MTQ
A ﬂydically Oriented Time Series Query Language
by
Gregory Floyd Cooper
Submitted in Partial Fulfiliment

of the Requiremenfs for the

Degree of Bachelor of Science
at the

Massachusetts Institute of Technology

May, 1977

Signatura of A'uthor'l'..”l..l"‘.".l'l.'l‘..'.l.l'.'.l'l

Department of Electrical Engineering
and Computer Science, May 23, 1977

Certified bUeeeceiaonses

S P e 0PI EINOLELIISEINENBOEOIOIRGESIOIOIIOSEREOSEOGDS

Thesis Supervisor

ACCOthd bu..o..o.o-'-v.lluoulcotbcoolotiotooo'-00000.0000
Chairman, Departmental Committee on Theses

This research uas supported by the National
Institutes of Health, Department of Heal th,
Education and Welfare (Public Health Service)
under Grant Number 1-R81-MB-20187-01

PAGE 2

MTQ
A Medically Oriented Time Series Query Language

by

Gregory Floyd Cooper

Abstract

Computer stored medical data is becoming increasingly common. Most medical
databases contain a time and a parameter dimension for each individual
patient. A current problem is hou to access the complex, time-oriented
_information contained therein. To date only the initial steps have been
made towards developing a computer language that specifically addresses the
difficult problems of time series searching. Solutions to these problems
are sure to open pathways to better maintenance of day to day patient care,
as well as to new medical research discoveries dealing with various time
aspects of diseases and their treatment.

This thesis introduces a new time-series search language called MTQ. Each
aspect of the language is first motivated and then explained in detail. A
moderately complex search program is built step by step as new program
constructs are introduced. Finally the current view and the future
projections of the language are discussed.

Thesis Supervisor: Peter Szolovits,
Assistant Professor of Electrical Engineering
and Computer Science .

PAGE 3
Acknouledgements

I would like to thank Professor Peter Szolovits for the great deal
of time he has spent with me in developing MTQ. He has been kind enough to
encourage me when | was heading in the right direction, and ulse enough to
redirect me when | began to stray. Through it all he has remained cheerful
in his support, -

A special thanks also to Or. David Wirtschafter and Or. Emmanuel Mesel
who introduced me to the area of time-series searching, and who suppor ted
me in the development of TSSS at the Clinical Information Systems Group at
the University of Alabama in Birmingham. Dr. Wirtschafter has also been
. kind enough to provide the the medical data which has been used as a test
database. ' '

Professor Vaughan Pratt has been of considerable help by suggesting that
his CGOL language and GOT parser were appropriate to my needs in developing
MTQ; he was quite right. He has also given helpful advice on their use.

Finally | would like to thank Byron Davies, Ramesh Patil, Brian Smith, and
B8i1) Swartout for their insightful suggestions on how MTQ might be
improved. ' .

Table of Contents

I. lntrodﬁction......................a..........PAGE 7
11. MTQ Language Definition...oeeeeeeessenanssss PAGE 11
1.1 Tr@ES e eeeeeannnneesennnnssennsasesnessPAGE 11
11.2 The DEFINE VISIT Statement..............PAGE 18
11.3 The Syntax and Semantics of <value>.....PAGE 28
11.6 The SEARCH Statement..ssseesceessssosesPAGE 34
11.5 Handling Unknoun Values....eceveeesess PAGE 42
11.8 The USE Statement «cvsessssssascessseesPAGE 45
11.7 Action Nodes........ Ceeeetesiuresneesns PAGE 63
11.8 The END and RUN Statements..............PAGE 59
" 111, An_HTﬂ Search Example......f.................PAGE,SB
IV. Discussion....... Cresesssessesrsersrresnnne ..PAGE 69
RefErenceS. oeeecssesssarsossossssssossssransessssPAGE 73

Appendix - Function and Dperator Precedence.......PAGE 74

PAGE 4

14,
15.
16.

17.
18.
19.
28.

21.

List of Figures

An Example of a Simple Search Tree....cvevvveeneens +...PAGE 13
An MTQ Tree of Figure l..coviiieicnrionnnnsnnnns veeases PAGE 17
Dynamic Visit Variable Definition Suntax........ vvve.. PAGE 21

The Semantics of Dynamic Visit Variable Definitions....PAGE 22
Dependent Visit Variable Definition Syntax...evsevsssePAGE 25

Figure 2 Plus Added Visit Variable Definitions.........PAGE 27

The Syntax of <value>.eiveueeness eesenes cesenees «eves.PAGE 29
The Syntax of a Search Expression....evisscsseseessess PAGE 35
Figure B u}th Added MTQ Search Expressions.eeecececses .PAGE 41
The Syntax of USE...vveveossconsneneren sessssessssnsesPAGE 43

Figure 9 with the Addition of USE Statements...........PAGE 51

A Second Example of Using USE....coevinvenrerasenveess .PAGE 52

‘ Action che Sgntax-...Cl'..l..‘...‘..'.l!.'..'.'CDIIQOOPAGE‘SB

Figure 11 with Added MTQ Action Statements.,.....s0s+...PAGE 56
Figure 12 with Added MTQ Action Statements............,PAGE 57
An Example of Using a DEFINE VISIT Statement within

an Action Node..................a..} cesssenesesssPAGE 58
Items in the MTQ Test Database..esveevsvsesassssesesss PAGE B1
A Graphic Representation of the Sgarch Example.........PAGE 62
A Tree of the Node Names of the Search Example.........PAGE 63
The MTQ Representation of Find_next_WBC_minimum and |

Its True Subtree...cvssvesssessssesssensesessassansssscPAGE 65

An MTQ Representation of the Complete Search Example...PAGE €6

PAGE 5

PAGE 6

22. Output of the Search EXample.seeeeesseesesescnsesssnss.PAGE 68

23. Function and Operator Precedence Table.............;...PAGE 75

-ae

PAGE 7

I.

Introduction

For several years nou there has been a continuing interest and
grouth in computer stored medical data. (Fries 1976) Many of the current
medical databaseg are logically structured as a three dimensional matrix
uith patients, time, and medical parameters as the axes {typically for any
one patient, there are several medical parameters recorded each time the
patient sees a health care provider). (Fries 1972) As the information
content of such resources continues to increase, so does the interest in
improving the ease and reliability of ﬁethods for accessing their contents.
. Any improvement inisuch access uwould, fof example, aid medical researchers
who analyze such dafa when attempting to develop or validate medical
hypotheses.

If a database has a time dimension, as mentioned above, then there
is é marked increase in the difficulty of both comprehending .and completélg
exprésslng the information desired when compared to simpler two dimensional
databases that contain only a patient and a parameter axis. It has been

‘difficult to provide a time-search programming language uwhich is
comprehensible to the average user of the database and yet adequately
pouer ful enough to allow expression of the majority of the search requests.

Several current systems have addressed time series searching issues
to a limited exteht. In these systems (and MTQ as well) time is assumed to
be recorded as discrete events knoun as visits. A visit is simply a

patient-health care provider encounter. I[f n encounters have been made

PAGE 8

then there are n visits, uwhere 1 represents the first visit and n
represents the most recent visit. Generally at a visit, vital signs are
recorded, as wel! as other data pertinent to the patient’s particular
condition. Obviously any system which records time in discrete units is
not able to capture the state of the patient at every point in time.
Houever, one must realize that in general this visit information is all
that is available, regardliess of the medium (computer or otherwise) on
which it is recorded. Thus a visit oriented representation of time is a
natural one. Furthermore, the time of each visit is recorded so that at
least interpolations 6f parameters at any time between two visits can be
made.
One of the earliest time series search systems to be developed was
ARAMIS at Stanford University. {(Neyl, et al. 1375) ARAMIS prompts the
user for the intended search and then the user returns a fixed formatted
response. Although this system is very limited in the complexity of
expressible searches, it does benefit by being easy to learn and use.
Subsets may be constructed that contain patients satisfying some search
criteria. Operations such as set union and intersection are provided for
combining such sets for use in additional searches. More recently at the
University of Alabama in Birmingham a |ahguage known as TSSS has been
developed. (Wirtschafter 1976) The major concept of TSSS is the use of
tlme'subscrfpted clinical parameters within a general boolean expression.
Al though TSSS is;more power ful than ARAMIS with respect to the complexity
Sf searches expressible, it suffers because in many cases complex search

expregsions are difficult to construct and comprehend. Also, conditional

PAGE 9

searchés are ndt possible; this means that if a given time search
predicate has a given value, then based on that value it is not possible to
 test another search predicate which for example might refefence time points
established in the original predicate. More will be said about conditional
searches in the next cﬁapter. Most recently a languaée knoun as COSTUDY

has been implemented at Massachusetts General Hospital. (Beaman 1377)
COSTUDY is capable of searching the time relationships within a MUMPS

database. It is too early to evaluate its performance.l

In the chapters that follow a new time series search language

‘called MTQ will be examined. MTO has been completely implemented as
defined in this thesis, using GOT1 as a parser (Pratt 1973) and MACLISP

(Moon 1974) as the target language used to run MTQ programs. One goal of

MTQ is to allou differing levels of usage ranging from simple searches
requiring practically no programming knouledgq. to complex searches

requiring moderate prpgrammﬁng skills. Additionally, each search developed

should be self dbcumenting; someonetuith no knowledge of MTQ should be

able to understand the general intent of the search with little or no

explanation. . Thus, MTQ can serve as both a time-series programming

language, and as a model bf thelmeaning of the natural language expréssion

of the most common time-oriented medical relationships. (For a more

complete model of this natural language expression see Bruce 1972).

1 GOT is an acronym for the Generalized Operator Translator

developed by V.R. Pratt.

PAGE 18

A final goal is that MTQ should provide a retrieval formalism that is
pouerful'enodgh to serve as a base component for a higher level, natural
language type module phich'uould allou non-programmers to express complex
searches.

In the next chapter MTQ will be defined and a search example will

be incrementally constructed as new language constructs are revealed.

PAGE 11

I1,

MTQ Language Definition

11.1 Trees

MTQ is a tree structured language. Using trees allows a wide
spectrum of searches to be expressed ranging from the very simple td the
highly complex. In most cases the complexity of a program’s tree structure
will directly reflect the conceptual complexity of the search request it
represents.

There are two types of nodes used to construct search trees: ' the
search node, and the action node. A search node is used to test the truth
of a specified parameter relationship. It has one entry branch and three
exit branches. The single entry branch is of course typical of any tree
structure, but the exit branches require some explanation. One exit branch
is known as the success (or true) branch. This branch is taken when the
search expression wWithin the given search node is true. Another branch
called the failure (or false) gggggn is taken if the negation of the search
‘expressfon is true. Actually there are additional specifications within
the search node that reetrict when a success or fallure branch may be
taken, butbthese slight complications will be discussed later in the
chapter. Typically control will return to the search node when saome |ower
node in the tree has completed its operations. The third and final ekit

branch is known as the exhausted branch. This branch is taken after the

PAGE 12

search node has tested its search expression within the context of all the
user—requested.time patterns. Upon taking the exhausted branch the node is
classified és exhausted until reentry occurs from the branch above it.

Action nodes are the second type of tree nodes. They are generally
used to perform some action based on the the branch taken by a search node.
In most cases this entails communicating some result to the user via an
output device such as a printer. An action node is much simpler than a
search node. It has one entry branch and one exit branch. The exit branch
is called the exhausted branch. An action node performs all specified
actions and then takes the exhausted branch.

As an example, consider a database of patients who were given a
chemotherapy agent (BCNU) as treatment for Hodgkin's disease. It is
reasonable to‘suspect that the initial treatment with this powerful agent.
uttl céuse a drop in the white blood count (UBC) due to the drug’s toxici{g
.to the normal body cells as-well as the cancerous ones. A simple search
program can be uritten to verify that this in fact occurs for most such
patients. [f search nodes are represented as diamonds and action nodes as
rectangles then figure 1 is a representation of the tree structure for this
search. In this example and subsequent ones the WBC uill be given in
thousands. Notice that the tuo lower action nodes do not have exit
branches. In general if a search node ortan action node is missing a

'branch,‘then when control! would normally pass doun that branch, the control
is given instead to the first non-exhausted search node encountered along a
path inclusively between the current node and the very top node. Thé

effect of this default convention is that search nodes are exhausted

starting from the bottom of the tree and progressing toward the top.

[Yery top nodel

——— " " o Y i v S - han

|Print the patient’s|
|hospital number. |

'/ There was a drop in the WBC \
/ at the visit immediately \
\ after the visit when the /

\ drug was first given, /
. 4 \
true (success)/ \false(failure)
/ \
Print that a		Print that a
decrease was		decrease was
	not found.	

| found.

- o - - - -

An Example of a Simple Search Tree

figure 1

PAGE 13

PAGE 14

In figure 1 the search starts at the very top node. This node is merely for
conéeptual convenience and in practice it is not specified. It is defined
as a non-exhaustable search node. Each time contro! returns to the very
top node the data of the next pétient in the data base is considered, and
the search begins anew. If there are no more patients then the search is
completed. In figure 1 the very top node passes control to the action node
directly below it. The action node prints the patient’s hospital number

and then passes control down its exhausted branch., The first search node
has now been entered. It scans from visit one to the last visit in search
of an instance of the drug being administered. Notice that there is no
false branch at this node and thus each visit at which medication was not
given is ignored. If no instance fs found of drug administration then this
node is exhausted. But.nbtice that this search node does not have an
exhausted branch either. In light of this, the control passes up the tree
to the first non-exhausted search node, which is therverg top node. The
data of the next patient is then considered and the search begins aneu.
1f, however there was an instance of drug administration then the first
gsearch node would pass control doun its true branch at the first such
instance found. The second search node would then have control. This node
determines if the WBC decreased at the visit immediately after drug
" administration {(an assumption'ia being made here that the WBC was in fact
fecorded at this second visit; this is to simplify the example). if»so
then the true branch is taken and a message to that effect is printed. If
not the false branch is taken and the absence of the decrease is printed.

Notice that after either of these two action nodes completes their printout

PAGE 15

the control will return to the very top node since the other tuwo search
nodes have exhausted the time patterns of interest as specified by the user
and neither of them has an exhausted branch.

| In the next section visit variables will be introduced
which allow expression of the desired time patterns wherewith a search
expression is to be tested. The scoping of the variables within any given
node extends to all the nodes belou it in the tree. If some successor node
lower in the tree redefines a visit variabie, then that most recent
definition uill be in effect starting at the node of redefinition and
extending to all nodes below it. Any time a node is entered from ifs entry
branch (the branch on top) its visit variables are initialized to their

originally defined initial values., Initialization does not occur when

control is returned from a lower node in the tree.

The four simple MTQ statements used to construct trees are as follous:
<starting node name> IS THE STARTING NODES$

WHEN <hode'name} 1S TRUE: <node name>$

WHEN <node name> IS FALSE: <node name>$

WHEN <node name> IS EXHAUSTED: <node name>$

The § symbol is used to terminate all MTQ statements. Matching angle

PAGE 16

brackets are metasymbols that must be replaced by the entities described
Wwithin them. For instance <starting node name>'might be replaced bu the
name TOP, which would then designate TOP as the highest node in the tree.
A specification of a node’'s contents follous its name. As an example,
figure 2 shous a representation of the tree of figure 1 using the above
constructs, It is important to realize that the <node name> between the
colon and the 8 delimiter h;s no semantic meaning to MTQ other than as a
reference name for constructing trees, and therefore any apparent semantic
content is for documentation purposes only. In later sections the English
sentences used in figure 2, such as "Print that a decrease was found",
will be converted to MTQ statements. These sentences have been under|ined

in figure 2 and they each end in a period rather than $.

Top is the starting node$
Print the patient's hospital number.

When Top is exhausted:
Drug_givens
The drug was given.

When Drug_given is true:
Find_WBC_drop$
There uas a drop in the WBC on the visit immediately
after the visit wuhen the first drug was given.

When Find_WBC_drop is false:
Report_failure$
Print that a decrease uWas not found.

When Find_WBC_drop is true:
Report_success$
Print that a decrease was found.

An MTQ Tree of Figure 1

figure 2

PAGE

17

PAGE 18

I1.2 The DEFINE VISIT Statement

In order to express searches that involve a time dimension there
must be some means of specifying the time events of interest. For this
reason the visit variable is provided. As an example, each WBC in the
database is associated with a particular visit at uhich the given patient
visited the health care provider. To reference some particular WBC for a

given patient one might specify:
WBC at visit x

where visit x rebresents some class of visits previodslg defined by the
user to be of interest to him. In other words, althohgh at any one time
visit x wuill reﬁresent one particular visit value, tﬁe value of visit x
may be defined to change at a prescribed time to anéther value that is
within the constraints of a defined pattern. The patterns so defined ére

to be used at the node of definition. Any other visit variables in nodes

betueen the current node and the very top node mag be referenced, but
their values do not change in the current node. This of course is in
‘contrast to the visit variables defined at the current node, which may in
fact vary in value so fong as control is at the current node.

Before describing in detail the various patterns available to the
uger by means of the DEFINE VISIT statement, some general definitions need
to be given. A node frame is defined as a set of visit variable - visit

value pairs, wWith one such pair for every visit variable defined at the

PAGE 19

given node., The visit value is an integer representing some visit. A
valid node frame is defined as a node frame in which the value associated
uith each visit variable in the node frame is such that the criterion of
éverg visit variable definition at the node is satisfied. A reference
frame is defined as the union of the current valid node frame with each
current valid node frame of each node from the current node to the very
top node. This definition must be qualified, because if tuo visit
variables in separafe valid node frames have the same name then only the
one defined in the 'nod‘e closest to the current node is retained in the
unioned set. A reference frame is used as the visit variable environment
uithin which to test a glven search expression or perform a given action.
Thus when a visit variable is referenced, the value used in the reference
is the value associated with the given vls‘it variable in the current
reference frame.

With these definitions completed the DEFINE VISIT statement is nou
discussed. Conceptually there are tuwo types of visit variable
definitions. Dne is a dependent visit variable definition and it serves
as a mere syntactic convenience. It will be discussed later. The other
type is a dynamic visit variable definition. It is this type definition
that lspecifies the time patterns of visits to consider in performing a
time-series search.

To free the user from having to meticulously specify the time
frames (node frames) of interest in performing 3 search, reasonable
assumptions have been built into the meaning of dynamic visit variable

definitions. It is important that the user understand these assumptions

PAGE 280

and their consequences. As the DEFINE VISIT syntax and semantics are
given below, the accompanying assumptions will be clearly stated as well.

Figure 3 gives the syntax of all the dynamic visit variable
definitions, Zero, one, or more of the dynamic visit variable definitions
may occur at any given node. Figure 4 gives a general semantic
interpretation of dynamic viﬁit variable definitions by using conventional
programming constructs tq build a semantically equivalent representation.
Perhaps, however, the WHEN portion of each DO statement should be briefly
explained. After a D0 variable has been incremented by 1, the WHEN
portion of the DD statement checks that its body is true, and if not then
fhe respective DO variable is incremented and this test starts over. This
process continues until either <high bound> is exceeded, or the WHEN body

is true.

<(dynamic visit variable definitiond> ::= DEFINE VISIT <visit name> SUCH THAT <(body>$

<body> ‘] <1ow bound> | <high bound> | C(test>
Ctest exp>! | 1 | LAST VISIT® | Ctest
IT 1S ANY VISIT AFTER {value> l(value)3 4 1| LAST VISIT | TRUE
1T IS ANY VISIT ON OR AFTER (value) | <valued | LAST VISIT | TRUE
IT 1S ANY VISIT BEFORE {(value) | 1 | <valued - 1 | TRUE
IT IS ANY VISIT ON OR BEFORE <value> | 1 | <(valued | TRUE
IT 1S EXCLUSIVELY BETWEEN (vﬂluo)l AND (va!uo)zl (valuo>l+1 | (vc1ue>z - 1] TRUE
IT IS INCLUSIVELY BETWEEN (value)l AND (vl1ue)zl (value)1 | (value)z | TRUE
IT 1S BETWEEN (vnuu)1 AND (valued, | <value>l | (vhlue)z | TRUE
1T IS ANY VISIT WITHIN RANGE | 1 | LAST VISIT | TRUE

1 (test exp> is a truth expression; 1t wil) be explained Tater
in section I1.4.

2 LAST VISIT evaluates to the last visit number of the current
patient data being searched.

3 {valued 1s an expression that evaluates to a numerical
value; in the case above it represents a visit number. It is
explained in section I1.3.

Dynamic Visit Variable Definition Syntax

figure 3

exp>

PAGE 21

DEFINE VISIT Sequence

{dynamic visit variable def1n1tion)1
<dynamic visit variable definition)z

(dynamic visit variable dcfinit1on>n .

I
H
I
\Y

Equivalent DO Loop Representation

DO <(visit name)1-<1ov bound)l TO <high bound)1 BY 1 VHEN((test)l);
DO (visit nlme)zﬂ<low'bound)z T0 <high bound)z BY 1 Vﬂﬁﬂ((te:t)é);

0O (visit nume)"u(low bound> TO <high bound> BY 1 VNEN((test)n):
(do something)

ENDn;

ENDz;
ENDI;

(this node s exhausted at this po1nt>

The Semantice of Dynamic Visit Variable Definitions

figure &

The DO loops of figure 4 are used to sequence through each valid node
frame. Notice that it is within the inner body of the DO loops (i.e. <do
something>) that the search expression is tested (or the actions

per formed). [f the search expression is true then the true (success)

PAGE 22

PAGE 23

branch will be taken. If it is false the false (failure) branch will be

taken. When control returns to this node from a lower node it is as

though evaluation of <do something> uas'completed. If however control

enters this node from a higher node then execution will begin at the

outermost DO loop. Now notice that there are several assumﬁtiona made
when defining dynamic visit variables. One assumption is that the visit
variables (i.e. the <visit name>’s) will increment from some lower bound
to some higher bound in increments of 1. This was of course a major design
decision. As an example of a pattern that could not be searched in NTO.
consider the following visit variable value sequence (assuming the current

patient being searched has & visits in the database):
1, 4, 2, 3, 3, 2, 4, 1

Experience uwith the TSSS search system (Wirtschafter, et al. 1976) has
shoun however that no practical searches require patterns outside those
provided by MTQ. |

The second assumption of dynamic visit variable definitions is
that the order of the definitions affect the resulting sequence of valid
node frames. This is seen in figure 4 by the way jn:uhich the order of
the define visit variable definitions determine the order of the DO
statements in the corresponding representation. Irwyhost cases a visit
variable defined lower in the sequence will change Qalue several times
before a visit variable highef above it in the sequencé uwill change value.

Algo, notice that any visit variables referenced in the <body> (see figure

PAGE 24

3) of a DEFINE VISIT statement should be previously defined if they appear
in <low bound> or <high bound>. If they uill appear in <test> then they
should eitﬁer be the current visit variable being defined or some
previousiy defined visit variable. It is important to realize that any of
the visit variables‘defined in nodes above the current one are considered
to be previously defined.

It should be pointed out that assumption 2 was not made because it
would lead to an easy implementation using conventional DO constructs, but
rather that this assumption was the most.intuitive one knoun for the given
level of programming detail with which MTQ deals. Perhaps the problem is
that most people are unaccustomed to dealing With having to describe
detailed and unambiguous time relationships., This should serve as a
caveat to those who might otheruwise define dynamic visit variables at a
node without seriously considering the semantic implications.
Fortunately, houever, in most cases it is not necessary to define more
than one dgnamicvvisit,variable at a single node. By using fewer such
definitions per node one gains greater control over the search and

consequent|y a clearer understahding of its semantic implications.
Dependent Visit Variable Definitions
The second type of visit variable definition is the dependent

visit var{abie definition. As mentioned éarlier. this is used as a mere

syntactic convenience. Figure 5 shows all definitions of this type.

PAGE 25

. <dependent visit variable dqfinition> iim

DEFINE VISIT <visit name> SUCH THAT IT IS <dependent body>$

<dependent bodu> | <dependent value>
<value> | <value>
I

<valuesy VISITS AFTER <value>, <value>y + <value>,
THE VISIT IMMEDIATELY AFTER <value> | <value> + 1
<value>y VISITS BEFORE <values, | <value>y - <value>y
THE VISIT IMMEDIATELY BEFORE <value>| <value> - 1

Dependent Visit Variable Definition Syntax

figure 5

When a reference is made to a dependent visit variable, it is as if a
reference were made to the <dependent value> of its defiﬁitlon as shown in
figure 5. The <dependent body> may contain references to any visit
variables defined either at the current node or in any of the nodes above

the current node, except itself and dependent visit variables wuhich

reference 11.' Thus dependent visit variables are not intended to be
recursive. It should nou be apparent that the order of dependent visit
variables within the DEFINE VISIT sequence of a node is arbitrary, since

such variables do not imply a sequence of vigit patterns.

PAGE 26

A DEFINE VISIT Example

An example should help in understanding how to define visit
variables, MWith fhis in mind, refer to the Drug_given node of figure 2.
Notice that the visit when "the drug was first given" could be any visit
from visit 1 to the LAST VISIT. This being the case, a visit variable
should be defined which can scan this range. This means that a dgnamié

visit variable definition is needed: From the choices in figure 3 the
last <body> seems to fit the need. For lack of a better name, suppose

this visit is called visit a. The definition uould then be:
DEFINE visit a SUCH THAT IT IS ANY VISIT WITHIN RANGES

Nou reféring back to figure 2, in the Find_WBC_drop node there is also
mention of "... the visit immediately after visit a ...". This is a
dependent visit, since it is just one visit after the visit a defined
. above. From the choices in figure 5 the second <dependent body> is the
one needed. Suppose this visit is called visit b, then its definition

would be:
DEFINE visit b SUCH THAT IT IS THE VISIT IMMEDIATELY AFTER visit a$
Figure 2 is redisplayed in figure 6 with the above visit variable

definitions substituted within the Drug_given and the Find_WBC_drop nodes.

The respective search expressions have been modified to reference these

PAGE 27

tuo visits.

Top is the starting node$
Print the patient’s hospital number.

When Top is exhausted:
Drug_given$
Define visit a such that it is any visit within range$

The drug was given at visit a.

When Drug_given is true:
Find_WBC_drop$
Define visit b such that it is the visit immediately after visit a$
The WBC at visit b is less than the WBC at visit a.

When Find_WBC_drop is false:
Report_failure$
Print that a decrease was not found.

When Find_WBC_drop is true:
Report_success$
Print that a decrease was_found.

Figure 2 Plus Added Visit Variable Definitions

figure 6

PAGE 28

11.3 The Syntax and Semantics of <value>

In earlier sections the <value> entity was referenced without
being defined. At this point both its syntax and semantics Will be
discussed. _As mentioned earlier, <value> aluays evaluates to a number.
Figure 7 gives the BNF syntax of <value>; see the appendix for resolution

of any ambiguities in the operator-operand association.

PAGE .29

<value> 1i1= <number> | <value function> | <complex value>

<complex value> ::= <value> <arithmetic operator> <value> | (<value>) |
<gign><value>

<arithmetic operator> si=+ | - | x|/ | *
<sign> ti= + | -

<value function> = VISIT <visit name>|
<item reference>|
MAXIMUM <item name> <optional range>|
MINIMUM <item name> <optional range>|
AVERAGE <item name> <optiona! range>|
ENTRIES <item name> <optional range>|
DAYS FROM <date> TO <date>|
GREATEST DIFFERENCE BETWEEN <value list>]
CLOSEST VISIT AFTER <date>|
CLOSEST VISIT BEFORE <date>|
CLOSEST VISIT TO <date>]|
LAST VISIT]
PATIENT_NUMBER|
THE <values>|
.NUMBER OF SUCCESSES AT <node name>|
NUMBER OF FAILURES AT <node name>|
NUMBER OF EXHAUSTS AT <node name>|
ABS (<value>)

- <numper> s¢= <any MACLISP number>
<item reference> ::=» <item name> AT <value>
<item namé>, <node name>, <visit name> ::= <character string>

1 t:= <a string of alphabetic, numeric, and

underscore characters beginning with alphabetic>

<character string>

<opti6nal range> ::= FROM <value> T0 <value> | nil
<date> :t= <value>

<value list> ::= <value list>,<value> | <value>

1 All alphabetic characters are considered capitalized.

The Syntax of <value>
figure 7

PAGE 38

An Explanation of Each <value function>

VISIT <visit name>
This returns the value of the visit variable named <visit name> from the
currently active reference frame. If, however, <visit name> is a number

then that number is returned.

<item name> AT <value>
<item name> is the name of some parameter stored in the database. The

th

value of this parameter at the <value>' visit is returned using the data

of the current patient being searched.

In the next four functions if <optional range> is not nil then it has the
form: FROM <value>; TO <value>,. 1f <optional range> is nil then <value>;

t1= 1 and <value>, ::= LAST VISIT,

MAXIMUM <item name> <optional range>
The maximum of <item name> inclusively betueen the <value>1th and the

<va|ue>2th visit is returned.

MINIMUM <item name> <optional range>
The minimum of <item name> inclusively betueen the <v,a|ue>1th and the

| <value>2th visit ls returned.

AVERAGE <item name> <optional range>

PAGE 31

The arithmetic average of <item name> inclusively between the <va|ue>1th

and the <valu‘e>2th vigsit is returned.

ENTRIES <item name> <optional range>

The number of entries of <item name> inclusively betueen the <va|ue>1th

h

and the <value>2t vigsit is returned. An entry occurs if the given -

parameter uas given a value at a visit in the range. In many cases
certain parameters are not entered at a visit since they are not pertinent

to the patient’s condition at that visit.

DAYS FROM <date>; TO <date>,

<date> Is a number of the form YYMMDD where YY, MM, aﬁd DD are a two digit
year, mbnth, and day respectively., The positive number of days from
<date>; to <date>, is returned, assuming <date>; is a date on or before
<date$2. 1¢f this is not the case then the negative of the days difference

is returned.

GREATEST DIFFERENCE BETWEEN <value list>

The value returned is Imax(<value list>) - min(<value list>}].

CLOSEST VISIT AFTER <date>
<date> is of the form described above. The visit number of the next visit
after <date> is returned. 1f no such visit exists then a ??? is returned

(this will be discussed in section 11.5),

PAGE 32

CLOSEST VISIT BEFORE <date>
<date> is of thékform described above. The visit number of the visit most
immediately preéeding <date> is returned. If no such visit exists then a

?2?? is returned (this will be discussed Jater).

CLOSEST VISIT TO <date>
<date> is of the form described above. The visit number that is closest
in time to the given «date> is returned. If the <date> is equidistant

be tueen tuo'visite then the more recent visit number is returned.

LAST VISIT
This returns the visit number of the last recorded visit for the patient

whose data is currently being searched.

PATIENT_NUMBER

This is an item associated with each patient for identification purposes.

THE <value>

<value> is returned.

NUMBER OF SUCCESSES AT <node name>
This returns the number of times the success (true) branch has been taken
by <node name> since control was last passed to <node name> by the node

above it. I1f this <node name> has no success branch then the returned

value is the same as if such a branch existed and the nodes lower in this

PAGE 33

branch aluays return control to this node.

NUMBER OF FAILURES AT <node name>

This returns the number of times the failure (false) branch has been taken
by <node name> since control was last passed to <node name> by the node
above it. If this <node name> has no failure branch then the returned
value is the same as if such a branch existed and the nodes lower in this

branch aluays return control -to this node.

NUMBER OF EXHAUSTS AT <node name>

This returns the number of times the exhausted branch has been taken by
<node name> since control was last passed to <node name> by the node above
if. If this <node name> has no exhausted branch then the returned value
ie the same as if such a branch existed, This returned value will be

either 8 or 1.

ABS (<values)

The arithmetic absolute.value‘of <value> is returned.

PAGE 34

. I1.4 The SEARCH Statement

The search expression is probably the single-most important
construct in MTQ since it allous expression of the time qualified
parameter relationships of interest to the user. The syntax and semantics
of the search expression are given in this section. Figure 8 gives its
syntax; see the appendix for resolution of any ambiguities in the

operator-operand associations,

PAGE 35

<search expression> i:= <search function> | <complex search>

<search function> ::= TRUE |
FALSE|
THERE ARE NO MORE PATIENTS|
IT}
<item reference> IS NORMAL |
<item reference> IS ABNORMAL|
<object> 1S UNKNOUN|
<object> 1S KNOWN|
NOT <search expressions|
BETUEEN <value> AND <value> EACH <item name>

CHANGES FROM THE PREVIOUS «<item name>1
BY <value> TO <values|
<vatue> ~ <value> +DR- <value>

1

<complex search> 1= <relation>|
<search expression><logical op><search expression>|
<special logical expression>|
{<search expression>)
<relation> s:= <value> <relational op> <value> |
: <value> = '<character string>’ |
*<«character string>’ = <value>

<relational op> ::= IS <standard relational op>]
<standard relational op>

<standard relational op;';:- > | > | = | ne| <= | <
<logical op> 31:= AND | OR
<special logical expression> ::= <relation><another comparison>

<another comparisons i1:= <special logical op><relational op><value>|
<another comparison><another compar ison>

<special logical op> ::= ,AND | ,0R

<object> ::= <value> | <search expression>
these should be the same <item name>.

The Syntax of a Search Expression

figure 8

PAGE 36

Note that nou <test exp> of figure 3 may be defined as
<test exp> ::= <search expression>

For the most part a search expression is |like a standard boolean
expression found in many conventional programming- languages. The major
components of <search euprasslonQ that need explanation are

<gearch function> and <special logical expression>, After describing
© these in detail below, the discussion will return to the topic of how to

use <search expression> as the search expression uithin a search node.

An Explanation of Each <search function>

TRUE

This is the boolean true primitive,

FALSE

This is the boolean false primitive.

THERE ARE NO MORE PATIENTS
Thise returns true if the current patient, whose data is being searched, is

the last patient in the database.

PAGE 37

IT

This returns the value of the closest <value> to the left of 1T that is
used on the left side of a <re|atfonal operator>. This is used as a
convenience when uriting relations. For example one could use the
fol lowing expression:

the WBC at visit x is > the WBC at visit y and IT is < the WBC at visit z
instead of the more conventional and tedious expression:

the WBC at visit x is > the WBC at visit y and the WBC at visit x is < the

WBC at visit z

<item reference> IS NORMAL

Within the database there is a range of values associated with each item
(parameter), and this is defined as the normal value range for that item
uwith respect to the patient population stored in the database. This
function returns TRUE if the <item reference> is within this normal range

- for that particular item; othernwise FALSE is returned.

<item references> 1S ABNORMAL
This raturns NOT(<item reference> IS NORMAL).

<object> 1S UNKNOWN

In the next section on handling unknown values a complete discussion will
be given on what constitutes an unknoun object. Until then, suffice it to
say that TRUE is returned by the above function if <object> is unknoun,

otheruise FALSE is returned,

PAGE 38

<object> 1S KNOWN
This returns NOT{ <object> IS UNKNOWN).

NOT <search expression>

1f <search expression> evaluates to TRUE then FALSE is returned. 1If
<search expression> evaluates to FALSE then TRUE is returned. [f <search
éxpressioh> evaluates 10 an unknown value then an unknoun value is

returned; more will be said about this in the next section on hand!ing

unknown values,

BETWEEN <value>; AND <value>; EACH <item name> CHANGES FROM THE PREVIOUS
<item name> EY ?value>3 T0 <value>,

<litem name> is the same item name in both cases. <value> is a lower
bound visit and <visit>y is a higher bound vigit. The value of

<item name> at each visit within this range is subtracted from the value
of <item name> at the following visit (if that visit is within the range).
"For each such subtraction the result must be no less that <value>3 and no
greater fhan <value>,. If this is not the case then .FALSE is returned,

otheruise TRUE is returned.
<va|ue>1 ~ <value>2 +0R- <va|ue>3

This is the approximate equality operator (Kahn 1375). ~ is the standard
mathematical approximation sign. The above has the same semantic meaning

as the following:

PAGE 39

(<vaWue>1 Sm <value>2 - <va|ue>3)
AND

{ <value>1 <= <value>2 ¥ <value>3)

An Explanation of the <special logical expression>

This expression is provided as another convenience in the
construction of a search expression. Consider the example associated with
IT in the section above on <search function>. That expression could also
be written as: -

the WBC at visit x is > the WBC at visit y ,AND < the WBC at visit z

In a simitar manner ,0R can be used. A sequence of ,AND or ,0R can aiso
be used as in

<value> is = 1,0R = 2,0 = 3

An equivalent semantic representation of
} <relation> ,0R <relation op> <value>
is given by

(<relation> OR IT <relation op> <value>)

Similarly an equivalent semantic representation of

PAGE 49

<relation> ,AND <relation op> <value>

is given by

{ <relation> AND IT <relation op> <va|ue>‘)

The <special logical expression>’'s are left associative and ,0R has the
same precedence as ,AND. It is suggested however that ,0R and ,AND not be
used together in the same <special logical expression> as this may lead to

conceptual confusion.

Nou that <search expression> has been defined, it can be used in
discussing how to construct a search statement. Actually the syntax is

quite simple, as it is given by:
SEARCH: <search expression>$

1§ <search expression> evaluates to true then control passes doun the true
(success) branch of the current node. If <search expression> is false
then control passes doun the false (failure) branch of the current node.
If <search expression> is an unknown value (as discussed in the next
section) then control is maintained at the current node and the next valid
node frame is instantiated before testing <search expression> again.

As an example, figure 9 shous figure 6 with the English search

expressions converted to MTQ statements.

PAGE 41

Top is the starting node$
Print the patient’s hospital number,

When Top is exhausted:
Drug_given$
Define visit a such that it is any visit within range$
Search: Rx_given at visit a = 'yes’$

When Drug_given is true:
Find_WBC_drop$
Define visit b such that it is the visit immediately after visit a8
Search: The WBC at visit b is < the WBC at visit a$

When Find_NBC_ﬂEop is false:
Report_failure$
Print that a decrease was not found.

When Find_WBC_drop is true:
Report_success$
Print that a decrease was found.

Figure 6 with Added MTQ Search Expressions

figure 3

PAGE 42

I1.5 Handl ing Unknoun Values

In the previous sections references have been made to "unknoun
values". This section will clarify the meaning of unknoun values, as well
as discuss the manner in which they are handled by MTQ (Belnap 1977). An
unkrioun value can pe the value of either <value> or of
<search expression>. It is represented by the symbol ???. An unknoun
value (i.e. 777) .usuallg originates with an item (parameter) at a given
visit which has not been entered, and thus has a default value of ?77.
Also, if the visit number in an item reference is out of range uWith
respect to the current patient’s data then ??? s returned. This ??7?
value can then propagate throughout the expression in which it is
contained. The remainder of this section is devoted to describing this
propagational effect. Notice that this section is augmenting much of what
has-been stated previously about the value of functions, operators, and
expresslons;' there is nouw an extra case in which ??? may be their
resulting value{

First ﬁbnsider the functions defined by <value function> and
<search function>. Of these consider the functions MAXIMUM, MINIMUM,
AVERAGE, ENTRIES, and GREATEST DIFFERENCE BETWEEN. Each of these four
functions uses a range (or list) of values as its input. Each function
ignores any ??? arguments in the range (or list) to which it is applied.
1f no arguments remain after this exclusion process, then ??? is returned
as the function'é value. As an example, in the case of AVERAGE WBC, the

average of those WBC's entered from visit 1 to LAST VISIT is returned.

PAGE 43

Nou consider the approximate equality operator which has the form
<value>; ~ <value>p +0R- <value>s. If <value>; equals <value>; then TRUE
is returned regardless of the value of <value>g. Otherwise if one of the
three <value>'s ié ??? then ??? is returned.

Any other functions in <value function> or <search function>,
other than the five just mentioned, will return ??? if any of their
arguments have the value ??? . For example, consider'the function

reference:
DAYS FROM <date>; TO <date>,

If either <date>; or <date>; has the value ???, then ??? is the value
returned by this function.
| Now consider the arithmetic and relational operators. [f any
argument of a relational operator has the value ???, then 2?? is the
returned value. This is also the case for both the infix and prefix
versions of the‘operators + and - . The operators *, /, and * return ?7?
if any of their arguments are ??7?, unless it can be determined from a non-
??? argument that a non-??? result should be returned. For example if
one argument to * is 7??, and the other is zero, then zero uill be the
value returned.

Finally, consider the operators AND and OR. The tables below give

the various possibilities.

AND

argl\arg2 | TRUE FALSE
Yo | TRUE FALSE
FALSE | FALSE FALSE
2?7 | 2?2? FALSE

77 ???

OR

222 argl\arg2 | TRUE FALSE 2?2

727 TRUE | TRUE TRUE TRUE

FALSE FALSE | TRUE FALSE ???
| TRUE 2?97 277

PAGE 44

The only remaining MTQ operators‘not covered in this section are ,AND and

,0R. To determine the way these operators handle unknown values, refer to

their equivalent semantics in section I1.4.

PAGE 45

11.6 The USE Statement

At this point the DEFINE VISIT and the SEARCH constructs have been
completely defined. There remains but one other search node construct,
and it is called the USE construct. Recall that until now a view has been
taken that for each search node there is an associatéd sequence of valid
node frames. Each valid node frame is used in turn to establish a visit

variable referencé frame as discussed in section 11.2. For each reference

frame the search expression at the given node is tested. [f that test is
true then the true (success) branch is taken; if it is false the false
(failure) branch is taken; if It is ??? then the next valid node frame
is instantiated and thié testing process continues. Notice that this
process assumes that there is an interest in each and every success and
fallure of the search expression. In many cases thié is just not true.
For instance, in many situations the desire is to find the existence of
some condition and if found then print some pertinent data. In this case
only thebfirst success is of interest, &The USE construct has been
developed in order to allow control over which successes and failures will
be used at a given node, or in other words, in which cases the success or
failure branch should be taken from.the node.

In the remainder of this section the USE construct will be
explained with respect to controlling successes. One should realize that
control of the failures is similarly attained by using the word failure
(or failures) instead of success (or successes) in the statements belou.

The successes and failures of a given node are considered to be

PAGE 46

zero at and oﬁ!g at the moment that node is given control from the node
above it. The successes and failures then increase incrementally as the
sﬁcgess and failure branches are taken respectivglg. In the case that the
USE statement restricts the success (or failure) branch from being taken,
then the success (or failure) at the node will not be incremented. In
what follows the syntax of each type USE statement will be given, fol lowed

by its semantics.

USE THE FIRST <value> SUCCESSESS

<value> must evaluate to an integer. This specifies that the success
branch is to be taken from the current node of definition, up to and
including (but not beyond) the first <value> successes. After <ya|qe>
successes have been made it is as though there was no success branch at
all at this node {and this condition persists for as long as the number of

successes is greater than <value>).

USE THE INITIAL SUCCESSS |
Thie is equivalent to: USE THE FIRST 1 SUCCESSESS

USE ZERO SUCCESSES$S

This is equivalent to: USE THE FIRST B SUCCESSES$

In other words the success branch is never taken ffomlthis node. This is
the default if no USE SUCCESS statement is explicitly specified at the
node. This default forces the user to specify a USE statement if he

intends for control to ever pass down the success branch of the current

PAGE 47

node; such a convention will hopefully lead to better documentation of

the search progranm.

USE EVERY SUCCESSS
This says that'averg time the search expression evaluates to TRUE the

success branch Will be taken.

USE THE LAST <value> SUCCESSESS

Firet imagine that instead of the above statement, the statement USE EVERY
SUCCESS$ had been specified. Then assume that n successes resulted. The
USE THE LAST <value> SUCCESSESS statement specifies that the last <value>
of these n successes should be used. If n is less than or equal to
<value> then all n successes are to be used. If n is greater than <value>
then it is as though the success branch did not exist for the first n -
<va|ﬁa> succeéﬁes, and then' for the remaining <value> successes it does

exigst and therefore is used as normal.

USE THE FINAL SUCCESS$
This is equivalent to USE THE LAST 1 SUCCESSESS

USE THE SPECIAL <function> SUCCESSESS

Whenever the search expression evaluates to TRUE, <function> will be
called and if it returns FALSE the success branch is mot taken but rather
the next valid node frame is instantiated. If it does not return FALSE

then the success branch is taken. Presently there are no <function>'s

PAGE 48

available, but its existence makes expansion of the USE construct
relatively easy. (Note that the word TRUE above must be replaced by FALSE

in the case of USE THE SPECIAL <function> FAILURESS).

This completes the USE statements dealing strictly with controling
successes. There is one other USE statement (other than the "failure”

veraion of the statements just described). It is as follous:

USE EITHER THE INITIAL SUCCESS OR THE INITIAL FAILURES

This statement is used to specify that either the success branch or the
failure branch is to be taken, depending on the first known search
expression value. MWhen control rgturns to this node the exhausted branch
uili immediately be taken. Thus, this is like a conventional conditional
etatément. In most cases this statement is used only in a search node
which has no dynamic visit variable definitions, and thus has only one

reference frame.ulth which to test its search expression.

Al though only single USE specifications have been shoun above,

actually a list of such is permissible. For example one could state:

USE THE FIRST 2 , THE LAST 3 SUCCESSESS

The meaning of this list of specifications is that the union of the

PAGE 49

successes meeting each specification determines which successes are to be
used, and furthermore each success in that union is used at the point at
which the associated search expression is‘found to be true. If a later
list element specification contradicts an earlier one in the statement
then the later one is used. Only one USE SUCCESS statement should appear
per node. The complete syntax for the USE construct is given in figure

18.

<use statement> ::= USE <class list> <type>$|
USE EITHER THE INITIAL SUCCESS OR THE INITIAL FAILURE -

<class list> s:1= <class list>,<ciass> | <class>

<class> ::w THE FIRST <value> | THE LAST <va|ue>
THE SPECIAL <function> | THE INITIAL | THE FINAL |
EVERY | ZERO

- <type> t3= SUCCESSES | SUCCESS | FAILURES | FAILURE

<function> tt= <the name of a MACLISP function in the environment>

The Syntax of USE

figure 18

As an example, refer back to figure 9 and recall that in the
Drug_given nodq,‘of'all the possible cases in which the search expression
might be true, only the first one (i.e. the first success) is of interest.

This is of course an apparent instance of the need to utilize:

PAGE 58

USE THE INITIAL SUCCESS$

In the node Find_WBC_drop, the intent was to perform a conventional
conditional test and.use either the initial success or the initial

failure. This is then an instance of the need to utilize:

USE EITHER THE INITIAL SUCCESS OR THE INITIAL FAILURES

Figure 11 shous figure 3 uith these new additions to the search nodes.

PAGE 51

Top is the starting node$
Print the patient’s hogpital number.

When Top is exhausted:
Drug_givens ‘
Define visit a such that it is any visit within range$
Search: Rx_given at visit a = "yes’$
Use the initial success$

When Drug_given is true:
Find_WBC_drop$
Define visit b such that it is the visit immediately after visit a8
Search: The WBC at visit b is < the WBC at visit a$
Use either the initial success or the initial failure$

When Find_WBC_drop is false:
Report_failure$
Print that a decrease was not found.

When Find_WBC_drop is true:
Repor t_success$
Print that a decrease was found.

#igure 9 uwith the Addition of USE Statements

figure 11

As another example of the USE statement, supptse that one wanted
to know the initial and final dates on which a drug uas given to a patient
(assume as before that this is a special patient population in which only
orte drug is being given as treatment). In this case a visit variable is
defined so as to be.any visit within range (call this visit e)l. The
search expression should test that the drug was administered. The USE

statement would be:

USE THE INITIAL , THE FINAL SUCCESSESS

This search is shoun in figure 12.

Find_initial_and_final_drug_dates$

Define visit e such that it is any visit uithin range$
Search: Rx_given at visit e = 'yes’$

Use the initial , the final successes$

When Find_initial_and_final_drug_dates is true:
Output_the_drug_date$
Print the drug date.

A Second Example of Using USE

figure 12

PAGE 52

PAGE 53

I1.7 Action Nodes

Al though the ?oncept of an action node was introduced in section
I1.1, up unti! nouw the main focus of attention has been on building search
nodes. Action node coﬁstruction Wwill now be discussed. Recall that the
typical use of an action node is to communicate the result of a search
node.

The primary statement in an action node is
ACTION: <actions>$

or

ACTIONS: <actions>$
where <actions> is a list of actions. The list is evaluated from the left

to the right. The complete syntax of <actions> is given in figure 13.

<actions> ::= <actions>,<action> | <action>
<action> :t= BACKUP TO <node name> |
CONSIDER THE NEXT PATIENT|

HALT]
UUTPUT(<outYut values>) |

<CGOL code>
<output values> ::= <output values>,<output value> | <output value>

<output value> ::= <value> | '<character string>’

Action Node Syntax

figure 13

PAGE 54

A description of each <action> is given belou.

BACKUP TO <node name>

<node name> should be some search node between the current action node and
the very top node. The éearch node returned to then resumes operation as
1f control had been passed to it from a node directly below it. Note that
if the node <node name> is exhausted then control returns to the first
non-exhausted search node encountered from <node name> to the very top

node.

CONSIDER THE NEXT PATIENT

When this is encountereq in an action list, none of the remaining members
of the action list will evaluated. Instead, a BACKUP TO <very top node>
is performed and the search tree begins execution anew using the data of
the next patient in the database. If there are no more patients then HALT

is executed as described belou.

HALT

When this is encountered in an action list, none of the remaining members
of the list will be evaluated. Instead a BACKUP TO <very top node> is
per formed, the search is stopped, and MTQ returns control to the user’s
terminal in a mode ready to accept a neu search tree or modifications to

any existing tree in the environment.

OUTPUT {<output valuess)

PAGE S5

First a carriage return is performed on the current eutput device, uhich
is typically the user’s terminal. OUTPUT then evaluﬁ?es each member.of
ite argument list from left to right. After a <value> in the list is
evaluated it is sent to the current output device separated by a space

from the previous <value> that was output.

<CGOL code$

This action gives the user the power to execute any number of CGoL
statements. CGOL is an algorithmic language with a suyntax similar to
Algol, but with the semantics of MACLISP. (Pratt 1976) Any of the actions
described above may be used within CGOL statéments. however the control
effects of HALT, BACKUP TO <node name>, and CONSIDER THE NEXT PATIENT will
not take place until after the <cgo! code> has been completely evaluated.
The functions and uperatdrs in <value> and

<search expression> may also be Qsed. Notice that by using CGOL If-Then
statements the user can even write search expressions within an action
node. Thus, if a CGOL program is better suited to solving a particular
search than the normal MTQ formalism, then the user has the ability to use
CGOL without sacrificing the loss of useful functions and operators within

<value> and <search expression>.

As an example of action nodes, figure 14 shows the MTQO
representation of action nodes previously described in English in figure

11 of section II1.6.

PAGE 56

Top is the starting node$
Action: Output(’patient_number’ , patient_number)$

When Top is exhausted:
Drug_given$
Define visit a such that it is any visit within range$
Search: Rx_given at visit a = "yes’$
Use the initial success$

When Drug_given is true:
Find_WBC_drop$
Define visit b such that it is the visit immediately after visit a$
Search: The WBC at visit b is < the WBC at visit a$
Use either the initial success or the initial failure$

When Find_WBC_drop is false:

Report_failure$

Action: Output(’the_initial_decrease_did_not_occur’)$
When Find_WBC_drop is true:

Report_success$
Action: Output(’the_initial_decrease_occured’)$

Figure 11 with Added MTQ Action Statements

figure 14

As another example, figure 15 shows an MTQ representation of the action

nodes of figure 12,

PAGE 57

. o5
e

Find_initial_and_final_drug_dates$;
Define visit e such that it is any visit within rang
Search: Rx_given at visit e = 'yes’$

Use the initial , the final successes$

When Find_initial_and_final_drug_dates is true:

Output_the_drug_date$
Action: Output(’Rx_given_at’ , date at visit e)$

Figure 12 with Added MTQ Action Statements

figure 15

The only other construct allowed in an action node besides ACTION
is DEFINE VISIT. Any visit variable definition allowed in a search node
is also allowed in an action node. However, the interpretation is
different. MWith a search node the visit variable definitions specify a
gequence of valid node frames (and thus reference'frames). and for each
such frame the search expresaion is tesfed. Depending on the result of
that test the success branch may be taken, the failure branch may be
taken, or the next valid node frame may be instantiated. With an action
node, houever, }nstead of testing a search expression, the action list at
the node is evaluated. After evaluation is completed, the next valid node
frame is instantiated to give rise to a nenw reference frame. This process
. of instantiation and evaluation continues until ali the specified valid
node frames have been instantiated. At this point théia¢tfon node is
exhausted and the exhausted branch is taken. (If there are no dynamic

visit variable definitions within an action node, the ACTION statement is

PAGE 58

evaluated within the existing reference frame and then it is exhausted so
the exhausted branch is taken). Figure 16 is an example of using a DEFINE
VISIT statement in an action node to print the patient number and visit

number for each visit at which the WBC is abnormal.

Abnormal_WBC_finder is the starting node$
Define visit x such that the WBC at visit x is abnormal$
Action: Output(patient_number , visit x)8

An Example of Using a DEFINE VISIT Statement within an Action Node

figure 16

PAGE 59

11.8 The END and RUN Statements

Tuo simple MTQ statements not yet mentioned are END and RUN. END
is an optional statement that may be used for documentation purposes to

define explicitly where a node terminates. It has the form:

END <node name>$

In most cases it is not used and in no case is it needed. The RUN

statement has the form:

RUN <starting node name>$

uhere <starting node name> is the node at the top of some search tree.

RUN is used to actually Initiate execution of the search.

PAGE 68

Ill'
An MTQ Search Example

In this chapter'a complete MTQ search example will be developed
and the results obtained from running the search on a small database will
be shoun. The purpose of this example is to demonstrate an MTQ program,
and notvnecessarilg to perform a medically useful search. The database
used has been developed for the sole purpose of testing MTQ and
consequently it contains data on onily two patients. This data was taken
from the Southeastern Cancer Group Hodgkin's Disease database
(Mirtechafter and Carpenter 1975) uhich contains data on several hundred
patients with approximately 308 items associated with each visit. The
test database to be used here contains only 8 items per visit. Each item
is listed in figure 17 along with its unit of measurement (most of these
items have numeric values; with minor modifications MTQ could handle
complex text string searches as well). There is also a header item knoun
as the patient_number. A header item has no time component. In a
production database there uould be many more header items such as the
patient’s name, birth date, current address, etc. Obviously there would

be additional time oriented items too.

PAGE 61

Item Name | Units

Date | YYMMDD

Temp | Degrees Fahrenheit
BCNU { Mg/D

HCT | %

Platelets | x1888

WBC | %1000

Uric_acid | Mg%

Rx_given | Yes-No

Items in the MTQ Test Database

figure 17

The search example here uill use the search nodes from figures 14
and 15. Recall in figure 14 that the search uas‘to find the initial drug
administratidn. and this was immediately followed by a visit at which the
WBC had declined from the WBC at the time of the drug administration.
Figure 15 is a search to locate and print the initial and finalydrug dates
of the patient. Before discussing how these nodes fit into the rest of
the search example, a graphic representation of the overall search pattern

is shoun in figure 18.

PAGE 62

I

|

I*

|]\ !/ /7
| A % A
Wwc | \ /I'N [[-—x

| S /NN N \

| N/ x/ / \

| \/ A \

| x /7 - %

| \ N\

[R D B S P O Sy 2SS P
a b c~1 c dz dn ldn
A A A d A
b | |
I | |

drug WBC first LAST
first drop minimum VISIT
given
Visit ---—>

A Graphic Representation of the Search Example

figure 18

The drug is first given at visit a, and at the next visit, visit b, the
WBC has decreased. Visit c-1 is the visit at which the first WBC minimum
occurs after visit b. Visit c is of course the visit immediately following
visit c-1. The WBC at each of the visits on or after visit c is then
compared with the WBC at visit c to determine if it is within 3 (3088)
counts of the WBC at visit c. |

Figure 19 shous a tree of the node names of the example search.

PAGE 63

[very top nodel

-——— e

|Top|
|exhausted
/ Drug_given \
\
/
true/
/
/ Find_WBC_drop \
\ /
/- \
true/ \false
/ \

——— - o o — - - o - ————— - ———— - - -

exhausted]]
| |
/ Find_next_WBC_\ / Find_initial_and \
\ minimum / \ final_drug_dates /
7 /
true/ true/
/ /
/ Check_NBC at_ \ i Dutput the_drug_date |
\ remainder_of V|51ts /] e
/ \
true/ \false
/ \
| Say_mithin_| | Say_outside_|
| range | | range !

A Tree of the Node Names of the Search Example
figure 13

PAGE 64

Notice that figure 14 defines the nodes: Top, Drug_given, Find_WBC_drop,
Report_success, and Report_failure..
Figure 15 defines the nodes: Find_initial_and_final_drug_dates and
Output_the_drug_date.

Find_next_WBC_minimum and ite true branch subtree are represented
as MTQ code in figure 28. The entire search program is shown in figure 21.
The output of this program, when run using the test database, is shoun in
figure 22, Notice that both patiehts 1 and 2 completely fit the pattern
sought. Observe also that for patient 2 the WBC was "outside of range" at
visit 9 and at visit 12, but that no mention is made of visits 18 and 11.
This is because the WBC at visits 18 and 11 are not known and consequentiy
neither the success branch nor the failure branch uas taken{see Handling

Unknoun Yalues in section 11.5).

PAGE 65

When Report_success is exhausted:
Find_next_WBC_minimum$
Define visit c such that it is any visit after visit b$
Search: The WBC at visit ¢ is > the WBC at (visitc - 1)8
Use the initial success$

When Find_next_WBC_minimum is true:
Check_WBC_at_remainder_of_visits$
Define visit d such that it is any visit on or after visit c$
Search: The ubc at visit ¢ ~ the WBC at visit d +or- 38
Use every success$
Use every failure$

When Check_WBC_at_remainder_of_visits is true:
Say_uithin_range$
Action: Dutput(’uuthun _range_at_visit' , visitd,
'on_the_date’ , date at visit d ,
ulth_NBC_at' , the ubc at visit d)$

When Check_WBC_at_remainder_of_visits is false:
~ Say_outside_range$
Action: Output(’outside_range_at_visit’ , visit d,
‘on_the_date’ , date at visit d,
"uith_the_WBC_at’ , the wbc at visit d}$

The MTQ Representation of Find_naxt_HBC_mfnimum and Its True Subtree

figure 20

PAGE 66

Top is the starting node$
Action: Output(’patient_number’ , patient_number)$

Top is exhausted:
Drug_given$
Define visit a such that it is any visit within range$
Search: Rx_given at visit a = 'yes’$
Use the initial success$

When Drug_given is true:
Find_WBC_drop$
Define visit b such that it is the visit immediately after visit a$
Search: The WBC at visit b is < the WBC at visit a$

Use either the initial success or the initial failure$

When Find_WBC_drop is false:
Report_ failures
Action: Output(’the_initial_decrease_did_not ~occur ') 8

When Find_WBC_drop is exhausted:
Find_initial_and_final drug_datesS
Deflne visit e such that it is any visit ulthin range$
Search: Rx_given at visit e = "yes’$
Use the initial , the final successes$

When Find_initial_and_final_drug_dates is true:
Output_the drug_datet
Act|on: Output ("Rx_given_at’ , date at visit el$
When Find_WBC_drop is true:

Report_success$
Action: Output(’the_initial_decrease_occured’)$

An MTQ Representation of the Complete Search Example
figure 21

(continued on the next page)

PAGE 67

When Report_success is exhausted:.
Find_next_WBC_minimum$
Define visit ¢ such that it is any visit after visit b8
Search: The WBC at visit c is > the WBC at (visitc - 1)8
" Use the initial success$

When Find_next _WBC_minimum is true:
Check_WBC_at_remainder_of_visits$
Define visit d such that it is any visit on or after visit c$
Search: The WBC at visit c ~ the WBC at visit d +or- 38
Use every success$
Use every failure$

When Check_WBC_at_remainder_of_visits is true:
Say_within_range$
Action: Output(’uithin_range_at_visit’ , visitd,
'on_the_date’ , date at visit d,
'with_WBC_at’ , the wbc at visit d)$

When Check_WBC_at_remainder_of_visits is false:
Say_outside_range$
Action: Output(’outside_range_at_visit’ , visit d,
‘on_the_date’ , date at visit d ,
‘with_the_WBC_at’ , the ubc at visit d)$

Continuation of figure 21

PATIENT-NUMBER 1

THE-INI TIAL-DECREASE-OCCURED

WITHIN-RANGE-AT-VISIT 4 ON-THE-DATE 721183 WITH-WBC-AT 5.1
WITHIN-RANGE-AT-VISIT S ON-THE-DATE 721114 WITH-WBC-AT 4.4
OUTSIDE-RANGE-AT-VISIT 6 ON-THE-DATE 721128 WITH-THE-WBC-AT 18.8
WITHIN-RANGE-AT-VISIT 7 ON-THE-DATE 721212 WITH-WBC-AT 7.7
WITHIN-RANGE-AT-VISIT 8 ON-THE-DATE 721226 WITH-WBC-AT 5.2
WITHIN-RANGE-AT-VISIT 9 ON-THE-DATE 730189 WITH-WBC-AT 4.8
WITHIN-RANGE-AT-VISIT 18 ON-THE-DATE 730123 WITH-WBC-AT 3.0
WITHIN-RANGE-AT-VISIT 11 ON-THE-DATE 738206 WITH-WBC-AT 4.1
OUTSIDE-RANGE-AT-VISIT 12 ON-THE-DATE 738220 WITH-THE-WBC-AT 1.6
WITHIN-RANGE-AT-VISIT 13 ON-THE-DATE 738366 WITH-WBC-AT 4.1
WITHIN-RANGE-AT-VISIT 14 ON-THE-DATE 738313 WITH-WBC-AT 4.0
RX-GIVEN-AT 721813

RX-GIVEN-AT 738313

PATIENT-NUMBER 2

THE-INITIAL-DECREASE-OCCURED

WITHIN-RANGE-AT-VISIT 4 ON-THE-DATE 728988 WITH-WBC-AT 5.6
WITHIN-RANGE-AT-VISIT 5 ON-THE-DATE 720915 WITH-WBC-AT 5.3
WITHIN-RANGE-AT-VISIT 6 ON-THE-DATE 721813 WITH-WBC-AT 5.6
W] THIN-RANGE-AT-VISIT 7 ON-THE-DATE 721114 WITH-WUBC-AT 3.4
WITHIN-RANGE-AT-VISIT 8 ON-THE-DATE 721121 WITH-WBC-AT 4.5
OUTSIDE-RANGE-AT-VISIT 9 ON-THE-DATE 721285 WITH-THE-WBC-AT 2.3
OUTSTDE-RANGE-AT-VISIT 12 ON-THE-DATE 730183 WITH-THE-WBC-AT 1.7
WITHIN-RANGE-AT-VISIT 13 ON-THE-DATE 730116 WITH-WBC-AT 3.8
WITHIN-RANGE-AT-VISIT 14 ON-THE-DATE 738123 WITH-WBC-AT 5.8
WITHIN-RANGE-AT-VISIT 15 ON-THE-DATE 738130 WITH-WBC-AT 4.6

W] THIN-RANGE-AT-VISIT 16 ON-THE-DATE 738227 WITH-WBC-AT 4.8
RX-GIVEN-AT 720817

- RX-GIVEN-AT 738227

SEARCH/-COMPLETED

Output of the Search Example

figure 22

PAGE 68

PAGE 69

IV,

Discussion

MTQ has been only minimally tested to date. Although programming
bugs are |ikely to appear, the more interesting issue is whether the
language as defined uill prove to be useful if extensively used in a
production environment. The limited testing that has been done seems to
indicate that it is relatively easy to understand the meaning of a
isolated node. The more difficult task, however, is understanding how the
flow of control passes between nodes. This seems to be due to the way in
which the flow of control is rather implicitly shared by the DEFINE VISIT,
SEARCH (or ACTION), and USE statements. To understand to a first
approximation their combined intent is usually easy; to understand in
detail all of their interacting implications sometimes requires serious
thought. This is usually the case uhengver a computer language moves the
control structure to a higher level of abstraction. One improvement to
MTQ would be the addition of a programmer’s aid module that would be able
to answer restricted questions about MTQ's interpretation of the search
program, Sinﬁe MTQ has few constructs, it may not be unrealistic to
attempt a simple, first level approach to such an aid. On the other hand’
perhaps the undérstandabilitg problem is due to the unorthodox control
structure. If so then it will require more use before it becomes
"matural" to use. However, the goal of MTQ as stated at the outset has
not been to provide a totally naive user (in a programming sense) with a

tool to perform arbitrarily complex searches, but rather that a programmer

PAGE 78

should perform such searches, which then can be interpreted uith relative
ease by thevnaive user. Hopefully, after sufficient exposure the naive
user will bgcome less naive and able to code more difficult searches
himsel f. It does seem likely that even a very naive user will be able to
construct searches which have one search node and a few action nodes, but
this has not been tested. One additional aid for the naive user would be
to have a book of prefabricated search trees wherein the user could
essentially "fill in the blanks" to create his oun tailored version of a
gsearch. With clearly uritten instructions this method would probably be
quite successful. It may even be worthuhile to build a special prompter
program which when given the name of a prefabricated search tree, would
prompt the user for the "fill in the blank" parameters, would construct
the tailored search tree, and finally would run the search.

There are several other immediate improvements that can be made to
MTQ. One is the ability to input and edit search trees online. Presently
a search tree is read from a data file. Editing capabilities would allou
copying portions of a tree from one location in the tree to another. It
would also be helpful to be able to display the tree structure of a
program in a format similar to that of figure 19 previously shoun.
Another graphic aid would be the ability to enter the time relationships
sought via a graph. This input would be similar to that of figure 18.
This capability is probably very difficult to implement; also it is not
presently clear if common search patterns could be specified unambiguously
Wwith the use of a graph. 'As mentioned above, a question-ansuer module

would be quite useful. A first step could be made in that direction by

PAGE 71

simply having MTQ type the search expression back to the user in a fully

parenthesized form so that the user can assure himself that MTQ has
correctly interpreted the incompletely parenthesized input expression as
was intended. Another improvement would be the addition of error handling
routines, since currently there are almost none. Errors could be flagged
and corrective suggestions made at both the point of program entry and
execution,

The list of possible improvements continues. 1f the control
provided by the USE statement is not sufficient it may be necessary to
expand the USE optioﬁs availéble. A spelling corrector and synonym
dictionary would greatly improve the ease of using MTQ. MTQ is an
interpreter énd presently it is in the form of MACLISP code which is also
being interpreted. This means that MTQ is siow. One immediate and easy
improvement is to compile the MACLISP code. This would eliminate one
level of interpretation. There are currently bottlenecks in MTQ which
have to do with suitching states betueen nodes. MWith a small amount of
effort these problems could be significantly minimized. Other efficiency
improvements include optimization of the DD loops used to establish valid
node frames. After these improvements are made the efficiency should be
well within the limits of production usage standards.

As MTQ evolves there will no doubt be new functions and operators
added. There is even now a preceived need to have MTQ convert betueen
differing units of measurement. For example, each item presently has a
standard unit of measurement; it would be convenient to be able to

reference an item uith a differing unit and have MTQ convert this to the

PAGE 72

standard. (The standard would of course serve as the default if no unit

modi fier was used). For example a reference to

THE TEMP IN °C AT VISIT X

would be converted to the equivalent standardized temperature in degrees
fahrenheit. There are other type functions that are needed as well. In
particular there is an acute need for more elaborate output functions.
These functions and many others are easily defined in GOT, which is used
as the parser for all MTQ input. GOT has proved fo be ideal for the job.
It is powerful, elegant, and easy to use; a combination rarely found.

In the future hopefully MTQ will be tested on a trial basis with a
large medical database, and if it proves to be adequate then production
usage would follow. Such use would then allow data to be gathered
concerning the type searches most often requested. This could then be
used in designing a more‘English-llke language on top of MTU so that a

casual user would have more of the full power of MTQ at his disposal.

PAGE 73

References

Beaman, P.D.: A Special Study System for COSTAR: COmputer STored
Ambulatory Record, M.1.T. S.M. thesis, May, 1377.

Belnap, Nuel D. : How a Computer Should Think, lecture at M.1.T., March
11, 1977.

Bruce, Bertram: Representation and Processing of Sequences of Events,
CBM-TR-4, Rutgers University, May, 1972,

Fries, James F.: Time-Oriented Patient Records and a Computer Databank,
Journal of the American Medical Association, 222:1536-1542, 1972.

Fries, James F.: A Data Bank for the Clinician?, The Neuw England Journal
of Medicine, 294:1480-1482, 1976,

Kahn, Kenneth M.t Mechanization of Temporal Knowledge, M.I.T. Project MAC
Technical Report 155,

Moon, David A.: MACLISP Reference Manual, April, 1974,

Pratt, Vaughan R.: CGOL - an Alternative External Representation for LISP
Users, M.1.T. A.l. Working Papsr 121.

Pratt, Vaughan R.: Top Doun Operator Precedence, ACM Sigact/Sigplan
ngpoeium on Principles of Programming Languages, Uctober. 1973.

Weyl, Stephen; Fries, James F.; MWiederhold, Gio; and Germano, Frank: A
Modular Self-Describing Clinical Databank System, Computers and Blomedtcal
Research, 8:279-293, 1975. :

Wirtschafter, David D. and Carpenter, J.T.: Analysis of the Uniformity in
the Care Process in Hodgkin's Disease Protocol, Proceedings of the
American Society for Clinical Oncology (Abstract), San Diego, California,
1975.

Wirtschafter, D.D.; Cooper G.F.; Russo, A.; and Mesel, E.: A Retrieval
System for a Time-Oriented Database, The Sixth Annual Conference of the
Society for Computer Medicine (Abstract), Boston, Massachusetts, 1376.

PAGE 74

Appendix

Function and Operator Precedence

In the table that follous the precedence is given for each
function and operator in MIQ. From henceforth the word function will be
used to mean either a function or an operator since the distinction is not
critically important. Only the first word of the function name is given
in the table. For instance GREATEST is used to represent the function
GREATEST DIFFERENCE BETWEEN <value list>. The left binding power and the
right binding power columns pertain only to the leftmost and rightmost
respective operands of the function, since these. are the only operands
that can possibly be ambiguous With respect to which of two functions gets
the operand. If there is competition for an operand then the function
with the highest binding power gets it; left association is favored in a
drau. If either the left or the right binding pﬁuer is irrelevant to the
function then a dash is entered.

In general uhen unsure of the precedence, use parentheses to

structure the expression,

PAGE 75

left binding power | name | right binding power

- | ABS | -
8 | AND | 8
8 | ,AND | 10
36 | AT | 36
- | AVERAGE | 22
- | BETWEEN | 9
- | CLOSEST | 14
- | ENTRIES | 22
- | FALSE | -
- | GREATEST | 14
19 | 1S NORMAL | -
18 | IS ABNORMAL | -
10 | 1S KNOWN [-
18 | IS UNKNOWN | -
- | IT | -
- | LAST VISIT] -
- | MAXIMUM | 22
- | MINIMUM | 22
- | NOT | 9
- | NUMBER | 35
7 | OR | 7
8 | ,OR | 10
- | PATIENT_NUMBER| -
- | THE | 48
- | THERE | -
- | TRUE | -
- | VISIT | 35

10 |<relational op>| 10
20 | infix + | 28
20 | infix - | 20
21 [x | 21
21 | 7/ | 21
22 | ~ | 22
- | prefix +] 20
- | prefix -] 28

Function and Operator Precedence Table

figure 23

