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Abstract: The Intrusion Detection (ID) community has developed nu-
merous proposals for languages with which to describe signatures of at-
tacks on computers and networks. By and large, these languages pro-
vide means for describing sequences of specific events indicative of attacks
through their presence or absence in the history of some computational
system. This note argues from examples that meeting the needs of infor-
mation warfare requires significantly extending the expressive capabilities
of attack description languages.
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1 Introduction

Intrusion Detection (ID) research efforts have explored two main methods of recog-
nizing intrusions or attacks on computer systems and networks, namely signature
recognition and anomaly detection. In signature detection, one examines the events
occurring in the system under guard to determine if this history matches “signature”
patterns that characterize types of attacks. In anomaly detection, one examines the
statistics of the events and compares these statistics to see if they depart from tables
of “normal” statistics.

While much progress has been made, experience has shown that neither of these
methods offers much protection against serious adversaries. Signature recognition
performs decently against unembellished repetitions of known attacks, but fails badly
on novel attacks or attack variations. Such limitations make secrecy about the library
of signatures a principal defensive maneuver, but a weak one. The size of the space
of possible variations on known attacks means that an adversary determined to evade
detection stands a good chance of succeeding if he simply invents new variations he
has never heard of before. Anomaly detection, in turn, has performed poorly to date
through variability of normal human activities and the consequential weakness of
knowledge about the relevant reference classes. One does much better at predicting
the behavior of a typist, compared to someone who only knows about keystrokes, if
one knows first that the typist is typing English, and better still if one knows the
typist is typing travel itineraries or newspaper sports score reports.

We maintain that some limitations experienced with signature and statistical
methods stem not from the methods themselves but from reliance on inadequately
expressive languages for describing significant patterns. A richer language, particu-
larly one based on multilevel abstractions and mechanisms for expressing uncertainty
in characterizing events, permits one to express more of the central and essential
regularities and worrying abnormalities needed to analyze behavior properly. Such
a language can increase the difficulty of evading signature or anomaly detection by
restructuring the spaces of events in ways that lessen the likelihood that evasive at-
tempts succeed.

This note presents a number of examples illustrating the utility of constructs em-
bodied in the “trend template” language of Haimowitz and Kohane [1, 2]. These
constructs combine the features of signature and anomaly detection methods to pro-
vide a richer description language of known utility for medical monitoring tasks.
We expect that information warfare monitoring tasks will benefit from a still richer
language combining and extending the descriptive capabilities of a trend template
language with the strengths of extant attack recognition languages, and are currently
developing a proposal for possible features of a common attack recognition language
(CARL).

EXAMPLE 1: An academic research laboratory maintains an ensemble of
computers running a Visual Surveillance and Monitoring application. On
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January 12, 2001 several of the machines experience unusual traffic from
outside the lab. Intrusion Detection systems report that several password
scans were observed. Fortunately, after about three days of varying levels
of such activity, things seem to return to normal; for another three weeks
no unusual activity is noticed. However, at that time, one of the machines
which is crucial to the application begins to experience unusually high load
averages and the application components which run on this machine begin
to receive less than the expected quality of service. The load average,
degradation of service, the consumption of disk space and the amount
of traffic to and from unknown outside machines continue to increase to
annoying levels, but then level off.

What happened here? Hackers gained access to the application server by correctly
guessing a password. Using this they had set up a public FTP site containing among
other things pirated software and erotic imagery. The load on the server increased as
word spread about this new transshipment site, and leveled off as demand saturated
the machine.

One can describe the pattern of activity here in terms of activities during several
temporal regions. First there was a period of attacks (particularly password scans).
Then there was a “quiescent” period. Then there was a period of increasing degrada-
tion of service. Finally, there was a leveling off of the degradation but at the existing
high level.

One can resolve this summary into finer details that give more insight and perhaps
improve the likelihood of recognition. To do this, we describe the trends of average
resource load levels and the average volume of traffic from external sites. During
the initial attack and quiescence periods, the load levels stay roughly constant while
the external site activity goes up and down, because the attacks themselves do not
involve much effort. During the exploitation and saturation phase, the load average
climbs to saturation well before the external site activity levels out, because a few
initial misusers suffice to swamp the host while word of the site continues to spread
to further misusers.

EXAMPLE 2: The US State Department runs an application to protect
a US embassy in Africa during a period of international tension. The
Department’s system administrators observe a variety of information at-
tacks being aimed at the application server. At least some of these attacks
are of a type known to be occasionally effective in gaining root access to
machines like the server. These attacks are then followed by a period of
no anomalous behavior other than a periodic low-volume communication
with an unknown outside host.

It is quite possible that an intruder has gained root access to the server. It is also
possible that the intent of the intrusion is malicious and political. It is less likely,
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but still possible, that the periodic communication with the unknown outside host is
an attempt to contact an outside control source for a “go signal” that will initiate
serious spoofing of the application.

One can again describe the pattern of activity here in terms of activities during
several temporal regions, coupled with environmental information. First there was a
period of attacks seemingly aimed at obtaining root access occurring during a period
of heightened international tension related to application being run. Then there was
a “false peace” period of no attacks (or merely normal attacks) coupled with periodic
low-volume foreign communications.

2 Limitations of current attack recognition lan-
guages

These examples illustrate some of the limitations that current attack recognition
languages appear to suffer. We mainly will pick on STATL [3], as it is one of the
most clearly defined languages designed for use in attack recognition, but expect other
languages may share some of its limitations. In fact STATL is an extensible language
and, with the proper extensions, might not have the limitations we attribute to it
here. If it or other extant attack recognition languages do not have these limitations,
the purpose of this note will be served by stimulating first the description of how
to effect the desired attack recognition with one of these languages, and second the
determination of whether such languages provide the best means for doing so. For
simplicity of exposition, we will proceed as though STATL does have the limitations
it seems to have, and that other attack languages share these limitations.

Recognizing the attacks described in the examples involves characterizations of
patterns that refer to abstract times and durations and to relations between abstract
temporal intervals. Moreover, the examples highlight the substantial uncertainties
involved in exactly when the component events occur. The initial period of increased
attack levels in Example 1, for instance, represents a rise of attack volume above a
fluctuating background level of “normal” attacks. One might come to some fairly
definite identifications of this event in a forensic analysis well after the events have
played out, but attempts to recognize the attack in progress will likely suffer significant
doubt about just where the rise in attacks starts and ends.

STATL’s strength lies in describing sequential and conditional events, but it ap-
pears to provide only for concrete times and durations, and does not provide any
easy or obvious way of expressing or relating abstract intervals or for expressing or
grading uncertainties about when events start and end. Instead, it seems to tie down
all events with specific times, durations, and unambiguous changes in system states.

The attack patterns illustrated in Examples 1 and 2 also refer to changes in
statistical trends over the intervals in question, such as increasing, decreasing, or
constant values. It is not clear that these trends find easy expression in STATL,
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though perhaps the language-extension mechanism provides the means to include
derivatives and other mathematical operations on signals. Similarly, STATL lacks a
way of talking about periodic signals, unless perhaps by talking about signals with a
concrete period, or by means of a further extension.

Finally, the attack patterns also refer to causal relationships between events, or
more generally, to non-statistical relationships between events such as intentionality.
While reporting languages like CISL [4] include some vocabulary for reporting causa-
tion and intent, recognition methods based on inferring large-scale plans from many
piecemeal intentional actions require inclusion of such relations in an attack language.
Such recognition methods require somewhat richer vocabularies for intentional con-
cepts than the skeletal concepts provided in CISL (see [5]).

3 Trend templates

Our answer to these limitations is to enrich the language in which one can charac-
terize patterns. The starting point of such an enrichment follows Haimowitz and
Kohane [1, 2], who developed a language of “trend templates” we will call TTL for
expressing temporal patterns like those involved in the examples, along with methods
for recognizing instances of trend templates in the stream. The key elements of TTL
are as follows:

1. Landmark times. These may be concrete times (i.e., fully-specified points on
the calendar), but often are abstract times that play some special role in the
event being characterized.

2. Temporal intervals. These may be of specific or abstract durations constrained
by relations to other intervals and to landmark times.

3. Temporal relations. These include the Allen [6] interval relations and others.

4. State constraints. These specify characteristics of objects during temporal inter-
vals, such as constant values, increasing or decreasing values, shapes of curves,
etc.

5. Regression functions. These model criteria for matching templates against data,
and so describe means for deciding when events occur when uncertainty exists
about starting and ending times.

4 Further critique and comparison

We now examine some examples of trend descriptions, mostly motivated by hypothet-
ical command and control scenarios, that exercise or exceed the expressive powers of
STATL and the original TT language.
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It seems likely that the TT language can characterize events that cannot be simi-
larly characterized in languages that provide for descriptions only in terms of specific
times and interval durations. Specifically, it appears that one cannot use only concrete
times and durations to express descriptions like the following:

A. An X event occurs during a Y event.

B. An X event follows a Y event, and the switch-over time occurred some time
between 5 and 7 PM.

C. An X event overlaps and follows a Y event, with the overlap lasting at least 5
minutes.

Correlation of simultaneous event histories also highlights potential difficulties.
STATL appears to focus on decomposition of histories into concatenated intervals
during which states are constant. There may be a way to describe the multiple
overlapping time-varying state constraints expressible in the TT language in these
attack languages, but even if that is possible, it is not likely to be convenient given
the sequential focus of the languages. Descriptions like the following provide targets
for expression here:

D. The resource load activity stayed constant while the external site activity rose
and fell, and then the resource load activity rose swiftly to saturation levels
while the external site activity rose more gradually and saturated later.

E. The traffic volume through X has been increasing while the traffic volume
through Y has been steady.

TTL does not necessarily cover all the concepts desirable in a robust attack lan-
guage. In particular, it has no facility for expressing probabilistic information. One
can easily think of CC2 monitors needing to refer to such information. Consider,
for example, the following requests a commander might make of a threat-detection
system.

F. Warn me if the probability of a class X attack in sector Y goes over 25%.

G. Warn me if the rate of increase of the probability of a class X attack in sector
Y goes up more than 25% on an hour by hour basis.

H. Discount any threat correlator which reports attack probabilities that vary too
much and too quickly over several five-minute periods.

Similarly, TTL made no explicit provision for expressing negative information (infor-
mation about absence of events), nor for expressing information about the value of
events. Examples here include:

I. No attacks are hitting target X or targets of class Y.

6



J. The attacks are increasingly on more important targets.

The original TT language also did not include a very rich language for describing
waveforms or periodicity. Examples here include:

K. The external requests are oscillating at 1 Hz, with oscillation between larger
and smaller volumes of requests taking the shape of a square wave (or sawtooth
wave, etc.).

L. The frequency of attacks for which success possibly compromises the secrecy of
our plan database is increasing.

M. The frequency of congestion (oscillation) has been increasing for the past day.

Neither STATL nor TTL language provide any way of keying recognition methods
to the systemic properties of recognition subsystems. Examples of such expressions
include:

O. The attacks on command resources are increasing.

P. The success rate of attacks has been decreasing.

Q. It is becoming harder to detect attacks; we are detecting fewer, even though
traffic is up without any change in our own behavior.

R. Sensor X is operating at selectivity Y and sensitivity Z on its ROC curve.

S. The effectiveness of our defenses is decreasing; the fraction of attack attempts
that cause compromises is increasing.

More generally, as noted earlier, attack recognition languages require means to key
methods to intentions and other psychological properties of adversaries. Examples
here include:

T. The intent of attack X is Y.

U. The attack hits some machine in every enclave, but appears to prefer NT hosts
when they exist.

5 Conclusion

The examples and discussion above suggest that while current recognition languages
provide many important capabilities, no single extant language provides all the ca-
pabilities one might desire in an effective attack recognition language.

We believe that the principal value of a core attack recognition language inheres
in the set of descriptive and analytical concepts it provides right from the start.
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Such was the advantage of Fortran over early assembler languages for mathematical
programming, and such should be the aim of attack recognition languages. Thus even
when the attack language provides an extension mechanism, the core language should
exhibit richness sufficient to express many of the concepts identified in the preceding.
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