 0.1302 0.0999 0.1000
ds14 KL < 1 6 100 2.58 0.1435 0.0999 0.1000
ds14 KL < 1 6 100 3.00 0.1063 0.0999 0.1000
ds14 KL < 1 6 100 4.00 0.0863 0.0999 0.1000
ds14 KL < 1 6 100 5.00 0.0609 0.0999 0.1000
ds14 KL < 1 6 100 6.00 0.0852 0.0999 0.1000
ds14 KL < 1 6 100 7.00 0.0970 0.0999 0.1000
ds14 KL < 1 6 100 optimal 0.7901 0.0999 0.1000

ds15 KL < 1 6 50 1.00 0.0692 0.0980 0.0998
ds15 KL < 1 6 50 2.00 0.0432 0.0998 0.1000
ds15 KL < 1 6 50 2.58 0.1408 0.0998 0.1000
ds15 KL < 1 6 50 3.00 0.0994 0.0998 0.1000
ds15 KL < 1 6 50 4.00 0.1352 0.0998 0.1000
ds15 KL < 1 6 50 5.00 0.0842 0.0998 0.1000
ds15 KL < 1 6 50 6.00 0.0998 0.0998 0.1000
ds15 KL < 1 6 50 7.00 0.0998 0.0998 0.1000
ds15 KL < 1 6 50 optimal 0.5979 0.0996 0.1000

ds16 KL < 1 6 10 1.00 0.0460 0.0961 0.1011
ds16 KL < 1 6 10 2.00 0.1221 0.0991 0.1001
ds16 KL < 1 6 10 2.58 0.1091 0.0991 0.1001
ds16 KL < 1 6 10 3.00 0.0891 0.0991 0.1001
ds16 KL < 1 6 10 4.00 0.0991 0.0991 0.1001
ds16 KL < 1 6 10 5.00 0.1091 0.0991 0.1001
ds16 KL < 1 6 10 6.00 0.0991 0.0991 0.1001
ds16 KL < 1 6 10 7.00 0.0991 0.0991 0.1001
ds16 KL < 1 6 10 optimal 0.0951 0.0901 0.0991

Figure A-10: Clustering performance for biased matrices (KL < 1) with 6 states

113

File Sampling States k β Bayesian MDL1 MDL2
ds25 KL < .75 6 1000 2.00 0.0855 0.0999 0.3037
ds25 KL < .75 6 1000 2.58 0.0668 0.1011 0.0309
ds25 KL < .75 6 1000 3.00 0.3897 0.3754 0.3841

ds25 KL < .75 6 1000 4.00 0.2465 0.2111 0.1520
ds25 KL < .75 6 1000 optimal 0.9990 0.8991 0.5997

ds26 KL < .75 6 100 2.00 0.1589 0.0999 0.1000
ds26 KL < .75 6 100 2.58 0.1697 0.0999 0.1000
ds26 KL < .75 6 100 3.00 0.1289 0.0999 0.1000
ds26 KL < .75 6 100 4.00 0.1080 0.0999 0.1000
ds26 KL < .75 6 100 optimal 0.6040 0.0999 0.1000

ds27 KL < .75 6 50 2.00 0.1352 0.0998 0.1000
ds27 KL < .75 6 50 2.58 0.1164 0.0998 0.1000
ds27 KL < .75 6 50 3.00 0.0998 0.0920 0.0926
ds27 KL < .75 6 50 4.00 0.0998 0.0998 0.1000
ds27 KL < .75 6 optimal 50 0.3829 0.0898 0.0998

ds28 KL < .75 6 10 2.00 0.1011 0.0991 0.1001
ds28 KL < .75 6 10 2.58 0.0991 0.0991 0.1001
ds28 KL < .75 6 10 3.00 0.0991 0.0991 0.1001
ds28 KL < .75 6 10 4.00 0.0991 0.0991 0.1001
ds28 KL < .75 6 10 optimal 0.1011 0.0991 0.1001

Figure A-11: Clustering performance for biased matrices (KL < .75) with 6 states

114

File Sampling States k β Bayesian MDL1 MDL2
ds5 uniform 12 1000 2.00 0.0917 0.1000 0.1000
ds5 uniform 12 1000 2.58 0.5444 0.1000 0.1000
ds5 uniform 12 1000 3.00 0.8796 0.1000 0.1000
ds5 uniform 12 1000 4.00 0.8215 0.1000 0.1000
ds5 uniform 12 1000 optimal 0.9990 0.2898 0.0002

ds6 uniform 12 100 2.00 0.0805 0.0998 0.1001
ds6 uniform 12 100 2.58 0.0249 0.0999 0.1000
ds6 uniform 12 100 3.00 0.0647 0.0999 0.1000
ds6 uniform 12 100 4.00 0.0099 0.0999 0.1000
ds6 uniform 12 100 optimal 0.9901 0.0900 0.0999

ds7 uniform 12 50 2.00 0.0710 0.0998 0.1000
ds7 uniform 12 50 2.58 0.1020 0.0998 0.1000
ds7 uniform 12 50 3.00 0.0774 0.0998 0.1000
ds7 uniform 12 50 4.00 0.0522 0.0998 0.1000
ds7 uniform 12 50 optimal 0.6567 0.1096 0.0902

ds8 uniform 12 10 2.00 0.0781 0.0991 0.1001
ds8 uniform 12 10 2.58 0.1151 0.0991 0.1001
ds8 uniform 12 10 3.00 0.1081 0.0991 0.1001
ds8 uniform 12 10 4.00 0.1001 0.0991 0.1001
ds8 uniform 12 10 optimal 0.0851 0.1081 0.1001

Figure A-12: Clustering performance for uniformly sampled matrices with 12 states

115

File Sampling States k β Bayesian MDL1 MDL2
ds17 KL < 1 12 1000 2.00 0.2078 0.1000 0.1000
ds17 KL < 1 12 1000 2.58 0.4504 0.1000 0.1000
ds17 KL < 1 12 1000 3.00 0.7211 0.1000 0.1000
ds17 KL < 1 12 1000 4.00 0.8483 0.1000 0.1000
ds17 KL < 1 12 1000 optimal 0.9990 0.1999 0.1999

ds18 KL < 1 12 100 2.00 0.2200 0.0999 0.0999
ds18 KL < 1 12 100 2.58 0.1743 0.0999 0.1000
ds18 KL < 1 12 100 3.00 0.1081 0.0999 0.1000
ds18 KL < 1 12 100 4.00 0.1098 0.0999 0.1000
ds18 KL < 1 12 100 optimal 0.9901 0.0999 0.1000

ds19 KL < 1 12 50 2.00 0.1530 0.1004 0.1000
ds19 KL < 1 12 50 2.58 0.0778 0.0998 0.1000
ds19 KL < 1 12 50 3.00 0.1316 0.0998 0.1000
ds19 KL < 1 12 50 4.00 0.0724 0.0998 0.1000
ds19 KL < 1 12 50 optimal 0.4999 0.0998 0.1000

ds20 KL < 1 12 10 2.00 0.0681 0.0991 0.0991
ds20 KL < 1 12 10 2.58 0.0891 0.0991 0.1001
ds20 KL < 1 12 10 3.00 0.0891 0.0991 0.1001
ds20 KL < 1 12 10 4.00 0.1141 0.0991 0.1001
ds20 KL < 1 12 10 optimal 0.1481 0.0981 0.1001

Figure A-13: Clustering performance for biased matrices (KL < 1) with 12 states

116

File Sampling States k β Bayesian MDL1 MDL2
ds29 KL < .75 12 1000 2.00 0.1153 0.1000 0.1000
ds29 KL < .75 12 1000 2.58 0.1830 0.1000 0.1000
ds29 KL < .75 12 1000 3.00 0.1794 0.1000 0.1000
ds29 KL < .75 12 1000 4.00 0.8227 0.1000 0.1000
ds29 KL < .75 12 1000 optimal 0.9990 0.1000 0.1000

ds30 KL < .75 12 100 2.00 0.0713 0.0999 0.1001
ds30 KL < .75 12 100 2.58 0.0615 0.0999 0.1000
ds30 KL < .75 12 100 3.00 0.0476 0.0999 0.1000
ds30 KL < .75 12 100 4.00 0.1185 0.0999 0.1000
ds30 KL < .75 12 100 optimal 0.5347 0.0999 0.1000

ds31 KL < .75 12 50 2.00 0.1034 0.0998 0.1000
ds31 KL < .75 12 50 2.58 0.1626 0.0998 0.1000
ds31 KL < .75 12 50 3.00 0.0998 0.0998 0.1000
ds31 KL < .75 12 50 4.00 0.0998 0.0998 0.1000
ds31 KL < .75 12 50 optimal 0.3055 0.0998 0.1000

ds32 KL < .75 12 10 2.00 0.1021 0.0991 0.0991
ds32 KL < .75 12 10 2.58 0.1051 0.0991 0.1001
ds32 KL < .75 12 10 3.00 0.0951 0.0991 0.1001
ds32 KL < .75 12 10 4.00 0.0991 0.0991 0.1001
ds32 KL < .75 12 10 optimal 0.1101 0.0981 0.0921

Figure A-14: Clustering performance for biased matrices (KL < 0.75) with 12 states

117

File Sampling States k β Bayesian MDL1 MDL2
ds9 uniform 18 1000 2.00 0.1891 0.1000 0.1000
ds9 uniform 18 1000 2.58 0.3082 0.1000 0.1000
ds9 uniform 18 1000 3.00 0.2666 0.1000 0.1000
ds9 uniform 18 1000 4.00 0.8241 0.1000 0.1000
ds9 uniform 18 1000 optimal 0.9990 0.0900 0.1000

ds10 uniform 18 100 2.00 0.2395 0.0999 0.0999
ds10 uniform 18 100 2.58 0.2083 0.0999 0.1000
ds10 uniform 18 100 3.00 0.0778 0.0999 0.1000
ds10 uniform 18 100 4.00 0.0699 0.0999 0.1000
ds10 uniform 18 100 optimal 0.8515 0.0999 0.1000

ds11 uniform 18 50 2.00 0.0610 0.0998 0.1000
ds11 uniform 18 50 2.58 0.0240 0.0998 0.1002
ds11 uniform 18 50 3.00 0.0360 0.0998 0.1000
ds11 uniform 18 50 4.00 0.0850 0.0998 0.1000
ds11 uniform 18 50 optimal 0.4313 0.1096 0.1000

ds12 uniform 18 10 2.00 0.0791 0.0991 0.1001
ds12 uniform 18 10 2.58 0.1101 0.0991 0.1001
ds12 uniform 18 10 3.00 0.1011 0.0991 0.1001
ds12 uniform 18 10 4.00 0.1071 0.0991 0.1001
ds12 uniform 18 10 optimal 0.1061 0.1081 0.1001

Figure A-15: Clustering performance for uniformly sampled matrices with 18 states

118

File Sampling States k β Bayesian MDL1 MDL2
ds21 KL < 1 18 1000 2.00 0.0946 0.1000 0.1000
ds21 KL < 1 18 1000 2.58 0.3797 0.1000 0.1000
ds21 KL < 1 18 1000 3.00 0.4806 0.1000 0.1000
ds21 KL < 1 18 1000 4.00 0.8400 0.1000 0.1000
ds21 KL < 1 18 1000 optimal 0.9890 0.1000 0.0900

ds22 KL < 1 18 100 2.00 0.0300 0.0999 0.1000
ds22 KL < 1 18 100 2.58 0.0147 0.0999 0.1000
ds22 KL < 1 18 100 3.00 0.0839 0.0999 0.1000
ds22 KL < 1 18 100 4.00 0.0555 0.0999 0.1000
ds22 KL < 1 18 100 optimal 0.8020 0.0999 0.0902

ds23 KL < 1 18 50 2.00 0.0198 0.0998 0.1000
ds23 KL < 1 18 50 2.58 0.0532 0.0998 0.1000
ds23 KL < 1 18 50 3.00 0.0806 0.0998 0.1000
ds23 KL < 1 18 50 4.00 0.1242 0.0998 0.1086
ds23 KL < 1 18 50 optimal 0.2058 0.1096 0.1000

ds24 KL < 1 18 10 2.00 0.0831 0.0991 0.1001
ds24 KL < 1 18 10 2.58 0.1021 0.0991 0.1001
ds24 KL < 1 18 10 3.00 0.1191 0.0991 0.1001
ds24 KL < 1 18 10 4.00 0.0991 0.0991 0.1001
ds24 KL < 1 18 10 optimal 0.1892 0.0991 0.0991

Figure A-16: Clustering performance for biased (KL < 1) matrices with 18 states

119

File Sampling States k β Bayesian MDL1 MDL2
ds33 KL < .75 18 1000 2.00 0.0085 0.1000 0.1000
ds33 KL < .75 18 1000 2.58 0.0970 0.1000 0.1000
ds33 KL < .75 18 1000 3.00 0.0972 0.1000 0.1000
ds33 KL < .75 18 1000 4.00 0.1618 0.1000 0.1000
ds33 KL < .75 18 1000 optimal 0.9990 0.1000 0.1000

ds34 KL < .75 18 100 2.00 0.0726 0.0999 0.1000
ds34 KL < .75 18 100 2.58 0.0931 0.0999 0.1000
ds34 KL < .75 18 100 3.00 0.0901 0.0999 0.1000
ds34 KL < .75 18 100 4.00 0.0822 0.0999 0.1000
ds34 KL < .75 18 100 optimal 0.7130 0.0999 0.1000

ds35 KL < .75 18 50 2.00 0.0396 0.0998 0.1000
ds35 KL < .75 18 50 2.58 0.1032 0.0998 0.1000
ds35 KL < .75 18 50 3.00 0.0994 0.0998 0.1000
ds35 KL < .75 18 50 4.00 0.0572 0.0998 0.1000
ds35 KL < .75 18 50 optimal 0.2354 0.1096 0.1000

ds36 KL < .75 18 10 2.00 0.1151 0.0991 0.1001
ds36 KL < .75 18 10 2.58 0.0901 0.0991 0.1001
ds36 KL < .75 18 10 3.00 0.1021 0.0991 0.1001
ds36 KL < .75 18 10 4.00 0.1091 0.0991 0.1001
ds36 KL < .75 18 10 optimal 0.1051 0.0991 0.1001

Figure A-17: Clustering performance for biased (KL < 0.75) matrices with 18 states

120

File Sampling States k β Bayesian
ds1 uniform 6 1000 3.00 0.8149
ds1 uniform 6 1000 optimal 0.9990
ds2 uniform 6 100 2.58 0.2138
ds2 uniform 6 100 optimal 0.8119
ds3 uniform 6 50 2.00 0.2178
ds3 uniform 6 50 optimal 0.8724
ds13 KL < 1 6 1000 2.58 0.9042
ds13 KL < 1 6 1000 optimal 0.9990
ds14 KL < 1 6 100 2.58 0.1435
ds14 KL < 1 6 100 optimal 0.7901
ds15 KL < 1 6 50 2.58 0.1408
ds15 KL < 1 6 50 optimal 0.5979
ds25 KL < .75 6 1000 3.00 0.3897
ds25 KL < .75 6 1000 optimal 0.9990
ds26 KL < .75 6 100 2.58 0.1697
ds26 KL < .75 6 100 optimal 0.6040
ds27 KL < .75 6 50 2.00 0.1352
ds27 KL < .75 6 50 optimal 0.3829

Figure A-18: Clustering Performance Summary for matrices with 6 states

File Sampling States k β Bayesian
ds5 uniform 12 1000 3.00 0.8796
ds5 uniform 12 1000 optimal 0.9990
ds6 uniform 12 100 2.00 0.0805
ds6 uniform 12 100 optimal 0.9901
ds7 uniform 12 50 2.58 0.1020
ds7 uniform 12 50 optimal 0.6567
ds17 KL < 1 12 1000 4.00 0.8483
ds17 KL < 1 12 1000 optimal 0.9990
ds18 KL < 1 12 100 2.00 0.2200
ds18 KL < 1 12 100 optimal 0.9901
ds19 KL < 1 12 50 2.00 0.1530
ds19 KL < 1 12 50 optimal 0.4999
ds29 KL < .75 12 1000 4.00 0.8227
ds29 KL < .75 12 1000 optimal 0.9990
ds30 KL < .75 12 100 4.00 0.1185
ds30 KL < .75 12 100 optimal 0.5347
ds31 KL < .75 12 50 2.58 0.1626
ds31 KL < .75 12 50 optimal 0.3055

Figure A-19: Clustering Performance Summary for matrices with 12 states

121

File Sampling States k β Bayesian
ds9 uniform 18 1000 4.00 0.8241
ds9 uniform 18 1000 optimal 0.9990
ds10 uniform 18 100 2.00 0.2395
ds10 uniform 18 100 optimal 0.8515
ds11 uniform 18 50 4.00 0.0850
ds11 uniform 18 50 optimal 0.4313
ds21 KL < 1 18 1000 4.00 0.8400
ds21 KL < 1 18 1000 optimal 0.9890
ds22 KL < 1 18 100 3.00 0.0839
ds22 KL < 1 18 100 optimal 0.8020
ds23 KL < 1 18 50 4.00 0.1242
ds23 KL < 1 18 50 optimal 0.2058

Figure A-20: Clustering Performance Summary for matrices with 18 states

122

A.3 Pre-loading Effectiveness

States Sampling Beta Pre-loading 10 100 1000 10000
6 uniform 2.000000 0 0.104838 0.310035 0.182922 0.120696
6 uniform 2.000000 10 0.099200 0.125050 0.132481 0.147653
6 uniform 2.000000 100 0.046000 0.182170 0.239921 0.305219
6 uniform 2.000000 1000 0.007800 0.071530 0.171772 0.153466
6 uniform 2.000000 10000 0.000000 0.019720 0.141998 0.150960
6 uniform 2.580000 0 0.091102 0.179801 0.468938 0.333690
6 uniform 2.580000 10 0.097000 0.151870 0.172143 0.210842
6 uniform 2.580000 100 0.060000 0.332330 0.558321 0.626584
6 uniform 2.580000 1000 0.019400 0.136980 0.512998 0.491024
6 uniform 2.580000 10000 0.012000 0.068380 0.345980 0.469964
6 uniform 3.000000 0 0.090900 0.124974 0.620049 0.749664
6 uniform 3.000000 10 0.089800 0.150550 0.194669 0.214946
6 uniform 3.000000 100 0.074900 0.341810 0.670799 0.730659
6 uniform 3.000000 1000 0.056429 0.154400 0.603472 0.819076
6 uniform 3.000000 10000 0.050000 0.048340 0.511789 0.731456
6 uniform 4.000000 0 0.090900 0.103814 0.608073 0.954776
6 uniform 4.000000 10 0.090500 0.136290 0.177335 0.198318
6 uniform 4.000000 100 0.080600 0.242090 0.661241 0.833645
6 uniform 4.000000 1000 0.094600 0.063540 0.643298 0.942449
6 uniform 4.000000 10000 0.098000 0.035680 0.382132 0.939212
6 uniform optimal 0 0.426185 0.947113 0.999100 0.999900
6 uniform optimal 10 0.155400 0.162820 0.185795 0.197617
6 uniform optimal 100 0.553700 0.818730 0.777671 0.723717
6 uniform optimal 1000 0.706557 0.924660 0.833166 0.754186
6 uniform optimal 10000 0.676327 0.932580 0.868898 0.771900

Figure A-21: Pre-loading Results for uniformly sampled matrices with 6 states

123

States Sampling Beta Pre-loading 10 100 1000 10000
6 KL < 1 2.000000 0 0.094132 0.277134 0.181806 0.161876
6 KL < 1 2.000000 10 0.080200 0.094020 0.127324 0.103270
6 KL < 1 2.000000 100 0.058400 0.155820 0.226006 0.233368
6 KL < 1 2.000000 1000 0.006800 0.052040 0.144052 0.156996
6 KL < 1 2.000000 10000 0.003000 0.028180 0.146546 0.131692
6 KL < 1 2.580000 0 0.094536 0.180122 0.464986 0.463384
6 KL < 1 2.580000 10 0.094000 0.141940 0.192844 0.169758
6 KL < 1 2.580000 100 0.073800 0.367580 0.506030 0.558640
6 KL < 1 2.580000 1000 0.013600 0.136960 0.440644 0.578896
6 KL < 1 2.580000 10000 0.007800 0.065340 0.406996 0.384790
6 KL < 1 3.000000 0 0.090900 0.120438 0.688020 0.707962
6 KL < 1 3.000000 10 0.086400 0.149420 0.167812 0.141084
6 KL < 1 3.000000 100 0.079600 0.340820 0.659052 0.708692
6 KL < 1 3.000000 1000 0.052400 0.193960 0.702044 0.764114
6 KL < 1 3.000000 10000 0.052000 0.100880 0.535552 0.713450
6 KL < 1 4.000000 0 0.090900 0.101302 0.631052 0.939748
6 KL < 1 4.000000 10 0.103400 0.119460 0.158766 0.176340
6 KL < 1 4.000000 100 0.071000 0.247740 0.617860 0.776534
6 KL < 1 4.000000 1000 0.092200 0.076780 0.665332 0.923462
6 KL < 1 4.000000 10000 0.098000 0.064980 0.503244 0.948696
6 KL < 1 optimal 0 0.412710 0.929558 0.999100 0.999900
6 KL < 1 optimal 10 0.150000 0.172820 0.129910 0.152000
6 KL < 1 optimal 100 0.522000 0.807900 0.703296 0.679920
6 KL < 1 optimal 1000 0.687200 0.936540 0.801198 0.767902
6 KL < 1 optimal 10000 0.693600 0.916740 0.841158 0.773900

Figure A-22: Pre-loading Results for biased (KL < 1) matrices with 6 states

124

States Sampling Beta Pre-loading 10 100 1000 10000
6 KL < 0.75 2.000000 0 0.098374 0.245028 0.167956 0.139786
6 KL < 0.75 2.000000 10 0.086600 0.111120 0.110880 0.116248
6 KL < 0.75 2.000000 100 0.071000 0.147700 0.205678 0.169892
6 KL < 0.75 2.000000 1000 0.011000 0.089120 0.179616 0.180746
6 KL < 0.75 2.000000 10000 0.015600 0.039480 0.133430 0.161658
6 KL < 0.75 2.580000 0 0.091506 0.148704 0.361226 0.316879
6 KL < 0.75 2.580000 10 0.088800 0.125120 0.161004 0.120348
6 KL < 0.75 2.580000 100 0.094800 0.351680 0.485468 0.484768
6 KL < 0.75 2.580000 1000 0.024200 0.119860 0.425026 0.395516
6 KL < 0.75 2.580000 10000 0.010000 0.063940 0.236226 0.288912
6 KL < 0.75 3.000000 0 0.090900 0.128490 0.619214 0.464042
6 KL < 0.75 3.000000 10 0.089600 0.124040 0.153430 0.159908
6 KL < 0.75 3.000000 100 0.074600 0.296380 0.600596 0.700000
6 KL < 0.75 3.000000 1000 0.028800 0.169520 0.546488 0.622898
6 KL < 0.75 3.000000 10000 0.022000 0.093520 0.428872 0.570220
6 KL < 0.75 4.000000 0 0.090900 0.099300 0.521052 0.919784
6 KL < 0.75 4.000000 10 0.097000 0.136040 0.164100 0.203168
6 KL < 0.75 4.000000 100 0.082800 0.257960 0.595680 0.667280
6 KL < 0.75 4.000000 1000 0.091400 0.112660 0.660410 0.893910
6 KL < 0.75 4.000000 10000 0.090000 0.073840 0.536732 0.903080
6 KL < 0.75 optimal 0 0.410890 0.858206 0.999100 0.999900
6 KL < 0.75 optimal 10 0.119200 0.170840 0.139886 0.158000
6 KL < 0.75 optimal 100 0.433000 0.722720 0.607396 0.621930
6 KL < 0.75 optimal 1000 0.617800 0.914760 0.773226 0.715904
6 KL < 0.75 optimal 10000 0.614000 0.940500 0.831168 0.737900

Figure A-23: Pre-loading results for biased (KL < 0.75) matrices with 6 states

125

States Sampling Beta Pre-loading 10 100 1000 10000
12 uniform 2.000000 0 0.115847 0.190524 0.127807 0.123910
12 uniform 2.000000 10 0.057400 0.065010 0.062226 0.058178
12 uniform 2.000000 100 0.025300 0.078947 0.133860 0.131530
12 uniform 2.000000 1000 0.007600 0.039460 0.110261 0.131960
12 uniform 2.000000 10000 0.006000 0.016880 0.098664 0.112774
12 uniform 2.580000 0 0.104232 0.232582 0.195337 0.188170
12 uniform 2.580000 10 0.073100 0.087250 0.086736 0.102572
12 uniform 2.580000 100 0.037600 0.169600 0.296004 0.266090
12 uniform 2.580000 1000 0.000800 0.076000 0.209564 0.227528
12 uniform 2.580000 10000 0.000000 0.032280 0.205556 0.186452
12 uniform 3.000000 0 0.090900 0.118418 0.619996 0.628178
12 uniform 3.000000 10 0.078100 0.091373 0.161330 0.162278
12 uniform 3.000000 100 0.059420 0.353653 0.648856 0.641580
12 uniform 3.000000 1000 0.036800 0.209340 0.718166 0.668078
12 uniform 3.000000 10000 0.042000 0.088060 0.599304 0.567684
12 uniform 4.000000 0 0.090900 0.104604 0.824098 0.912858
12 uniform 4.000000 10 0.095200 0.104882 0.156544 0.176300
12 uniform 4.000000 100 0.087200 0.286560 0.698218 0.791000
12 uniform 4.000000 1000 0.090000 0.136500 0.815430 0.948864
12 uniform 4.000000 10000 0.096200 0.077380 0.771958 0.959398
12 uniform optimal 0 0.410888 0.919648 0.999100 0.999900
12 uniform optimal 10 0.135400 0.155000 0.141892 0.134000
12 uniform optimal 100 0.463800 0.880324 0.703304 0.663918
12 uniform optimal 1000 0.728600 0.986040 0.949050 0.815904
12 uniform optimal 10000 0.752000 0.990000 0.985014 0.839900

Figure A-24: Pre-loading results for uniformly samples matrices with 12 states

126

States Sampling Beta Pre-loading 10 100 1000 10000
12 KL < 1 2.000000 0 0.118372 0.170872 0.135756 0.121676
12 KL < 1 2.000000 10 0.059800 0.075480 0.066080 0.050252
12 KL < 1 2.000000 100 0.050600 0.087500 0.105682 0.107926
12 KL < 1 2.000000 1000 0.007600 0.049340 0.109388 0.107548
12 KL < 1 2.000000 10000 0.005600 0.025420 0.114564 0.107194
12 KL < 1 2.580000 0 0.103828 0.248972 0.269792 0.214066
12 KL < 1 2.580000 10 0.077600 0.106220 0.073548 0.091500
12 KL < 1 2.580000 100 0.030600 0.196640 0.229670 0.229898
12 KL < 1 2.580000 1000 0.009000 0.099460 0.189108 0.230466
12 KL < 1 2.580000 10000 0.004000 0.051460 0.214274 0.156880
12 KL < 1 3.000000 0 0.090900 0.126068 0.671278 0.574630
12 KL < 1 3.000000 10 0.078800 0.092100 0.151382 0.157156
12 KL < 1 3.000000 100 0.072000 0.338280 0.585968 0.671862
12 KL < 1 3.000000 1000 0.036800 0.226700 0.616530 0.683822
12 KL < 1 3.000000 10000 0.038000 0.111140 0.545466 0.553852
12 KL < 1 4.000000 0 0.090900 0.100020 0.821918 0.958378
12 KL < 1 4.000000 10 0.098000 0.124540 0.172054 0.197900
12 KL < 1 4.000000 100 0.078600 0.301700 0.679190 0.766694
12 KL < 1 4.000000 1000 0.090200 0.142660 0.820550 0.936934
12 KL < 1 4.000000 10000 0.090000 0.079980 0.794880 0.935226
12 KL < 1 optimal 0 0.394522 0.923612 0.999100 0.999900
12 KL < 1 optimal 10 0.109400 0.148780 0.145894 0.106000
12 KL < 1 optimal 100 0.418800 0.778160 0.705304 0.647930
12 KL < 1 optimal 1000 0.672600 0.978120 0.921078 0.751900
12 KL < 1 optimal 10000 0.759000 0.984060 0.981018 0.789902

Figure A-25: Pre-loading results for biased (KL < 1) matrices with 12 states

127

States Sampling Beta Pre-loading 10 100 1000 10000
12 KL < 0.75 2.000000 0 0.116262 0.173410 0.119446 0.104144
12 KL < 0.75 2.000000 10 0.068600 0.071100 0.042360 0.062865
12 KL < 0.75 2.000000 100 0.029800 0.067200 0.110718 0.095908
12 KL < 0.75 2.000000 1000 0.012200 0.065600 0.111052 0.107800
12 KL < 0.75 2.000000 10000 0.004000 0.044780 0.100646 0.114298
12 KL < 0.75 2.580000 0 0.103424 0.201540 0.214810 0.177860
12 KL < 0.75 2.580000 10 0.065000 0.096540 0.089232 0.095314
12 KL < 0.75 2.580000 100 0.045600 0.138920 0.239994 0.259492
12 KL < 0.75 2.580000 1000 0.008000 0.105020 0.181554 0.198914
12 KL < 0.75 2.580000 10000 0.004167 0.054420 0.193440 0.160732
12 KL < 0.75 3.000000 0 0.091910 0.115550 0.515012 0.438779
12 KL < 0.75 3.000000 10 0.087500 0.108680 0.143908 0.141252
12 KL < 0.75 3.000000 100 0.078200 0.291940 0.534410 0.683016
12 KL < 0.75 3.000000 1000 0.014000 0.202640 0.446028 0.484368
12 KL < 0.75 3.000000 10000 0.002000 0.089540 0.375938 0.386760
12 KL < 0.75 4.000000 0 0.090900 0.099100 0.836116 0.891876
12 KL < 0.75 4.000000 10 0.100000 0.122680 0.138770 0.147364
12 KL < 0.75 4.000000 100 0.079800 0.315280 0.643542 0.655322
12 KL < 0.75 4.000000 1000 0.052000 0.264300 0.823764 0.893718
12 KL < 0.75 4.000000 10000 0.058000 0.148860 0.738292 0.908088
12 KL < 0.75 optimal 0 0.392702 0.794782 0.999100 0.999900
12 KL < 0.75 optimal 10 0.093400 0.129160 0.123920 0.129787
12 KL < 0.75 optimal 100 0.328000 0.748500 0.645362 0.561930
12 KL < 0.75 optimal 1000 0.636600 0.966240 0.895104 0.721900
12 KL < 0.75 optimal 10000 0.681600 0.984060 0.939060 0.761902

Figure A-26: Pre-loading results for biased (KL < 0.75) matrices with 12 states

128

States Sampling Beta Pre-loading 10 100 1000 10000
18 uniform 2.000000 0 0.097465 0.304216 0.177306 0.149648
18 uniform 2.000000 10 0.077800 0.098160 0.112086 0.131044
18 uniform 2.000000 100 0.056000 0.149620 0.218750 0.191280
18 uniform 2.000000 1000 0.002000 0.062560 0.174644 0.169448
18 uniform 2.000000 10000 0.000000 0.013500 0.118332 0.142404
18 uniform 2.580000 0 0.094738 0.163928 0.359264 0.290382
18 uniform 2.580000 10 0.063000 0.094200 0.140668 0.153986
18 uniform 2.580000 100 0.047800 0.193300 0.323494 0.383002
18 uniform 2.580000 1000 0.009600 0.104480 0.290284 0.346366
18 uniform 2.580000 10000 0.004000 0.028800 0.261922 0.275616
18 uniform 3.000000 0 0.093526 0.122964 0.630270 0.573952
18 uniform 3.000000 10 0.092000 0.083300 0.138822 0.186576
18 uniform 3.000000 100 0.050600 0.252360 0.576166 0.511334
18 uniform 3.000000 1000 0.036200 0.149860 0.547884 0.651942
18 uniform 3.000000 10000 0.022000 0.087680 0.522602 0.628444
18 uniform 4.000000 0 0.092718 0.099380 0.816640 0.923900
18 uniform 4.000000 10 0.098000 0.108700 0.148618 0.198542
18 uniform 4.000000 100 0.085200 0.197860 0.596410 0.667832
18 uniform 4.000000 1000 0.082000 0.100760 0.756502 0.913258
18 uniform 4.000000 10000 0.084000 0.051580 0.749604 0.841196
18 uniform optimal 0 0.436344 0.808656 0.999100 0.999900
18 uniform optimal 10 0.091600 0.127200 0.177868 0.211998
18 uniform optimal 100 0.325600 0.704920 0.687326 0.583926
18 uniform optimal 1000 0.706400 0.990000 0.993006 0.861900
18 uniform optimal 10000 0.760000 0.990000 0.999000 0.927900

Figure A-27: Pre-loading results for uniformly sampled matrices with 18 states

129

States Sampling Beta Pre-loading 10 100 1000 10000
18 KL < 1 2.000000 0 0.096556 0.263370 0.159294 0.151450
18 KL < 1 2.000000 10 0.085400 0.095120 0.113040 0.140942
18 KL < 1 2.000000 100 0.039200 0.152120 0.201632 0.196012
18 KL < 1 2.000000 1000 0.005800 0.058220 0.167726 0.147904
18 KL < 1 2.000000 10000 0.002000 0.035700 0.147182 0.162414
18 KL < 1 2.580000 0 0.095546 0.184266 0.304450 0.261370
18 KL < 1 2.580000 10 0.074000 0.091100 0.104982 0.115454
18 KL < 1 2.580000 100 0.044800 0.168200 0.329114 0.362824
18 KL < 1 2.580000 1000 0.006000 0.133140 0.323840 0.286336
18 KL < 1 2.580000 10000 0.004000 0.046980 0.283662 0.249958
18 KL < 1 3.000000 0 0.094738 0.112370 0.651612 0.533888
18 KL < 1 3.000000 10 0.093200 0.083060 0.171138 0.159210
18 KL < 1 3.000000 100 0.060800 0.259360 0.490610 0.538672
18 KL < 1 3.000000 1000 0.048400 0.156980 0.608498 0.701626
18 KL < 1 3.000000 10000 0.041200 0.072540 0.480022 0.580286
18 KL < 1 4.000000 0 0.090900 0.102182 0.808106 0.946652
18 KL < 1 4.000000 10 0.096000 0.094380 0.141600 0.185264
18 KL < 1 4.000000 100 0.084400 0.202880 0.595882 0.620438
18 KL < 1 4.000000 1000 0.087200 0.116240 0.736148 0.895070
18 KL < 1 4.000000 10000 0.090000 0.052900 0.778376 0.875744
18 KL < 1 optimal 0 0.427256 0.850278 0.999100 0.999900
18 KL < 1 optimal 10 0.108400 0.135100 0.123926 0.169998
18 KL < 1 optimal 100 0.319000 0.695100 0.677332 0.553946
18 KL < 1 optimal 1000 0.677200 0.986040 0.997002 0.817900
18 KL < 1 optimal 10000 0.771600 0.990000 0.999000 0.913900

Figure A-28: Pre-loading results for biased (KL < 1) matrices with 18 states

130

Bibliography

[1] J P. Anderson. Computer Security Threat Monitoring and Surveillance. James

P. Anderson Co, April 1980. Fort Washington PA.

[2] Stefan Axelsson. Intrusion detection systems: A survey and taxonomy. Technical

Report 99-15, Chalmers Univ., March 2000.

[3] M.J. Bach. The Design of the Unix Operating System. Prentice-Hall, Englewood

Cliffs, New Jersey, USA, 1986.

[4] David S. Bauer and Michael E. Koblentz. NIDX - An Expert System for Real-

Time Network Intrusion Detection. pages 98–106. IEEE, April 1988. 11-13th,

Washington, DC.

[5] M. Berthold and D. J. Hand. Intelligent Data Analysis. Springer, 2003.

[6] M. Ramoni — P. Sebastiani — P. Cohen. Bayesian clustering by dynamics.

Machine Learning, 47(1):91–121, 2002.

[7] G. F. Cooper and E. Herskovits. A bayesian method for the induction of proba-

bilistic networks from data. Machine Learning, 1992.

[8] D. Denning. An intrusion-detection model. In IEEE Transactions on Software

Engineering, 1987.

[9] Dorothy E. Denning. An Intrusion-Detection Model. 1986.

[10] Jon Doyle, Isaac Kohane, William Long, and Peter Szolovits. The architecture

of MAITA - a tool for monitoring, analysis, and interpretation.

131

[11] William Feller. An Introduction to Probability Theory and Its Applications, vol-

ume 1: Third edition. John Wiley and Sons, Inc., 1950.

[12] Stephane Forrest, Steven A. Hofmeyr, and Anil Somayaji. Computer immunol-

ogy. Communications of the ACM, 40(10):88–96, 1997.

[13] Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, and Thomas A. Longstaff.

A sense of self for Unix processes. In Proceedinges of the 1996 IEEE Symposium

on Research in Security and Privacy, pages 120–128. IEEE Computer Society

Press, 1996.

[14] P. Brinch Hansen. Operating Systems Principles. Series in Automatic Compu-

tation. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1973.

[15] G. Helmer, J. Wong, V. Honavar, and L. Miller. Intelligent agents for intrusion

detection, 1998.

[16] Wenke Lee and Salvatore Stolfo. Data mining approaches for intrusion detection.

In Proceedings of the 7th USENIX Security Symposium, San Antonio, TX, 1998.

[17] Wenke Lee, Salvatore Stolfo, and Patrick Chan. Learning patterns from unix

process execution traces for intrusion detection. In Proceedings of the AAAI97

workshop on AI methods in Fraud and risk management, 1997.

[18] S.J. Leffler, M.K. Mc Kusik, M.J. Karels, and J.S. Quarterman. 4.3 BSD UNIX

Operation System. Addison-Wesley, Reading, Massachusetts, USA, 1989.

[19] C. G. Nevill-Manning and I. H. Witten. Compression and explanation using

hierarchical grammars. The Computer Journal, 40(2/3), 1997.

[20] S. V. Raghavan and B. Balajinath. Intrusion detection through learning behavior

model. International Journal Of Computer Communications, 2001.

[21] P. Sebastiani and M. Ramoni. Incremental bayesian segmentation of categorical

temporal data. 2000.

132

[22] A.S. Tannenbaum. Modern Operating Systems. Prentice-Hall, Englewood Cliffs,

New Jersey, USA, 1992.

[23] Christina Warrender, Stephanie Forrest, and Barak A. Pearlmutter. Detecting

intrusions using system calls: Alternative data models. In IEEE Symposium on

Security and Privacy, pages 133–145, 1999.

133

