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Abstract	
  	
  

Electronic transmission of protected health information has become pervasive in research, 

clinical, and public health investigations, posing substantial risk to patient privacy. From 

clinical genetic screenings to publication of data in research studies, these activities have 

the potential to disclose identity, medical conditions, and hereditary data. To enable an 

era of personalized medicine, many research studies are attempting to correlate individual 

clinical outcomes with genomic data, leading to thousands of new investigations. Critical 

to the success of many of these studies is research participation by individuals who are 

willing to share their genotypic and clinical data with investigators, necessitating methods 

and policies that preserve privacy with such disclosures. 

We explore quantitative models that allow research participants, patients and investigators 

to fully understand these complex privacy risks when disclosing medical data. This 

modeling will improve the informed consent and risk assessment process, for both 

demographic and medical data, each with distinct domain-specific scenarios. We first 

discuss the disclosure risk for genomic data, investigating both the risk of re-identification 

for SNPs and mutations, as well as the disclosure impact on family members. Next, the de-

identification and anonymization of geospatial datasets containing information about 

patient home addresses will be examined, using mathematical skewing algorithms as well 

as a linear programming approach. Finally, we consider the re-identification potential of 

geospatial data, commonly shared in both textual form and in printed maps in journals 
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and public health practice. We also explore methods to quantify the anonymity afforded 

when using these anonymization techniques. 

	
  



Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  5 

 

Table	
  of	
  Contents	
  
Abstract............................................................................................................................. 3	
  

Biographical Note ............................................................................................................. 9	
  

Acknowledgments........................................................................................................... 13	
  

List of Figures .................................................................................................................. 16	
  

List of Tables ................................................................................................................... 20	
  

Chapter I: Introduction & Background............................................................................. 22	
  

Introduction................................................................................................................. 22	
  

Ethical, Legal, and Social Implications (ELSI) of Personalized Medicine ....................... 24	
  

Personalized Medicine and Personally Controlled Health Records .............................. 28	
  

Human Variation Data Sources and Information Content............................................. 29	
  

Measuring Risk of Identity Linkage using Genomic Data.............................................. 32	
  

Attempted Interventions to Protect Genomic Privacy ................................................... 36	
  

Using Binning to Maintain Confidentiality of Medical Data ...................................... 36	
  

Disclose Frequencies and Aggregated Data Only ..................................................... 37	
  

Anonymity by Pool Selection.................................................................................... 37	
  

Use of Generalization Lattices .................................................................................. 38	
  

Add Noise to a Genotypic Sequence ........................................................................ 40	
  

Synthesizing anonymized ‘individuals’ using statistical data associations ................. 41	
  

Quantitative genomic disclosure risk models for patients and relatives ........................ 42	
  

Geographical Data Privacy in Public Health and Clinical Practice............................... 44	
  

Anonymization of spatial data for disease surveillance ................................................ 46	
  

Conclusion .................................................................................................................. 48	
  

Chapter II: Genomic privacy: identifiability and familial risks.......................................... 50	
  

Ability to infer SNP genotypes from sibling genomic data ............................................ 51	
  

Abstract .................................................................................................................... 51	
  

Background .............................................................................................................. 52	
  

Methods ................................................................................................................... 53	
  

Results...................................................................................................................... 73	
  

Conclusions.............................................................................................................. 81	
  



Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  6 

Ability to infer SNP genotypes from parental or child data ........................................... 83	
  

Likelihood ratio test statistic for paternity and information content ........................... 86	
  

Risk of re-identification analysis of mutation data ........................................................ 90	
  

Introduction.............................................................................................................. 90	
  

De novo germline mutations .................................................................................... 90	
  

Mutation type and region-specific data sources ........................................................ 91	
  

Probability of finding a match in rare mutation alleles .............................................. 94	
  

Probability that two people are the same given a match at M mutant base pairs ....... 95	
  

Likelihood of identifying an individual out of 10000 genotyped at that locus ........... 95	
  

Chapter III: Anonymization of data for transmission and disease surveillance.................. 98	
  

A Context-Sensitive Approach to Anonymizing Spatial Surveillance Data: Impact on 
Outbreak Detection ..................................................................................................... 98	
  

Introduction.............................................................................................................. 99	
  

Background ............................................................................................................ 100	
  

Methods ................................................................................................................. 101	
  

Results.................................................................................................................... 111	
  

Discussion.............................................................................................................. 117	
  

Conclusion ............................................................................................................. 120	
  

Optimal discrete anonymization using linear programming techniques ..................... 122	
  

Abstract .................................................................................................................. 122	
  

Background ............................................................................................................ 123	
  

LP De-identification................................................................................................ 126	
  

Application............................................................................................................. 133	
  

Discussion.............................................................................................................. 140	
  

Chapter IV: Reverse Identification Potential of Authentic and Anonymized Geographical 
Data.............................................................................................................................. 146	
  

Exploiting Repeatedly Non-deterministically Anonymized Spatial Data to Re-identify 
Individuals: A Vulnerability and Proposed Solutions .................................................. 147	
  

Abstract .................................................................................................................. 147	
  

Background ............................................................................................................ 148	
  

Methods ................................................................................................................. 151	
  

Results.................................................................................................................... 154	
  

Discussion.............................................................................................................. 156	
  

Conclusions............................................................................................................ 163	
  



Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  7 

An unsupervised classification method for inferring original case locations from low-
resolution disease maps ............................................................................................. 165	
  

Preface ................................................................................................................... 165	
  

Background ............................................................................................................ 165	
  

Methods ................................................................................................................. 166	
  

Results.................................................................................................................... 169	
  

Discussion.............................................................................................................. 172	
  

Conclusions............................................................................................................ 177	
  

Chapter V: Future Directions and Conclusions .............................................................. 179	
  

Disclosure Control Mechanisms that Incorporate Quantitative Estimates ................ 179	
  

Information Theoretic Approaches and Multi-Locus Measures ................................... 180	
  

Geographical Anonymization and Privacy................................................................. 185	
  

Anonymization Type Standards and Meta-Data ...................................................... 186	
  

Availability of Anonymization Modules.................................................................. 187	
  

Development of a cryptographically secured anonymization web service .............. 188	
  

Describing quantitative anonymity estimates to users and explaining how to set 
exclusion criteria from transmissions ...................................................................... 189	
  

Constrained anonymization techniques ..................................................................... 189	
  

Conclusion ................................................................................................................ 194	
  

References .................................................................................................................... 195	
  

 

	
  

 

	
  



Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  8 

	
  



Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  9 

	
  

Biographical	
  Note	
  

Christopher A. Cassa 

POSITION TITLE 
 

Fellow, Children’s Hospital Informatics Program 

Graduate Student, Harvard-MIT Division of 
Health Sciences and Technology 
 
EDUCATION/TRAINING   

INSTITUTION AND LOCATION 
DEGREE 

(if applicable) 
YEAR(s) FIELD OF STUDY 

Massachusetts Institute of Technology S.B. 2003 
Electrical Engineering 
and Computer Science 

Massachusetts Institute of Technology M.Eng. 2004 
Electrical Engineering 
and Computer Science 

Harvard-MIT Division of Health Sciences and 
Technology 

Ph.D. 2008 
Bioinformatics and 
Integrative Genomics 

    
    



A. Positions and Honors 
 

Appointments 

2003- Pre-doctoral Fellow, Children’s Hospital Informatics Prog., Boston, MA 

Other Positions 

2005- Member, International Society for Disease Surveillance 

2005- Member, Committee on Public Health Practice, Research, International 
Society for Disease Surveillance 

2005- 

2005- 

Member, American Medical Informatics Association 

Member, Committee on Ethical Legal and Social Implications, and 
Public Health Informatics, American Medical Informatics Association  

2006- 

2006- 

National Library of Medicine Public Health Informatics Cohort 

MIT ACM/IEEE, Member 

Honors  

2005- Member, American Association for the Advancement of Science 

2005- AAAS/Science Program for Excellence in Science 

 
B. Selected peer-reviewed publications  

 
Cassa CA, Schmidt BW, Kohane IS, Mandl KD. My sister's keeper?: genomic 
research and the identifiability of siblings. BMC Medical Genomics 2008, 1:32 

Cassa CA, Wieland SC, Mandl KD. Re-identification of home addresses from spatial 
locations anonymized by Gaussian skew. International Journal of Health 
Geographics 2008, 7:45. 

Cassa CA, Iancu K, Olson KL, Mandl KD. A software tool for creating simulated 
outbreaks to benchmark surveillance systems. BMC Med Inform Decis Mak. Jul 14 
2005;5(1):22. 

Cassa CA, Grannis SJ, Overhage M, Mandl KD. A context-sensitive approach to 
anonymizing spatial surveillance data: impact on outbreak detection.  J Am Med 
Inform Assoc 2006;13(2):160-5. 

Cassa CA, Olson KL, Mandl KM. System to generate semisynthetic data sets of 
outbreak clusters for evaluation of outbreak detection performance. MMWR Morb 
Mortal Wkly Rep. 2004; 53 Suppl:231. 



Privacy	
  and	
  Identifiability	
  in	
  Clinical	
  Research,	
  Personalized	
  Medicine,	
  and	
  Public	
  Health	
  Surveillance	
  

Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  11 

Brownstein JS, Cassa CA, Mandl KD. No place to hide--reverse identification of 
patients from published maps. N Engl J Med. 2006 Oct 19;355(16):1741-2. 

Mandl KD, Reis BY, Cassa C. Measuring outbreak detection performance using 
controlled feature set simulations. MMWR. 2004;53 (Supplement: Syndromic 
Surveillance: Reports from a National Conference, 2003):130-136. 

Brownstein JS, Cassa CA, Kohane IS, Mandl KD. An unsupervised classification 
method for inferring original case locations from low-resolution disease maps. Int J 
Health Geogr. 2006;5:56. 

Wieland SC, Cassa CA, Berger B, Mandl KD. Revealing the spatial distribution of a 
disease while preserving privacy. PNAS [In Review] 

Brownstein JS, Cassa, CA, Kohane, IS, Mandl KD. Reverse Geocoding: Concerns 
about Patient Confidentiality in the Display of Geospatial Health Data. Presented 
by Dr. Brownstein at the 2005 American Medical Informatics Association Annual 
Symposium, Washington, DC, October 25, 2005.  

Reis BY, Kirby C, Sprecher E, Cassa CA, Brownstein J, Simons W, Jordan L, Mandl 
KD Advanced Modular Design for Scalable Biosurveillance Systems. Advances in 
Disease Surveillance, Vol 1, 2006.  

Zuberi B, Bertram AK, Cassa CA, Molina LT, Molina MJ. Heterogeneous nucleation 
of ice in (NH4)2SO4-H2O particles with mineral dust immersions. Geophysical 
Research Letters, VOL. 29, NO. 10, 1504, doi:10.1029/2001GL014289, 2002  

C. Teaching Experience  
 
MIT Courses 

1.00 Introduction to Computers and Engineering Problem Solving (Spring 2004) 

1.124 Foundations of Software and Computation for Simulation (Fall 2001, Spring 
2002 as MIT Advanced Studies Program class) 

1.264J / ESD.264J Database, Internet, and Systems Integration Technologies (Fall 
2004, Fall 2007)  

Harvard Medical School 

Summer Scholars in Bioinformatics and Integrative Genomics (Summers 2005, 
2006) 

Scholars in Clinical Science Program Bioinformatics Module Coordinator and 
Lecturer (Summers 2004-2008) 



Privacy	
  and	
  Identifiability	
  in	
  Clinical	
  Research,	
  Personalized	
  Medicine,	
  and	
  Public	
  Health	
  Surveillance	
  

Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  12 



Privacy	
  and	
  Identifiability	
  in	
  Clinical	
  Research,	
  Personalized	
  Medicine,	
  and	
  Public	
  Health	
  Surveillance	
  

Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  13 

	
  

Acknowledgments	
  

I owe an enormous debt of gratitude to my thesis committee: Dr. Kenneth Mandl, 

Dr. Peter Szolovits, and Dr. Isaac Kohane. I would like to thank Ken, my research 

supervisor throughout my graduate career, for serving as a kind, patient, and caring 

mentor, always with my best interest and future in mind. Your attention to detail 

and dedication to your work has inspired me and helped improve mine. Thank 

you, Pete, for all of your help in improving both of my theses, and for always taking 

the time to chat about technology, research, and life. Thank you to Zak for helping 

to inspire interesting and relevant research and for your efforts to advance my 

career. 

Shannon Wieland, John Brownstein, and Karen Olson: thank you for all of your 

energy, enthusiasm, and teamwork in our collaborative efforts. I would like to also 

thank those who have worked with me in publications, Ben Reis, Marc Overhage, 

Shaun Grannis, Brian Schmidt, and Karin Iancu, for all of the work that you have 

done to help me with my research. Thanks to every member of the Children’s 

Hospital Informatics Program, including my office mates Fabienne Bourgeois and 

Lucy Hadden, and to Andrew Kiss, who has spent much time helping me with 

many projects.  



Privacy	
  and	
  Identifiability	
  in	
  Clinical	
  Research,	
  Personalized	
  Medicine,	
  and	
  Public	
  Health	
  Surveillance	
  

Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  14 

To the students of HST and the Bioinformatics and Integrative Genomics program, 

thank you for making this an amazing place to do research and for being such 

wonderful colleagues in science and medicine. 

I would like to thank Dr. John Tsitsiklis, Dr. Gilbert Strang, and Dr. David Altshuler 

for helpful discussions and advice in both mathematics and genetics. 

To my friends: thank you for providing fun and respite from research, patiently 

enduring me, and appreciating me. Winter in Boston would not be worth it without 

you. To my students: thank you for keeping me enthusiastic about learning and 

teaching, and for providing opportunities to try and share the wisdom that many 

mentors have offered me.  

And most important, thank you to my family, Fab, Carol, Jules, and Ari for your 

unending support, love and care. You have all helped me develop in so many 

ways, and enabled me to pursue every passion I have had in my life. 

 

 

 

 

 



Privacy	
  and	
  Identifiability	
  in	
  Clinical	
  Research,	
  Personalized	
  Medicine,	
  and	
  Public	
  Health	
  Surveillance	
  

Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  15 

This work was partially supported by the following grants: R01LM007970-01 

(NIH/NLM), R01LM007677 (NIH/NLM), R01LM009375-01A1 (NIH/NLM), 

R21LM009263-01 (Canadian IHR), 5U54LM008748-02.20 (NIH/NCBC).   

	
  



Privacy	
  and	
  Identifiability	
  in	
  Clinical	
  Research,	
  Personalized	
  Medicine,	
  and	
  Public	
  Health	
  Surveillance	
  

Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  16 

	
  

List	
  of	
  Figures	
  
FIGURE 1: THE PROPORTION OF SNPS BY MINOR ALLELE FREQUENCY, BINNED BY 0.05 IN FREQUENCY FOR THE 

FOUR HAPMAP POPULATIONS (CHB + JPT WERE COMBINED). THE SOLID LINE REPRESENTS THE ACTUAL 

DISTRIBUTION FROM ENCODE SNPS AND THE DASHED LINE DESCRIBES THE MINOR ALLELE FREQUENCY 

DISTRIBUTION EXPECTED FOR THE STANDARD NEUTRAL POPULATION GENETICS WITH RANDOM MATING 

AND FIXED POPULATION SIZE. [FROM A HAPLOTYPE MAP OF THE HUMAN GENOME. NATURE 437, 1299-
1320] .................................................................................................................................... 30 

FIGURE 2: THE PROPORTION OF INTER-SNP DISTANCES IN AREAS COVERED BY THE HAPMAP PROJECT, BINNED 

BY INTER-SNP DISTANCE (KB), FOR ALL SNPS WITH MINOR ALLELE FREQUENCY ≥ 0.05. [FROM A 

HAPLOTYPE MAP OF THE HUMAN GENOME. NATURE 437, 1299-1320] .......................................... 30 
FIGURE 3: LIN AND ALTMAN, ET AL DESCRIBE THE TRADE-OFF BETWEEN PRIVACY LEVEL AND NUMBER OF SNP 

GENOTYPES DISCLOSED TO RESEARCHERS OR CLINICIANS. [FROM GENETICS. GENOMIC RESEARCH AND 

HUMAN SUBJECT PRIVACY. SCIENCE 2004, 305:183. (REVISED EDITION)]........................................ 35 
FIGURE 4: PROTECTING DNA SEQUENCE ANONYMITY WITH GENERALIZATION LATTICES. IN THIS EXAMPLE, 

EACH PURINE (A, G) MAY BE CONSOLIDATED INTO R, AND EACH PYRIMIDINE (C, T) MAY BE 

CONSOLIDATED INTO A NEW BASE PAIR Y, BOTH FOR GENERALIZATION. ALL FOUR BASE PAIRS CAN BE 

GENERALIZED INTO N TO REDUCE THE INFORMATION THAT IS DISCLOSED WHEN PUBLISHING GENOMIC 

DATA. ..................................................................................................................................... 39 
FIGURE 5: MORE COMPLEX GENERALIZATION LATTICES CAN BE USED TO COMPLEXIFY AND OBSCURE THE 

INFORMATION CONTENT THAT IS SHARED IN A DISCLOSED SEQUENCE. THIS EXAMPLE INCLUDES THE FOUR 

DNA BASE PAIRS AS WELL AS PURINE AND PYRIMIDINE GENERALIZERS USED ABOVE, REVERSE IDENTIFIERS 

(NOT A), AMINO GROUP IDENTIFIERS, KETO GROUP IDENTIFIERS, AMONG OTHERS. ............................ 39 
FIGURE 6: INTRODUCING NOISE INTO SNP GENOTYPES STILL RESULTS IN IDENTIFIABILITY. TEN PERCENT 

RANDOM NOISE WAS ADDED TO A SNP DATA SET, AND AT VARIOUS NUMBERS OF SNP MATCHES, THE 

FALSE NEGATIVE AND FALSE POSITIVE RATES OF IDENTIFICATION ARE GRAPHED. ................................. 41 
FIGURE 7: (A-C) REFINING MECHANISM FOR HOMOZYGOUS MAJOR SNPS: WHEN THE FIRST SIBLING IS 

HOMOZYGOUS MAJOR (A), HOMOZYGOUS MINOR (B), OR HETEROZYGOUS (C) AT A GIVEN SNP, THIS 

CONSTRAINS THE POSSIBLE PARENTAL GENOTYPES; IN THE FIRST CASE, FIVE OF NINE PARENTAL GENOTYPIC 

COMBINATIONS CAN BE ELIMINATED (CROSSED BOXES). USING HAPMAP CEPH SNP POPULATION 

FREQUENCIES, P AND Q, THE PROBABILITY FREQUENCIES ARE POPULATED FOR THE REMAINING SQUARES, 
AND NORMALIZED. THE PROBABILITY THAT SUBSEQUENT SIBS WILL BE HOMOZYGOUS MAJOR, 
HETERZYGOUS, OR HOMOZYGOUS MINOR CAN THEN BE CALCULATED USING THE PROBABILITIES THAT 

PARENTS WOULD CONTRIBUTE SPECIFIC ALLELIC VALUES. (D) FOR EACH OF 30 HAPMAP CEPH TRIOS, 
THE SIB1 GENOTYPE AND THE SNP POPULATION FREQUENCIES ARE USED (WITHOUT THE PARENT 

GENOTYPES) TO INFER P(‘AA’), P(‘AA’), AND P(‘AA’) FOR SUBSEQUENT SIBLINGS. THOSE PROBABILITIES 

ARE THEN VALIDATED AGAINST THOSE THAT WOULD BE EXPECTED GIVEN ONLY THE PARENTAL 

GENOTYPES AT EACH SNP. ........................................................................................................ 57 
FIGURE 8: LOG LIKELIHOOD RATIO TEST STATISTIC FOR SIBLING INFERENCES: FOR EACH SIB2 GENOTYPE, THE 

LOG LIKELIHOOD RATIO FOR EACH POSSIBLE SIB1 INFERENCE IS SHOWN VERSUS MINOR ALLELE 

FREQUENCY (MAF). THESE CHARTS DESCRIBE HOW INFORMATIVE THE SIB2 GENOTYPE OF ‘AA’ IS, WHEN 

INFERRING EACH SIB1 GENOTYPE................................................................................................. 60 
FIGURE 9: LOG LIKELIHOOD RATIO TEST STATISTIC FOR SIBLING INFERENCES: FOR EACH SIB2 GENOTYPE, THE 

LOG LIKELIHOOD RATIO FOR EACH POSSIBLE SIB1 INFERENCE IS SHOWN VERSUS MINOR ALLELE 

FREQUENCY (MAF). THESE CHARTS DESCRIBE HOW INFORMATIVE THE SIB2 GENOTYPE OF ‘AA’ IS, WHEN 

INFERRING EACH SIB1 GENOTYPE................................................................................................. 61 
FIGURE 10: LOG LIKELIHOOD RATIO TEST STATISTIC FOR SIBLING INFERENCES: FOR EACH SIB2 GENOTYPE, THE 

LOG LIKELIHOOD RATIO FOR EACH POSSIBLE SIB1 INFERENCE IS SHOWN VERSUS MINOR ALLELE 

FREQUENCY (MAF). THESE CHARTS DESCRIBE HOW INFORMATIVE THE SIB2 GENOTYPE OF ‘AA’ IS, WHEN 

INFERRING EACH SIB1 GENOTYPE................................................................................................. 61 



Privacy	
  and	
  Identifiability	
  in	
  Clinical	
  Research,	
  Personalized	
  Medicine,	
  and	
  Public	
  Health	
  Surveillance	
  

Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  17 

FIGURE 11-A: SIB-SHIP IDENTIFIABILITY SURFACES: THESE SURFACES DESCRIBE THE PROBABILITY OF SIB-SHIP AS A 

FUNCTION OF M, THE NUMBER OF MATCHED INDEPENDENT SNPS (BETWEEN TWO INDIVIDUALS) AND 

MINOR ALLELE FREQUENCY (MAF). WE SHOW THIS ACROSS THREE SAMPLE SIZE POOLS--N=(A)100,000; 
(B)10,000,000; (C)6,000,000,000 PEOPLE. AT HIGH MAFS EVEN VERY LARGE INCREASES IN THE 

POTENTIAL SAMPLE POOL SIZE WILL NOT PREVENT SIB-SHIP CONFIRMATION WITH RELATIVELY FEW 

MATCHED SNPS. FOR EXAMPLE, IF LOCI WITH MAF=0.25 ARE SELECTED, THE NUMBER OF MATCHED 

SNPS TO CONFIRM SIB-SHIP WITH P=0.999 IS 50 WITH A CANDIDATE POOL OF 100,000 AND INCREASES 

TO ONLY 80, IN A GROUP OF 6 BILLION. ..................................................................................... 64 
FIGURE 12: THE BINOMIAL DISTRIBUTION FOR NUMBER OF CORRECT SNP GENOTYPE INFERENCES. IN THIS 

EXAMPLE, WE ATTEMPT INFERENCE OF 100 SNP GENOTYPES, EACH WITH PROBABILITY 0.8 OF SUCCESS. 
WE WOULD LIKE TO KNOW WHAT THE PROBABILITY IS OF CORRECTLY INFERRING AT LEAST 75 (RED) IS 

0.912. THIS CAN BE CALCULATED USING THE 1-F(K,N,P) CUMULATIVE BINOMIAL DISTRIBUTION 

FORMULA IN THE ABOVE SECTION. .............................................................................................. 69 
FIGURE 13: THE ERROR REDUCTION, IN THE FORM OF PERCENTAGE IMPROVEMENT IN INFERENCE ACCURACY 

FOR SUBSEQUENT SIBLINGS, WHEN ONE SIBLING’S (SIB1) GENOTYPE IS AVAILABLE (FOR EACH POSSIBLE SIB1 

GENOTYPE). ............................................................................................................................. 72 
FIGURE 14: FRACTION OF CORRECT SIB2 INFERENCES: THE FRACTION OF SIB2 SNPS THAT CAN BE CORRECTLY 

IDENTIFIED WHEN SIB1 IS (A)HOMOZYGOUS MAJOR OR (B)HETEROZYGOUS. EACH LINE REPRESENTS USE 

OF DISTINCT DATA--INCLUSION OR EXCLUSION OF SIB1 GENOTYPES, AND USE OF POPULATION-SPECIFIC 

OR GLOBAL ALLELE FREQUENCY DATA. WITHOUT SIB1 GENOTYPES, HOMOZYGOUS MAJOR INFERENCES 

WOULD ALWAYS BE INCORRECT AT MINOR ALLELE FREQUENCY (MAF) ≥ 0.33 AND HETEROZYGOUS 

INFERENCES WOULD ALWAYS INCORRECT AT MAF ≤ 0.33. AT MANY ALLELE FREQUENCIES, USE OF SIB1 

GENOTYPES DRAMATICALLY IMPROVES SIB2 INFERENCES................................................................. 75 
FIGURE 15: EXPERIMENT DESCRIPTION: FIVE WEEKS OF CHILDREN’S HOSPITAL BOSTON VISIT DATA ARE EACH 

INDIVIDUALLY COMBINED WITH 252 DIFFERENT ARTIFICIALLY-GENERATED SPATIAL CLUSTERS.  EACH OF 

THE RESULTING 1,260 DATA SETS WAS THEN ANONYMIZED AT TEN DIFFERENT LEVELS FOR A TOTAL OF 

12,600 EXPERIMENTAL DATA SETS............................................................................................. 107 
FIGURE 16: ESTIMATING EXPECTED K-ANONYMITY: USING THE DATA SET STANDARD DEVIATION OF THE 

DISTANCE EACH PATIENT IS MOVED IN THE ANONYMIZATION, Σ, AN ESTIMATE OF ACHIEVED K-
ANONYMITY IS CALCULATED, ASSUMING NO OTHER EXTERNAL KNOWLEDGE OF SPECIFIC PATIENT 

INFORMATION.  THE LOCAL POPULATION DENSITY [PEOPLE/KM2] IS MULTIPLIED BY EACH AREA [KM2] AND 

THEN MULTIPLIED BY THE PROBABILITY THAT THE PATIENT WOULD HAVE BEEN IN THAT AREA, FROM THE 

GAUSSIAN PROBABILITY DISTRIBUTION FUNCTION. ..................................................................... 109 
FIGURE 17: DISTRIBUTION OF DISTANCE FROM ORIGINAL LOCATION: EACH CASE WAS MOVED FROM AN 

ORIGINAL HOME ADDRESS TO A NEW DE-IDENTIFIED LOCATION.  EACH DATA SERIES REPRESENTS THE 

PERCENTAGE OF PATIENTS THAT WERE DISPLACED PLOTTED AGAINST DISTANCE [KM] DISPLACED FROM 

ORIGINAL LOCATION. ............................................................................................................. 112 
FIGURE 18: AVERAGE K-ANONYMITY ACHIEVED VS. AVERAGE DISTANCE MOVED: AS THE AVERAGE DISTANCE 

[KM] MOVED IN A GIVEN DATA SET INCREASES, THE ANONYMITY ACHIEVED ALSO INCREASES IN A 

QUADRATIC FASHION.............................................................................................................. 113 
FIGURE 19: AVERAGE CLUSTER SENSITIVITY/SPECIFICITY VS. AVERAGE DISTANCE TO ORIGINAL POINT 

[AVERAGE DISTANCE INCREASES AS ANONYMIZATION LEVEL INCREASES]: THE AVERAGE SENSITIVITY AND 

SPECIFICITY OF SPATIAL DETECTION (USING SATSCAN BERNOULLI SPATIAL MODEL WITH P-VALUE ≤ 0.05) 
OF ARTIFICIALLY-INJECTED CLUSTERS OF PATIENTS IS DISPLAYED WITH RESPECT TO THE AVERAGE DISTANCE 

THAT PATIENTS IN A DE-IDENTIFIED DATA SET ARE MOVED WITH RESPECT TO THEIR ORIGINAL HOME 

ADDRESSES.  SENSITIVITY AND SPECIFICITY ARE CALCULATED USING CASES FROM THE CLUSTER AND 

CONTROL DATA THAT WERE OR WERE NOT IDENTIFIED PROPERLY. ................................................. 115 
FIGURE 20: PERCENTAGE OF VISITS THAT MEET SPECIFIC K-ANONYMITY THRESHOLDS: FOR DIFFERENT USER-

SPECIFIED K-ANONYMITY MINIMUM THRESHOLDS, THE PERCENTAGE OF VISITS IN A DATA SET WITH A K-
ANONYMITY VALUE BELOW THE MINIMUM THRESHOLD (AND NOT SUFFICIENTLY DE-IDENTIFIED) 
DECREASES QUICKLY AS THE AVERAGE DISTANCE MOVED INCREASES.  FOR OVER 99% OF THE VISITS IN ALL 

TEST DATA SETS, A MINIMUM K-ANONYMITY VALUE OF 20 COULD BE ACHIEVED WITH AN AVERAGE 

DISTANCE MOVED OF 0.25KM. ................................................................................................. 117 



Privacy	
  and	
  Identifiability	
  in	
  Clinical	
  Research,	
  Personalized	
  Medicine,	
  and	
  Public	
  Health	
  Surveillance	
  

Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  18 

FIGURE 21: SCHEMATIC OF TRANSITION PROBABILITIES. A PATIENT FOUND AT EACH LOCATION IN A SET A MAY 

TRANSITION TO ANY LOCATION IN A SET B. IN THIS EXAMPLE, THE SETS A AND B ARE EQUIVALENT FOR 

SIMPLICITY, EACH CONSISTING OF THREE LOCATIONS REPRESENTED BY HOUSES. THE NINE TRANSITION 

PROBABILITIES, REPRESENTED BY ARROWS, ARE VARIABLES SOLVED BY LINEAR PROGRAMMING. .......... 129 
FIGURE 22: TRANSITION PROBABILITIES FOR THE OPTIMAL STRATEGY TO DE-IDENTIFY S ≤ 20, 000 PATIENTS 

FROM NEW YORK COUNTY, NEW YORK WITH A MAXIMUM RE-IDENTIfiCATION PROBABILITY OF 

S/20000. TRANSITION PROBABILITIES FROM THREE OF THE 988 CENSUS BLOCKS ARE SHOWN, 
ILLUSTRATING A FEW OF THE MANY POSSIBLE TRANSITION DISTRIBUTIONS. THE SHADING IN REGION J 

REPRESENTS THE VALUE OF THE PROBABILITY PIJ OF TRANSITIONS INTO THE REGION. A) PATIENTS IN ONE 

CENSUS BLOCK (ASTERISK) MAY REMAIN THERE, OR THEY MAY TRANSITION TO ONE OF SEVERAL NEARBY 

BLOCKS. B) ALL PATIENTS ORIGINALLY IN ONE CENSUS BLOCK (ASTERISK) ARE ASSIGNED TO ONE 

NEIGHBORING BLOCK. C) PATIENTS ARE RE-ASSIGNED FROM ONE BLOCK (ASTERISK) TO ONE OF FOUR 

NEARBY CENSUS BLOCKS. NO PATIENTS ARE RE-ASSIGNED TO THE ORIGINAL CENSUS BLOCK (I.E. PII = 0).
............................................................................................................................................ 135 

FIGURE 23: RELATIONSHIP BETWEEN THE RE-IDENTIfiCATION PROBABILITY, THE NUMBER S OF PATIENTS, AND 

THE EXPECTED TRANSITION DISTANCE FOR THE OPTIMAL LP STRATEGY TO DE-IDENTIFY PATIENTS BY 

CENSUS BLOCK GROUP IN NEW YORK COUNTY, NEW YORK. AS THE LEVEL OF PRIVACY PROTECTION 

DECREASES (FROM LEFT TO RIGHT ALONG THE X-AXIS), PATIENTS ARE MOVED A SMALLER DISTANCE IN 

EXPECTATION. AGGREGATION BY ZIP CODE (GREEN DIAMOND) AND fiRST THREE ZIP CODE DIGITS 

(MAGENTA ASTERISK) ARE SUBOPTIMAL STRATEGIES YIELDING LARGER DISTANCE MOVEMENTS THAN THE 

OPTIMAL LP STRATEGY AT THE SAME RE-IDENTIfiCATION PROBABILITY. NOTE THAT LOG SCALES ARE USED, 
SO THE EXPECTED TRANSITION DISTANCE INCREASES 100-FOLD BETWEEN TICK MARKS ON THE Y-AXIS. 136 

FIGURE 24: DETECTION OF CLUSTERS IN CASE-CONTROL DATA SETS. ONE THOUSAND SETS OF CONTROLS AND 

CASES CONTAINING A CLUSTER WERE DE-IDENTIfiED USING THE LP METHOD (BLUE LINE), AGGREGATION 

BY ZIP CODE (GREEN DIAMOND), OR AGGREGATION BY THE fiRST THREE ZIP CODE DIGITS (MAGENTA 

ASTERISK). THE X-AXIS SHOWS THE RE-IDENTIfiCATION PROBABILITY, WHICH RANGED FROM 0.005 TO 1 

(ORIGINAL DATA SET). THE Y AXIS SHOWS THE MEAN P-VALUE OF THE MOST LIKELY CLUSTER AVERAGED 

OVER ALL DATA SETS. CLUSTERS DE-IDENTIfiED USING THE LP METHOD WERE DETECTED WITH GREATER 

fiDELITY (I.E. LOWER P-VALUE) THAN THOSE DE-IDENTIfiED USING AGGREGATION. .......................... 138 
FIGURE 25: EXAMPLE OF ANONYMIZED POINTS THAT HAVE BEEN AVERAGED. AN ORIGINAL DATA POINT (RED) 

WAS ANONYMIZED USING A POPULATION-DENSITY ADJUSTED GAUSSIAN SKEW ALGORITHM FIVE TIMES 

(LIGHT BLUE POINTS). THOSE POINTS WERE AVERAGED AND THE AVERAGE COORDINATE VALUE IS 

PLOTTED (GREEN). THE AVERAGE OF THE ANONYMIZED POINTS IS NEARER TO THE ORIGINAL POINT THAN 

EACH OF THE ANONYMIZED POINTS. (COURTESY GOOGLE EARTH.) ............................................... 150 
FIGURE 26: ANONYMIZATION ALGORITHM TRANSLATION PROBABILITY DENSITY FUNCTIONS. PROBABILITY 

DISTRIBUTION FUNCTIONS FOR THE TWO ANONYMIZATION METHODS, 2-DIMENSIONAL GAUSSIAN SKEW 

(LEFT) AND UNIFORM SKEW (RIGHT). ......................................................................................... 152 
FIGURE 27: EXPERIMENTAL METHODS DESIGN. ONE DATA SET OF 10,000 ARTIFICIALLY GENERATED CASE 

LOCATIONS AND UNIQUE IDENTIFIERS WERE CREATED. THE DATA SET WAS ANONYMIZED 50 TIMES USING 

A 2-DIMENSIONAL GAUSSIAN-BASED SKEW, AND 50 TIMES USING A 2-DIMENSIONAL UNIFORM SKEW.154 
FIGURE 28: AVERAGE DISTANCE TO ORIGINAL POINT VS. NUMBER OF ANONYMIZATION VERSIONS. THE 

AVERAGE DISTANCE TO ORIGINAL POINT [KM] VS. NUMBER OF ANONYMIZATION VERSIONS USED IN 

AVERAGING IS PLOTTED FOR BOTH GAUSSIAN AND UNIFORM SKEW. ............................................. 156 
FIGURE 29: INTEGRATION OF ANONYMIZATION WITHIN DISTRIBUTED EMR INFRASTRUCTURE. INTEGRATION 

WITH A DISTRIBUTED ELECTRONIC MEDICAL RECORD INFRASTRUCTURE: A DISTRIBUTED DATA 

PROVISIONING SYSTEM PROVIDES ANONYMIZED SPATIAL ADDRESS DATA TO THREE DATA CONSUMERS AT 

THREE DISTINCT K-ANONYMITY PRIVACY LEVELS. ......................................................................... 160 
FIGURE 30: MARKOV ANONYMIZATION PROCESS TO INCREASE DATA SET ANONYMITY. MARKOV PROCESSES TO 
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FIGURE 31: PROTOTYPICAL PATIENT MAP FOR BOSTON, MASSACHUSETTS. THE IMAGE DISPLAYS 550 

ADDRESSES SELECTED BY STRATIFIED RANDOM SAMPLING DESIGN. THE ORIGINAL JPEG IMAGE USED IN 

THE ANALYSIS HAD A RESOLUTION OF 50 DOTS PER INCH (550X400 PIXELS), A FILE SIZE OF 129KB AND A 

SCALE OF 1:100,000. THIS WOULD BE A TYPICAL OUTPUT FOR WEB DISPLAY AND USUALLY LOWER 

RESOLUTION THAN WOULD BE SHOWN IN A SLIDE PRESENTATION OR IN A PEER-REVIEWED PUBLICATION.
............................................................................................................................................ 167 

FIGURE 32: ACCURACY OF REVERSELY IDENTIFYING PATIENT LOCATION FROM A HYPOTHETICAL LOW-
RESOLUTION PATIENT MAP IN BOSTON, MASSACHUSETTS. THE ACCURACY OF THE REVERSE 

IDENTIFICATION WAS DETERMINED BY (A) THE DISTANCE BETWEEN THE REVERSELY IDENTIFIED AND THE 

ORIGINAL ADDRESSES AND (B) THE NUMBER OF BUILDINGS IN WHICH THE PATIENT COULD RESIDE, GIVEN 

THE REVERSELY GEOCODED ADDRESS.  THE REVERSELY GEOCODED LOCATION WAS ON AVERAGE WITHIN 

28.9 METERS (95% CI, 27.4-30.4) OF THE CORRECT ADDRESS. THE MEAN NUMBER OF BUILDINGS IN 

WHICH THE PATIENT MIGHT RESIDE WAS 7.7 (95% CI, 7.0-8.3). .................................................. 170 
FIGURE 33: RESULTS OF REVERSELY IDENTIFYING PATIENT ADDRESSES IN BOSTON, MASSACHUSETTS. THE GREEN 

BUILDINGS ARE THE RANDOMLY SELECTED PATIENT LOCATIONS. THE BLUE POINTS ARE THE PREDICTED 

LOCATIONS OF THE CASES FROM THE PRESENTATION QUALITY MAP (50 DPI) AND RED POINTS ARE 

PREDICTIONS FROM THE PUBLICATION QUALITY MAP (266 DPI). PROXIMITIES OF THE PREDICTED TO THE 

ACTUAL LOCATION ARE DISPLAYED FOR BOTH (A) A HIGH DENSITY URBAN AREA AND (B) A LOW DENSITY 

SUBURBAN AREA. ................................................................................................................... 172 
FIGURE 34: A PROPOSED MUTLI-FACTOR AUTHENTICATION FRAMEWORK FOR THE RETRIEVAL OF PATIENT 

MEDICAL RECORDS FROM A SET OF DISPARATE POINTS OF CARE. IN THIS EXAMPLE, A USER BEGINS BY 

ACCESSING A HEALTH RECORD PORTAL, AND OVER A SECURE NETWORK CONNECTION, PROVIDES HIGHLY 

IDENTIFYING INFORMATION TO HIS OR HER TRUSTED PORTAL PROVIDER. THE HEALTH RECORD PORTAL 

THEN MAKES A NETWORK QUERY TO A RECORD LOCATOR SERVICE, USING THAT HIGHLY IDENTIFYING 

DATA, SUCH AS A SOCIAL SECURITY NUMBER, DATE OF BIRTH, GENDER, HOME ADDRESS, OTHER MEDICAL 

RECORD NUMBERS. THE RECORD LOCATOR SERVICE THEN USES THE MATCHING AND POTENTIALLY 

MATCHING SET OF MEDICAL RECORDS TO GENERATE A SET OF AUTHENTICATION QUESTIONS FOR THE 

USER. ONCE A SUFFICIENT NUMBER OF THOSE QUESTIONS HAVE BEEN ANSWERED CORRECTLY, 
AUTHORIZATION IS PROVIDED TO ACCESS THAT INDIVIDUAL’S RECORDS. ....................................... 193 
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Quiquid latine dictum sit altum viditur. 

Whatever is said in Latin seems profound. 

Chapter	
  I:	
  Introduction	
  &	
  Background	
  

Introduction	
  	
  

Modern healthcare systems rely on transmission of protected health information for 

clinical, research, and public health purposes. This communication poses 

substantial risk to patient privacy, with the potential to disclose identity, medical 

conditions, and hereditary data. This cost in patient privacy must be carefully 

weighed and considered against the societal benefit for advancing the state of 

science and protecting public health. Additionally, allowing patients and 

practitioners to fully understand these risks when disclosing medical data will 

enable genuine informed consent in the era of personalized medicine. We also 

explore de-identification strategies – the removal of data that would help identify 

individuals from corresponding data set records – as well as re-identification 

techniques – the process of attempting to identify a specific individual or a set of 

individuals from de-identified data. 

We explore disclosure risks of both demographic and medical data, each with 

distinct domain-specific approaches. We begin with genomic medical data, and 

investigate risk to patients and their relatives, both in the context of identifiability 

and disease status. We then change focus to spatial data, such as addresses, 
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commonly included in demographic and clinical data sets, and investigate the 

ability to de-identify geographically encoded addresses in a manner that still 

maintains their usefulness in cluster detection. We also explore methods to quantify 

the anonymity afforded when using these anonymization techniques. We conclude 

with a discussion of reverse-identification techniques, including vulnerabilities that 

emerge when employing specific types of de-identification strategies. 

While these specific approaches are tailored to different classes of clinical data, 

many share methodology and implications across those fields, particularly with 

respect to novel quantitative metrics for privacy and identifiability. 

Genomic data have the potential to reveal a great deal about patients, ranging from 

phenotypic or disease propensity information, to paternity or lineage. Given the 

information content derived from familial records, we quantitatively model such 

data to help with the communication of privacy risks for relevant use cases. We 

hope this will encourage improved presentation of risk to patients in an 

informative, readable set of views and pedigree charts. There are also a number of 

legal and policy aspects to consider, including communication of otherwise 

confidential, but implicit data, and the sharing of derived familial medical data 

without direct consent. 

Clinical data that are regularly recorded and stored in hospital data systems 

includes information from each part of the medical and payment process: patient 

identifiable demographics, insurance data (potentially with implicit or explicit 
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employer information), laboratory results, physician and practitioner notes, and 

potential patient annotations. Each of these data types must be handled carefully, 

as the data contained in any piece of these may have the ability to assist in 

individually linking a record to a specific patient. 

Ethical,	
  Legal,	
  and	
  Social	
  Implications	
  (ELSI)	
  of	
  Personalized	
  Medicine	
  	
  

The human genome project was initiated to explore and extract the shared 

genotypic sequence and basis for developing human characteristics and heritable 

health status [1]. Knowledge of the human genome sequence has led to the 

development of thousands of research studies and new fields of research, including 

functional genomics, epigenetics, and proteomics, among others. These range from 

those that attempt to discern the distribution of alleles throughout the world’s 

populations in a variety of geographies [2, 3], to those that seek to identify the 

genomic location and function of genes that cause disease or disease propensity [4-

6]. On top of these studies, there is a rich study of systems biology which integrates 

both genetic and protein networks whose complex interactions are difficult to 

model, but may be an effective way to study complex sets of genetic variants [7]. 

Most of this research ultimately seeks to help identify and cure disease in individual 

patients, a truly complex task called personalized medicine.   

Personalized medicine is destined to improve treatment efficacy and outcomes for 

patients: if the most effective treatment possible for a specific patient can be 

selected and less effective or hazardous treatments can be left out [8], an 

individualized regimen has enormous potential [9-11]. Technology is evolving to 
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enable personalized medicine to become a reality, including the evolution of 

research promoting inexpensive genotyping technology [12, 13] and companies 

[14] offering inexpensive genotyping to the public. To make this information 

tractable and useful to patients, there are myriad companies offering informative 

personalized medical data about those genetic variants that have been observed 

[14-16] and even for full genome sequences [16]. There are also research projects 

aimed at making genomic data freely available on the web for exploration and 

research, including the Personal Genome Project [17, 18].  

There are a number of contentious items in the personalized genetics and 

personalized medicine docket, including several ethical, social and legal 

ramifications that should be considered. Among those are the questions of whether 

personalized genomic medicine will fundamentally translate into a form of 

prophylactic medicine, where primary and secondary prevention will take the form 

of genetic screening, birth control measures, and pregnancy termination [19].  

Prevention in human genetics does have an unpleasant history, including eugenics 

and sterilization. These items have been replaced with more sound preventive 

strategies, including routine newborn screening and community screening for at-

risk carrier populations [20-22]. There is certainly a social and ethical risk of 

extension in this domain as available data linking a merely displeasing or 

disadvantageous characteristic to a genotype becomes available. Conversely, 

enhancement measures that use genomic data (vis-à-vis gene therapies) are equally 

hazardous when not treating a disease or disorder [23, 24]. Additionally, as the 
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study of aging and gerontology take root in the age of personalized medicine, many 

ethical dilemmas will surely be raised; preventing Alzheimer’s symptoms and 

providing more youthful, healthy life while aging is certainly desirably, but where 

will the bar be placed for termination of treatment [25]? 

Perhaps the most important social implication to the public is the threat associated 

with sharing genetic data that might reveal personal or familial propensity to 

disease. The Genetic Information Non-Discrimination Act, recently passed (GINA, 

H.R. 493), will help protect individuals and their family members from financial 

consequences or forcible genetic testing by employers or health insurers [26]. This 

should allow the expansion of individual genetic testing and public screening 

efforts, but it does not solve all of the social issues associated with genetic testing. 

There are still many other places where discrimination may legally occur if a 

patient has a disease genotype, including the use of genetic testing in setting life, 

disability, and long-term care insurance premiums [27]. Familial genotypic 

sequences can be used to assist in forensic or criminal investigations for indirect 

identification of genotype, increasing the number of people who may be identified 

[28, 29]. Similarly, Freedom of Information Act (FOIA) [30] requests related to 

federally-funded genome wide association studies could potentially be used to 

identify research participants and their family members. Clinically, choosing the 

detail and type of disease propensity information that must be disclosed to patients 

and their potentially affected family members is also under debate [31, 32]. 
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The current predictive power of genetic testing for approximately 1,500 

monogenetic diseases is robust [33]. However, for much more common, polygenic 

disorders, the ability to predict disease propensity continues to be poorer from 

genetic testing than from family history [34]. This raises ethical and social 

concerns; should the public receive broad-based genetic screening until it has 

proven clinical value? Without appropriate diagnostic value, testing may provide 

false alarms and false hope, and also prove costly in unnecessary clinical follow-

up. One specific example is the recent change made to clinical guidelines for 

prostate cancer screening, specifying that patients above age 75 receive more harm 

than benefit from such screenings [35-37]. 

Further, research in genetics – particularly for complex diseases – has generated a 

large number of irreproducible studies, creating a large set of incidental and 

dubious findings, coined the incidentalome [38-40]. There is no ‘clearinghouse’ 

that designates a SNP association with disease as clinically valid, and in this 

‘bleeding edge’ research arena, there is a bias for journals to approve new positive 

associations between genetics and disease without substantial reproducibility [41-

43]. Because of this, personalized medicine in the electronic medical record age 

may be filled with a lot of ‘noise’ for patients, as findings of dubious, not 

reproduced studies are rapidly disseminated to their electronic records with no 

proven clinical benefit.  
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Personalized	
  Medicine	
  and	
  Personally	
  Controlled	
  Health	
  Records	
  

With all of its potential risks, the field of personalized medicine continues to grow, 

promising to have a significant impact on medical care. Legislation on the federal 

docket was recently considered (S.986 Genomics and Personalized Medicine Act 

of 2007) to broadly expand the funding for research targeted at research studies 

that will have future impact on individualized medical treatments. Because of this 

broad growth, studies have gathered large groups of participants interested in 

sharing their genomic data with researchers, including participants from the 

Framingham Heart Study and the Women’s Health Initiative [4, 5, 7, 44-46]. 

In addition to these large-scale studies, enabling researchers to get a wide variety of 

linked clinical and genomic data sets from altruistic volunteers from the public who 

would share a subset of, or their entire genomes has enormous potential to advance 

science. One way to potentially reach these volunteers would be through 

electronic medical records, specifically patient controlled medical records (PCHRs) 

[47-51]. PCHRs differ from conventional electronic medical records (EMRs) [52] in 

several important ways: 1) PCHRs give patients complete control over what 

components of their medical records and data are shared with which clinicians 2) 

PCHRs have the ability to span many points of care, from disparate institutions, and 

3) PCHRs may be patient owned (in some models), and if so, patients should be 

more comfortable with private medical and genomic data storage in those records. 

A recent article describes the mutual benefits such broad public participation could 

have for both patients and researchers in a controlled fashion [53]. The authors 
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describe a Genetic Partnership Project (GPP) which would allow patients to share 

(likely through a PCHR interface) their genetic data with researchers, and then also 

allow patients to ‘tune in’ to updates on that research in an anonymous fashion.  

Separately, there is interest in tapping the potentially enormous expanse of medical 

data that may be stored in corporate medical record storage systems, including 

Google Health and Microsoft HealthVault. These systems plan to provide patients 

with the ability to gather and store their healthcare data from a variety of 

participating healthcare institutions [54]. Once these systems have a large set of 

consumers, they may potentially be in control of the largest available set of 

standardized electronic medical information. This information could similarly be 

used to create and consent research cohorts and there is much to be determined 

about how that process would work and whether it is ethical and would meet the 

high standards that are required for medical researchers [55]. 

Human	
  Variation	
  Data	
  Sources	
  and	
  Information	
  Content	
  

Single Nucleotide Polymorphisms (SNPs) differ between members of a species (or 

between paired chromosomes in an individual). SNPs comprise up to 90% of all 

human variation [56], and individual SNP genotypes and geographical population 

frequencies of SNPs are becoming increasingly available in research repositories 

(Figure 1 and Figure 2). SNPs have the potential to help identify how genotypic 

diversity relates to phenotypic diversity, diseases, and outcomes. 
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Figure 1: The proportion of SNPs by minor allele frequency, binned by 0.05 in frequency for the four 
HapMap populations (CHB + JPT were combined). The solid line represents the actual distribution from 
ENCODE SNPs and the dashed line describes the Minor Allele Frequency distribution expected for the 

standard neutral population genetics with random mating and fixed population size. [From A haplotype map 
of the human genome. Nature 437, 1299-1320] 

 

Figure 2: The proportion of inter-SNP distances in areas covered by the HapMap project, binned by inter-SNP 
distance (kb), for all SNPs with Minor Allele Frequency ≤ 0.05. [From A haplotype map of the human 

genome. Nature 437, 1299-1320] 
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SNP loci that are in linkage disequilibrium with one another can be grouped 

together to form haplotype blocks; groups of SNPs that have a population 

frequency of matching greater than would ordinarily be expected based on their 

distance from one another [57]. Linkage disequilibrium makes SNPs statistically 

dependent, and alters the information content when a set of SNPs are shared or 

published. SNP genotypes provide a variable amount of information which 

depends on the population frequencies at the loci in question and on the mutual 

linkage disequilibrium values between each SNP included in a data set.  

The HapMap project has compiled sequencing and population frequency 

information that can be used to provide the most current and informative risk 

estimates for health data disclosure. The project, organized by the Harvard-MIT 

Broad Institute has compiled gene frequency values for a large selection of SNPs – 

loci in the genome that account for a great deal of genetic variability in populations 

[3]. The HapMap project also provides linkage disequilibrium data for several 

populations. Linkage disequilibrium is a covariance metric for each set of 

statistically dependent SNPs in the genome; the HapMap project has measured 

how likely it is that two SNP values would co-segregate together in a given 

population. 

Biomedical data collection includes a wide variety of structured and unstructured 

values and measurements, including clinical phenotypes, DNA sequencing, 

demographics, family history, gene expression profiles, copy number variants, and 
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proteomics data. It is very likely that there will be a wide variety of polymorphisms 

or variants that are associated with diseases.  

With the breadth of genomic data types, as well as the data structures and 

identifiers that represent them, we have focused our efforts on creating models and 

metrics that utilize a limited set of the most informative genomic data for decision 

support. Because SNPs are both clinically informative and will be used for much 

future research, we have elected to focus our analysis efforts on population-specific 

SNP values at sequenced loci and familial relationships.  

Research data that associate SNP alleles to health status and disease propensity is 

increasingly available, while comparable data for many other polymorphisms -- 

that are certainly relevant -- such as copy number variants, is not yet broadly 

available. Future projects will need to explore new genomic data sources that are 

available for populations and research cohorts and extend these techniques to 

them. 

Measuring	
  Risk	
  of	
  Identity	
  Linkage	
  using	
  Genomic	
  Data	
  

When patients share their data with medical researchers, they expect that their 

identities and protected health information will be secured. There is a balance, 

however, between the need to protect patient identities and the imperative to 

publish supporting research data and to make available expensive genotyping 

assays from large publicly-funded studies with any researchers who might extract 

value from them.  



Privacy	
  and	
  Identifiability	
  in	
  Clinical	
  Research,	
  Personalized	
  Medicine,	
  and	
  Public	
  Health	
  Surveillance	
  

Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  33 

Researchers who have attempted to de-identify protected health data have 

historically not been successful, as research subjects can often be re-identified 

uniquely or within a small group of individuals [58]. The use of a variety of 

publicly available de-identified data sources has aided in these re-identification 

efforts; many times these data sets can be joined together to link records and enrich 

the available information about each individual. Malin and Sweeney used a 

publicly available hospital discharge data set and combined it with voter records 

and census data to statistically link individuals within those data sources using zip 

codes, age, and gender. They were able to uniquely identify patients with rare 

genetic diseases including a third of all cycstic fibrosis patients, half of all patients 

with Huntington’s disease, and even higher numbers of patients with more rare 

genetic disorders, that were admitted to hospitals in Illinois between 1990 and 

1997.  

These findings demonstrate that it is possible to directly link publicly available data 

sets down to clinical phenotypes and even individual-level DNA lesions. This 

certainly would bring alarm to some of the patients who had not even personally 

consented to the release of their healthcare data at Illinois hospitals. Given the 

complexity of genomic data, it may not be possible to provide an acceptable level 

of confidentiality or privacy in this form of medical research while publishing this 

data [59]. And to define what ‘acceptable’ means to patients adds additional 

complexity, as genomic data and the potential damage its disclosure might cause 

are not well understood [60-64]. 



Privacy	
  and	
  Identifiability	
  in	
  Clinical	
  Research,	
  Personalized	
  Medicine,	
  and	
  Public	
  Health	
  Surveillance	
  

Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  34 

Transfer or publication of genomic data poses unique privacy dangers. Irrevocable 

and unchanging as a fingerprint, any disclosure of patient genomic data poses a 

life-long risk for patients and their relatives; traditional data security mechanisms to 

cancel availability and access to previously disclosed genetic data are severely 

limited. Unlike fingerprints, however, which provide little direct information about 

patients when not linked with names, genomic test results contain information that 

encodes phenotypes, characteristics, and disease propensities. Hence, it will be 

increasingly possible to directly link sequence data with phenotypic data and 

inherently carry health care risk information [58].   

Zhen Lin and Russ Altman [59] demonstrated that privacy decreases sharply with 

disclosure of a small number of SNP genotypes. In fact, with just 35-70 

independent SNP genotypes, it is possible to uniquely identify any individual. 

Because DNA is so identifying, the authors contend that the ability to conduct 

meaningful medical research using genomic data will necessarily reduce the 

privacy afforded patients. They also characterize the sharp decline in privacy at a 

range of SNPs (which depends on the minor allele frequencies of those SNPs) at 

which an individual becomes uniquely identifiable, and demonstrate that this is 

well below the number of SNP genotypes that would likely be shared with 

researchers (Figure 3). 
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Figure 3: Lin and Altman, et al describe the trade-off between privacy level and number of SNP genotypes 
disclosed to researchers or clinicians. [From Genetics. Genomic research and human subject privacy. Science 

2004, 305:183. (Revised Edition)] 

 

The study explored the probability that two randomly-selected, unrelated 

individuals match on a group of M' SNPs that are statistically independent (not in 

linkage disequilibrium). The probability of two individuals matching at a single 

SNP is the sum of the probabilities of two homozygote major individuals matching, 

two heterozygote individuals matching, and two homozygote minor individuals 

matching in the population: p(AA)2 + p(Aa)2 + p(aa)2. For a set of M' independent 

SNP matches (where we have a priori selected SNPs with population frequency of 

10%), the probability of match, �j  ≤ 0.689, ((0.92)2 + (2*0.1*0.9)2 + (0.12)2), the 

probability of this set of matches happening by chance is:  
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It does not take a large value of M' to make this probability very small. Lin and 

Altman subsequently evaluated the probability that two people are the same given 

a set of matched SNPs in a fixed population size via Bayes’ Theorem.  

While these findings have launched valuable discussion, they have also led some 

researchers to believe there is no way to share a small amount of SNP data while 

precluding re-identification of patients. At present, based on this study, it appears 

that the sharing of small, but clinically relevant, sets of partially dependent SNPs is 

possible, with adequate threat assessment and updated population-specific SNP 

frequency data.  

Attempted	
  Interventions	
  to	
  Protect	
  Genomic	
  Privacy	
  

Research groups have attempted to mitigate the threat to privacy that the 

publication of genomic data poses. The techniques include methods to blur or 

change the data, reducing granularity or resolution on the data, and aggregation 

techniques. All of these methods fail to improve the privacy afforded patients in 

any dramatic way [65, 66]. A summary of the attempts to date follows. 

Using	
  Binning	
  to	
  Maintain	
  Confidentiality	
  of	
  Medical	
  Data 

Binning describes the process of aggregating elements in a data set into a more 

generic pool of field values with similar attributes. One study attempted to 

disregard exact genomic positions for a set of SNPs to increase the number of data 

sets that have the same sets of values [67]. The shortcomings of this approach were 
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that the information that was subsequently available to researchers was 

substantially reduced; precise genomic location data are important for identifying 

the exact locus or lesion involved in a genetic disease process. Conversely, the 

privacy afforded by this technique is dubious when there is one predominant 

mutation that leads to sequencing in a genomic region; if a monogenetic disease 

locus is nearby, it is likely that any observed mutation within that region refers to 

that one specific, common, monogenetic lesion. This may also just slightly increase 

the size of the data set needed to uniquely identify a patient. 

Disclose	
  Frequencies	
  and	
  Aggregated	
  Data	
  Only	
  

A variation on the above theme is to aggregate records, thereby binning at the 

patient level rather than by characteristics or fields within patient records. An 

example of this would be a population genetics description such as “Half of the 

patients in this study carried the homozygous major genotype AA while 40% 

carried Aa and 10% had aa.”  One shortcoming to this approach is that supporting 

clinical or phenotypic information, at the individual patient level, may help 

researchers gain insight on a genetic disease process. Additionally, clinical value 

for specific patients and ability to deconstruct research diminished 

Anonymity	
  by	
  Pool	
  Selection	
  

The Human Genome Project (HGP) gathered a large number of samples from 

individuals who were brought through a thorough consent process. Then, the 

project anonymously selected a very small subset to create a consensus hybrid of 
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several participant genomes to prevent the identity of participants from being 

known [68]. 

The HGP used participant pool selection as a privacy technique though it is of 

dubious privacy value. There are regions of the genome where SNP loci that have 

since been discovered (in larger pools of sequenced individuals) could help identify 

participants if samples were available for forensic analysis. Additionally, an unclear 

form of genome aggregation was used, which depends on the genomes that were 

used, in what proportion their derivative sample chromosomes were used and 

alignment technique statistics that were employed. This is not a clear form of 

privacy. 

Use	
  of	
  Generalization	
  Lattices	
  

A more specific variant on the concept of binning is to use generalization lattices to 

de-identify data sets partially where it is either most prudent for privacy or where it 

will not substantively reduce clinical value. An example of this technique was 

described the use of genotypic base pair binning [69]. The most basic example 

would be to have two possible levels of generalization that cover the four DNA 

base pairs; A and G may be reduced to a representation of R; C and T reduced to Y 

(Figure 4); and at the next level of generalization, f1, R and Y may be more 

generally represented as N.  
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Figure 4: Protecting DNA Sequence Anonymity with Generalization Lattices. In this example, each purine (A, 
G) may be consolidated into R, and each pyrimidine (C, T) may be consolidated into a new base pair Y, both 
for generalization. All four base pairs can be generalized into N to reduce the information that is disclosed 

when publishing genomic data. 

 

There are also more complicated generalization lattices (Figure 5) that have been 

developed in order to reduce the amount of information that is disclosed when 

publishing a genotypic sequence.  

 

 

Figure 5: More complex generalization lattices can be used to complexify and obscure the information 
content that is shared in a disclosed sequence. This example includes the four DNA base pairs as well as 
purine and pyrimidine generalizers used above, reverse identifiers (not A), amino group identifiers, keto 
group identifiers, among others. 
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All of these techniques simply make it slightly more difficult to re-identify the 

individual from a published genotype using this technique. It is possible to find a 

closed form solution for the anonymity provided by these techniques, which simply 

are another form of aggregation. This technique also shares the problem that 

published genotypes do (by definition) lose information content. This reduces the 

amount of information that is available for researchers to find a correlate or 

predictor of disease and would reduce the statistical significance of findings if not 

all genotypes are available at all loci.  

Add	
  Noise	
  to	
  a	
  Genotypic	
  Sequence	
  

One technique that may be employed to reduce information in published data sets 

is to randomly skew a certain (perhaps unknown) fraction of genotypic values. The 

largest reduction of information content would come from blurring those loci that 

are either known rare variants (either rare SNP loci or mutations) so that a specific 

record is not so individually identifying. This certainly reduces the information 

content, but reduces the value of a research data set dramatically – the data being 

shared is intentionally being contaminated, potentially leading to false conclusions 

and missed findings. 

This technique is perhaps the most dangerous because it can lead to false 

conclusions, and in fact is provides just as little protection to privacy. Altman, et al 

demonstrated that this technique still allows for identifiably with low numbers of 

independent SNPs, as described by a false negative and false positive rate of 

matching samples to individuals using a variety of skewing rates below (Figure 6). 
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Figure 6: Introducing noise into SNP genotypes still results in identifiability. Ten percent random noise was 
added to a SNP data set, and at various numbers of SNP matches, the false negative and false positive rates of 
identification are graphed. 
 

Synthesizing	
  anonymized	
  ‘individuals’	
  using	
  statistical	
  data	
  associations	
  

Recently, Lasko et. al. described a system to create anonymized records that 

contain data resembling authentic individual-level data sets. Using statistical 

associations within those data sets, he creates synthetic individual records with 

information and relevance for research purposes, while preserving patient privacy. 

Such systems will be a challenge with genomic datasets, however, because of the 

potential complexity of genetic interactions that will be explored in personalized 

medicine research. It will likely be the case that full contiguous genotypic data will 

be required, with associated potentially identifying clinical data to identify genomic 

network effects or subtle polymorphic variants acting in combination to create a 

larger effect.  
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Quantitative	
  genomic	
  disclosure	
  risk	
  models	
  for	
  patients	
  and	
  relatives	
  	
  

The need to calculate the information content in a genomic data set is acute; this 

will enable EMR and personalized medicine systems to model the degree of 

privacy afforded patients when they share a subset of their genomic data. 

Information theoretic tools are effective in characterizing the information content of 

sets of SNP data sets [70]. We have developed a set of four disclosure risk models 

that address important clinical sharing scenarios for patients and their relatives.  

Risk of re-identification. One clinical and research privacy scenario is the 

disclosure of a set of genomic data that contains either SNPs or mutations. In this 

context, we describe a probability bound on how identifiable a set of SNP or 

mutation data is, under different sets of circumstances, such as whether it includes 

any phenotypic or population-specific data. This analysis should consider 

population-specific frequencies of the specific SNPs as well as the localized 

mutation rates and mutation types in the region of interest. 

Risk of genome-gene inference. A related variation on the above theme is how 

readily two distinct, but overlapping sets (for example, where one set is a subset of 

the other, but the two are not disjoint sets) of genomic data can be combined with 

certainty to produce a more complete data set for one individual. With two sets of 

SNP data from a patient, one may identify whether the two data sets contain 

enough matched, overlapping base pairs to sufficiently determine whether the data 

sets came from the same individual, and with what probability. If it is possible to 

infer that the data sets are from the same individual, then to mitigate this threat, one 
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might remove the most identifiable SNP values from the data set using a ranked list 

of the most informative loci. This issue is importance because if it is relatively easy 

to aggregate two distinct data sets from a patient with only minimal overlap 

between the two data sets, it allows a genomic test to be linked with other 

separately published or shared data, perhaps with clinical findings.  

Risk of familial inference. Genetic data not only reveals information about those 

tested, but also about their family members, posing a considerable privacy risk for 

family members of those who would share their research data. On average, patients 

share half of their DNA with each parent and sibling, and a decreasing amount 

with other relatives. Given a patient’s population demographic data, a set of a 

patient’s SNPs, and a relationship with another person, we have quantified how 

likely it is that the 2nd person will have the same set of values at a set of SNP loci. 

Because we have additional knowledge of the specific relationship the first patient 

shares with the second, we are asking a question distinct from the original question 

of how likely it is that two patients should match at a set of loci.  

We identify the familial information content within a set of proband SNPs: 

specifically how likely it is that a parent, sibling, and child will carry a specific set 

of SNP values based on proband genotypes, population-specific allele frequencies, 

and the familial relationship involved. We can also establish whether two 

individuals are related by evaluating a set of SNPs in both individuals, with 

certainty using closed form probabilities, if we consider independent SNPs. 
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Risk of genotypic-phenotypic linkage. Genotypic data predicts phenotypes in 

individuals, some of which are apparent through physical characteristics, clinically-

observed values, and disease status. Using the genotypic and perhaps ethnicity 

identifiers in a patient controlled health record, one may identify some phenotypes 

from a specific set of patient SNP values [58]. Similarly, the reverse can be done, 

using phenotypic information we may derive likely patient genotypes. It is also 

possible to infer the population or ethnicity of a patient using a genomic sample 

with low numbers of SNP values if supporting population SNP frequency data are 

available. 

Geographical	
  Data	
  Privacy	
  in	
  Public	
  Health	
  and	
  Clinical	
  Practice	
  

The mapping of clinical and public health data is widespread in both academic 

research and public health practice [71]. While the study of the influence of 

geographical location on disease risk dates back to the mapping of yellow fever 

and cholera in the 1800’s, research integrating maps and human health is an 

emerging field based on the wide availability geographic information system (GIS) 

software [72].  

Ongoing disease surveillance and large research studies both rely on the ability to 

detect precise clustering patterns, but the privacy implications of sharing the 

necessary patient data carry risks for patients grouped in clusters with sensitive 

medical conditions or other protected health information.  Both disease 

surveillance and research publication can utilize less-than-perfect spatial data that 
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still illustrate the pattern of disease or incident clustering effectively, but afford 

patients increased privacy and anonymity. 

Geographical disease surveillance systems designed to monitor public health 

threats have emerged that harvest data from a variety of sources, including 

emergency department and inpatient hospital visits, clinical diagnoses, lab results, 

over the counter drug purchases, and even orange juice and vitamin sales [73, 74]. 

These systems are designed to discover outbreaks of public health relevance that 

may be sparsely distributed geographically, before they would be noticed by an 

astute clinician or public health department. Web systems that mine a variety of 

news sources (open source media, Google News, CDC and WHO health alerts, 

among others) are also attempting to extract meaningful geographic information 

from reports and distill it into useful information that can help contextualize disease 

progression throughout regions [75-78]. 

GIS has broad applicability, and its use has been generally fueled by increased 

computing power, user-friendly software, and large geographic databases. The 

number of publications utilizing GIS for health research has grown at about 26% 

per year, four times the rate of increase for human health articles in general [72].  

Patient address locations are mapped to identify patterns, correlates, and predictors 

of disease. These maps are often published electronically and in print [71]. A 

keyword search for the term “geographic” or “map” in the figure legends of five 

major medical journals from 1994-2005 identified 19 articles (including five from 
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NEJM) that include maps with patient addresses plotted as individual dots or 

symbols. In these papers, over 19,000 patient addresses are plotted on map figures.  

The publication of disease maps with precise patient locations puts patient privacy 

in jeopardy. Guidelines for the display or publication of health data are needed to 

guarantee anonymity [79]. A common approach has been to map by administrative 

unit rather than home address. However, aggregation of data poses constraints on 

the visualization of disease patterns. Another method is spatial skewing or 

randomly relocating cases within a given distance of their true location. Skewing 

can allow a visualization that conveys the necessary information, while preserving 

privacy [80].  Both aggregation and skewing are systematic and reliable means of 

de-identification which are far safer, in terms of protecting identifiable health 

information, than simply reducing map resolution.  

Anonymization	
  of	
  spatial	
  data	
  for	
  disease	
  surveillance	
  	
  

Patient re-identification from purportedly de-identified data can be accomplished 

with surprising ease. For example, Sweeney, et al. showed that 87% of individuals 

in a publicly available database were re-identified using five digit zip code, date of 

birth and gender alone [81]. There are well-described techniques for protecting the 

anonymity of individuals whose information resides in databases. Using these 

techniques, de-identification systems have been developed that remove personal 

data from database fields (for example, converting a date of birth to a year) [82] or 

from textual notes [83]. Uzuner, et. al. has also developed novel methodologies in 

de-identifying text and has worked on the NLP challenge problems addressing the 
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same issue [84, 85]. Clifford, et. al. has also developed a system that promises to 

de-identify 94% of textual clinical notes [86]. The de-identification of databases 

has also been explored using several techniques [87, 88].  

A metric for the ability to re-identify a patient in a data set is k-anonymity, where k 

refers to the number of people among whom a specific de-identified case cannot 

be reversely identified [82]. Spatial location information, whether stored as classic 

plain text address data or as geocoded longitude and latitude values, can 

potentially identify an individual or a markedly reduced set of candidate 

individuals.  A common approach to de-identifying such data has been to use 

census tract or zip code rather than home address to protect anonymity.  There are 

two important drawbacks to using location data that have been aggregated by 

political boundaries or administrative region.  First, the loss of precise location may 

reduce sensitivity to detect clustering.  Second, the ability to detect clustering may 

be diminished when some of the points cross administrative boundaries.  

Previous investigators have attempted to mask geographic data by spatially skewing 

cases using, among others, affine and randomizing transformations [89, 90]. In this 

thesis, we describe a spatial anonymization algorithm based on skewing precise 

geocoded case locations using knowledge of local population characteristics. 

Skewing these patient addresses directly decreases the ability to re-identify, and 

thus increases the k-anonymity, of a case in a data set, as it will be much more 

difficult to determine what the actual patient’s identity is once the address has been 

altered.  Masking the identity of an individual in a densely populated urban area, 
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for example, does not require as great a skew as one in a sparsely populated rural 

setting.  Next, we measure the effect of anonymization intensity on outbreak 

detection, focusing on the sensitivity of spatial cluster detection. The goal is to 

provide individuals, institutions and public health authorities a comfort level with 

the sharing of skewed, and hence, anonymized data, rather than using raw, fully 

identifiable data.  Further we aim to provide transparent information about the 

resulting diminution of spatial clustering detection. 

Conclusion	
  

Genomic medical testing and sharing mechanisms are quickly emerging and once 

these are codified, they can be used in concert with clinical medical records to 

achieve a wide variety of innovative health promotion and surveillance goals.  

There are associated ethical and social risks that must be monitored effectively, and 

privacy decision-making and security for these documents must be improved for 

adoption to be practical or useful. 
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Chapter	
  II:	
  Genomic	
  privacy:	
  identifiability	
  and	
  familial	
  risks	
  	
  

The use of integrated familial data is prevalent in genetic and genealogical studies, 

but has not yet reached its potential in clinical medicine, as its use poses 

substantial technical and policy challenges. Personal Health Record (PHR) systems 

currently lack the critical ability to incorporate such data, which is gathered at 

clinical encounters in a largely ad hoc fashion, without electronic standardization. 

Moreover, patients do not fully understand the benefits and potential risks involved 

in sharing such data with relatives, clinicians, or researchers [60-64]. The emerging 

use of PHRs presents an enormous opportunity for improvement, enabling patients 

to control the collection, extraction and disclosure of valuable genomic data.  

Integration of familial genomic data in medical records has several tangible benefits 

for patients. First, familial data derived directly from family members’ records is 

more likely to be accurate, complete, and up-to-date. Second, relatives may share 

genomic sequencing data with one another, which can be used to derive 

personalized disease propensity estimates [91]. The ability to derive genomic data 

poses risks to privacy when sharing clinical or genomic data with researchers: 

patients should understand the risks to their privacy as well as to family members’ 

privacy when they share their data. 
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We describe and quantify the risks posed by these activities to address the 

challenges of curating and communicating the information content and disclosure 

risks of demographic, clinical and genomic familial data.  

Ability	
  to	
  infer	
  SNP	
  genotypes	
  from	
  sibling	
  genomic	
  data	
  

I am my sister’s keeper 

This section of the thesis was published in a manuscript entitled My sister's 

keeper?: genomic research and the identifiability of siblings, in BMC Medical 

Genomics with Brian Schmidt, Dr. Isaac Kohane, and Dr. Kenneth Mandl, from the 

Children’s Hospital Informatics Program and Harvard-MIT Division of Health 

Sciences and Technology.  

Abstract	
  

Genomic sequencing of single nucleotide polymorphisms (SNPs) is increasingly 

prevalent, though the amount of familial information these sequences contain has 

not been quantified. We provide a framework for measuring the risk to siblings of a 

patient’s SNP genotype disclosure, and demonstrate that sibling SNP genotypes can 

be inferred with substantial accuracy. Extending this inference technique, we 

determine that a very low number of matches at commonly varying SNPs is 

sufficient to confirm sib-ship, demonstrating that published sequence data can 

reliably be used to derive sibling identities. Using HapMap trio data, at SNPs where 

one child is homozygotic major, with a minor allele frequency ≤ 0.20, (N=452684, 

65.1%) we achieve 91.9% inference accuracy for sibling genotypes. These findings 
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demonstrate that substantial discrimination and privacy risks arise from use of 

inferred familial genomic data. 

Background 

Genomic data are increasingly integrated into clinical environments, stored in 

genealogical and medical records [92, 93] and shared with the broader research 

community [94, 95] without full appreciation of the extent to which these 

commodity level measurements may disclose the health risks or even identity of 

family members. While siblings, on average, share half of their contiguous 

chromosomal segments, well over half of a sibling’s allelic values can be inferred 

using only population-specific allele frequency data and the genotypes of another 

sib. The informed consent process for research and clinical genomic data 

transmission must therefore include rigorous treatment of accurately quantified 

disclosure risks for all who will be impacted by such activity.  

It is remarkably easy to positively identify a person with fewer than 40 

independent, commonly varying SNPs, using a physical sample or a copy of those 

values [59]. As DNA sequences cannot be revoked or changed once they are 

released, any disclosure of such data poses a life-long privacy risk. Unlike 

conventional fingerprints, which provide little direct information about patients or 

relatives, SNP genotypes may encode phenotypic characteristics, which can link 

sequences to people [58]. Despite these privacy issues [65, 96], use of genetic 

sequencing is increasing in both forensics [97], and clinical medicine. The recent 

genetic fingerprinting provision in the renewal of the federal Violence Against 
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Women Act [98], alone, may result in one million new sequenced individuals each 

year, markedly increasing the number of available links between identities and 

genotypes. This genetic fingerprinting has an impact on people beyond those 

directly sequenced--genetic testing partially reveals genotypes of siblings and other 

family members.  

At each locus in a child’s genome, each parent transmits only one of his or her two 

chromosomes. If we have the genotype of one child, and would like to use that 

information to help infer the genotype of a sibling, we consider both the known 

parental genotypes (for the alleles they have transmitted to their first sibling,) and 

also consider those chromosomes they have but have not transmitted. We assume 

that the unknown parental alleles are drawn from a reference population, such as 

one of the HapMap populations. Now, considering the genotype of the inferred 

sibling (2nd child), with probability 0.25, the sibling will receive the same 2 

chromosomes transmitted to the first child, in which case they will have the same 

genotype. With probability 0.25, the inferred sibling will receive both previously 

untransmitted chromosomes, in which case the sibling will have the same genotype 

distribution as the reference population. If only one of the same chromosomes is 

transmitted, then one chromosome will be the same and the other will be drawn 

from the population. 

Methods	
  	
  

To quantify the risk of SNP disclosure to relatives, we demonstrate a model for 

inferring sibling genotypes using proband SNP data and population-specific allele 



Privacy	
  and	
  Identifiability	
  in	
  Clinical	
  Research,	
  Personalized	
  Medicine,	
  and	
  Public	
  Health	
  Surveillance	
  

Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  54 

frequency databases, such as the HapMap [99, 100]. We also evaluate the 

probability that two people, in a selected pool of individuals, are siblings given a 

match at an independent subset of SNPs, and show that this number can be made 

remarkably low with appropriate SNP selection. 

Enhanced	
  ability	
  to	
  infer	
  sibling	
  genotypes	
  

First, consider the case where one sibling’s genotype is known to be ‘AA’, and the 

goal is to determine the probability that a second sibling’s genotype will also be 

‘AA’ at that locus. Because there is additional knowledge—the familial relationship 

between the two sibs—the prior probability of the second sib carrying a specific 

genotype at a selected SNP will be altered under the new constraint. A conditional 

probability expression that sums over the nine possible parental genotypic 

combinations (for example, maternal genotype ‘Aa’ with paternal genotype ‘AA’) at 

a single SNP, each denoted as i can be used: 

 

 

 

where Sib1AA and Sib2AA refer to Sib1 and Sib2 genotypes ‘AA’ at a selected SNP, 

respectively. 
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With unknown parental genotypes, we would calculate p(Sib2AA) considering all 

nine possible parental genotype combinations, but knowledge that Sib1 has 

genotype ‘AA’ allows exclusion of any parental combinations where either parent 

has genotype ‘aa’, as that would require the transmission of at least one copy of the 

‘a’ allele to Sib1, if non-paternity and new mutations are excluded.  

For example, when the child is homozygous major, all possible parental genotypic 

candidates that involve one or both parent genotypes of ‘aa’ are excluded, as it is 

not possible to have a child with genotype ‘AA’ if either parent does not have at 

least one copy of the ‘A’ allele. In this case, there are four possible parental 

genotypic combinations: 
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which allows calculation directly from the SNP population frequencies. Before 

knowledge of the Sib1 genotype was used, p(Sib2AA) would have been the Hardy-

Weinberg frequency for major homozygotes, p2. However, with the Sib1 genotype, 

p(Sib2AA|Sib1 AA), the additional constraint increases the probability to 

p2+pq+(q2/4), increasing inference accuracy by pq+(q2/4). 

The remaining entries in the probability vector, p(Sib2Aa|Sib1 AA), and 

p(Sib2aa|Sib1 AA), can then be calculated just as we have done for p(Sib2AA|Sib1 

AA) above. Again, these probabilities have been generated without any actual 

knowledge of the parent genotypes. If the Sib1 genotype were instead ‘Aa’ or ‘aa’, 

the above technique can similarly be used (with a different combination of possible 

parental genotypes) to calculate the two other probability vectors, [p(Sib2AA|Sib1 

Aa), p(Sib2Aa|Sib1Aa), p(Sib2aa|Sib1 Aa)] and [p(Sib2AA|Sib1 aa), p(Sib2Aa|Sib1 aa), 

p(Sib2aa|Sib1aa)].  

HapMap SNP population frequencies, p and q, for each selected SNP, can be used 

to calculate the probabilities of each parental combination, i. Once these values 

have been calculated, the genotype of the first sibling eliminates possible parental 
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genotypic candidates (Figure 7A-C), and the remaining probabilities are 

normalized. 

 

 

Figure 7: (a-c) Refining mechanism for homozygous major SNPs: when the first sibling is homozygous major 
(a), homozygous minor (b), or heterozygous (c) at a given SNP, this constrains the possible parental 
genotypes; in the first case, five of nine parental genotypic combinations can be eliminated (crossed boxes). 
Using HapMap CEPH SNP population frequencies, p and q, the probability frequencies are populated for the 
remaining squares, and normalized. The probability that subsequent sibs will be homozygous major, 
heterzygous, or homozygous minor can then be calculated using the probabilities that parents would 
contribute specific allelic values. (d) For each of 30 HapMap CEPH trios, the Sib

1
 genotype and the SNP 

population frequencies are used (without the parent genotypes) to infer p(‘AA’), p(‘Aa’), and p(‘aa’) for 
subsequent siblings. Those probabilities are then validated against those that would be expected given only 
the parental genotypes at each SNP. 
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Measuring	
  the	
  information	
  content	
  of	
  Sibling	
  genotype	
  data	
  	
  

When calculating the probability of a specific Sib2 genotype given a known Sib1 

genotype, it is possible to directly measure the benefit of the proband genotype 

information in improving Sib2 inferences. This involves measuring the difference 

between the prior Hardy-Weinberg probability for the genotype, given only 

population frequencies, and the posterior probability, as calculated by the 

conditional expression above. To measure the information content provided by the 

first sibling’s genotype, we propose the use of a likelihood ratio test statistic, 

comparing models where two individuals are known to be siblings versus two 

individuals that are known to be unrelated. There are a total of nine possible 

likelihood ratios, , for each of the possible individual genotypic 

combinations, such as : 
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The denominator becomes p(Ind2 genotype), which is either p2, 2pq, or q2. This is 

intuitive; when considering two unrelated individuals, the probability that the 2nd 

has a specific genotype can only be identified using the population frequencies for 

that genotype. The numerator is the posterior probability expression derived in 

Table 1, also in terms of p and q.  

 

Table 1: Sib
2
 inference error reduction when Sib

1
 genotype is known. The error reduction depends only on the 

allele frequencies, and at all frequencies, the error is reduced, improving the quality of genotypic inference. 

Sib2 Sib1 Prior Prob. Posterior Prob. Error Reduction 
AA AA p2 p2 + pq + ¼q2 |p2 – [p2 + pq + ¼q2]|   
Aa AA 2pq pq + ½q2  |2pq – [pq + ½q2]|  
aa AA q2 ¼q2  |q2 – [¼q2]|  
AA Aa p2 ½p2 + ¼pq |p2 – [½p2 + ¼pq]|   
Aa Aa 2pq ½p2 + (2/3)-1pq + ½q2 |2pq – [½p2 + (2/3)-1pq + ½q2]|  
aa Aa q2 ¼pq + ½q2 |q2 – [¼pq + ½q2]|  
AA aa p2 ¼p2 |p2 – [¼p2]|   
Aa aa 2pq ½p2+pq  |2pq – [½p2+pq]|  
aa aa q2 ¼p2 + pq + q2 |q2 – [¼p2 + pq + q2]|  
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The log of this odds ratio can then be used as a statistic for measuring relatedness, 

depending only on the SNP allele frequency and the Sib1 genotype (Figure 8, Figure 

9, & Figure 10). 

 

 

Figure 8: Log likelihood ratio test statistic for sibling inferences: for each Sib
2
 genotype, the log likelihood 

ratio for each possible Sib
1
 inference is shown versus Minor Allele Frequency (MAF). These charts describe 

how informative the Sib
2
 genotype of ‘Aa’ is, when inferring each Sib

1
 genotype. 
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Figure 9: Log likelihood ratio test statistic for sibling inferences: for each Sib
2
 genotype, the log likelihood 

ratio for each possible Sib
1
 inference is shown versus Minor Allele Frequency (MAF). These charts describe 

how informative the Sib
2
 genotype of ‘AA’ is, when inferring each Sib

1
 genotype. 

 

 

Figure 10: Log likelihood ratio test statistic for sibling inferences: for each Sib
2
 genotype, the log likelihood 

ratio for each possible Sib
1
 inference is shown versus Minor Allele Frequency (MAF). These charts describe 

how informative the Sib
2
 genotype of ‘aa’ is, when inferring each Sib

1
 genotype. 

 

The allele frequency, p, that maximizes this statistic can then be found numerically 

for each  expression, to identify which allele frequencies and 
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conditions are most informative for genotypic inferences. These results are below in 

Table 2.  

Table 2: Finding the Minor Allele Frequency (MAF) that maximizes the log likelihood ratio test statistic for 
each Sib

2
 genotypic inference type. The maximizing MAF is the allele population frequency at which the most 

information will be derived about the Sib
2
 genotype from Sib

1 
under that Sib genotypic combination. Note: 

There are two equally maximizing MAF values for Log(�
Sib1Aa,Sib2Aa

), 0.01 and 0.99, both resulting in a value of 
1.407. 

Sib2	
   Sib1	
   Maximizing	
  MAF	
   Log(ΛInd1,Ind2	
  genotypes)	
  
AA	
   AA	
   0.01	
   3.407	
  
Aa	
   AA	
   0.01	
   3.699	
  
aa	
   AA	
   0.01	
   3.389	
  
AA	
   Aa	
   0.99	
   1.396	
  
Aa	
   Aa	
   0.01,	
  0.99	
   1.407	
  
aa	
   Aa	
   0.01	
   1.396	
  
AA	
   aa	
   0.99	
   3.389	
  
Aa	
   aa	
   0.99	
   3.699	
  
aa	
   aa	
   0.99	
   3.407	
  

 

Confirming	
  sib-­ship	
  with	
  two	
  non-­matching	
  sets	
  of	
  SNP	
  genotypes	
  

The above inference technique can be extended to confirm sib-ship in two non-

matching samples of SNP sequence data. Given a set of matches at M independent 

loci from a pool of N individuals, an expanded form of Bayes Theorem can be used 

to calculate p(sibs|match at M loci) directly, where !sibs refers to two individuals 

not being siblings: 

 

 



Privacy	
  and	
  Identifiability	
  in	
  Clinical	
  Research,	
  Personalized	
  Medicine,	
  and	
  Public	
  Health	
  Surveillance	
  

Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  63 

 

 

p(match|!sibs) can be calculated for each SNP using the population frequency; it is 

the probability that two unrelated individuals in the population would share the 

same genotype, ‘AA’, ‘Aa’, or ‘aa’. The expression p(match|!sibs) is effectively the 

same as p(match) as long as the sample pool, N, is large enough, as the probability 

of sib-ship is very low in a large pool. For three different pool sizes, 

(N=100,000;10,000,000;6,000,000,000), we have created a sib-ship probability 

surface that varies with the number of matched SNPs and minor allele frequency 

(MAF) of those SNPs (Figure 11a-c) and published supporting values for these 

probabilities in Table 3. These estimates use the selection of M independent SNPs 

all with the same a priori known MAF. For SNPs that commonly vary in the 

population, a small number of genotypic matches are required to confirm sib-ship. 
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Figure 11-a: Sib-ship identifiability surfaces: these surfaces describe the probability of sib-ship as a function of 
M, the number of matched independent SNPs (between two individuals) and Minor Allele Frequency (MAF). 
We show this across three sample size pools--N=(a)100,000; (b)10,000,000; (c)6,000,000,000 people. At 
high MAFs even very large increases in the potential sample pool size will not prevent sib-ship confirmation 
with relatively few matched SNPs. For example, if loci with MAF=0.25 are selected, the number of matched 
SNPs to confirm sib-ship with p=0.999 is 50 with a candidate pool of 100,000 and increases to only 80, in a 
group of 6 billion. 
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Figure 11-b: Sib-ship identifiability surfaces, continued. Population size (N) = 10,000,000. 

 



Privacy	
  and	
  Identifiability	
  in	
  Clinical	
  Research,	
  Personalized	
  Medicine,	
  and	
  Public	
  Health	
  Surveillance	
  

Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  66 

 

Figure 11-c: Sib-ship identifiability surfaces, continued. Population size (N) = 6,000,000,000. 
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Table 3: Probability of sib-ship for three pool sizes. In a sample pool of size N, provided below, the 
probability that two individuals are siblings given a match at a subset of SNPs is charted as a function of M, 
the number of independent SNPs that they match at, and the minor allele frequency, q, which is known a 
priori (from population frequency estimates) and is the same for all M SNPs. Non-matches are not considered 
here, and requires separate principle and analysis. 

N=100,000 
Q M=1 M=10 M=20 M=30 M=40 M=50 M=60 M=70 M=80 M=90 

0 0.00001 1E-5 1E-5 1E-5 1E-5 1E-5 1E-5 1E-5 1E-5 1E-5 
0.05 1.1E-5 2.67E-5 7.11E-5 0.000189 0.000505 0.001345 0.003578 0.009482 0.024886 0.063706 

0.1 1.21E-5 6.64E-5 0.000441 0.002923 0.019099 0.114527 0.462126 0.850907 0.974301 0.996045 
0.15 1.31E-5 0.000148 0.002194 0.031572 0.325877 0.87757 0.990679 0.999366 0.999957 0.999997 

0.2 1.4E-5 0.000287 0.008152 0.190701 0.871059 0.994863 0.99982 0.999994 1 1 
0.25 1.47E-5 0.000472 0.021816 0.512966 0.980292 0.999574 0.999991 1 1 1 

0.3 1.52E-5 0.000666 0.042483 0.747176 0.994946 0.999924 0.999999 1 1 1 
0.35 1.55E-5 0.000823 0.063574 0.848341 0.997835 0.999974 1 1 1 1 

0.4 1.57E-5 0.000924 0.078846 0.88788 0.998637 0.999985 1 1 1 1 
0.45 1.58E-5 0.000975 0.086919 0.902796 0.998898 0.999989 1 1 1 1 

0.5 1.58E-5 0.000989 0.089295 0.906621 0.998961 0.999989 1 1 1 1 

 
N=10,000,000 
Q M=1 M=10 M=20 M=30 M=40 M=50 M=60 M=70 M=80 M=90 

0 1E-7 1E-7 1E-7 1E-7 1E-7 1E-7 1E-7 1E-7 1E-7 1E-7 
0.05 1.1E-7 2.67E-7 7.11E-7 1.89E-6 5.05E-6 1.35E-5 3.59E-5 9.57E-5 0.000255 0.00068 

0.1 1.21E-7 6.64E-7 4.41E-6 2.93E-5 0.000195 0.001292 0.008518 0.053991 0.274896 0.715775 
0.15 1.31E-7 1.48E-6 2.2E-5 0.000326 0.004811 0.066884 0.515231 0.940333 0.995739 0.999711 

0.2 1.4E-7 2.87E-6 8.22E-5 0.002351 0.063279 0.659483 0.982308 0.999372 0.999978 0.999999 
0.25 1.47E-7 4.72E-6 0.000223 0.010423 0.332172 0.959166 0.999099 0.999981 1 1 

0.3 1.52E-7 6.66E-6 0.000443 0.028705 0.663129 0.992431 0.999886 0.999998 1 1 
0.35 1.55E-7 8.24E-6 0.000678 0.052974 0.821712 0.997374 0.999968 1 1 1 

0.4 1.57E-7 9.25E-6 0.000855 0.073378 0.879899 0.998527 0.999984 1 1 1 
0.45 1.58E-7 9.76E-6 0.000951 0.084983 0.900612 0.99887 0.999988 1 1 1 

0.5 1.58E-7 9.9E-6 0.00098 0.088497 0.905783 0.998951 0.999989 1 1 1 

 
N=6,000,000,000 
Q M=1 M=10 M=20 M=30 M=40 M=50 M=60 M=70 M=80 M=90 

0 1.6E-10 1.67E-10 1.67E-10 1.67E-10 1.67E-10 1.67E-10 1.67E-10 1.67E-10 1.67E-10 1.67E-10 
0.05 1.8E-10 4.44E-10 1.18E-9 3.16E-9 8.42E-9 2.24E-8 5.98E-8 1.6E-7 4.25E-7 1.13E-6 

0.1 2.0E-10 1.11E-9 7.35E-9 4.89E-8 3.25E-7 2.16E-6 1.43E-5 9.51E-5 0.000631 0.00418 
0.15 2.1E-10 2.47E-9 3.66E-8 5.43E-7 8.06E-6 0.000119 0.001768 0.025594 0.280299 0.852397 

0.2 2.3E-10 4.78E-9 1.37E-7 3.93E-6 0.000113 0.003217 0.084701 0.726254 0.987023 0.999542 
0.25 2.4E-10 7.87E-9 3.72E-7 1.76E-5 0.000828 0.037674 0.648979 0.988676 0.999758 0.999995 

0.3 2.5E-10 1.11E-8 7.39E-7 4.93E-5 0.00327 0.179341 0.935717 0.99897 0.999985 1 
0.35 2.5E-10 1.37E-8 1.13E-6 9.32E-5 0.007623 0.387598 0.981185 0.999767 0.999997 1 

0.4 2.6E-10 1.54E-8 1.43E-6 0.000132 0.012063 0.530447 0.990523 0.999897 0.999999 1 
0.45 2.6E-10 1.63E-8 1.59E-6 0.000155 0.014878 0.595717 0.993092 0.999929 0.999999 1 

0.5 2.6E-10 1.65E-8 1.63E-6 0.000162 0.01577 0.613392 0.993675 0.999936 0.999999 1 
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Modeling	
  a	
  series	
  of	
  SNP	
  inferences	
  using	
  a	
  binomial	
  distribution	
  

A binomial distribution can be used to represent a series of sibling genotypic 

inferences, such as the probability of correct inferences at 50 SNP loci, if each 

inference meets specific criteria. Independent inferences can be treated as a 

random variable with probability p of success, as long as independent SNPs are 

selected, with the same minor allele frequency and Sib1 genotype. 

    

 

where p(k,n,p) refers to the probability that k correct inferences were made out of 

n attempted inferences when the probability of success for each inference attempt 

is p.  

The cumulative binomial measures the probability of reaching up to k successes in 

n trials with probability p of success at each attempt:  

   

 

If n guesses are considered (i.e. n SNPs are genotyped and used for sib inference), 

1-F(k,n,p) is the probability that at least k of those will be correct. 
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We already know the expectation of the number of SNP genotypes that will be 

correctly inferred from the above section (simply the probability of correct 

inferences at a MAF multiplied by the number of inferences). This cumulative 

binomial measure helps clarify the probability of guessing a at least a specific 

number of SNPs correctly. 

For example, if we take a set of n = 100 SNP inferences where our ability to 

correctly infer sibling SNP genotypes is p = 0.8, and we would like to know what 

the probability of at least k = 75 correct guesses is (1 - F(k,n,p)), we can calculate 

that it is 0.912. 

 

 

Figure 12: The binomial distribution for number of correct SNP genotype inferences. In this example, we 
attempt inference of 100 SNP genotypes, each with probability 0.8 of success. We would like to know what 
the probability is of correctly inferring at least 75 (red) is 0.912. This can be calculated using the 1-F(k,n,p) 

cumulative binomial distribution formula in the above section.  
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HapMap	
  CEPH	
  and	
  global	
  population	
  SNP	
  genotypes	
  and	
  allele	
  frequency	
  data	
  

The demographic data used in this project are population-specific SNP allele 

frequencies from the CEPH HapMap population, Utah residents with ancestry from 

northern and western Europe, and the global SNP allele frequencies (from all 

populations that participated in the HapMap) [99].  The HapMap project has 

compiled allele frequency values for a large selection of SNPs – loci in the genome 

that account for a great deal of genetic variability in populations. Within the CEPH 

population, there are 30 familial trios, each containing one mother, father, and 

child. Additionally, the individual genotypes of the 90 CEPH trio participants are 

directly used in this study. One limitation of this population specific allele 

frequency database is the small size of each HapMap population – the CEPH 

population contains 90 participants, and as such, each trio child contributes 1/90th 

of the allele frequency data that are used in the study. 

Validating	
  the	
  sibling	
  genotype	
  probability	
  vector	
  using	
  parental	
  genotypic	
  

data	
  

To validate the results of the refining strategy on inferring the second sibling 

genotype, the authentic parental genotypes are used to create the probability vector 

p(‘AA’), p(‘Aa’), p(‘aa’) at the SNP being evaluated, for the children the pair would 

be expected to have. For each of the trio pairs at each of the SNPs being tested, the 

probability vector was calculated.  
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Error	
  reduction	
  calculation	
  

The error reduction measurement identifies the extent to which inference error is 

reduced. For example, when trying to infer the probability that Sib2 has genotype 

‘AA’ at a specific SNP, we calculate the absolute value of the difference between 

our best inference and the Hardy Weinberg probability for Sib2 to have genotype 

‘AA’, using population-specific allele frequency data and the Sib1 genotype, 

|p(Sib2AA|Sib1 genotype)-p(Sib2AA)|. This value is specifically the percentage 

improvement to the probability value from the new data, when inferring the 

specific event that Sib2 will have genotype ‘AA’ and Sib1 will have the specific 

genotype in question.  

Any change to p(Sib2AA) must also correspond with the opposite change in the 

sum of p(Sib2Aa) and p(Sib2aa). To accurately represent the overall error reduction 

by Sib1 genotype, with any of three possible Sib2 genotypes, the average of the 

three values is measured. For example, where the Sib1 genotype is ‘AA’, the overall 

average improvement (and error reduction) is the average of |p(Sib2AA) – 

p(Sib2AA|Sib1AA)|, |p(Sib2Aa) – p(Sib2Aa|Sib1AA)|, and |p(Sib2aa) – 

p(Sib2aa|Sib1AA)|. The percentage improvement is graphed in Figure 14 for each 

possible Sib1 genotype. 
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Figure 13: The error reduction, in the form of percentage improvement in inference accuracy for subsequent 
siblings, when one sibling’s (Sib

1
) genotype is available (for each possible Sib

1
 genotype). 

 

Scoring	
  metric	
  for	
  calculating	
  correct	
  fraction	
  of	
  inferences	
  

To ascertain whether the inferences are helpful for producing correct answers, a 

scoring metric was used to calculate the fraction of correct SNP inferences, in our 

empirical inference validation study. For each SNP inference, the scoring metric 

provides a full point when the plural entry in the inference vector, (the maximum of 

p(‘AA’), p(‘Aa’), and p(‘aa’), and thus the predicted sib genotype), matches the 

plural entry in the parental validation vector (the empirical most likely genotype). 

Given the parental genotype values, it is possible, and not infrequent, that a 
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validation probability vector has two matching plural values, for example, if 

p(‘AA’) = p(‘Aa’) = 0.5. When this is the case, one half point was awarded if the 

plural value in the inference vector matched one of the two validation choices, to 

signify that one of the two equally likely candidates was chosen. 

There are some conditions that arise from use of a simple scoring metric, where it 

becomes difficult to score well. For example, a heterozygous Sib1 will likely result 

in a 0.5 score for inferences. A score of 1 point would be possible if one parent had 

a genotype of ‘AA’ and the other had genotype ‘aa’, making the probability that the 

parents would have a child with genotype ‘Aa’ equal 1. Most remaining parental 

combinations would not result in the probability of child genotype ‘Aa’ equal to 1, 

and would likely result in only a half point. These values can be adjusted using 

machine learning techniques or more robust decision making algorithms, but those 

are out of the scope of this work. 

Results	
  

Validation	
  of	
  SNP	
  genotype	
  inference	
  using	
  HapMap	
  trio	
  data	
  

We then empirically infer sibling genotypic sequences from HapMap trio child 

genotypes using the above technique. At 700,000 SNP loci on chromosomes 2, 4, 

and 7, in each of 30 HapMap CEPH trios, the trio sibling, Sib1, known genotypes 

are combined with the CEPH and global HapMap SNP allele frequencies to 

produce genotypic inferences of a hypothetical sib, Sib2, at these loci. The 

inference method produces three genotypic probabilities for Sib2 (or subsequent 
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siblings):  p(Sib2AA|Sib1 genotype), p(Sib2Aa|Sib1 genotype), and p(Sib2aa|Sib1 

genotype) for each SNP, which we call the SNP probability vector. 

The ability to correctly infer a sibling genotype from a trio child genotype can be 

validated by comparing whether the best estimated genotype, using only the sibling 

genotype and population frequencies, matches the best estimated genotype using 

the parental genotypic data (Fig. 1D). While there are CEPH families where 

multiple children are genotyped, there are not many, and to get the statistical 

power necessary for our analysis, we needed to use the trios and impute sibling 

values. We do this by comparing the plural, largest, value in the SNP probability 

vector, with the plurality value in the SNP probability vector that would be 

expected given the parental genotypes and Mendelian Inheritance. The fraction of 

correct inferences for SNPs where the Sib1 is homozygous major or heterozygous 

versus minor allele frequency are graphed in Figure 14A and Figure 14B, 

respectively. There were insufficient SNPs where the trio child was homozygous 

minor, so they have been excluded from this analysis.  
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Figure 14: Fraction of correct Sib2 inferences: the fraction of Sib2 SNPs that can be correctly identified when 
Sib1 is (a)homozygous major or (b)heterozygous. Each line represents use of distinct data--inclusion or 
exclusion of Sib1 genotypes, and use of population-specific or global allele frequency data. Without Sib1 
genotypes, homozygous major inferences would always be incorrect at Minor Allele Frequency (MAF) ≥ 0.33 
and heterozygous inferences would always incorrect at MAF ≤ 0.33. At many allele frequencies, use of Sib1 
genotypes dramatically improves Sib2 inferences. 

 

For inferences at SNPs where the trio child, Sib1, was homozygous major, with 

MAF < 0.05 (N=300512,43.2%), we are able to correctly infer the genotype of 

other siblings, e.g. Sib2, with 98.5% accuracy when using population-specific allele 

frequency data. At SNPs with MAF < 0.20 (N=452684,65.1%) we achieve 91.9% 

average accuracy. For SNPs where the first sibling is heterozygous, with MAF > 

0.20 (N=125796,18.1%), it is possible to infer the correct genotype of the second 

sibling with 57.7% average accuracy. Without Sib1 genotypes, all inferences for 

homozygous major SNPs with MAF ≥ 0.33 and heterozygous SNPs with MAF ≤ 

0.33 would be incorrect when validated against plural parental values. At these 

allele frequencies, as well as others, use of Sib1 genotypes markedly improves Sib2 

inferences. 
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Deriving	
  propensity	
  to	
  disease	
  from	
  sibling	
  SNP	
  data	
  

Additionally, sibling SNP data can be used to quantify an individual’s disease 

propensity through genotypic inference, without that individual’s actual sequence 

data. For example, the likelihood ratio test statistic above may also be used to 

describe relative risk, using a multiplicative model.  

 

 

 

 

For example, the relative risk of Sib2Aa, carrying one copy of the disease allele ‘a’, 

is provided by information from the Sib1aa genotype: 
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In this example, at MAF=0.01, the relative risk of genotype ‘Aa’ is 25.25, given 

information that Sib1 carries genotype ‘aa’ at that locus. However, at MAF=0.5, the 

relative risk of genotype ‘Aa’ is 0.75, given information that Sib1 carries genotype 

‘aa’, explaining that the risk of having the genotype ‘Aa’ is reduced at this MAF. 

This may seem counterintuitive, as the risk of carrying a disease allele is actually 

higher at this MAF, but Sib2 carrying genotype ‘Aa’ is lower than in the control 

population, while the relative risk of carrying the disease allele with genotype ‘aa’ 

is higher. 
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At MAF 0.5,  is 2.25, demonstrating that it is more likely that a disease 

allele will be carried by Sib2 in genotype ‘aa’ than in the control population given 

the Sib1 genotype. 

The explicit probability of developing a disease is also altered. If an individual with 

genotype ‘Aa’ at a specific locus has a probability pd of developing a disease by age 

a, and that individual has a probability ps of having that genotype given his sibling’s 

genotype at that locus, his probability of developing that disease by age a is ps�pd. 

This can easily be extended to multiple independent loci, important for diseases in 

which a set of common or rare variants dictates disease likelihood[6, 101]. As SNPs 

are both clinically informative and there is a wealth of supporting allele frequency 

data, they have been the focus of our analysis, however there are other genomic 

data types which should be considered in a rigorous privacy and propensity 

analysis, including copy number variant and mutation data.	
  

Discussion 

These findings demonstrate that substantial discrimination and privacy concerns 

arise from use of inferred familial genomic data. While the Genetic Information 

Nondiscrimination Act of 2008 (GINA, H.R. 493), recently passed into law, would 

mitigate the threat of direct discriminatory action by employers or insurers [26], 

there will continue to be other uses of genomic data that pose privacy risks, 

including the use of genetic testing in setting life, disability, and long-term care 

insurance premiums [27, 102, 103]. Familial genotypic sequences can be used to 
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assist in forensic or criminal investigations for indirect identification of genotype, 

increasing the number of people who may be identified [28, 29]. Similarly, 

Freedom of Information Act (FOIA) [30] requests related to federally-funded 

genome wide association studies could potentially be used to identify research 

participants and their family members. Clinically, choosing the detail and type of 

disease propensity information that must be disclosed to patients and their 

potentially affected family members is also under debate [31, 32, 104]. 

Quantifying the information content of disclosed genomic data will add clarity to 

the informed consent process when a patient shares genotypic data for research 

use. For research investigations, it is conceivable that a subject would want to limit 

the impact of her genomic disclosure on her family members, or be asked to have a 

discussion with specific family members before proceeding. Providing subjects 

with different levels of genomic anonymity based on their sequence data, along 

with an estimate of the probability of re-identification and familial impact for each 

of those anonymity levels, will allow patients to trade off altruistically motivated 

sharing [105] with privacy consideration, especially when they volunteer to share 

all the variants in their genome [17]. 

While the inference accuracy rates are very high, particularly for inferences where 

Sib1 has a homozygous major genotype, we would like to caution that some of 

these findings are not always highly informative. For example, if the MAF is 0.01, 

where 99% of the alleles in the population are the major allele, the prior 

probability for a homozygous major allele is 0.99*0.99 = 0.98. If Sib1 has a 
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homozygous major allele, the posterior probability of observing a homozygous 

major allele in another sibling is (¼ + ¼*0.99*0.99 + ½*0.99) ≈ 0.99. In this case, 

the difference between prior and posterior probabilities is only 0.01, and 

knowledge of the Sib1 genotype provides very little information, as most accuracy 

comes from the allele frequency in the population. 

However, homozygous minor alleles are much more informative. With a MAF of 

0.2, if Sib1 has a homozygous minor genotype, the probability of Sib2 having the 

same genotype, given only the reference population is 0.04. Given that Sib1 has a 

homozygous minor genotype, Sib2 will have a homozygous minor allele with 

probability of (¼ + ¼*0.2*0.2 + ½*0.2) = 0.36, which is quite different from the 

prior probability of 0.04.  

One limitation of this study is that the population-based estimates for MAF rely on 

the HapMap study population sizes, which, at present, are small, though these 

types of sources will continue to expand. For example, the CEPH population 

contains 90 participants, so each trio child contributes 1/90th of the allele frequency 

data used in the study. This approach also depends on the independence of the loci 

considered, and would need to be adapted for SNPs that are in linkage 

disequilibrium. Extending this study to include linked SNP loci is possible, using 

the haplotype block information for HapMap populations that is available. To 

ensure that SNPs are independent, linkage data from the HapMap population can 

be used to confirm independence, and SNPs that are far from one another may be 

selected. Additionally, this approach does not consider the possibility of genotypic 
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errors, which may be common on some platforms. An adjustment using a binomial 

probability distribution could be used to account for possible errors.  

Conclusions	
  

Technologies for sequencing large numbers of SNPs are rapidly dropping in cost, 

which will help realize the promise of personalized medicine, but pose substantial 

personal and familial privacy risks. While electronic storage and transmission of 

genetic tests is not yet a common component of medical record data, these tests 

will soon be stored in electronic medical records and personally controlled health 

records [50]. This mandates the need for improved informed consent models and 

access control mechanisms for genomic data. The increasingly common practice of 

electronically publishing research-related SNP data requires a delicate balance 

between the enormous potential benefits of shared genomic data through NCBI and 

other resources, and the privacy rights of both sequenced individuals and their 

family members. 
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Ability	
  to	
  infer	
  SNP	
  genotypes	
  from	
  parental	
  or	
  child	
  data	
  

Similarly, improvements to genomic inferences are possible for paternal 

relationships: knowledge of a parent’s genotype can improve the accuracy of 

estimates of a child’s genotype. For example, consider the case where a child’s 

mother is known to have genotype ‘AA’ at a variant locus. In this case, we can alter 

the probability that the child will have genotype ‘AA’, ‘Aa’ or ‘aa’ at that locus, 

given knowledge of the maternal genotype.  For example, the probability that a 

child has genotype ‘AA’ given that the mother has genotype ‘AA’ at a specific locus 

can be directly calculated: 
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Using only the population allele frequencies, it is possible to determine the 

improvement of a SNP inference given maternal or paternal genotype at that locus. 

Before knowledge of the maternal genotype was included, p(Child AA) would have 

been the Hardy-Weinberg frequency for major homozygotes, p2. However, with 

knowledge of the maternal genotype, p(Child AA|Mother AA), the additional 

constraint increases the probability to p2+pq, increasing inference accuracy by pq. 

Now consider the opposite case, where we attempt to infer the genotype of the 

mother given a known child genotype. Consider the analogue of the above 

example, where we would like to determine the probability that the mother has 

genotype ‘AA’ at a locus given that her child has genotype ‘AA’:  

 

	
  

	
  

Because p(Mother AA) = p(Child AA) with no other knowledge, we can substitute 

it in the denominator, as follows: 
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Thus, if non-paternity and new mutations are excluded, p(Child X|Mother Y) = 

p(Mother X|Child Y), where X and Y are genotypes, and where X may be the same 

genotype as Y.  

For all of the possible combinations of known parent genotypes and possible 

inferred child genotypes, the prior and posterior probabilities are enumerated in 

Table 4 below. 

 

Table 4: Error reduction on genomic inference when the genotype of one known parent is known. 

Child	
  	
   Known	
  Parent	
   Prior	
  Prob.	
   Posterior	
  Prob.	
   Error	
  Reduction	
  
AA	
   AA	
   p2	
   p2	
  +	
  pq	
   |p2	
  –	
  [p2	
  +	
  pq]|	
  
Aa	
   AA	
   2pq	
   pq	
  +	
  q2	
   |2pq	
  –	
  [pq	
  +	
  q2]|	
  
Aa	
   AA	
   q2	
   0	
   |q2|	
  
AA	
   Aa	
   p2	
   ½p2+½pq	
   |p2	
  –	
  [½p2+½pq]|	
  
Aa	
   Aa	
   2pq	
   ½p2+pq+½q2	
   |2pq	
  –	
  [½p2+pq+½q2]|	
  
Aa	
   Aa	
   q2	
   ½pq+½q2	
   |q2-­‐[½pq+½q2]|	
  
AA	
   aa	
   p2	
   0	
   |p2|	
  
Aa	
   aa	
   2pq	
   p2	
  +	
  pq	
   |2pq	
  –	
  [p2	
  +	
  pq]|	
  
Aa	
   aa	
   q2	
   pq	
  +	
  q2	
   |q2-­‐[pq	
  +	
  q2]|	
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Likelihood	
  ratio	
  test	
  statistic	
  for	
  paternity	
  and	
  information	
  content	
  

The likelihood ratio test statistic explored above for siblings can be employed for 

inferences that use other familial data for inferences. This technique describes both 

how informative the genotypic inference technique is in each case, and at each 

MAF, and can also be used as a statistic for likelihood of paternity. The likelihood 

ratio again compares two models –one where the known parent genotype is 

considered and one where it is not. There are a total of nine possible likelihood 

ratios, , for each of the possible individual genotypic 

combinations. Consider an example test statistic where we explore the benefit of 

Maternal genotype knowledge, MotherAA, on the inference of a ChildAA genotype: 
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As above, we have a denominator that becomes p(Ind2 genotype), which is either 

p2, 2pq, or q2. This intuitively makes sense, when considering two unrelated 

individuals, the probability that the 2nd has a specific genotype can only be 

identified using the population frequencies for that genotype. The numerator is the 

posterior probability expression derived in Table 4, also in terms of p and q. The 

log of this odds ratio can then be used as a statistic for measuring relatedness when 

the nature of the relationship is a priori known to be paternal. 

Deriving	
  paternal	
  and	
  child	
  propensity	
  to	
  disease	
  from	
  SNP	
  data	
  

Additionally, paternal SNP data can be used to quantify an individual’s disease 

propensity through genotypic inference, without that individual’s actual sequence 

data. As above, the likelihood ratio test statistic above may also be used to describe 

relative risk, using a multiplicative model.  
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In this example, there are only three elements in the summation rather than nine, 

because there are only three possible parental genotype combinations (i) when one 

parental genotype is fixed. 	
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Risk	
  of	
  re-­identification	
  analysis	
  of	
  mutation	
  data	
  

Introduction	
  

Sequencing of an individual’s DNA may reveal single nucleotide variants that have 

not been documented or previously identified as SNPs. These variants include 

nonsense and missense mutations, insertions or deletions, and other lesions. 

Presence of such mutation data in a shared or published sequence substantially 

increases the ability to identify the individual whose data are shared. 

In the case of a de novo germline mutation, we can evaluate privacy implications 

for carrying that mutation. We first explore general identifiability issues for mutant 

loci, and how likely a match would be among 1000 people. If a mutation is not de 

novo, we will need to adjust our estimate with population genetics using 

population size and estimates of prevalence in the population.  

De	
  novo	
  germline	
  mutations	
  

For de novo germline mutations that are not distributed widely in the population, 

we explore the use of region-specific mutation frequency information in the 

genome to estimate how common such a mutation might be. We will be gender-

neural in our analysis, and consider autosomes only.  

Generally, our approach will be to treat a mutation as a rare allele with frequency 

q. We will estimate the allele frequency of that mutant in a specific population 

using locus-specific and mutation type information, and estimate p(‘Aa’), the 
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probability of heterozygotes in the population. We then calculate the probability of 

a match of that mutated base pair in a second person, mi, and then calculate the 

probability that those two people are the same given a match observed with 

probability mi . 

Let the population frequency of the mutant variant at locus i be qi: 

  

 

where rregion,type is the region-specific, type specific mutation rate per base pair, per 

generation and Psub-type is the probability of the specific sub-type of the mutation 

class, rregion,type (normalized by type). An example of rregion,type is the ‘Transition 

mutation rate in a CpG locus’ and an example of the Psub-type is ‘AG mutation rate 

for all transition mutations at a CpG locus’. 

Mutation	
  type	
  and	
  region-­specific	
  data	
  sources	
  

There are a number of data sources for location-specific and type-specific mutation 

rate data. For our study, we selected mutation rates that included location-specific 

data – specifically whether the locus in question is in a CpG region – and mutation 

type-specific data – whether this mutation was a transition or transversion 

mutation, or a length mutation. These are calculated using a population genetics 

approach with a divergence time of 5 mya, an ancestral effective population size of 

104, a generation length of 20 yrs, and rates of molecular evolution, detailed in 



Privacy	
  and	
  Identifiability	
  in	
  Clinical	
  Research,	
  Personalized	
  Medicine,	
  and	
  Public	
  Health	
  Surveillance	
  

Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  92 

Table 5. There are also a growing number of population-specific mutation 

databases that are available for this type of analysis, segregated by nationality, 

racial, and ethnic group [106, 107]. 

 

Table 5: Mutation rate estimates. These mutation rate estimates are suitable for r
region,type

, as they are rates for 
regions (considering a CpG or non-CpG locus) and mutation type. Rates calculated on the basis of a 
divergence time of 5 mya, ancestral population size of 104, generation length of 20 yrs, and rates of molecular 
evolution. [http://www.genetics.org/cgi/content/full/156/1/297/T4] 

Mutation type Mutation rate 
Transition at CpG 1.6 x 10-7 
Transversion at CpG 4.4 x 10-8 
Transition at non-CpG 1.2 x 10-8 
Transversion at non-CpG  5.5 x 10-9 
All nucleotide substitutions 2.3 x 10-8 
Length mutations 2.3 x 10-9 
All mutations 2.5 x 10-8 
 

 

Specific mutation type information, Psub-type , was collected and interpreted using 

data from the Cardiff Human Gene Mutation Database (Table 6, Table 7, & Table 

8).  We can calculate psub-type, which must be normalized among all main type 

mutations (rregion, type). This information is collected and curated from reports of rare 

mutation findings that are not SNPs – usually occurring in just one or two families – 

so counts of mutation loci are statistically acceptable in this case, even though 

some mutations may occur with some multiplicity, for estimates of mutation type 

specific rates.   
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Table 6: HGMD Statistics for Missense Mutations (P
sub-type

). This table details the counts of each identified 
missense mutation from the Cardiff Human Gene Mutation Database. 

Wild	
  type	
  	
   G	
  	
   T	
  	
   A	
  	
   C	
  	
   Total	
  	
  
Guanine	
  	
   -­‐-­‐	
  	
   2228	
   7140	
   2290	
   11658	
  	
  
Thymine	
  	
   1481	
  	
   -­‐-­‐	
  	
   1045	
  	
   3609	
   6135	
  	
  
Adenine	
  	
   2947	
  	
   734	
  	
   -­‐-­‐	
  	
   1048	
  	
   4839	
  	
  
Cytosine	
  	
   1619	
   4785	
   1376	
   -­‐-­‐	
  	
   7780	
  	
  
 

Table 7: HGMD Statistics for Nonsense Mutations (P
sub-type

). This table details the counts of each identified 
nonsense mutation from the Cardiff Human Gene Mutation Database. 

Wild	
  type	
  	
   G	
  	
   T	
  	
   A	
  	
   C	
  	
   Total	
  	
  
Guanine	
  	
   -­‐-­‐	
  	
   1009	
  	
   1028	
   0	
  	
   2037	
  	
  
Thymine	
  	
   224	
   -­‐-­‐	
  	
   325	
  	
   0	
  	
   549	
  
Adenine	
  	
   0	
  	
   273	
  	
   -­‐-­‐	
  	
   0	
  	
   339	
  
Cytosine	
  	
   499	
   3178	
  	
   727	
  	
   -­‐-­‐	
  	
   4817	
  	
  
 

Table 8: HGMD Statistics for All Transition Missense Mutations (P
sub-type

). This table details the counts of each 
identified transition missense mutation from the Cardiff Human Gene Mutation Database. 

Wild	
  type	
  	
   G	
  	
   T	
  	
   A	
  	
   C	
  	
   Total	
  	
  
Guanine	
  	
   -­‐-­‐	
  	
   ***	
   7140	
   ***	
   7140	
  	
  
Thymine	
  	
   ***	
  	
   -­‐-­‐	
  	
   ***	
  	
   3609	
   3609	
  
Adenine	
  	
   2947	
  	
   ***	
  	
   -­‐-­‐	
  	
   ***	
  	
   2947	
  
Cytosine	
  	
   ***	
   4785	
   ***	
   -­‐-­‐	
  	
   4785	
  
 

The Cardiff Human Gene Mutation Database endorses a technical correction that 

can compensate for this bias in counts, published in the American Journal of 

Human Genetics [108]. Krawczak et al created tables describing the results of the 

meta-analysis of base-pair substitutions in the Human Gene Mutation Database. 

These tables contain the relative clinical observation likelihood (RCOL) value for 

each mutation type that is adjacent to each possible mono and dinucleotide 

sequence, flanked by 0-4 other nucleotides [109]. There is also a table that 
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enumerates the RCOL values for amino acid substitutions by a chemical difference 

metric, and also contains an RCOL value for nonsense mutations. These data may 

serve as additional sources for mutation identifiability research, and can be used to 

create estimates of qi as described above.  

Probability	
  of	
  finding	
  a	
  match	
  in	
  rare	
  mutation	
  alleles	
  

Technically, the probability that two people carry the same allele must include the 

possibility that either of them is homozygotic minor or heterozygotic at the locus. 

For de novo mutations, carrying a homozygotic minor genotype is extremely 

unlikely, so we exclude this for very small frequencies. We then can estimate that 

the probability that two unrelated people with mutations matching at any locus, mi , 

is the frequency of heterozygotes, from 2pi (1-pi): 
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Probability	
  that	
  two	
  people	
  are	
  the	
  same	
  given	
  a	
  match	
  at	
  M	
  mutant	
  base	
  pairs	
  	
  

We then evaluate the probability of a match at M mutant loci using Bayes’ 

Theorem. For this approach, all M mutant loci must be statistically independent, 

which in this case means is that they cannot be in linkage disequilibrium, or 

otherwise correlated in their likelihood to occur. 

Suppose that an adversary assumes a conservative model that research subjects are 

uniformly sampled from a population of N people. The probability that a person is 

subject i, given that they share a set of M mutant loci is: 

 

 

 

 

The probability that two samples came from the same individual p(same|match) is 

exceedingly high given a match at just a few rare mutant variants. 

Likelihood	
  of	
  identifying	
  an	
  individual	
  out	
  of	
  10000	
  genotyped	
  at	
  that	
  locus	
  

One way to contextualize how individually identifying a mutation is would be to 

describe how likely it is that two people within a specific population pool would 
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match. For example, “how identifiable is a Caucasian male with a missense AG 

mutation in a CpG locus among 10000 others?” 

With genome region-specific information, (the mutation is at a CpG locus,) and 

knowledge of the mutation type (a transition mutation, because it is a purine/purine 

mutation,) we can evaluate this example by first calculating the ‘minor allele 

frequency’ estimate for this mutant variant: 

qi =(psub-type)(rregion,type)  

qi = (0.386)(1.6 x 10-7) 

qi =6.2 × 10-8  

 

Next, we can use that minor variant allele frequency to calculate the probability 

that two people would match  

µi = (2(6.2 × 10-8 )(1-6.2 × 10-8))2  

µi = (1.54 × 10-14)  
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If the probability of one person matching is mi = 1.54 × 10-14, the likelihood of a 

identifying a match in 10000 people is an example of the birthday problem:  

  

  

  

 

This answer should be close to the answer in an African population, as long as 

neutral assumptions hold because the localized mutation rate should not be 

different among populations. 
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Chapter	
  III:	
  Anonymization	
  of	
  data	
  for	
  transmission	
  and	
  disease	
  

surveillance	
  

A	
  Context-­Sensitive	
  Approach	
  to	
  Anonymizing	
  Spatial	
  Surveillance	
  Data:	
  

Impact	
  on	
  Outbreak	
  Detection	
  

The work in this section was published as a research manuscript in the Journal of 

the American Medical Informatics Association with Dr. Shaun Grannis and Dr. 

Marc Overhage of the Regenstrief Institute in Indianapolis, IN, and Dr. Kenneth 

Mandl from the Children’s Hospital Informatics Program and the Harvard-MIT 

Division of Health Sciences and Technology. 

Abstract 

Cases were emergency department (ED) visits for respiratory illness.  Baseline ED 

visit data were injected with artificially-created clusters ranging in magnitude, 

shape, and location.  The geocoded locations were then transformed using a de-

identification algorithm that accounts for the local underlying population density.  

12,600 separate weeks of case data with artificially created clusters were combined 

with control data and the impact on detection of spatial clustering identified by a 

spatial scan statistic was measured. The anonymization algorithm produced an 

expected skew of cases which resulted in high values of data set k-anonymity.  De-

identification that moves points an average distance of 0.25km lowers the spatial 

cluster detection sensitivity by less than 4%, and lowers the detection specificity 
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less than 1%. A population-density based Gaussian spatial blurring markedly 

decreases the ability to identify individuals in a data set while only slightly 

decreasing the performance of a commonly used outbreak detection tool.  These 

findings suggest new approaches to anonymizing data spatial epidemiology and 

surveillance.  

Introduction	
  

The use of spatial clustering algorithms in epidemiology and disease surveillance 

presents privacy challenges for researchers and public health agencies because of 

the identifiability risk associated with transmission of patient address information. 

The emerging science of spatial outbreak detection [110-113] is based on the 

recognition of unexpected clustering among cases. There is an inherent tension 

between the requirement for precise patient locations to accurately detect an 

outbreak and the need to protect patient privacy. Case locations that are identified 

using home address or a portion of that address, such as the zip code or census 

tract, increase the risk of breaching patient confidentiality.  While identifiable data 

can be shared for public health activities, the barriers to and inherent risks of such 

exchange could be minimized if privacy preservation were optimized with respect 

for the intended use of the information. 

We describe a novel method for anonymizing individuals in public health data 

sets, by transposing their spatial locations through a process informed by the 

underlying population density.  Further, we measure the impact of the skew on 

detection of spatial clustering as measured by a spatial scanning statistic. 
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Background	
  

Patient re-identification from purportedly de-identified data can be accomplished 

with surprising ease. For example, 87% of individuals in a publicly available 

database were re-identified using zip code, date of birth and gender alone [81].  

There are well-described techniques for protecting the anonymity of individuals 

whose information resides in databases.  Using these techniques, de-identification 

systems have been developed that remove personal data from database fields (for 

example, converting a date of birth to a year) [82] or from textual notes [83]. 

A metric for the ability to re-identify a patient in a data set is k-anonymity, where k 

refers to the number of people among whom a specific de-identified case cannot 

be reversely identified [82].  Location information, whether stored as classic plain 

text address data or as geocoded longitude and latitude values, can potentially 

identify an individual.  A common approach to de-identifying such data has been 

to use census tract or zip code rather than home address to protect anonymity.  

There are two main drawbacks to using location data that have been transformed to 

a count of points within an administrative region.  First, the loss of precise location 

may reduce sensitivity to detect clustering.  Second, the ability to detect clustering 

may be diminished when some of the points cross administrative boundaries.  

Previous investigators have attempted to mask geographic data by spatially skewing 

cases using, among others, affine and randomizing transformations [89, 90].  We 

describe a spatial anonymization algorithm based on skewing precise geocoded 

case locations using knowledge of local population characteristics.  Skewing these 
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patient addresses directly decreases the ability to re-identify, and thus increases the 

k-anonymity, of a case in a data set, as it will be much more difficult to determine 

what the actual patient’s identity is once it has been altered.  Masking the identity 

of an individual in a densely populated urban area, for example, does not require 

as great a skew as one in a sparsely populated rural setting.  Next, we measure the 

effect of anonymization intensity on outbreak detection, focusing on the sensitivity 

of spatial cluster detection.  The goal is to provide individuals, institutions and 

public health authorities a comfort level with the sharing of skewed, and hence, 

anonymized data, rather than using raw, fully identifiable data.  Further we aim to 

provide transparent information about the resulting diminution of spatial clustering 

detection. 

Methods	
  

A.	
  Overview	
  

Cases were emergency department (ED) visits for respiratory illness from an urban, 

academic, pediatric, tertiary care hospital over a five week period from 12/30/2001 

to 02/02/2002.  Institutional Review Board approval at Children’s Hospital Boston 

was granted.   Home addresses of patients were cleaned to correct data entry errors 

using software (ZP4, Semaphore Corp., Aptos, CA) and then converted to 

geographic coordinates using geocoding software (ArcGIS 8.1, Environmental 

Systems Research Institute, Inc., Redlands, CA).  ED visit data were injected with 

artificially-created clusters that varied in magnitude, shape, and location [114].  

The geocoded locations of all points (real addresses and artificial cluster-points) 
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were then transposed using a de-identification algorithm that skews the location 

based on the underlying population density.  The impact on detection of spatial 

clustering as identified by a spatial scan statistic [115] was measured. 

B.	
  Population-­Density	
  Based	
  Gaussian	
  Spatial	
  Skew	
  	
  

We blurred the spatial location of patient home addresses by a distance informed 

by the underlying population density near the home of each patient.  The patient’s 

home address, represented by latitude/longitude coordinates, was skewed using a 

random offset based on a Gaussian distribution whose standard deviations are 

inversely correlated to the local area’s population density.  The use of local 

demographic data enables our anonymization system to transpose patients in 

densely populated areas by a smaller distance than patients who live in more rural 

areas.  Hence addresses can be skewed minimally while maintaining a specified k-

anonymity. 

C.	
  Census	
  Block	
  Groups	
  

Producing de-identified data sets based on local population densities requires state-

wide, location-specific population density data, which are readily available from 

the US Census Bureau.  Our de-identification system identifies each patient’s 

census block group for which the total population per square kilometer by age is 

available [116].   Due to variability in the available Census 2000 block group data 

set, data were pre-processed to constrain maximum and minimum population 

density values and correct missing or improperly formatted values.  
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D.	
  Gaussian	
  Randomization	
  

Optimally, individual points will be skewed by a minimal distance to obscure 

identity, while preserving spatial information.  Transforming a data set using a 

Gaussian probability distribution function results in most cases being moved only a 

small distance, because the Gaussian probability distribution function is strongly 

weighted about its mean (center) value.  We have developed a bivariate Gaussian 

anonymization scheme that uses two randomly selected values, σx and σy, the 

standard deviations of normal distributions, which are used to generate the 

distances for patient displacement in each dimension, randomly selected from the 

Gaussian distributions described above, [117].  When cases are moved dx, dy, they 

may be moved outside the boundaries of their original census block groups.  

Selecting distinct standard deviations in each direction helps protect against steep 

population gradients that are purely in either dimension, however this is generally 

not necessary.  This Gaussian randomization is used in concert with population-

density and age-based multipliers in the anonymization algorithm described in the 

following section. 

E.	
  Anonymization	
  Algorithm	
  

To achieve a similar k-anonymity between high- and low-density population areas, 

the amount a specific patient in a spatial data set is skewed should be inversely 

related to the local population density – patients in rural areas need to be moved a 

greater distance than those in cities.  Additionally, age-based adjustments were 

integrated to compensate for spatial age-group population density variations, as 
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regions may have markedly different age distribution patterns.  To do this, we 

create multipliers reflecting the relative magnitude needed to move a specific point 

from its original location. 

First, we calculate the average population density for all US Census Blocks in the 

region of interest, both for Census Block Group age ranges and for the total 

population density.  Next, we calculate multipliers for each case that vary with the 

inverse of the population density in the census block group, below: 

Anonymization	
  Multipliers	
  and	
  Factors:	
  

 

 

 

These multipliers allow the anonymization system to move patients with large 

population multipliers farther than those with smaller multipliers on average, in a 

data set.   

Age	
  Population	
  Density	
  vs.	
  Total	
  Population	
  Density	
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Additionally, users may wish to control the relative importance of the age-based 

population density multiplier in comparison with the total population density 

multiplier. The age parameter allows this, and ranges from 0 to 1 where a value of 

1 considers only age-based population density and 0 considers only the total 

population density when choosing the anonymization magnitude. 

The desire to directly control the skew level of this skew algorithm can be achieved 

using a parameter or multiplier, which we now describe. This overall 

anonymization parameter is not in terms of actual anonymity afforded (which will 

be discussed later in this article), which should vary quadratically with this 

parameter. 

Overall	
  Anonymization	
  Parameter:	
  	
  

 

 

The additional parameter c is a scaling factor that easily adjusts the magnitude of 

the overall skew applied to a specific latitude-longitude pair.  The overall degree of 

anonymization is altered by changing this value, although it should be noted that 
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the relationship between the degree of anonymization and the anonymization 

multiplier is non-linear. 

F.	
  Test	
  data	
  sets	
  

To determine whether spatial detection performance is adversely affected by 

transformation of a data set using this anonymization algorithm, we created a set of 

test data sets that varied with several parameters.  Five separate weeks of ED visit 

data were categorized into syndrome using chief complaint and ICD-9-CM 

diagnosis codes as previously described, [118] to identify visits for respiratory 

illness.  Each week of this respiratory visit data set was injected with 252 

artificially-generated clusters [119, 120] to create 1,260 data sets with one week of 

encounter data and one artificial cluster per data set.  The 252 clusters contain 10, 

25, or 40 extra points placed randomly within circles with a radius of 250, 500, 

1000, or 3000m.  These data sets were located 8.05, 24.14, or 80.47 km (5, 15, 50 

mi) away from a center point (the hospital location) at 7 evenly-spaced angles.  

Each of the 1,260 data sets was then processed using the anonymization algorithm 

at ten different anonymization skew levels (magnitudes of anonymization), creating 

a total of 12,600 test data sets (Figure 15).  Non-injected patient data are assumed 

to have no existing clustering, however this is a conservative assumption.  If this 

assumption is false, it will likely lower the number of false positives that are 

identified. 
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G.	
  Measuring	
  Clustering	
  Detection	
  Performance	
  

The method used to measure clustering was the SaTScan Spatial Bernoulli Model 

scanning algorithm using 999 Monte-Carlo replications [112, 115].  After the test 

data sets were created, each was analyzed using the aforementioned SaTScan 

purely spatial scanning statistic to find the p-value of the most likely cluster.  

Because these data sets each contained an artificially-generated cluster of patients, 

we used SaTScan to determine whether at least 50% of the artificially-injected 

cluster-points were identified with a p-value ≤ 0.05.  This cutoff was selected 

because we wanted to only consider our cluster detection effort a success if at least 

a majority of the artificially generated case points were identified, as there would 

be limited utility in an anonymization algorithm if it could only allow cluster 

5 total 

 

Single 
Week of 

CHB Visit 
Data 

Single 
artificially 
generated 

spatial 
cluster 

252 total 

 

Week of 
CHB Data 
and One 
Artificial 
Cluster 

1,260 

total 

 

Transform each 
data set at ten 

different 
anonymity levels 

Anonymizing 
Algorithm 

 

Anonymized 
week of 

CHB Data 
and One 
Artificial 
Cluster 

12,600 total 

 

Figure 15: Experiment description: five weeks of Children’s Hospital Boston visit data are each individually 
combined with 252 different artificially-generated spatial clusters.  Each of the resulting 1,260 data sets was 
then anonymized at ten different levels for a total of 12,600 experimental data sets. 
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detection algorithms to identify one case in a cluster in practice. To clarify, this 

cutoff threshold makes our ability to detect these clusters harder in the analysis that 

follows, because we specify that a majority of the cases must be identified, even if 

clusters with very low p-values are detected with 40% of the artificially injected 

cluster points, for example.  If the cluster was identified, we also recorded what 

proportion of the total identified cluster points were from the artificial cluster.  

H.	
  Estimate	
  of	
  k-­Anonymity	
  	
  

It is possible to estimate the expected level of k-anonymity for an individual 

skewed case by multiplying the local population density [(population)(area-1)] by a 

circular ring area approximation of the Gaussian probability distribution function 

(Figure 16.)  Because 68.26% of patients should fall, on average, within the first 

standard deviation, σ miles in radius from where they were originally located, we 

can multiply the local population density by the area,  and by the probability 

that the patient would have been moved into that region, 0.6826.  We can add to 

this the next ring’s population density multiplied by its area and its probability that 

a patient would be transplanted into that area, 0.2718.  Finally we can add the area 

of the last ring multiplied by its local population density by its probability density, 

0.0428.  The sum of these three numbers provides a computationally-tractable 

expectation of k-anonymity achieved for a specific case in a data set.   
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Figure 16: Estimating expected k-anonymity: using the data set standard deviation of the distance each 
patient is moved in the anonymization, �, an estimate of achieved k-anonymity is calculated, assuming no 
other external knowledge of specific patient information.  The local population density [people/km2] is 
multiplied by each area [km2] and then multiplied by the probability that the patient would have been in that 
area, from the Gaussian probability distribution function.   

 

The circular areas used in these calculations may contain several census block 

groups, so estimate accuracy can be increased by multiplying the fraction of area 

comprised by each census block by the population density of that block.  The sum 

of those partitioned values can then be multiplied by the above probability 

distribution values.  This estimate of k-anonymity relies on the probability density 

distribution of the 2D Gaussian.  Sufficient numbers of patients are needed to 

statistically ensure that the central limit theorem has been satisfied, a reasonable 

assumption given the size of most public health surveillance data sets. 
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I.	
  Outlier	
  Assessment	
  and	
  Percentage	
  of	
  Points	
  Meeting	
  Anonymity	
  Thresholds	
  

To determine whether a subset of patients (those potentially in rural areas) might 

not have attained anonymity at the level specified by the user, the skew distance 

cumulative distribution functions for different user-specified k-anonymity values 

can be inspected to easily determine the quantity of cases in a large data set that 

have not been sufficiently individually de-identified.  In aggregate form, most of 

these data are still sufficiently anonymized from a user with no external 

information; however some rural cases may still pose risk of information disclosure.  

An outlier analysis allows users to determine which cases in a specific data set 

should be re-anonymized or excluded and what fraction of cases have been 

successfully anonymized. 

J.	
  Client	
  Tool	
  and	
  GUI	
  for	
  Remote	
  De-­Identification	
  of	
  Data	
  	
  

The source code and binary installation toolkits have been made available in an 

open source repository at http://sourceforge.net/projects/patientanon/ .  This stand-

alone toolkit implements the de-identification algorithm explored in this thesis.  

Data sets are accepted in either a CSV or XML format, and the anonymization 

toolkit allows the user to specify the order of the required variables to suit almost 

any previously created data set.  Special care was taken to make this 

anonymization system deployable as a standalone application by extracting all of 

the necessary census block group data and storing it in a local database.  In the 

standalone version, this information is stored as a set of local xml files to remove 

complexity from the setup of the program, so that no database software or 
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connections are necessary to anonymize patient data.  For better performance, we 

allow users to load their choice of state census block group data into memory.  

Hash tables are also used to improve lookup speed for identifying a subset of 

candidate census block groups for each patient record.   

Results	
  

A.	
  Distribution	
  of	
  Location	
  Skew	
  

The distance from the original address to the transformed address for each patient 

was calculated (Figure 17) for four sample anonymized data sets with different 

skew magnitudes.  This illustrates empirical anonymization distributions with 

respect to skew level.  The normal probability distribution function has the greatest 

density centered about the mean value, where the mean value represents no 

positive or negative linear skew.  Nearly all cases were moved at least some 

distance due to the bivariate nature of this Gaussian blurring algorithm.  As 

expected, only a small portion of patients were moved a large distance from their 

original addresses. 
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Figure 17: Distribution of distance from original location: Each case was moved from an original home 
address to a new de-identified location.  Each data series represents the percentage of patients that were 
displaced plotted against distance [km] displaced from original location.   

 

B.	
  Average	
  Distance	
  Moved	
  vs.	
  Estimate	
  of	
  k-­anonymity	
  	
  

Using the population-density estimate of k-anonymity described above, the average 

k-anonymity for each anonymized data set was calculated (Figure 18).  As the 

magnitude of anonymization increases (as the average distance from original points 

in the data set increases), the k-anonymity increases quadratically.  The method to 

estimate k-anonymity in these data sets uses the area around each patient 

circumscribed by a radius that is the standard deviation of distance from original 

address in each data set.  These areas may contain multiple census block groups, 

each with a different population density, so we chose to use a conservative 
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estimate, using the smallest population density in the relevant area.  As these 

standard deviations increase linearly (as the magnitude of Gaussian blurring that is 

applied to each data set increases), the area enclosed by the radius around the 

patients increases as a second order polynomial.  An average distance value of 

0.25 km corresponds to an average k-anonymity value of 250, such that in this 

sample data set, a patient is not reversely identifiable among a group of 250 

people.   

 

Figure 18: Average k-anonymity achieved vs. Average Distance Moved: As the average distance [km] moved 
in a given data set increases, the anonymity achieved also increases in a quadratic fashion. 
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C.	
  Sensitivity	
  of	
  Spatial	
  Clustering	
  Detection	
  

The SaTScan purely spatial Bernoulli model was used to identify whether at least 

50% of artificially-injected test clusters points were identified in 12,600 spatial data 

sets in a cluster with a p-value of less than or equal to 0.05. This cutoff is a 

conservative one that makes it more difficult to call a cluster that is identified with 

some artificially-injected cluster points a ‘success’, and requires that at least the 

majority of the artificially-injected points must be detected.  The following 

sensitivity and specificity analysis is based on cluster points that are part of clusters 

that are either successfully ‘detected’ (true positives) or ‘not detected’ (false 

negatives). 

As the magnitude of the spatial skew increased (as the average distance from 

original point increased), the rate of spatial detection performance decreased 

(Figure 19).   The average sensitivity and average specificity are graphed for each 

skew magnitude.  The sensitivity and specificity values are defined for each cluster 

with artificially-injected cases counted as true positives and non-injected patients 

counted as false positives.  De-identification with a data set average distance to 

original point of 0.25km lowers the spatial cluster detection sensitivity less than 4% 

and lowers detection specificity less than 1%.  This result demonstrates that this 

approach has a minimal negative effect on spatial clustering detection sensitivity 

and specificity. 
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Figure 19: Average Cluster Sensitivity/Specificity vs. Average Distance to Original Point [Average Distance 
Increases as Anonymization Level Increases]: The average sensitivity and specificity of spatial detection (using 
SaTScan Bernoulli Spatial Model with p-value ≤ 0.05) of artificially-injected clusters of patients is displayed 
with respect to the average distance that patients in a de-identified data set are moved with respect to their 
original home addresses.  Sensitivity and specificity are calculated using cases from the cluster and control 
data that were or were not identified properly. 

 

D.	
  Outlier	
  Assessment	
  and	
  Percentage	
  of	
  Points	
  Not	
  Meeting	
  Anonymity	
  

Thresholds	
  

We describe the k-anonymity of results in our anonymization experiments using 

the average k-anonymity achieved in aggregate transformed data sets.  To 

determine whether a subset of patients (those potentially in rural areas) might not 

have attained adequate anonymity, the cumulative distribution functions for user-

specific k-anonymity values are presented with respect to average distance from 
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original address (Figure 20).  As the average data set distance from original point 

increases, the percentage of points that do not achieve a given k-anonymity value 

decreases.  In this example, it is possible to calculate that a k-anonymity value of 

20 has been reached in 99% of all patients in this sample data set when the 

average distance to original point is 0.25km.  This is because the estimate of k-

anonymity is separately generated for each point based on the distance it would be 

expected to have been moved in an anonymizing skew, so a small fraction of 

points (in this case < 1%) would have been moved a distance so small that they 

would not achieve a k-anonymity level of at least 20. It still would not be possible 

to determine which points in an anonymized dataset were these points, however. 

Points that do not meet a user-specified threshold can either be removed from a 

data set, or they can be re-anonymized.  It is important to note, however, that re-

anonymization of a subset of points will alter the characteristic output described 

above. 
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Figure 20: Percentage of visits that meet specific k-anonymity thresholds: For different user-specified k-
anonymity minimum thresholds, the percentage of visits in a data set with a k-anonymity value below the 
minimum threshold (and not sufficiently de-identified) decreases quickly as the average distance moved 
increases.  For over 99% of the visits in all test data sets, a minimum k-anonymity value of 20 could be 
achieved with an average distance moved of 0.25km. 

 

Discussion	
  

Population-based Gaussian skew represents a novel anonymization method that 

can provide a user-defined level of k-anonymity. Further, this method can readily 

anonymize public health surveillance data sets containing identifiable, protected 

health information with minimal impact on the performance of an outbreak 

detection system.  We have explored the use of population density and age-based 

population density data for de-identification in this manuscript, but we do believe 
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the principles explored in this paper are generally applicable to other types of 

patient and demographic data. 

We propose a public health use case for this anonymization system.  The data 

exchanged, for example, between a hospital and a public health authority for use 

in a syndromic surveillance system can contain skewed locations.  As the 

anonymization system is completely abstracted from the spatial detection systems 

that utilize it, there is no need to align the use of this algorithm with a specific 

toolkit for cluster detection.  If clustering is detected and an outbreak investigation 

is required, the fully identified data could be subsequently exchanged according to 

the HIPAA regulations as applied to public health.   

One approach that might be considered is a web-services paradigm, where a client 

wishing to anonymize spatial data might send a data set containing only spatial 

data and possible de-identification requirements, such as minimum k-anonymity or 

average k-anonymity, to a de-identification server.  The client could then reunite a 

returned data set with other data that had been stored about those patients without 

having transferred linked spatial data over the internet. 

Moving forward, it will be necessary to determine what degree of skew will provide 

sufficient anonymity for distribution of a patient data set to permit different levels of 

data exchange.  Determining what level of anonymity is required for HIPAA 

compliance using an anonymization system is a challenging and complex issue.  A 
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policy could be envisioned under which patients volunteering their information for 

use by public health agencies might be able to specify the desired k- anonymity.   

The skew method described here readily achieves far higher degrees of k 

anonymity than are generally considered acceptable for public health data sets.  It 

is important to be aware, however, that k-anonymity can vary from case to case 

within a data set.  Consider the example of a data set containing one case which is 

located in a rural town of 50 residents.  Consider further that the desired k-

anonymity is 100.  It is difficult to achieve this de-identification level without 

increasing the magnitude of anonymization for all cases in the data set to a high 

level.  Hence, a tradeoff arises between keeping the difficult-to-anonymize cases 

(maintaining the integrity of the data set) versus discarding them as outliers, and 

thereby enabling lower intensity anonymization for the other cases.  Cases may 

need to be removed from data sets to ensure that k-anonymity thresholds are met 

for every patient in a specific data set.  This suggests that better results would likely 

be achieved by allowing the clustering algorithm and the anonymization algorithm 

to interact in some way. 

This algorithm randomizes the magnitude of the address skew for each patient 

using randomly selected seed parameters that inversely vary with the underlying 

population density values.  Those seed values are then used to select a random x 

and random y offset based on a Gaussian probability distribution.  Knowledge or 

disclosure of all of the randomly selected seed and offset values could aid a 

nefarious agent in reversely identifying patients by lowering the data set anonymity 
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achieved, however the seed and offset values are calculated separately and are not 

stored anywhere in this de-identification process. 

The main limitation of this study is that measurements were made in only one 

geographic area and only one approach to detecting spatial clustering was 

investigated.  However, the urban setting is a common one for intensive public 

health surveillance (such as syndromic surveillance) and SatScan is a widely 

employed method.  Additionally, we have explored the use of population density 

and age-based population density data for de-identification in this manuscript, but 

we do believe the principles explored in this paper are generally applicable to 

other types of patient and demographic data.  De-identification that attempts to 

accurately estimate k-anonymity is a function of all of the fields contained in a data 

set – for anonymity to be achieved, it must be adequately achieved across all 

combinations of attributes of a data set.  For public health surveillance data sets, 

this objective is tenable as the number and types of data fields contained in these 

data sets are limited. 

Conclusion	
  

We present experimental results demonstrating that a population-density based 

Gaussian spatial blurring markedly decreases the ability to identify individuals in a 

data set while only slightly decreasing the performance of a standard outbreak 

detection tool--SaTScan.  These findings suggest new approaches to anonymizing 

data for the real-world application of spatial epidemiology in public health 

practice.
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Optimal	
  discrete	
  anonymization	
  using	
  linear	
  programming	
  techniques	
  

This section represents joint work with Dr. Shannon Wieland and Dr. Bonnie 

Berger from MIT, and Dr. Kenneth Mandl, and has been described in a PNAS 

manuscript, currently in review. 

Abstract	
  

Data sets describing the health status of individuals are important for medical 

research, but must be used cautiously to protect patient privacy. For patient data 

containing geographical identifiers, the conventional solution is to aggregate the 

data by large areas. This method often preserves privacy but suffers from substantial 

information loss, which degrades the quality of subsequent disease mapping or 

cluster detection studies. Other heuristic methods for de-identifying spatial patient 

information do not quantify the risk to individual privacy. We develop an optimal 

method based on linear programming to add noise to individual locations that 

preserves the distribution of a disease. The method ensures a small, quantitative 

risk of individual re-identification. Because the amount of noise added is minimal 

for the desired degree of privacy protection, the de-identified set is ideal for spatial 

epidemiological studies. We apply the method to patients in New York County, 

New York, showing that privacy is guaranteed while moving patients 25 to 150 

times less than aggregation by zip code. 
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Background	
  

Since the publication of the first disease dot map more than 200 years ago revealed 

the locations of yellow fever patients in New York City [121], a collection of 

methods to analyze health characteristics and location have coalesced to comprise 

the field of spatial epidemiology. Disease mapping; assessing the tendency of cases 

to cluster in space; detecting localized clusters of diseases; and testing for 

clustering around a putative environmental point source are all distinct activities 

within the field. Although spatial analyses of geographical identifiers such as zip 

codes, street addresses, and locations on maps may ultimately improve medical 

care and public health, the identifiers themselves are protected health information 

that pose a threat to patient privacy if disclosed. Even common identifiers can be 

linked to individuals; eighty-seven percent of subjects in one study could be 

uniquely identified by their gender, zip code and date of birth [82] and low-

resolution dot maps of diseases published in several medical journals could be 

used to trace most cases to single addresses [122].  

Although established since the time of Hippocrates [123], the professional 

responsibility to protect patient privacy has been newly formalized with the 

passage of the Health Insurance Portability and Accountability Act of 1996 (HIPAA) 

[124]. Effective since 2003, HIPAA details specific information disclosures that 

violate privacy. Noncompliance may result in fines of up to $250,000, and 

imprisonment for up to ten years. The rule defines a category of “non-identifiable 

data sets,” whose dissemination is not restricted; this is desirable from a research 
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perspective because it allows analysis by the entire scientific community, and 

makes independent verification of results possible. Either of two criteria must be 

met for a data set to qualify as non-identifiable. The first specifies that the data set 

must not include any of 18 specific identifiers, including five-digit zip codes. The 

first three digits of a zip code may be included, provided that at least 20,000 

people share the same first three digits. The second criterion specifies that a 

qualified individual determines “that there is a very small risk that the information 

could be used by others to identify a subject of the information” [124]. 

The prevailing method for preserving privacy in spatial data is aggregation by pre-

defined administrative regions, such as counties or census enumeration districts. 

These areas must be larger than the zip code level to comply with HIPAA. 

However, aggregation may compromise subsequent research by erasing useful 

spatial information [125]; for example, the detection of spatial clusters is 

significantly less sensitive and specific when data are aggregated even by zip code 

[126]. Furthermore, the level of privacy protection depends on the number of 

patient records. For example, if it is revealed that 20 patients having a certain 

disease reside in a region containing 20,000 people, then there is a 1/1000 chance 

that a randomly selected individual from the region is one of the patients. 

However, if 200 patients with the disease live in the region, then the probability 

that a random individual from the region is among the set of patients increases to 

1/100. 
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An alternative to aggregation is moving each patient to a new location to ensure 

privacy [127], formalized by the family of “geographical masks” proposed by 

Armstrong et al. [128]. Each is a deterministic or stochastic function of 

geographical identifiers designed to de-identify patient locations, while preserving 

the approximate spatial distribution of cases. They encompass previous approaches 

such as aggregation and translation by fixed distances, as well as affine 

transformations, adding independent noise, and random perturbations adjusted for 

population density [129]. Although these techniques represent a significant 

advance over aggregation, they apply the same transformation independent of the 

local geography, the number of patient records, and, in several cases, the 

underlying population counts. Consequently, the probability that any of the de-

identified records originated from a single individual depends upon all of these 

variables. For example, consider a geographical mask that moves each record to a 

new location with uniform probability inside a circle of radius r centered at the 

record. Given a masked case location, it is obvious that its original location must 

lie within the circle of radius r centered at the masked location. If part of this 

circular region intersects a body of water or other uninhabited region, then the area 

from which the case originated is narrowed, conceivably to a tiny fraction of the 

map. In the general case, quantifying the re-identification probability may be 

extremely difficult. However, a quantitative measure of privacy protection is 

essential to ensure that the standard of “very small risk” specified by HIPAA is met. 
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In a different application, Machanavajjhala et al. [130] ensured a low disclosure 

risk by generating a de-identified data set from a model of the original data. This 

approach is sensitive to the user’s belief about the data, reflected in the choice of 

model. Furthermore, in order to preserve essential data features needed for 

subsequent analysis, these features must be captured by the model. If the data are 

sparse, or if the essential features are unknown in advance, this may not be 

possible. 

We present a principled approach to de-identifying patient locations based on 

linear programming that allows the user to specify the maximum probability of 

associating any of the transformed locations with any individual in the population. 

The solution is optimal in that it guarantees that patients are moved the minimum 

distance for the level of privacy protection offered. The method has the advantage 

that it does not move patients to unrealistic locations, such as lakes and rivers. It 

may be used to create de-identified data sets that can be shared without restriction 

for spatial epidemiological investigations. Application of the method to de-

identifying patients in several counties shows that a high level of privacy can be 

achieved while preserving clusters and moving patients relatively short distances. 

LP	
  De-­identification	
  

Given the locations of a set of patients, the aim is to randomly assign new, de-

identified locations that can be associated with the original patients with very low 

risk. The distance between the original and new locations should be minimized. 

The original locations may be any discrete geographical identifiers. We assume that 
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the data are purely spatial, containing no other identifying information such as age 

or sex. The set A of available original locations, which contains the actual locations 

in the data set, must be known in advance; for example, these could be all the 

census block groups in a state, or all the residential addresses within a city. The set 

B of possible final locations to which patients may be moved is also defined in 

advance. These may be different sets, such as evenly spaced points on a grid to 

which patients at exact addresses will be relocated. If A and B are disjoint, then no 

case will be assigned to the original location of any other case. 

This problem can be captured by a linear programming (LP) model, a simple type 

of mathematical model that consists of a set of decision variables, constraint 

equations, and an objective function [131]. The decision variables are the 

transition probabilities Pij of assigning a patient in location i � A to a new location j 

� B (see Figure 21). Once values have been assigned to the decision variables, 

each of s patients in a list of original locations is moved to a new location 

independently of the other patients. If a patient is originally in location i � A, a new 

location j is drawn from the set B using a multinomial distribution with probabilities 

Pij. The goal is thus to assign a value to each decision variable Pij so that this 

procedure ensures privacy and minimizes patient movement. Constraint equations 

specify conditions that must be satisfied by the decision variables Pij. Because the 

decision variables are probabilities, each must be nonnegative: 

      [1] 
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In addition, every case must be moved somewhere, so 

      [2] 

A final constraint guarantees that the risk of linking any randomized location with 

any original patient is small. In formal terms, we specify that the probability that 

any location from the randomized data set originated from any specific individual 

in the underlying population is at most �: 

  [3] 

In this equation, � is a user-specified privacy bound between zero and one, s ≥ 1 is 

the number of patients in the data set to be de-identified, ni is the number of people 

in region i, and . For example, if the regions are census block groups, 

then the constants {ni}i�A may be corresponding populations drawn from the same 

census. If the regions are exact addresses, then ni is assumed to be 1 for each i. Any 

randomly or methodically chosen member of the population is guaranteed to 

belong to the data set with probability at most �. Consequently, given the de-

identified list, one could expect to search through at least 1/� members of the 

population by any method before encountering one person on the list. Derivation 

of this constraint is found below at the end of this section.  
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Figure 21: Schematic of transition probabilities. A patient found at each location in a set A may transition to 
any location in a set B. In this example, the sets A and B are equivalent for simplicity, each consisting of three 
locations represented by houses. The nine transition probabilities, represented by arrows, are variables solved 

by linear programming. 

 

We wish to move patients as little as possible subject to the constraints above. For 

each i � A and j � B, we define dij to be the distance between region i and region j. 

Assuming that each individual in the study area is equally likely to be in the data 

set, a patient originates in region i with probability ni /N. Hence the expected 

distance that a patient is moved, which is the objective function to be minimized, 

is 

 .     [4] 

Several standard linear programming techniques to solve LP models, such as that 

specified by equations 1-4, have been developed. When applied to an LP model, 

they either locate an optimal solution that minimizes the objective function, or they 

prove that no solution exists. The latter happens if no probabilistic de-identification 

strategy has a risk of re-identification of at most �. For example, if there are m 

available individual addresses, then no strategy to de-identify s ≤ m patients by 
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reassigning new addresses can achieve a risk of re-identification below s / m. If no 

strategy exists, then a larger re-identification risk can be specified (if acceptable for 

privacy protection), or the set of available locations can be expanded. 

Simple variations of the linear program make it possible to capture other objective 

functions, constraint equations, or decision variable constraints. Instead of 

minimizing the expected distance, the expected squared distance may be used to 

penalize long distance moves more heavily than short moves. In fact, any objective 

function that is a linear combination of the decision variables Pij may be used 

without complicating the analysis. 

If a deterministic strategy is preferred to a randomized strategy, the LP model may 

be converted into a binary integer program. This specifies that only the values 0 or 

1 may be assigned to the decision variables. For a fixed j, the set Ij = {i : Pij = 1}, if 

nonempty, has the property that  . In other words, the patients are 

binned into a subset of the locations, the number and positions of the bins 

minimize the expected transition distance, and the total population assigned to 

each bin is at least s /�. In general, the optimal deterministic strategy moves 

patients farther than the optimal randomized strategy because the set of 

deterministic strategies is contained by the set of randomized strategies. 

It is also simple to add additional linear constraints to the problem. For example, if 

A = B it is possible to guarantee that no case is assigned to its original location by 

specifying in the LP model that Pii = 0 for every i � A. Although this would not 
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increase the level of privacy, it may assuage fears that original locations may be 

released. It is also possible to limit the number of outgoing transitions from any 

position to its k nearest neighbors, for a fixed k. In general, additional constraints 

increase the optimal value of the objective function. 

Derivation of the constraint in Equation 3. The constraint in Equation 3 guarantees 

that the probability that any location from a de-identified data set originated from 

any specific individual in the underlying population is at most �. Consider the 

probability of re-identifying a set of s cases that have been randomized to new 

locations. Given the set A of possible original locations and B of possible final 

locations, let Pij denote the probability of transition from location i � A to location j 

� B. Given the set of s locations comprising the de-identified data set, we require 

the probability that any one of these derived from one specific individual to be at 

most �. This is guaranteed if the probability that a location from the randomized 

data set originated from an arbitrary specific individual is required to be at most �/ s 

. Let X and Y denote the original and transformed locations, respectively. This 

condition is formally expressed as: 

      [5] 

for every individual q in the population and every location j � B. The left hand side 

of this inequality is equivalent to 

     [6] 
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where L(q) is the location of individual q, or 

   [7] 

by the definition of conditional probability. Assuming that all individuals in 

location L(q) have an equal chance of having the disease, we have 

     [8] 

where nL(q) is the number of people in location L(q). Hence the condition expressed 

by equation 5 is 

     [9] 

for every individual q and location j � B. Because the location of q, L(q), may only 

take on values in A, this is equivalent to 

      [10] 

for every i � A and j � B. After multiplying both sides of equation 10 by p(Y = j), 

the left hand side becomes p(X = i  Y = j), or p(Y = j|X = i) · p(X = i). Furthermore, 

p(Y = j|X = i) is simply the transition probabilityfrom location i to location j, so it is 

equivalent to the decision variable Pij. Hence equation 10 is equivalent to 
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    [11] 

for all i � A and j � B. Assuming that all individuals in the population have an 

equal prior probability of belonging to the original data set, we have 

        [12] 

for all i � A, where N =  is the total population. Hence, we obtain  

 . [13] 

Equation 13 is incorporated into the LP model as a set of constraint equations. Thus 

the final set of transition probabilities Pij satisfy this equation for all i � A and j � B. 

Following the proof backwards from equation 3, this means that the probability that 

a location from the de-identified data set originated from an arbitrary specific 

individual is less than or equal to �/ s for every location. Because the probability of 

the union of events is bounded above by the sum of the probability of events, the 

probability that any specific individual is represented in the final data set is at most 

�. 

Application	
  

We determine an optimal strategy to randomize patients in New York County for a 

range of maximum re-identification risks. The strategy moves patients much shorter 

distances than aggregation by zip code or aggregation by the first three digits of zip 
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code, and it preserves disease clusters in the data to a greater degree than either 

aggregation method. The method also compares favorably to aggregation for other 

counties having a range of population densities. 

Stringent	
  De-­identification	
  of	
  Locations 

We consider de-identifying case locations in New York County, NY grouped by 

census blocks. A census block is a small geographical unit typically containing 

approximately 1500 people [116]. According to the 2000 census, the 988 census 

blocks in New York County contain between 0 and 15112 people. We devise the 

optimal strategy to de-identify a set of 1 ≤ s ≤ 20000 patients with a maximum 

probability of s / 20000. Transitions from any census block were restricted to its 

nearest 100 neighbors. The LP model was solved using CPLEX LP software [132], 

resulting in a 988 × 988 matrix of transition probabilities.  

Under the optimal strategy, the expected distance between a patient’s original and 

de-identified location is only 265 m. Three of the 988 matrix rows are illustrated in 

Figure 22. These show three possible configurations: patients are re-assigned to the 

same census block group or one of a few neighboring census block groups; patients 

are re-assigned to a single nearby census block group; and patients are moved to 

one of several possible census block groups which do not include the original 

location. Even from this limited subset, it is clear that the optimal strategy would be 

difficult to devise by hand. In particular, the optimal transition probabilities are not 

a monotonic or regular function of the distance between census block groups, such 
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as a Gaussian function. 

 Transition 
probability

0

0 - 0.2

0.2 - 0.4

0.4 - 0.6

0.6 - 0.8

0.8 - 1

* * *

a) b) c)

 

Figure 22: Transition probabilities for the optimal strategy to de-identify s ≤ 20, 000 patients from New York 
County, New York with a maximum re-identification probability of s / 20000. Transition probabilities from 

three of the 988 census blocks are shown, illustrating a few of the many possible transition distributions. The 
shading in region j represents the value of the probability Pij of transitions into the region. a) Patients in one 

census block (asterisk) may remain there, or they may transition to one of several nearby blocks. b) All 
patients originally in one census block (asterisk) are assigned to one neighboring block. c) Patients are re-
assigned from one block (asterisk) to one of four nearby census blocks. No patients are re-assigned to the 

original census block (i.e. Pii = 0). 

Comparison	
  to	
  Aggregation  

To examine the relationship between the re-identification probability and the 

expected distance moved by a patient, we calculated the optimal de-identification 

strategies for a range of re-identification bounds. Because the total population 

summed over all census block groups is 1,696,038, the minimum achievable re-

identification probability, corresponding to complete randomization, is s / 

1696038, or s · 0.00000059. The expected transition distance is 6.4 kilometers 

(km). The least populated non-empty census block group contains only one 

individual, so the strategy of re-assigning patients to their original locations has a 

re-identification probability of 1 (which would be realized if one patient in a “de-

identified” set originated from that census block group) and an expected transition 
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distance of 0 km. The optimal strategies for de-identifying patients were calculated 

for a range of re-identification probabilities between these two extremes, and the 

expected distance moved by each patient is shown in Figure 23.  

 

 

Figure 23: Relationship between the re-identification probability, the number s of patients, and the expected 
transition distance for the optimal LP strategy to de-identify patients by census block group in New York 

County, New York. As the level of privacy protection decreases (from left to right along the x-axis), patients 
are moved a smaller distance in expectation. Aggregation by zip code (green diamond) and first three zip 

code digits (magenta asterisk) are suboptimal strategies yielding larger distance movements than the optimal 
LP strategy at the same re-identification probability. Note that log scales are used, so the expected transition 

distance increases 100-fold between tick marks on the y-axis. 

 

The optimal LP strategies move patients much less than aggregation when the level 

of privacy protection is held constant. Aggregation by zip code moves patients an 

expected 519 m. The least populated zip code contains 884 people (excluding 

empty zip codes and one zip code containing only one person), so there is a 

maximum re-identification probability of s / 884 for a set of s ≤ 884 patients under 

this strategy. The optimal LP strategy at the same re-identification probability moves 
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patients by only 3.3 m. Aggregating by the first three digits of zip code moves 

patients an expected 3.9 km, and has a maximum re-identification probability of 

s / 8188 . At this probability of re-identification, the optimal LP strategy moves an 

average patient a much smaller distance of 149 m. Thus for the same level of 

privacy protection, aggregation moves patients 25 to 150 times farther than the 

optimal LP strategy (Figure 23).  

Cluster	
  Detection	
  

To determine the degree to which LP de-identification preserves spatial clusters in 

data, we applied a standard cluster detection algorithm to simulated case-control 

data that had been de-identified using the LP method or aggregation. We 

constructed 1000 data sets, each consisting of 100 controls and 100 cases. Cases 

and controls were randomly placed in census block groups to reflect the underlying 

population density, with an excess number of cases within a randomly placed 

circular region of radius 1 km to simulate a disease cluster. Each set of cases and 

controls was de-identified using the LP method for a range of re-identification 

probabilities from 0.005 to 0.5. Each set was also de-identified using aggregation 

by zip code and by the first three zip code digits. SaTScan circular cluster detection 

software [112, 133] was applied to each de-identified set, and the p-value of the 

most significant cluster found was recorded (Figure 24). 
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Figure 24: Detection of clusters in case-control data sets. One thousand sets of controls and cases containing 
a cluster were de-identified using the LP method (blue line), aggregation by zip code (green diamond), or 

aggregation by the first three zip code digits (magenta asterisk). The x-axis shows the re-identification 
probability, which ranged from 0.005 to 1 (original data set). The y axis shows the mean p-value of the most 

likely cluster averaged over all data sets. Clusters de-identified using the LP method were detected with 
greater fidelity (i.e. lower p-value) than those de-identified using aggregation. 

 

The mean p-value of the most likely cluster in the original data sets was 0.029. De-

identification using the LP method prior to applying SaTScan resulted in clusters 

that were slightly harder to detect; under the most stringent strategy with a re-

identification probability of 0.005, the mean p-value of the most likely cluster was 

0.057. Aggregation decreased the detectability to a greater extent, while offering 

less privacy protection. Aggregation by zip code, corresponding to a maximum re-

identification probability of 0.11, increased the mean p-value of the most likely 

cluster to 0.094. Aggregation by the first three zip code digits had a maximum re-

identifcation probability of 0.012, and increased the mean p-value to 0.21. 

Effect	
  of	
  Underlying	
  Population	
  Density 
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In order to generalize our results to less densely populated regions, we compared 

the LP method to aggregation for three other counties having a range of population 

densities. For data sets in Franklin, Plymouth and Middlesex Counties in 

Massachusetts, we calculated the expected transition distance under the optimal LP 

strategy for one data point with re-identification probabilities from 0.1 to 0.0001. 

We also calculated the re-identification probability and expected transition 

distance under aggregation by zip code and the first three zip code digits (Table 9). 

The LP method performed favorably relative to aggregation for all of the counties. 

For example, in Plymouth County, which is about one hundredth less dense than 

New York County, the LP strategy with re-identification probability 0.0001 is 

expected to move a data point 1.9 km, while aggregation by zip code moves points 

a farther distance of 3.1 km and has a five-fold greater disclosure risk. 

 

Table 9: Re-identification probability and expected distance moved for LP strategy and aggregation in 
counties having a range of population densities. 

LP	
  method	
  d	
  †	
   Zip	
  5	
  ‡	
   Zip	
  3	
  §	
  
County	
  name	
   ρ	
  �	
   ξ/s¶	
  =	
  

10E-­‐1	
  
ξ/s	
  =	
  
10E-­‐2	
  

ξ/s	
  =	
  
10E-­‐3	
  

ξ/s	
  =	
  
10E-­‐4	
   ξ/s	
  	
   d	
  

(m)	
   ξ/s	
  	
   d	
  (m)	
  

Franklin	
  
County,	
  MA	
   39.3	
   0.00	
   0.00	
   89.6	
   4736	
  

2.80E-­‐
03	
   2640	
  

1.20E-­‐
05	
   13226	
  

Plymouth	
  
County,	
  MA	
   276.2	
   0.00	
   0.00	
   62.0	
   1908	
  

5.50E-­‐
04	
   3123	
  

8.90E-­‐
06	
   19115	
  

Middlesex	
  
County,	
  MA	
   687.1	
   0.00	
   0.02	
   31.5	
   1105	
  

6.50E-­‐
04	
   1770	
  

4.90E-­‐
06	
   10793	
  

New	
  York	
  
County,	
  NY	
   25846	
   0.00	
   0.08	
   4.3	
   172	
  

1.10E-­‐
03	
   519	
  

1.20E-­‐
04	
   3866	
  

�ρ	
  =	
  population	
  density	
  expressed	
  in	
  people	
  per	
  square	
  kilometer	
  
	
   	
  

†d	
  =	
  expected	
  distance	
  for	
  strategy	
  in	
  meters	
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‡Zip	
  5	
  =	
  aggregation	
  by	
  five-­‐digit	
  zip	
  code	
   	
   	
   	
  
	
   	
  

§Zip	
  3	
  =	
  aggregation	
  by	
  first	
  three	
  digits	
  of	
  zip	
  code	
   	
   	
  
	
   	
  

¶ξ	
  =	
  re-­‐identification	
  probability,	
  s	
  =	
  number	
  of	
  records	
  in	
  the	
  data	
  set	
  
	
   	
  

 

Discussion	
  

In the current climate of public concern for patient privacy and legislation 

imposing strict controls on the dissemination of patient-identifiable data, new 

strategies for de-identifying individual-level data sets while preserving information 

for disease surveillance and epidemiology are needed. It is imperative that 

strategies quantify the level of disclosure risk.  

For tabular data, such as small area tabulations of demographic, financial and 

social categories, there is a sophisticated body of research techniques for de-

identification. These primarily consist of suppressing of certain cells, aggregating 

rows or columns, and rounding or adding noise to cells [127, 134-136]. These 

methods were developed for a different kind of data and problem, and 

straightforward application to our individual-level x-y coordinate data results in 

previously explored or suboptimal approaches. The binary integer version of our LP 

method, which is suboptimal to the non-binary method as discussed in the LP De-

identification section, is very similar in principle to tabular aggregation methods, 

while having the advantage of taking the underlying population into account. 

Tabular methods that round or perturb data, either naively or to preserve features in 

the data, guarantee that a cell value cannot be known with certainty up to a range 
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of values. These methods do not incorporate geography or population data not 

contained in the table, and are thus similar to previous perturbation techniques for 

individual level data. Like those techniques, they would not guarantee privacy in 

this setting because the risk of re-identifying a permuted location depends on the 

local geography and population density. 

The flexible LP technique presented here for de-identifying spatial data offers a 

mathematically well-defined re-identification risk, which is simply the maximum 

probability that any patient in the de-identified data set corresponds to any single 

individual in the population. This probability holds even if the complete set of 

transition probabilities {Pij} is known to the data recipients. 

The strategy ensures that patients are moved as little as possible to guarantee 

privacy. In both densely and sparsely populated areas, the LP strategy can be 

expected to move patients a smaller distance than the common practice of 

aggregating by pre-defined regions. In fact, it moves patients a smaller distance, on 

average, than every other possible strategy, either deterministic or random, obeying 

the same re-identification bound that can be expressed as a matrix of transition 

probabilities. 

We illustrated the improved accuracy of the method compared to aggregation for 

cluster detection for synthetic circular clusters using a circular scan statistic. Like 

this statistic, most methods in spatial epidemiology consider two point processes, 

cases and controls. This allows the spatial structure of the disease to be compared 
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with variations in the underlying population. It is important to note that prior to 

applying any statistical method, both the cases and the controls must be de-

identified using exactly the same strategy, even if the control locations do not 

represent a threat to privacy. If only the cases are moved, then spurious clusters 

may be formed by relocating dispersed individuals to the same or nearby locations. 

The accuracy of the re-identification bound depends on a few assumptions. First, 

the underlying population size at each location must be known in advance, 

although the method appears to be robust to small inaccuracies (see supporting 

information). Second, the data recipient must not have knowledge to suggest that 

membership in the data set is not completely random; otherwise it may be possible 

to apply a de-noising technique to reveal deterministic structure in the data. This is 

a limitation of the method because the user may guess that membership is not 

random from the de-identified data set itself. Devising such a de-noising technique, 

however, would be difficult in general because the noise added by the LP model 

depends on the original data in a complicated way [137]. Third, we assume that no 

other information is available to help identify individuals. Ensuring privacy in the 

face of existing or future additional information is a highly nontrivial problem that 

has not been adequately addressed by existing methods for individual-level exact 

location data [134, 138], although progress has been made for other types of data 

[139-141]. In the simplest case, a coarse discrete identifier can be incorporated 

into the de-identification procedure. For example, if the final version of the data set 

is to contain both the location and the sex of each patient, then a de-identification 
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strategy may be developed independently for each sex represented. This is not 

always possible because stratified population data may not be available, and it 

becomes intractable for finely-grained identifiers, or multiple identifiers having 

many possible combinations of values.  

For individual addresses, we recommend using a population size of 1 for each 

address in the LP model. This limits the probability of associating any household 

with a case to the re-identification probability. Because the public may not feel 

comfortable with any addresses released in a de-identified set, even if the 

probability that an individual at each address has the disease is very small, the set B 

of final locations should be grid points or small administrative units instead of 

addresses. 

The measure of privacy protection proposed here captures what is essentially 

important to a patient: “Will I be identified as having a disease as a result of the 

disclosure?” Several other measures of confidentiality have also been proposed. 

These include Spruill’s measure for business data [142], equivalent in the spatial 

context to the proportion of records in the de-identified set that lie closer to their 

original location than to all other locations in the original set. The value of the 

measure for our LP strategy depends not only on the privacy bound �, but also on 

the number and locations of original records and on the particular values for 

destination locations drawn from the multinomial distribution. However, Spruill’s 

measure does not always capture intuition about privacy. For example, creating a 

de-identified set by shuffling the exact locations of all patients in the original set 
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measures well by Spruill, but is clearly unacceptable for privacy protection. 

Conversely, assigning completely random locations to de-identify a data set of two 

patients measures poorly by Spruill, but would certainly preserve privacy. 

Armstrong et al. also proposed four other measures of confidentiality. The first of 

these is a qualitative measure of vulnerability to geographical knowledges, under 

which our LP strategy has no disclosure risk. The second measures the ability to 

infer from the de-identified set regions within the map having a high disease risk. 

Like aggregation and random perturbation, our LP method may reveal regions of 

high disease risk. However, this is both a strength and a liability of the method 

because the de-identified set may be used to assess spatial variation in the disease 

risk. The third measures the ability to re-identify all the patients, given the identity 

of some of the patients, and the final confidentiality measure is the minimum 

number of unlabeled locations from the original data set that can be used to 

compromise the entire de-identified set. As with aggregation, there is minimal risk 

under our LP strategy by these measures. If one patient is re-identified in a data set 

of s patients created using the LP method with disclosure risk �, then the problem 

of re-identifying a different patient is equivalent to the problem of re-identification 

starting from a data set created with a slightly lower risk of disclosure �·( s−1 / s ), 

but in which one of the census numbers ni had been overestimated by one in the 

model. This is likely to have little effect on the disclosure risk. Please see the 

supporting information for further discussion of inaccurate census estimates. 



Privacy	
  and	
  Identifiability	
  in	
  Clinical	
  Research,	
  Personalized	
  Medicine,	
  and	
  Public	
  Health	
  Surveillance	
  

Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  145 

	
  



Privacy	
  and	
  Identifiability	
  in	
  Clinical	
  Research,	
  Personalized	
  Medicine,	
  and	
  Public	
  Health	
  Surveillance	
  

Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  146 

	
  

Chapter	
  IV:	
  Reverse	
  Identification	
  Potential	
  of	
  Authentic	
  and	
  

Anonymized	
  Geographical	
  Data	
  	
  

In this section, we explore two distinct threats models of reverse identification of 

geographical data. The first model demonstrates that geographical data may be 

mined from low resolution maps that contain points representing cases, commonly 

used in journals and in public health practice. The second threat model deals with 

obfuscative and cryptographic algorithms and how they may be susceptible to 

weakening when it is possible for an adversary to produce output from the 

algorithm according to adversary-provided input. Under this model, an adversary 

could use an anonymized data provisioning system to request patient data from a 

RHIO or other health network several different times. This use case is not 

uncommon—often disease surveillance systems request the patient visits for the 

previous week each day, in a sliding window of requests.  If the anonymized results 

are produced each time they are requested, it is possible to average the visit 

geocodes (which actually only anonymity afforded by the algorithm may be 

reduced.  
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Exploiting	
  Repeatedly	
  Non-­deterministically	
  Anonymized	
  Spatial	
  Data	
  

to	
  Re-­identify	
  Individuals:	
  A	
  Vulnerability	
  and	
  Proposed	
  Solutions	
  	
  

The work in this section is described in a manuscript entitled Re-identification of 

home addresses from spatial locations anonymized by Gaussian skew in the 

International Journal of Health Geographics with Dr. Shannon Wieland from the 

Harvard Medical School and Dr. Kenneth Mandl from the Children’s Hospital 

Informatics Program and the Harvard-MIT Division of Health Sciences and 

Technology. 

Abstract	
  	
  

Knowledge of the geographical locations of individuals is valuable in the practice 

of spatial epidemiology, yet poses a substantial risk to privacy. One approach to 

preserving privacy is the use of algorithms that de-identify spatial data by blurring 

location information. We investigate whether such algorithms may be weakened 

when an adversary can access multiple non-deterministically anonymized versions 

of the original data set. We are able to more accurately re-identify patient addresses 

when multiple anonymized copies are shared, in close alignment with theoretically 

expected values. With only 10 anonymized copies of an original data set, we find 

that the average distance to original addresses decreased from 0.7 km to 0.2 km 

using both uniform skew and Gaussian skew anonymization methods, and with 50 

anonymized copies of an original data set, we find that the average distance 

decreases from 0.7 km to 0.1 km. We demonstrate that multiple anonymized 
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versions of the same data set can be used to ascertain original geographical 

locations, and present a privacy risk. We explore solutions to this problem that 

include infrastructure to support the safe disclosure of anonymized medical data to 

prevent inference or re-identification of original address data, and the use of a 

Markov-process based algorithm to mitigate this risk. 

Background	
  	
  

To develop broadly integrated national healthcare information infrastructure, the 

utility of sharing personally identifiable data for clinical care, public health and 

research must always be weighed against privacy concerns. For example, 

automated outbreak detection systems for surveillance of influenza and 

bioterrorism, use data from a variety of sources (hospitals, clinics, laboratories) for 

aggregation, analysis and investigation [73, 74, 143]. For the detection of spatial 

clustering among disease cases, these aggregation systems achieve optimal 

detection sensitivity and specificity when using the most complete, accurate patient 

location data [126]. 

We have previously described a spatial de-identification algorithm that blurs 

precise point locations for patients, moving them a randomized distance according 

to a 2-dimensional Gaussian distribution with variance inversely proportional to 

the square of the underlying population density [144]. Other spatial anonymization 

approaches that have been employed include random skews, affine 

transformations, data aggregation techniques, and the use of software agents to 

preserve confidentiality [128, 145]. Anonymization of patient address data by 
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reassignment of geographic coordinates allows privacy preservation while sharing 

data for disease surveillance or biomedical research [144]. As the volume of 

personally-identifiable health data that is electronically transmitted and published 

has consistently increased [146], so has the magnitude of the threat to privacy. 

Geographical information is particularly identifying; we have demonstrated that it 

is possible to correctly identify most home addresses even from low resolution 

point-maps commonly published in journal articles [122]. 

We specifically explore whether de-identification algorithms that use spatial 

blurring—a non-deterministic process—may be susceptible to weakening when an 

adversary can access multiple anonymized versions of the same original data set 

[147]. For example, if data anonymized by a Gaussian blurring function were 

available upon request from a data source, the adversary could request 

anonymized patient data repeatedly. Since the data are non-deterministically 

anonymized, the results vary each time they are requested. By averaging the 

geocoded values for each visit, the anonymity afforded by the blurring algorithm 

may be reduced (Figure 25 illustrates the effect of averaging locations across the 

repeated anonymization passes to increase resolution for re-identification).   
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Figure 25: Example of anonymized points that have been averaged. An original data point (red) was 
anonymized using a population-density adjusted Gaussian skew algorithm five times (light blue points). Those 
points were averaged and the average coordinate value is plotted (green). The average of the anonymized 
points is nearer to the original point than each of the anonymized points. (Courtesy Google Earth.) 

Disease and outbreak detection systems often transmit data from a variety of 

sources (hospitals, clinics, laboratories) to public health departments for aggregate 

review, analysis and investigation. These aggregation systems are designed to 

improve the sensitivity and specificity of outbreak detection by evaluating 

clustering on a more complete set of data, avoiding referral bias from catchment 

areas. If these systems are provided with the ability to request anonymized data, or 
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are provided this data in a sliding temporal window (say, the last six weeks of data) 

these systems may anonymize all records anew. This may be a sensible strategy to 

prevent disclosure of information about visit dates of cases, but if cases are 

anonymized anew for each new window, there will be a steep decline in data set 

privacy. 

Here, we quantitatively demonstrate this vulnerability in two common 

anonymization approaches. We produce multiple anonymized data sets using a 

single set of addresses and then progressively average the anonymized results 

related to each address, characterizing the steep decline in distance of the re-

identified point to the original location, (and the reduction in privacy) at each 

stage. Next, we propose and discuss two solutions to this specific class of 

vulnerabilities. The first tightly couples anonymization to a distributed health 

infrastructure that exchanges the data, so that it can control the number of copies 

distributed to any one party. The second is an extension to the spatial 

anonymization process employing a Markov process for increasing the anonymity 

of a 2-dimensional data set anonymized by Gaussian skew. 

Methods	
  

Geographical	
  test	
  data	
  sets	
  	
  

A data set containing artificially-generated geocoded values for 10,000 sample 

patients was created using a spatial cluster creation tool [148, 149]. All points were 

uniformly distributed within a circle of radius 800m centered in Boston, MA, and 
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assigned a unique numeric identifier for tracking. Each of the geocoded addresses 

was then anonymized using a Gaussian 2-dimensional spatial blur skew that was 

adjusted for population density [144], fifty separate times. A second anonymization 

approach, a uniform skew, was used to create a second group of 50 anonymized 

data sets. Each geocode that was anonymized using the uniform skew method was 

moved a distance, in meters, ranging from [-λ,λ], independently in each 

dimension. Figure 26 describes the 2-dimensional probability distribution function 

for both of these anonymization algorithms. 

 

 

Figure 26: Anonymization algorithm translation probability density functions. Probability distribution 
functions for the two anonymization methods, 2-dimensional Gaussian skew (left) and uniform skew (right). 
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Population-­adjusted	
  2-­dimensional	
  Gaussian	
  skew	
  	
  

In the simplest case, the Gaussian skew anonymization procedure is a probabilistic 

strategy that reassigns an original point, with coordinates , to a new location 

based on two Gaussian probability density functions 

.   (1) 

These are simply 1-dimensional Gaussians with means equal to the original 

coordinates x0 and y0, respectively, and standard deviations σx and σy. The 

parameters σx and σy are proportional to the desired level of anonymity k, and are 

inversely proportional to the population density at . In other words, the greater 

the anonymity desired, or the lower the underlying population density, the farther 

points are moved on average. 

Re-­Identification	
  through	
  averaging	
  	
  

With each subsequent anonymized version, the geocoded points that referred to 

the same individual address were averaged to estimate the original address. For re-

identification inference number n, the anonymized versions of the same address 

were averaged from data sets [1, n], as shown in Figure 27. For example, the 

second re-identification inference data set included the averages of addresses from 

anonymized data sets 1 and 2, the third inference data set included anonymized 



Privacy	
  and	
  Identifiability	
  in	
  Clinical	
  Research,	
  Personalized	
  Medicine,	
  and	
  Public	
  Health	
  Surveillance	
  

Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  154 

data from data sets 1, 2, and 3, and so on. After each pass, the distance between 

the average anonymized point and the original address was calculated.  

 

 

Figure 27: Experimental methods design. One data set of 10,000 artificially generated case locations and 
unique identifiers were created. The data set was anonymized 50 times using a 2-dimensional Gaussian-based 
skew, and 50 times using a 2-dimensional uniform skew.  

 

Results	
  	
  

Re-­Identification	
  of	
  points	
  anonymized	
  using	
  Gaussian	
  and	
  randomized	
  skew	
   

Additional information was ascertained from multiple anonymized copies of one 

original set of point locations, significantly weakening the anonymization used. The 

average distance to the original addresses after one anonymization pass, which 

represents the previously described [144] use of an anonymizing algorithm, was 

0.69 km. After each point was inferred using the average of fifty Gaussian skew 
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anonymization passes, the mean distance from the average of all of the 

anonymized points to the original point in the data set was reduced to 0.1 km.  	
  

Similarly, when the anonymizing algorithm is a uniform skew (a random skew that 

involves moving a point randomly within a square), re-identification attempts using 

the average of several anonymized data sets also reduced data set privacy 

markedly. The average distance to the original addresses after one anonymization 

pass, the traditional use of such algorithms, was set at 0.69 km, to match the level 

of skew used in the 2-dimensional Gaussian data sets. As in the case of the 2-

dimensional Gaussian skew, the average distance to the original point was also 

reduced to just under 0.1 km after averaging 50 anonymized data sets. 

The average distance to the original address is plotted as a function of the number 

of separate anonymization passes used in the re-identification inference, for both 

anonymization methods in Figure 28. Attempts at inferring the original addresses 

using multiple anonymization passes, show that the average distance inversely 

varies with the square root of the number of anonymized data sets used in the 

inference. There is a sharp decrease in the average distance to the original address 

with 10 anonymization passes and thus a sharp decrease in data set anonymity. 
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Figure 28: Average distance to original point vs. number of anonymization versions. The average distance to 
original point [km] vs. number of anonymization versions used in averaging is plotted for both Gaussian and 
uniform skew. 

 

Discussion	
  	
  

Re-­Identification	
  of	
  data	
  anonymized	
  with	
  Gaussian	
  and	
  randomized	
  skew	
  

Re-anonymizing a single patient located at n different times using Gaussian 

skew is equivalent to observing a sequence L1, L2, ..., Ln of independent, identically 

distributed two-dimensional Gaussian random variables (all having the same 

probability density function). The average of these n observations  
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,       (2) 

is itself a two-dimensional Gaussian random variable with mean and 

covariance matrix  

. 

In other words, the x- and y-coordinates are independent Gaussian random 

variables, each having a standard deviation of σ/ . Hence, by taking the average 

of the anonymization passes, one can obtain the equivalent of a single 

anonymization pass under a less stringent Gaussian skew anonymization strategy 

with standard deviation σ/ ; for 100 passes, reducing the skewing standard 

deviation along each axis by a factor of 10. 

In the uniform skew anonymization procedure, a patient at  is moved with 

equal probability to any position in the square [x0 - λ, x0 + λ] ⋅ [y0 - λ, y0 + λ]. The 

new position is thus a two-dimensional uniform random variable, with mean 

and covariance  
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 . 

By the central limit theorem, 

 

is approximately normally distributed with mean , and covariance matrix  

 . 

Hence as the number of observations increases, the average of the observations 

tends to fall nearer to the original point. 

It is important to note that while the difference in change to the covariance 

matrices would appear to make the Gaussian and uniform anonymization skews 

similar in their ability to protect privacy, this is not necessarily the case. The 

quantifiable estimate of anonymity, k-anonymity (a metric for data set privacy 

where k is the number of people among whom a specific individual cannot be 

distinguished [82]), that is achieved by each method is different – the Gaussian 

skew yields higher levels of k-anonymity than the randomized skew does with 
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respect to the average distance moved for each case in a data set. We previously 

described a method for estimating spatial k-anonymity [144].  

One might fear that an adversary could do even better, devising a novel strategy 

that uses the sequence L1, L2, ..., Ln to get even closer to the original point than 

a Gaussian with this reduced variance; however, this is not possible without 

additional data. Stein showed that given n observations of a two-dimensional 

Gaussian random variable, the most efficient estimator of the mean of the Gaussian 

is simply the average of the points [150]. Although this seems intuitive for two 

dimensions, it is surprisingly not the case for three and higher dimensions [150, 

151]. 

Anonymizing	
  within	
  a	
  distributed	
  network	
  or	
  health	
  information	
  exchange	
  	
  

We believe that these results make a compelling case for infrastructure to control 

disclosure of anonymized data, so that the risk of this vulnerability is reduced. In 

Figure 29, we show an infrastructural solution for integrating anonymization into a 

distributed network that transmits health data [152, 153]. Ideally, data sources -- 

and even patients -- would be able to set a preferred level of data disclosure for a 

number of different purposes including research studies that integrate their clinical 

data, outcomes and public health surveillance. A data provisioning system could 

then distribute data to consumers at a variety of anonymized levels, under a clear 

set of policies and authorization requirements. 
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Figure 29: Integration of anonymization within distributed EMR infrastructure. Integration with a distributed 
electronic medical record infrastructure: a distributed data provisioning system provides anonymized spatial 
address data to three data consumers at three distinct k-anonymity privacy levels. 

	
  

Removing	
  other	
  identifying	
  information	
  from	
  data	
  sets	
  to	
  avoid	
  re-­linking	
  

The vulnerability described in this paper relies on the ability to link anonymized 

data sets together using additional identifiers, or other demographic or clinical 

data. One possible solution is to swap the addresses in a given data set so that they 

are effectively unlinked with any unique clinical fields or identifiers, such as a 

medical record number.  This unlinking of spatial data from unique identifiers, 

however, poses additional challenges: unlinking from any demographic identifiers 
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could reduce the ability to conduct informative disease surveillance, or worse, 

could make it difficult to actually uncover the addresses of clustered cases when 

necessary, which is certainly a priority for a public health investigation. 

This can be mitigated through the use of randomly generated identifiers for each 

anonymized instance of a specific record, stored for use in re-linking anonymized 

data with original data. Additionally, when attempting to determine correlates or 

predictors of disease, these additional fields may prove important for group 

stratification. With knowledge of the specific anonymization algorithm and 

background knowledge such as regional demographic data, it may be possible to 

further weaken some anonymization algorithms even without repeated attempts.  

When considering only two dimensional geographical data, the best way to 

estimate original locations from several anonymized versions of the same original 

data set is to average the anonymized longitudes and latitudes. However, there are 

even more advanced re-identification techniques that can be used to improve the 

resolution of cases in practice, using data sets with three or more dimensions. If 

additional fields or identifiers are included in the data set, and those fields are in 

any way not randomly distributed (anything other than a randomly generated 

identifier), their presence has the potential to help achieve a higher resolution on 

the spatial coordinates, even if they do not contain geographical information. This 

is because there may be additional implicit information linked with spatial 

addresses in the other dimensions (or fields) that can lend intuition about the 
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distribution of the anonymized spatial coordinates, using approaches that are more 

advanced than averaging of the fields to estimate the original location [151].   

Increasing	
  anonymity	
  using	
  an	
  algorithm	
  based	
  on	
  a	
  Markov	
  process	
  

As shown in Figure 29, one possible anonymization scenario is the sharing of data 

at a variety of privacy levels with different data consumers. To prevent privacy 

degradation by averaging when sharing data at multiple levels of k-anonymity [82], 

a Markov state process can be used to successively generate increasingly 

anonymized versions of the data set. The Markov property guarantees that several 

versions anonymized this way cannot be used to infer additional information about 

a patient’s location. One example might be the need to provide multiple versions at 

two anonymized levels, one at k=50 and another at k=100. If the anonymization 

process is restricted to increasing the anonymization level to k=100 by increasing 

the skew level from the k=50 data set, and not from the original data set, there will 

be no way to decrease the privacy below the k=50 level, simply by averaging the 

two data sets. This is illustrated in a Markov process model in Figure 30. 
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Figure 30: Markov anonymization process to increase data set anonymity. Markov processes to increase the 
anonymity level in a data set: an increase in the anonymity level of a data set, for example, increasing from 
k=50 to k=100, could be achieved by increasing the skew level of the k=50 data set without knowledge of the 
authentic data. If increases are done in this way, the risk of a reverse identification attempt using averaging 
can be avoided.  

While infrastructure for controlled exchange of anonymized health data protects 

against some vulnerabilities, there are still other methods that could reduce the 

privacy level of a data set. For example, it is still possible to gain insight into the 

actual distribution of cases anonymized with knowledge of physical boundaries, 

highly constrained patient distributions, or other clinical or demographic 

information about cases. Further study is needed to adequately constrain the 

anonymized geographical distributions of cases such that this risk is minimized. 

Conclusions	
  	
  

In order to protect privacy when using spatial skew algorithms, the number of 

distinct anonymization results or passes that represent the same data must be 

controlled. Limiting the generation or disclosure of more than one version will 

avoid re-identification through averaging. Alternative approaches include 

integration of anonymization into data provisioning systems to achieve such a 
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restricted data release, or the use of a Markov process to generate multiple 

anonymized data sets of the same records. These approaches avoid running the 

algorithm anew with each request, reducing the variation that is at the root of the 

vulnerability.   

	
  



Privacy	
  and	
  Identifiability	
  in	
  Clinical	
  Research,	
  Personalized	
  Medicine,	
  and	
  Public	
  Health	
  Surveillance	
  

Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  165 

	
  

An	
  unsupervised	
  classification	
  method	
  for	
  inferring	
  original	
  case	
  

locations	
  from	
  low-­resolution	
  disease	
  maps	
  

Preface	
  

This section is comprised of joint work with Dr. John Brownstein, Assistant 

Professor at Harvard Medical School and faculty at the Children’s Hospital 

Informatics Program at the Harvard-MIT Division of Health Sciences and 

Technology. This research was published as a letter to the medical research 

community at the New England Journal of Medicine, and as a technical paper with 

experimental data in the International Journal of Health Geographics. 

Background	
  

Geocoding patient data – translating the plaintext addresses of patients into 

longitudes and latitudes – has become routine and enables display and analysis of 

disease patterns. Many public health surveillance systems and academic 

investigations rely on specific case locations for identifying patterns, correlates, and 

predictors of disease [71, 154, 155]. Maps that display such geocoded health data 

are frequently presented publicly and published electronically and in print.  

However, publishing patient address locations on maps also creates a risk of re-

identification of individuals [122, 156-158]. We recently reported an inadvertent 

breach of privacy across five major medical journals, identifying 19 articles from 

1994-2004 that include maps with patient addresses plotted as individual dots or 
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symbols [122, 156]. From these publications, over 19,000 patient addresses are 

plotted on map figures.  We demonstrated through a process of reverse 

identification that the home addresses of many of these patients could be 

discovered, despite the low resolution of the disease maps.  

Here, we provide the details of that method. We rely on unsupervised classification 

of the spectral properties of the map image to identify case locations.  Because we 

do not have available to us the original addresses of the patients represented in the 

published maps, we devised an indirect approach relying on simulation. 

Methods	
  	
  

We sought to quantify the degree of re-identifiability of patient home addresses 

from published maps.  To accomplish this, a hypothetical low-resolution map of 

geocoded patient addresses is produced and then the accuracy with which patient 

addresses can be resolved (reversely identified) through a five step process is 

measured. First, an original, prototypical patient map for an urban metropolitan 

area in Boston, MA was produced (Figure 31). Using building parcel outlines for 

the city of Boston [159], we generated a synthetic or hypothetical set of patient 

addresses by randomly selecting buildings. Cases were assigned by a stratified 

sampling design of building parcels to achieve a distribution representative of all 

building and population densities in the city. Buildings were selected with equal 

spacing of 0.02 degrees. A total of 550 addresses were randomly selected. Centers 

of the selected building were then calculated and plotted on a county map of 

Boston to represent patient addresses [160]. One important issue is that our use of 
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the building footprint for geocoding does not mirror the reduced accuracy obtained 

from geocoding addresses. Address geocoding will have a series of associated 

errors that may be related to the underlying structure of a geographic area (e.g.: 

road length, parcel size, housing density) [161].   

 

 

Figure 31: Prototypical patient map for Boston, Massachusetts. The image displays 550 addresses selected by 
stratified random sampling design. The original JPEG image used in the analysis had a resolution of 50 dots 
per inch (550x400 pixels), a file size of 129kb and a scale of 1:100,000. This would be a typical output for 
web display and usually lower resolution than would be shown in a slide presentation or in a peer-reviewed 
publication.   
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We created a JPEG image with a resolution of 50 dots per inch (dpi), 550x400 

pixels, a file size of 129kb and a scale of 1:100,000. This low resolution is typical 

for web display and is lower than generally used in slide presentations. Also the re-

identification of patient addresses was evaluated using a higher-resolution map 

(266 dpi, 2926x2261 pixels, 712kb, 1:100,000), often the minimum resolution for 

peer-reviewed publications.  

There are several steps involved in reversely identifying a patient address. First, the 

sample map is scanned or imported into GIS software as an image file [162]. 

Second, the imported map is georeferenced. The cartographic projection of the 

map is used to set the coordinate system. Generally, the projection of a published 

map would be unknown and the correct projection would need to be found by 

manually matching the image of the map to an image of a correctly georegistered 

map of the same area. In this case, we have a priori knowledge of the map 

projection. In either case, ground control points are selected on the image using a 

corresponding vector outline of the map area to re-project the image file of patient 

locations and reference it to a coordinate system. In this example, an outline of 

counties around Boston provided by the US Census Bureau to set the ground 

control points [160]. The process of scanning and georeferencing the disease map 

parallels the methodology detailed by Curtis et al [158]. Third, using image analysis 

software [163], unsupervised classification of the georeferenced map is performed. 

Given the spectral properties of the image file, pixels are classified so that pixels 

representing the patient points are aggregated together. Fourth, a reclassified raster 
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map (an image composed of individual pixel elements arranged in a grid) that only 

contains patient points is extracted and converted to a vector file. Finally, 

Coordinates of the patient points are then calculated. 

Accuracy of reverse geocoding was measured as (a) the number of correctly 

identified patient addresses (b) the distance between the reversely identified 

address coordinate and the boundary of the building of the patient home address 

and (c) the number of buildings in which the patient could reside, given the 

reversely geocoded address. To calculate (c), we estimated the minimum buffer 

size from the predicted location needed to contain the centroid of the correct 

address. Accuracy in this case is therefore defined as the number of incorrect 

addresses within this buffer. 

Results	
  	
  

Our reverse identification method correctly identified 26% (144/550) of patient 

addresses precisely, from a sample map with low-resolution GIS output. We 

observed increased detection with the higher-resolution publication quality output 

to 79% (432/550) of patient addresses identified exactly.  

For the low resolution presentation quality map, reversely geocoded locations were 

on average within 28.9 meters (95% CI, 27.4-30.4) of the correct original address 

(Figure 32a). On average, correct patient address was identified within eight 

buildings (95% CI, 7.0-8.3). Overall, 51.6% of addresses were identified as being at 

any of five buildings, 70.7% at any of ten and 93% at any of 20 (Figure 32b).  For 



Privacy	
  and	
  Identifiability	
  in	
  Clinical	
  Research,	
  Personalized	
  Medicine,	
  and	
  Public	
  Health	
  Surveillance	
  

Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  170 

the higher resolution publication quality map, all addresses were predicted within 

14m of the correct address. This distance is well within the footprint of most 

apartment buildings and even many single family residences. While most addresses 

(79%) could be identified to a single building, the maximum number of buildings 

in which the patient could reside, given the reversely geocoded addresses was 11 

buildings.  

 

Figure 32: Accuracy of reversely identifying patient location from a hypothetical low-resolution patient map 
in Boston, Massachusetts. The accuracy of the reverse identification was determined by (A) the distance 
between the reversely identified and the original addresses and (B) the number of buildings in which the 
patient could reside, given the reversely geocoded address.  The reversely geocoded location was on average 
within 28.9 meters (95% CI, 27.4-30.4) of the correct address. The mean number of buildings in which the 
patient might reside was 7.7 (95% CI, 7.0-8.3).  

 

Predictions of patient location were accurate in both densely-populated urban 

settings as well as suburban regions, as illustrated in Figure 33. Among those 

addresses precisely identified, there was no observed effect of housing density on 

the rate of patient addresses re-identification. However, given the variation in 
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number of individuals per housing unit, we expect that the anonymity of patients in 

suburban single family houses would be significantly reduced compared to urban 

areas. Locales with a high probability of living in large apartment buildings afford 

greater anonymity. In this study, we essentially controlled for the variability of 

geocoding accuracy by using building footprint data rather than address data. 

Previous research has shown that housing density may have substantial impact on 

address geocoding accuracy [161].  
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Figure 33: Results of reversely identifying patient addresses in Boston, Massachusetts. The green buildings are 
the randomly selected patient locations. The blue points are the predicted locations of the cases from the 
presentation quality map (50 dpi) and red points are predictions from the publication quality map (266 dpi). 
Proximities of the predicted to the actual location are displayed for both (A) a high density urban area and 
(B) a low density suburban area.  

	
  

Discussion	
  

Our results demonstrate that even lowering the resolution of a map displaying 

geocoded patient addresses does not sufficiently protect patient addresses from re-

identification. Despite the low quality of output sources, these images – based on 
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high precision input sources – preserve positional accuracy. Using a low quality 

map that would serve the purpose of web or presentation display, we were able to 

precisely identify more than one quarter of all randomly selected home addresses 

and on average patients could be identified to a city block or within one of eight 

buildings. Using a map with minimum resolution for peer-reviewed publication, 

we could identify almost all patient addresses and on average patients could be 

identified within 14m.  

The ultimate accuracy of the patient re-identification will no doubt depend on the 

number of individuals residing at these addresses. In the case of multi-family 

apartment dwellings, address identification may still afford a certain level of 

privacy protection. In the case of single family dwellings, re-identification becomes 

much more likely. However, even in the best case scenario of an urban area multi-

family apartment building, an additional concern is that individuals at these 

addresses can be fully re-identified when linked with other data sets or by using 

other characteristics supplied in the publication [82]. Previous research has shown 

that combinations of seemingly innocuous data are adequate to uniquely identify 

individuals with a high level of reliability [164]. For example, an experiment using 

1990 U.S. Census summary data surprised the public health community by 

showing that data sets previously thought to be adequately de-identified, 

containing only 5-digit ZIP code, gender and date of birth, could be linked with 

other publicly available data (e.g., voting records) and used to uniquely identify 

87% of the population of the United States [165]. Low-resolution maps of patient 
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locations pose an additional risk to individual privacy—allowing considerably 

more precision in re-identification than might be expected. Although the Health 

Insurance Portability and Accountability Act Privacy Rule (Section 164.514) does 

not explicitly address the publication of such maps, certain formats of geographic 

data display most likely violate the spirit of that rule. 

Curtis et al have also recently described a method to re-identify patients from 

published maps through manual outlining of case markers [158]. Though the 

vector-based approach of heads-up digitizing can be more accurate than raster-

based unsupervised classification in certain circumstances, in this case, it may be 

difficult to find the true border of the case markers from a scanned paper-based 

maps (such as the newspaper article described by Curtis et al) or even low-

resolution digital images. If the marker is not digitized accurately, then it follows 

that the centroid of this polygon will also less accurately reflect the original 

geocoded location. Our approach differs from the manual approach in that we rely 

on analyzing the spectral properties of the map image through unsupervised 

classification to automatically identify patient locations. The raster-based method 

based on the spectral properties of the image can provide a reliable means of re-

creating the original vector file and systematically obtaining the center point of a 

low-resolution marker. This comparison, however, warrants further evaluation. 

Nonetheless, the results of the two papers are very similar in that they show that 

maps containing point data are vulnerable to patient address re-identification. 
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These studies and our previous publication on this topic [122] should be viewed 

together informing policy around the display of geographic data. 

The main question that should be asked by both authors and editors is what are the 

benefits and risks of point localization of patients? Is it necessary to publish maps of 

point locations, for the presentation of relevant results of research or are they 

presented merely for illustrative purposes? The answer to these questions should 

guide decisions on how to report disease maps [79].  If just for illustrative purposes, 

there are techniques available to visualize spatial data without revealing patient 

information [145]. For instance, a common approach to de-identifying such data 

has been to use ZIP or postal code rather than home address to protect anonymity. 

While usually appropriate for the reporting of study results, aggregation of data to 

an administrative unit poses constraints on the analysis and visualization of disease 

patterns [126, 145, 166]. Other approaches are available for masking geographic 

data, such as spatial masking of cases by randomly relocating cases within a given 

distance of their true location [87, 128, 167, 168] or the population-density 

adjusted 2D Gaussian blurring approach which results in only a small reduction in 

sensitivity to detect clustering patterns [129]. These methods avoid these 

visualization constraints of data aggregation and afford sufficient privacy for 

publication without substantial loss to visual display. Masking methods provide 

more systematic and reliable means of de-identification rather than simply reducing 

map resolution. Spruill developed a measure of privacy protection for any mask, 

analogous to our measure of number of addresses within which the patient could 
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reside [142]. Such a measure could be used by journal editors as a rule for not 

publishing maps of individual cases unless a certain value of anonymity was 

attained. This measure, often referred to as K-anonymity, could help to establish 

guidelines for the safe publication of disease maps [82, 129].  

Our approach relies on simulation, rather than attempting to re-identify patients 

from published maps. We chose this approach to avoid propagating any prior 

inadvertent disclosures of patient identity, and to avoid impugning particular 

authors or journals. An advantage of our approach is that because we know the 

value of the original plotted location, we can precisely measure the accuracy of re-

identification. Our analysis also does not address the geocoding method. Accuracy 

of re-identification will also be dependent on the method for geocoding patient 

address. Use of a global positioning system (GPS) will provide greater accuracy 

then that of an address geocoder (automatic conversion from home address text to 

latitude and longitude using interpolation along street line data). When a geocoder 

is applied, the input data source will affect the accuracy of the estimate address 

coordinate. Many US-based studies rely on the freely available US Census TIGER 

line file as input to assign coordinates to addresses. Although TIGER line files differ 

in accuracy across the US, they rarely, if ever, approach the geometric accuracy of 

GPS coordinates or even more detailed commercial data sets. In fact, geocoding 

based on the free Census data available to most health researchers increases patient 

anonymity as the proportional placement of the address location can greatly affect 

geocoding accuracy [161, 169].  Outside the US, street level data may not be 
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available for address geocoding. Therefore, spatial analysis studies in these areas 

would rely on the more accurate GPS measures. By extension, greater positional 

accuracy is revealed in these studies. Our findings may therefore be highly 

pertinent for GIS-based studies in developing countries. 

The issues we raise here have, of course, much wider implications than for just 

health data, including crime data, housing data (e.g.: Section 8 units, shelters for 

abused women, etc.), and other administrative data sets [128, 170, 171]. New 

spatial data standards that protect confidentiality while still effectively 

communicating information about spatial patterns require immediate evaluation 

[172].   

Conclusions	
  

The publication of low-resolution disease maps poses an inherent jeopardy to 

patient privacy. Because the appropriate use of the patient address level data can 

bring real benefit to many areas of public health research that deal with spatial 

analysis, accidental disclosure of patient information from such maps may lead to 

constraints on obtaining geographically referenced health data. Thus, guidelines for 

the display or publication of health data are needed to guarantee privacy 

protection. Further, the editors of journals and textbooks should consider 

implementing policies to ensure the safe reporting of spatial data.  
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Chapter	
  V:	
  Future	
  Directions	
  and	
  Conclusions	
  

There are many areas that are of interest to pursue based on the findings in this 

thesis.  

Disclosure	
  Control	
  Mechanisms	
  that	
  Incorporate	
  Quantitative	
  Estimates	
  

Finding closed-form solutions that adequately quantify the amount of information 

in different patient genomic data sets will help add the necessary clarity to patient 

decision making. In this thesis, work is described that helps quantify how readily 

individuals can be identified or re-identified using certain types of demographic 

and genomic data, leading to a discussion of whether a data set is suitable for 

public disclosure for research purposes.  

For research purposes, it is conceivable that a subject would want to limit her 

identifiable genomic or demographic disclosures to a subset of SNPs, or to a 

reasonable, blurred resolution, that would not be directly re-identifiable. Providing 

subjects with different levels of genomic and demographic anonymity based on 

their protected health data, along with the probability of re-identification for each 

of those anonymity levels, will allow patients to select a comfortable level of 

altruistic sharing [105].  

Additionally, it may be beneficial for researchers to request a set of SNP values 

from a patient’s medical record that contains a list of requested and required SNPs 

in order to participate in a research study. The patient could then use a utility—a 
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“risk engine” to reduce the amount of uniquely identifying information by first 

removing the most personally identifying requested SNPs while maintaining the 

required ones.  

Using the four risk models we have earlier identified, this risk engine would 

provide internal answers about the information content and identifiability of 

genomic medical record data. With such complex data, these user interfaces would 

need to clearly display these clinical and research-based scenarios for a variety of 

skill and education levels. Certainly, these models can be mathematically and 

biologically complex, extending beyond the reach of even well-educated 

individuals, so a layered approach where clear but simple information is available 

for each of these clinical or logical scenarios as needed in a patient interaction, but 

increasingly complex and complete information could be made available if a user 

requested it. 

Information	
  Theoretic	
  Approaches	
  and	
  Multi-­Locus	
  Measures	
  	
  

In this thesis, we have evaluated risk of disclosure thoroughly, as well as the 

implicit information that can be derived from family members; however, we have 

not conducted a traditional information theoretic analysis for genomic data types. 

Risk modeling for genomic privacy requires understanding of not only what is 

unique in a data set but also how informative a patient’s genotypic values are at 

common loci of variation (SNPs in our studies). SNP linkage disequilibrium 

dependency is an important component of this, as well as population-specific SNP 
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frequency values. For mutation data, it will also be important to distinguish any 

sequence data that is available that is distinct from a reference sequence.  

The further study of genomic information content may include information 

theoretic approaches. Entropy describes how many bits are needed, on average, to 

encode a sequence of values based on the frequencies of those values. The 

information theoretic measure of Shannon’s entropy, H(X), defined for a random 

variable X, and p(x), the probability that random variable X takes the value at a 

given x,   

 

can be used to help quantify the information content in a set of multiple SNP loci 

in linkage disequilibrium [70]. Shannon’s entropy has also proven useful in finding 

the edges of haplotype blocks in sets of SNPs, which is a similar and important SNP 

problem, as it pertains to measuring how informative specific SNPs are with respect 

to one another in a data set. For example, a multi-locus measure of linkage 

disequilibrium was created for calculating Shannon’s entropy for a set of SNP 

haplotypes, where the value of each pi(x) used to calculate H(X), was the 

population frequency of each possible haplotype sequence, i. Research effort 

should be spent to investigate the efficacy of information theoretic approaches 

including Shannon’s joint entropy measure as well as the information distance for 

both genomic medicine and privacy purposes. 
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It will be important to incorporate the population-specific frequency values of the 

patient’s sequenced set of n SNPs into the model, as well as the (n*(n-1))/2 possible 

linkage disequilibrium values, to more accurately ascertain the information content 

in that data set.  

This may be approached from two angles: 

(1) explore the use of information theory findings such as fast measures of 

Shannon’s Joint Entropy that compare the amount of information in the joint 

distribution of the linkage disequilibrium values of the SNPs among one 

another. This will involve calculating how informative a set of SNPs is using the 

joint entropy measure, H(X,Y) where random variables X and Y are jointly 

distributed according to the probability distribution p(X,Y) 

 

We calculate the average minimum number of bits needed to encode a joint 

distribution of random variables X and Y. Instead of calculating the average 

minimum number of bits, or questions one would have to ask to re-identify a 

given probability distribution, we instead pose our calculation as how 

informative a set of SNPs are, on average, by measuring how many ‘effective 

SNPs’—the number of perceived independent SNPs—there are, given the 

overlapping, joint distribution of the SNP linkage disequilibrium values. 

Because the SNPs in a data set selected for sharing or publishing will likely be 
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related to one another, they are likely to be dependent, or in linkage 

disequilibrium with one another. Accurate privacy and re-identification models 

must include this ‘discount factor’ on how informative a specific set of SNPs is, 

reducing the information from a set of n, somewhat mutually dependent SNPs 

to a number m, smaller than n. 

Here we have approached the problem of how to appropriately discount the 

measure of how informative a set of SNPs is by placing the n choose 2 mutual 

SNP linkage disequilibrium r2 values into a normalized p(x, y) distribution and 

then calculating H(X,Y). Genomic privacy decision making systems can then 

incorporate this discount into estimates for how revealing a set of SNPs is for a 

patient, allowing the patient to share the right number of SNPs (depending on 

what population she comes from), what SNPs she would like to share, and what 

her sequenced values are at those SNP loci. 

(2) use linear algebra and graph theoretic approaches to address the SNP 

‘information overlap’ issue through network nodes that represent SNPs and 

edges to those network graphs that represent the amount of overlap between 

those two SNPs in the form of a linkage disequilibrium value. The goal of this 

project would be to quantify the total overlap in moderately-sized, shareable 

sets of SNPs, in a more computationally efficient manner, as it is important to 

consider that much privacy analysis for records may be conducted on web 

application servers.  
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We may begin by exploring the use of matrix composition  

 

with L as the triangular multi-locus linkage disequilibrium matrix of r2 values, W 

a diagonal weighting matrix perhaps to describe clinical importance to a set of 

SNPs in question, x a selection vector, and f, a solution vector, which would 

hold multi-locus linkage scores. There are several other related techniques that 

we will explore to inform our approach. These techniques will be borrowed 

from the disciplines of graph theory and linear algebra [173]. Specifically, we 

may study problem variants of final weighting problems for graph systems, 

minimizing cost in graph networks, among others. It is possible to explore 

similar mathematic problems in this domain that can be applied to information 

theory analysis for large biological data sets. 

To evaluate whether these risk models and disclosure risk estimates are 

appropriate, one could test randomly-selected sets of SNPs from contiguous 

segments that are derived from the HapMap study in the thoroughly mapped 

HapMap regions. Then, it is possible to compare whether estimates from these test 

data sets differ appreciably from previous information theoretic estimates using 

Shannon’s univariate entropy, H(X), as described earlier,  
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as well as estimates based on multi-locus LD metrics. Those sets of multiple SNP 

loci with higher multi-locus LD values should be less informative, so investigating 

whether this is the trend, on average, for patients in a study would be useful. This 

would also be useful in investigating the boundaries that risk models place on 

disclosure control, including whether they are appropriate for clinical use, by 

evaluating whether common genetic screening analyses that use SNPs in 

contiguously sequenced HapMap segments could be conducted in an anonymous 

fashion for the sequenced patients. 

Geographical	
  Anonymization	
  and	
  Privacy  

The transmission of geographic protected health information will continue to 

expand, whether through the use of integrated healthcare information networks or 

via AHIC standards, including consumer empowerment, chronic care, 

biosurveillance and EMR messaging scenarios [174]. The efficacy of disease 

surveillance efforts and identification of disease correlates that could improve care 

rely on precise patient locations to enhance spatial clustering performance, and are 

better than aggregate data [126]. The methodologies that have been discussed in 

this thesis for spatially anonymizing geographic data using underlying demographic 

factors can be extended with development of new methods.  

One new area of research in this field would be to create a new class of 

anonymization algorithms for spatial data that preserve complex geographical and 

demographic relationships among cases. Enhancing existing anonymization 

algorithms to allow for common geographic and demographic constraints, and 
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developing methodologies to manage a wider variety of spatial disease patterns, it 

would be possible to provide greater privacy for different patterns of patient data. 

This might also allow the transmission of selected pieces of additional 

epidemiological and demographic data while balancing identifiability. For 

example, aggregate descriptive data might be made available by census regions  

while point data are separately made available, e.g. percentage of age 65+, gender 

male, moderate income, etc. by region before and after anonymization. 

Certainly another important component that will further adoption of anonymization 

algorithms is a thorough evaluation of efficacy; these algorithms should be tested 

using large surveillance data sets, measuring the degree of re-identifiability of 

individuals and the impact of anonymization on cluster detection. To advance the 

adoption and widespread use, it will be necessary to evaluate and validate use for a 

diverse array of patient data to ascertain the limits of robustness of different 

anonymization technologies. This might include a team that is dedicated to 

external review of algorithms that attempts to recover personally identifying 

information or a public contest. 

Anonymization	
  Type	
  Standards	
  and	
  Meta-­Data	
  

The level of anonymity in data shared in or released from health networks should 

be determined by a number of potentially diverse interests:  

• the utility afforded by sharing authentic data, for public health or clinical 

use 

• the rights and wishes of the patients whose data would be shared  



Privacy	
  and	
  Identifiability	
  in	
  Clinical	
  Research,	
  Personalized	
  Medicine,	
  and	
  Public	
  Health	
  Surveillance	
  

Cassa,	
  Christopher	
  A.	
  	
   	
   Page	
  187 

• the interests and policies of the hospitals sharing protected data on the 

network  

To enable such granularity of authorization, type and messaging meta-data 

standards should be developed that will allow a health network to respond to 

requests, maintain records of who has requested which data, and maintain linking 

identifiers to recover authentic data. Supporting such patient and hospital-

specifiable levels of anonymity requires that health data networks store several 

different levels of anonymized data values so that user and hospital specifications 

can be changed as appropriate.  

Other meta-data that may be stored about anonymized points would include the 

anonymizing algorithm as well as the demographic composite of the data and the 

level of anonymity achieved.  

Availability	
  of	
  Anonymization	
  Modules	
  

To increase the use of privacy preserving algorithms, the public availability of these 

algorithms and standards is necessary. This involves making available a set of the 

core anonymizing algorithms and sample implementations publicly available as 

open source projects that can be downloaded and rapidly integrated into other 

programs. All of the algorithms should require low storage and processing time 

overhead and include advanced features including authentic data randomized 

linkers.  
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Development	
  of	
  a	
  cryptographically	
  secured	
  anonymization	
  web	
  service	
  

We believe it is worthwhile to investigate whether a publicly available, 

cryptographically secured anonymization web service would adequately serve the 

needs of small hospitals to anonymize their patient data. Small hospitals may not 

have the capability to adequately join a health data network.  A web service could 

automate the process of both anonymizing patient data while simultaneously 

pushing that anonymized data onto the health network. Of course, if such a service 

were offered commercially (not through one institutional research provider) it 

would need to enter into a HIPAA-defined business relationship with the covered 

entities, because this service would be handling highly identifying PHI while 

anonymizing it.  

Improve	
  anonymization	
  toolkits	
  to	
  include	
  secured	
  upload,	
  integrated	
  

geocoding,	
  and	
  interchangeable	
  algorithm	
  type 

To foster anonymization efforts, a publicly-available, open source client has been 

created that allows users to anonymize data sets at their site producing flexible 

output data sets containing only anonymized data[175]. The anonymization 

algorithm built into the client is a census block group population-density adjusted 

2D Gaussian randomized skew. The anonymization client currently allows users to 

select an average data set k-anonymity level as well as a basement filtering 

threshold that removes records that fail to meet a specified minimum value.  

Enhancements to this tool could include several additional features: 

• secured upload to health networks using the aforementioned standards 
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• integrated, user-specifiable geocoding service, such that users can select a 

locally networked service such as ESRI or a Geo-Coder-US installation  

• interchangeable anonymization algorithm type, such that anonymization 

algorithms that implement a standardized interface can be selected for use, 

including versioning and hash-lookup for veracity of algorithm 

• storage of local randomized linking identifier data for authentic data lookup 

• enhanced HL7 data support for data stream processing  

• visualizations and anonymization statistics that enable users to better 

understand the anonymization that has taken place 

Describing	
  quantitative	
  anonymity	
  estimates	
  to	
  users	
  and	
  explaining	
  how	
  to	
  

set	
  exclusion	
  criteria	
  from	
  transmissions 

Effort should be dedicated to clearly explaining anonymity estimates and algorithm 

abilities to users of all anonymization systems. This will be an especially difficult 

task for users of code components that can be integrated within existing 

infrastructure, as there is often no user interface for meaningful feedback.   

Constrained	
  anonymization	
  techniques	
  

The collection of spatial health data is generally conducted with the purpose of 

discovering geographical clustering or identifying a correlate, predictor, or other 

association between geographical locations and a specific finding or disease. This 

is precisely why the precision of geographical data is valuable in these studies, and 

why clustering in data should potentially be protected in an anonymization 

process. Some spatial anonymization algorithms have shown that it is possible to 
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blur geographic patient data in a way that increases privacy while retaining the 

ability to identify clustering patterns among cases.  Such systems have encountered 

difficulty in certain conditions, such as with small cluster sizes or high underlying 

background noise.  We have taken a set of artificially generated clusters that would 

ordinarily be difficult to detect after anonymization and detected those clusters 

before anonymization, and then used clustering data to inform the anonymization 

process to maintain a clustering distribution among the involved cases. 

Here, we would alter the anonymization of the subset of points identified in a 

cluster, separately anonymizing the geocodes in the cluster by replacing each 

address with another randomly placed address within a circle that will provide the 

desired output k-anonymity.  

Mutli-­Factor	
  Authentication	
  using	
  Contents	
  from	
  Disparate	
  EHRs 

The development of integrated systems to provide patient-centric health records 

requires granting access to medical records that have been created at a set of 

disparate institutions. Consider the case where a patient has decided to create a 

comprehensive health history that includes visits and lab results from previous 

providers that no longer have an operational relationship with the patient. This 

certainly poses a complex authentication problem if these data are to be made 

available to patients electronically.  

We propose a multi-factor authentication framework that allows a trusted 

intermediate authority to use the contents of potentially matching medical records 

to generate secondary authentication questions and to manage authorization of 
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appropriate access. This helps to disambiguate between similar records from 

different patients, as well as ensure that the patient is who she purports to be.  

There are several methods to directly authenticate a user to a medical document. 

One is the use a shared secret key such as a previously assigned or agreed 

password, PIN or biometric hash. This could be created and recorded by the user at 

point of care or via provider portal.  Another method might provide a patient ticket 

that links her to a records (or location containing subsequent records.) Such a ticket 

could be provided at a clinical visit, or afterward via email.   These methods rely 

on previously authenticating users (either in person or through email).   

Oftentimes, a user may not be able to authenticate in person or electronically.  To 

create a complete health record, it is desirable to integrate clinical data from all 

institutional relationships, including those that are terminated, or no longer in 

physical proximity.  Additionally, the time and effort required to link to disparate 

data feeds for patients may not be reasonable, as it is dependent on the number 

and types of points of care. A suitable alternative that removes the direct 

authentication burden from patients and providers would solve this issue. 

Secondary authentication questions could solve this problem well, though they 

bring new requirements.  One is standardized, structured data so that useful polling 

information can be gathered. The information value of answering such questions 

also requires knowledge of the probability of candidate choice events, for example, 
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a visit to a clinic for respiratory infection may be very common, so if a patient 

selects that choice, it is not very ‘informative’. 

We propose a mutli-factor authentication process similar to those now required in 

finance [176] to authenticate users with two distinct layers (Figure 1).  First, a user 

accesses her health record portal, and provides identifiers and demographic data. 

The portal makes a request on her behalf to access health records from disparate 

institutions by polling a record locator service with her SSN or MRN. The record 

locator service then polls all participating hospitals to gather a set of candidate 

records (through a trusted, secure relationship).  The record locator service then 

generates secondary authentication questions which are presented to the user by 

the record portal.  The patient provides answers through the portal, which are 

transmitted to the record locator service. If the answers are correct, the record 

locator service will authorize access to a set of records. This service would 

certainly need to be part of a trusted authority, regardless of whether it is a business 

or government entity. 
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A mutli-factor authentication process could help solve the complex process of 

authorizing a user to a set of correct records from all previous points of care. 

       

Figure 34: A proposed mutli-factor authentication framework for the retrieval of patient medical records 
from a set of disparate points of care. In this example, a user begins by accessing a health record portal, and 
over a secure network connection, provides highly identifying information to his or her trusted portal 
provider. The health record portal then makes a network query to a record locator service, using that highly 
identifying data, such as a social security number, date of birth, gender, home address, other medical record 
numbers. The record locator service then uses the matching and potentially matching set of medical records 
to generate a set of authentication questions for the user. Once a sufficient number of those questions have 
been answered correctly, authorization is provided to access that individual’s records. 
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Conclusion	
  

The amount of electronically transmitted protected health information will surely 

increase in the coming years, and scenarios where patients might share their 

demographic, clinical and genomic data with researchers, specialists and public 

health practitioners will become increasingly common. Some of these 

transmissions will inevitably reveal highly identifying information unless techniques 

to protect the privacy of individually identifying genomic and clinical data advance 

dramatically. Because of this, we believe that the quantitative modeling we offer in 

this thesis will enable patients to make more informed decisions, fully able to 

consider the implications of their PHI disclosures on themselves and family 

members. The personalized medicine research movement promises to advance 

medical practice and science, but will certainly require many micro (personal 

choices by individuals) and macro (legislation and broad health information 

protections) balances between the costs and benefits of the new complex data that 

will be shared with investigators.  
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