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ABSTRACT 

  
Syndromic surveillance systems, especially software systems, have emerged as the leading 
outbreak detection mechanisms.  Early outbreak detection systems can assist with medical 
and logistic decision support.  One important concern for effectively testing these systems in 
practice is the scarcity of authentic outbreak health data.   Because of this shortage, creating 
suitable geotemporal test clusters for surveillance algorithm validation is essential. 
Described is an automated tool that creates artificial patient clusters by varying a large 
variety of realistic outbreak parameters.  The cluster creation tool is an open-source 
program that accepts a set of outbreak parameters and creates artificial geospatial patient 
data for a single cluster or a series of similar clusters.  This helps automate the process of 
rigorous testing and validation of outbreak detection algorithms.  Using the cluster 
generator, single patient clusters and series of patient clusters were created – as files and 
series of files containing patient longitude and latitude coordinates.  These clusters were 
then tested and validated using a publicly-available GIS visualization program.  All 
generated clusters were properly created within the ranges that were entered as 
parameters at program execution.  Sample semi-synthetic datasets from the cluster 
creation tool were then used to validate a popular spatial outbreak detection algorithm, 
the M-Statistic. 
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Chapter 1: Introduction to Syndromic Surveillance  

Many new suites of disease outbreak detection systems, also known as syndromic 

surveillance systems, are emerging in health-care facilities and centers for disease 

analysis throughout the world. [1-2, 7-9]  Syndromic systems, especially software 

systems, have surfaced as leading outbreak detection mechanisms as there is an 

increasing yield of data available for analysis.  Concern about bioterrorism threats is 

increasingly prevalent, so development of early outbreak detection to assist with medical 

and logistic decision support is increasingly important.  The fundamental goal of 

syndromic surveillance systems is to be able to detect a small number of increased 

disease cases of one type of outbreak in a shorter time-frame than would be likely 

detected by acute physicians or medical administrators. [7]  Several groups have 

quantified a range of detection goals, and some groups are attempting to discover small 

outbreaks (around fifteen extra visits or cases) within three days of the first abnormal 

visit to a clinic or emergency department. [11] 

 
Evolution and Development of Syndromic Surveillance Systems 

 
Syndromic surveillance systems have evolved a great deal since their emergence 

in the late 1990s.  There are numerous types and implementations of these real-time 

outbreak detection systems that rely on a multitude of data sources. [25]  Data streams 

range from sources as basic as primary-care location visit records and emergency 

department admission records to over-the-counter medication sales, web-based medical 

system visits, public and private-sector health-hotline calls, and even orange juice sales. 

[14-16]  These sources have been selected based on the premise that the earliest signs of a 
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potential outbreak are aberrations in the expected numbers of visits or relevant purchase 

volumes at the time of outbreak analysis.   

In order for surveillance systems to be most useful, they should produce alerts in 

as timely a fashion as possible.  Near real-time data acquisition and analysis is quickly 

becoming a standard practice.  One example of a real-time syndromic surveillance system 

is the Automated Epidemiologic Geotemporal Integrated Surveillance (AEGIS) system, 

[1] software that tracks patient emergency department visits using live data streams from 

northeastern region hospitals.  Patient address data is automatically geocoded and chief 

complaints are encoded into syndromic categories shortly after the patient has been 

admitted to a participating emergency department. 

Software systems to conduct syndromic surveillance often utilize large existing 

hospital or retail databases to establish baseline parameters and covariate values.  Those 

baseline measurements are used to find expected visit ranges for a specific time frame, 

which are then compared against directly observed values in a recent time-frame.  

Significant deviations from expected values occur with specific likelihood values.  If 

computed likelihood values are low enough (those values that would correspond to a high 

confidence in abnormality of patient distributions,) then outbreak flags are raised.  These 

so-called red flags should cause medical informatics professionals to further analyze a 

potentially emerging situation.  

To increase the efficacy of surveillance systems, some organizations that track 

detailed patient data have chosen to group patients into syndrome categories.  Several 

surveillance systems have found increases in sensitivity of outbreak detection and data 

analysis if the datasets being analyzed are grouped by syndrome. [2, 24]  The national 
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ESSENCE project [9] has developed a categorization system that utilizes a subset of 

ICD-9 (International Classification of Diseases, 9th Revision) diagnostic codes for each 

syndrome that they use for syndrome grouping.  A list of the ESSENCE syndrome groups 

is shown in Table 1.   Another system, the Realtime Outbreak and Disease Surveillance 

(RODS) project [8], has created a free-text Complaint Coder (CoCo) which takes a 

patient’s chief complaint and assigns it to a syndromic category using a Bayesian 

classification scheme.  Both of these systems then conduct surveillance analysis on 

separate groups of patients with similar syndromes.  

 

Table 1: Syndrome Groups and Diagnoses from the ESSENCE project.  

Source: http://www.geis.ha.osd.mil/GEIS/surveillanceactivities/ESSENCE/essenceinstructions.asp 

Syndrome Groups Representative Diagnoses 
Respiratory cough, pneumonia, upper respiratory infection 
Gastrointestinal vomiting, diarrhea 
Neurological meningitis, botulism-like symptoms 
Dermatologic Hemorrhagic (petechaie, bruising) 
Dermatologic infectious (vesicular rashes) 
Fever (unspecific fever, sepsis) 
Coma (coma, sudden death) 

 
 

There has also been a good deal of discussion regarding hardware 

implementations for real-time surveillance, but they appear to be more difficult than 

software solutions in the short term.  Effective physical detection of threats is much 

harder because it requires a greater infrastructure and expense.  Software detection 

systems also generally rely on information that is already encoded into computer systems 

while hardware detection systems generally derive their data from new sources.   
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Data availability and variability issues create difficulty with temporal data 

analysis in a real-time fashion, but these systems have the potential to provide the 

sensitivity to detect a variety of public health outbreaks. [10]  Temporal data filtering and 

smoothing is an expanding area of biosurveillance research which promise to improve 

many of the basic data variability concerns that interfere with optimal outbreak detection.   

A number of biosurveillance systems have also started to integrate some notion of 

the spatial clustering of patients in area neighborhoods (and aberrations from normal 

levels of clustering) into their outbreak detection techniques.  Two prominent techniques 

in the field that provide values of aberration in spatial clustering from normal spatial 

distributions are the M-Statistic [13] (described in more detail later) and the Spatial and 

Space-Time Scan Statistic, SaTScan. [11]  The M-Statistic technique uses the deviation 

of the current distribution of inter-point distances (the distances between each patient and 

every other patient) from the distribution that would normally be expected, as a metric for 

spatial closeness.  SaTScaN uses either a Poisson-based model, a Bernoulli model, or a 

space-time Permutation model, using user-provided patient visit data as the source of the 

underlying expected distribution. 

 
Geocoding of patient addresses 

 
All addresses are represented by latitude-longitude pairs in the cluster creation tool 

and in the implemented spatial detection algorithm.  This standard was chosen because it 

is the most general and it avoids ambiguities that may arise from duplicate addresses or 

artificial boundaries such as zip codes.  Patient addresses are geocoded into this format 

and then patients are categorized by their chief complaints (which are almost always 

recorded and coded by medical institutions.) [20-23]  This allows doctors or medical 
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practitioners to determine whether there is a correlation between patient location, time of 

visit, and symptoms.  If this information is gathered for all patients at all times, it is easier 

to detect an outbreak when it occurs, because the outbreak data can be compared against 

expected baseline data from similar time periods. [25] 

 
Calculating Sensitivity and Specificity of Outbreak Detection Systems 

 
The quality of a detection system can only be assessed by observing its behavior on 

test cases of interest.  To do so, we need to find or create valid test clusters of patients 

with disease and then measure how well our system is able to detect those patients.  

Detection efficacy is usually measured in terms of the sensitivity and specificity of the 

detector. 

This project focuses on both problems by creating valid artificial test clusters that vary 

under a large variety of realistic parameters and then detecting those test clusters using a 

spatial detection technique.  In order to create realistic detection mechanisms for large 

datasets, those datasets need to be tested using realistic physical outbreak data.  A cluster 

creation tool that creates simple geo-temporal clusters of artificial patient data is part of 

this work and is freely available for download (see Appendix B).  The current 

implementation is described here and its use in validating the real-time M-Statistic spatial 

scanning algorithm is described in Chapter 4.   

 
Datasets for benchmarking performance 

 
Datasets for evaluating the performance of algorithms used in outbreak detection may 

be measured using authentic data, synthetic data, or combinations of the two.  Two kinds 

of purely authentic datasets are possible. One is genuine syndromic data that is 
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contemporaneous with a known specific outbreak.  The outbreak could be a large-scale 

event such as a winter influenza surge. [14]  Alternatively, it could be a more 

circumscribed event such as a diarrheal outbreak. [15]  The dataset would contain the 

background of ordinary disease or symptom occurrence and the signal of the actual 

outbreak. A second type of authentic dataset is a hybrid one containing background from 

a regional surveillance system spiked with cases from a known outbreak.  This approach 

was taken when over-the-counter medication sales data were spiked with an outbreak 

based on the Sverdlosk incident. [16]  Alternatively, one can also construct a hypothetical 

baseline and impose and inject actual or simulated signals.  While this approach is valid, 

there is little need to simulate background activity, given the readily available abundance 

of real signal streams from surveillance systems. 

The approach that we explore in detail is to superimpose simulated signal onto 

authentic baseline. This tactic offers the opportunity to explore the impact of controlled 

variations of the signal characteristics.  Broadly speaking, there are two main approaches 

to creating this simulated signal.  One could produce multistage, multivariate 

mathematical models to produce the signal.  Alternatively, it is also possible to define a 

series of parameters enabling the generation of a controlled feature-set simulated signal.  

For example, a complex mathematical model [18] might begin with a particular form of 

aerosolized anthrax being dispersed under a certain set of atmospheric conditions over a 

specific geographic region with a well-characterized population demographic.  The 

number of susceptible individuals might be estimated and their subsequent behaviors 

modeled.  The resulting impact on the syndromic surveillance data set, be it retail sales, 

primary care visits or emergency department visits, could be projected.  The difficulty 
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with this type of approach to creating simulated signals is that such detailed models 

require a great deal of hand-crafting.  Furthermore, many different models might be 

needed to provide realistic signals corresponding to various plausible scenarios of 

outbreak or attack. 

Any model that we choose to generate data will make certain assumptions about 

the simulated events that it models, and the resulting data may be misleading either 

because the assumptions are inappropriate to certain kinds of events or because the 

models may fail to take important aspects of the event into account.  An example of 

inappropriateness may be an assumption that all bioterrorist outbreaks lead to an initially 

exponential rise in observed cases; though reasonable for infectious diseases, this would 

be inappropriate for non-infectious toxic agents.  An example of an overly-simple model 

might assume that all observed cases occur simultaneously at some specific time after 

exposure. 

We have tried to find a compromise between taking on the overly difficult task of 

accurately modeling many different types of outbreaks and accepting too simplistic a 

generative model that fails to simulate the dynamics of actual outbreaks of interest.  In 

our model, we can vary the number of cases in an outbreak, the temporal pattern with 

which they appear in the data, and the sizes and locations of spatial clusters within which 

they appear.  We do not attempt, however, to include much more detailed behaviors that 

would require modeling notions such as wind spread or varying susceptibility of different 

populations. 
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Chapter 2: Parameterizing an Outbreak 

Background noise can be spiked with additional cases configured as spatial or 

temporal clusters, describable as a controlled feature set.  A variety of adjustable 

parameters, described below, enable manipulation of the simulated outbreaks.  Optimally, 

a training dataset should be modeled and the artificial outbreak signal should be injected 

into a validation dataset, though there may not always be sufficient data to do so.  If there 

is not, the artificial outbreak signal may be injected into the same data used for training.  

There are many components in a controlled feature set that are relevant in describing a 

specific type of outbreak.  Some of these components are specifically related to the 

temporal distribution of patients, some are specifically related to the spatial distribution 

of patients, and some only rely on the total number of patients that arrive. 

Spatial features 
 
 A semi-synthetic data cluster has a spatial controlled feature set, which includes a 

number of important spatial components.  The spatial relationship among the synthetic 

patient cases, which are represented as geocoded coordinates (latitude and longitude) is 

important – some primary components are whether the points are added in a uniform 

fashion, a random fashion, and what the overall physical shape of the cluster pattern will 

be.  The cluster may also be described in terms of a maximum cluster radius (or other 

possible maximum distance in a non-circular outbreak), the density of the distribution of 

cases within that radius, and also by the relative location (or the ‘angle’) from a fixed 

point such as a hospital or urgent-care facility.  Simulating spatial clusters raises 

additional challenges as well, including the identification of realistic locations for 
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simulated cases, based on the spatial features of a region--such as the locations of 

housing and of bodies of water. 

Outbreak Duration 

This describes the number of days that a specific geo-temporal outbreak signal 

should span.  It is useful to execute simulations over a range of outbreak durations and a 

number of factors might influence the range chosen.  Different agents can cause 

outbreaks of varying lengths -- while a surge in influenza activity might last several 

weeks, an outbreak of meningitis in a college dorm might only last for several days. 

Furthermore, the temporal window used by the detection system may have substantial 

impact on how outbreaks of different magnitudes are detected.  If the detection window 

were based, for example, on a sliding moving average of seven days, two or three day 

long outbreaks will be smoothed out; under certain conditions this smoothing may dilute 

the signal. Conversely, outbreaks gently trending upward in numbers might not be 

detected with a shorter sliding window. 

Outbreak spacing  

An efficient way to measure outbreak detection performance and the factors that 

influence it is to spike a data stream with many individual outbreaks.  Generally, the 

more outbreaks presented to a model-based system, the more accurately the system’s 

detection performance can be characterized. In order to maximize the number of 

simulated outbreaks in the dataset, one can introduce multiple non-overlapping outbreaks 

in a single dataset (e.g. a five day outbreak beginning on day 1, another five day outbreak 

beginning on day 11, another on day 21, etc.). The outbreaks are then removed and 

replaced by a different set of non-overlapping outbreaks and again presented to the 

system (e.g. days 2, 12 and 22).  For measurement purposes, it is critical to ensure that all 
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individual outbreaks are temporally isolated -- meaning that any response to the previous 

outbreak has been completely eliminated from the system before the next outbreak is 

encountered.  For individual outbreaks to be temporally isolated, it is necessary for the 

time-filtering window, if it is larger than one day, to be smaller than the number of days 

between injected outbreaks.  Such temporal isolation is critical for accurate 

measurements of detection performance, though it will not directly address the ability of 

the system to detect overlapping outbreaks.  By shifting the outbreaks in time, the 

outbreaks are affected by different regions of noise.  By spacing outbreaks throughout the 

year, the effect of seasonal changes in the background on outbreak detection can be 

measured as well.  Understanding the effects of different regions of background noise 

cannot be accomplished without the use of simulation. 

Outbreak temporal progression 

The time course of an outbreak spreading through a population can follow any 

one of many paths, effectively producing a signature shape, related to an epidemic curve. 

For example, a highly infectious disease such as smallpox could spread exponentially 

over time, while a point-source exposure, not contagious person to person, such as an 

anthrax release, would be unlikely to grow exponentially. Several canonical shapes of 

temporal progression may be used in simulations to characterize the detection 

performance of surveillance systems. Flat outbreaks introduce a fixed number of extra 

visits per day for the duration of the outbreak -- for example, [10,10,10,10,10] extra visits 

for a five-day outbreak.  Linear outbreaks introduce a linearly increasing number of extra 

visits per day over the course of the outbreak -- for example, [5,10, 15, 20, 25] extra visits 

over a five-day outbreak. Exponential outbreaks introduce an exponentially increasing 
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number of extra visits per day over the course of the outbreak -- for example 

[2,4,8,16,32] extra visits over a five-day outbreak. Sigmoid shaped outbreaks mirror 

epidemiological phenomena where the number of affected individuals rises exponentially 

at first, then slows down until it plateaus at a new fixed level -- for example [2,4,8,12,14] 

extra visits over the course of a five-day outbreak. Alternatively, a model of more 

complex shape, described by a multinomial, such as the Sverdlosk [5] outbreak, might be 

desirable. 

Outbreak magnitude 

Because the minimum detectable size of an outbreak is often of interest, outbreak 

detection performance should be tested over a range of signal magnitudes; detection 

performance may vary substantially depending on these magnitudes. This variability is 

primarily due to the changes in signal-to-noise ratio that result from different outbreak 

sizes. For small outbreaks that are at or near the “noise floor” of the model -- the usual 

level of random variability in the model’s predictions -- the detection performance is 

typically very poor, because it is hard to distinguish outbreaks from the random noise of 

the model. As the relative size of the outbreaks increases, identifying the outbreaks in the 

presence of the noise becomes easier. Once the outbreak magnitude is large enough such 

that the noise does not effectively mask it all, the outbreak detection performance of the 

system typically plateaus at or near perfect detection. 

In order to identify an appropriate range of outbreak magnitudes for the 

simulations, it is worthwhile to characterize the error, or noise profile of the model. To do 

so, the daily forecast errors of the model, defined as the forecast value minus the actual 

value for each day, must be calculated.  The error profile can be visualized by plotting a 
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histogram of these daily forecast errors, and standard deviation of the error distribution. 

As a general rule of thumb, outbreak magnitudes should range from near zero to at least 

twice the standard deviation of the forecast error.  As an example, consider a model of 

emergency department visits with mean of 140 visits per day, and an error profile with a 

standard deviation of 20 visits. In this case it is helpful to run simulations of outbreaks 

ranging in magnitude from 0 to 40 visits per day. This range can be sampled in intervals 

of 5, yielding the following set of outbreak magnitudes [0,5,10,15,20,25,30,35,40].  

It is important to note that the error profile of a model could vary through the year 

due to seasonal differences in the variability of the signal. For example, respiratory visit 

rates could vary much more unpredictably in the winter than in the summer. In such 

cases, it may be useful to construct separate error profiles for different seasons in order to 

tailor the detection test to each season. 
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Metrics for detection performance 

Sensitivity and specificity 

There is always a tradeoff between sensitivity and specificity and the ability to 

detect outbreaks must be balanced against the cost of false alarms. [4]  For evaluation 

purposes, it can be useful to hold sensitivity or specificity constant when plotting the 

other against another variable, such as outbreak magnitude, or outbreak duration.  For 

example, specificity may be held constant while plotting sensitivity vs. outbreak 

magnitude. For each outbreak magnitude, the alarm threshold should be tuned until the 

desired number of false alarms -- and thus the desired specificity -- is achieved.  The 

rationale for tuning the alarm threshold to a desired specificity for the outbreak detection 

algorithm is rooted in the fact that a certain level of false alarms is acceptable to the 

system so that it will be optimally sensitive with a specific number of user-specified 

alerts.  At this point the resulting sensitivity under these conditions is measured. This 

process is repeated for each outbreak magnitude, ultimately yielding a plot of sensitivity 

vs. outbreak magnitude with specificity fixed.  The likelihood of not having an alarm 

when there is no signal (specificity) can be measured simply by running the model on the 

baseline data without inserted artificial outbreaks.  

Overall outbreak detection vs. outbreak day number 

Because the outbreaks presented to the system typically will be longer than one 

day, sensitivity and specificity can be measured either in terms of detection of specific 

outbreak days or of the overall outbreak.  Using the outbreak-day approach, each day is 

considered a separate, independent case -- if a particular five-day outbreak is detected on 

three of the days, but missed on the other two days, there are three successes (true 
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positives) and two failures (false negatives). Similarly, each of the intervening non-

outbreak days is considered independently when calculating false positive and true 

negative rates.   

Using the overall outbreak detection approach, each outbreak is viewed as a 

single entity; if the outbreak is correctly detected on any one of the outbreak days (logical 

OR), the system has produced a true positive. An alternative criterion for a true positive 

is that the outbreak was correctly detected on a majority of the outbreak days. When 

reporting the overall outbreak sensitivity (“The system detected x% of all the outbreaks 

presented to it.”), it is very helpful, in conjunction to present full sensitivity and 

specificity statistics are reported using the “outbreak-days” approach. 

Receiver operator characteristic (ROC) curves 

The tradeoff between sensitivity and specificity is well portrayed by ROC curves, 

which plot sensitivity vs. [1 – specificity]. For tests that have no diagnostic value, the 

ROC curve is a straight line along the diagonal of the plot. Plots of tests with higher 

diagnostic value have the line curved away from the middle of the plot. The area under 

the ROC curve can thus be used as a measure of the diagnostic value of a test. [12] The 

diagnostic value of two tests can be compared by comparing the areas under their 

respective ROC curves.  
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Chapter 3: Creating a Cluster Generation Tool 

A cluster generation tool that creates single clusters and related series of synthetic 

patient clusters was created that allows facilitates efficient spatiotemporal outbreak 

detection testing.  The tool is designed to create clusters of patients with similar 

syndromes in a user-specified distribution.  The cluster data points will be added to a 

larger database (with many patients over a long period of time) and then each dataset can 

be tested using detection algorithms to determine whether that detection models can 

uncover a specific type of artificial cluster. 

The cluster generation tool can also generate various sets of clusters that range in 

value over a single parameter to rigorously test detection algorithms.  The generator can 

also be easily altered to create additional types of clusters that follow other spatial and 

temporal distributions. 

 

GIS Datapoints and Earth Surface Measurements 

It was necessary to calculate several fundamental GIS measurements to create the 

basic geospatial data engine for the cluster generator.  Artificial patient datapoints are to 

be added following several parameters, many of which require the creation of a 

relationship between Earth surface measurements in meters and degrees of latitude and 

longitude.  The number of degrees of latitude and longitude varies per number of meters 

of distance measured on the Earth’s surface at each latitude and longitude.  GIS 

conversions that would properly calculate these distances were necessary to create.   
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An important consideration was picking an appropriate distance conversion model for 

the calculations.  Sphere equations break down significantly at small distances, but the 

Haversine formula is correct at almost all populated points on the Earth’s surface.  At 

several Longitude and Latitude pairs the Haversine formula was tested for accuracy.  At 

each Latitude-Longitude, the distance between two datapoints was measured and then 

compared to the result that Microsoft Corporation’s MapPoint GIS mapping tool 

produced for the same measurement. 

 

Using the Haversine Formula 

To use the Haversine calculation, the Earth has radius R, and the locations of two points 

in spherical coordinates (longitude and latitude) have names lon1,lat1 and lon2,lat2.  In 

psuedocode, the Haversine Formula [3] is calculated with the following code: 

 

  dlon = lon2 - lon1 

  dlat = lat2 - lat1 

  a = (sin(dlat/2))^2 + cos(lat1) * cos(lat2) * 

(sin(dlon/2))^2 

  c = 2 * atan2(sqrt(a), sqrt(1-a))  

  d = R * c 

 

This system gives mathematically and computationally exact results. The intermediate 

result c is the great circle distance in radians. The great circle distance d will be in the 

same units as R. 

Distance Measurement Methods 
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Programmatic methods were written to solve a number of other geocoding basic needs, 

generally involving latitude-longitude datapoints and physical Earth surface distances.  

Inside the main GIS class, we have three primary methods to handle these basic data 

conversions.  The first is a method to find the distance between to latitude-longitude 

points, which uses the specific latitude-longitude of the first datapoint to create a ratio of 

degrees per physical unit of distance (meters were used) in each direction (N-S latitude 

and E-W longitude).  The ratios are calculated by first creating artificial datapoints in 

each direction that are a 0.05 degrees to the north and to the east, and the corresponding 

physical distances are calculated using the Haversine Formula (discussed above) and then 

the ratios are computed (using the artificial datapoint distance divided by the calculated 

physical distance.)   

A second method was created to find the second latitude-longitude point that is a 

certain physical distance, measured at a specific angle, from a first latitude-longitude 

datapoint.  The angle was measured from the Euclidian x-axis and increased in a counter-

clockwise form.  The distance from the first point was entered in meters, and the output 

was a second GIS datapoint that was related to the first point and the parameters entered. 

Finally the methods were created that found the number of degrees latitude-longitude 

per unit of physical distance, in meters (in each respective direction.)  These methods 

were then used in the above two methods for those basic calculations. 

Basics of Date Algorithms Implemented in Cluster Generator 

Cluster data points in a real outbreak are added at different rates, depending on a 

number of factors including the type of outbreak and the type of people it affects.  One of 

these factors is the temporal growth pattern of the cluster.  Three date algorithms 
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(temporal growth algorithms) were implemented to model the ways in which a disease 

might grow in time: a random growth-pattern, a linear growth-pattern, and an exponential 

growth-pattern. 

The random, linear, and exponential models were chosen as a base set because they 

were the simplest, most widely-applicable models.  The random algorithm simulates a 

disease which randomly affects the population.  An example of such an outbreak is the 

recent Anthrax attacks where several people in the United States were affected in a 

scattered random pattern.  The linear algorithm models an outbreak which increases at a 

constant rate, which may be more applicable for a non-communicable infection that may 

be spreading spatially with respect to time.  The exponential algorithm is probably the 

most realistic algorithm for some communicable infections, because at first a disease will 

affect only a few people and then grow exponentially at a rate determined by the motility 

of the population, the incubation period of the disease being studied, the population 

susceptibility rate, and the transmission rate for that disease.  The rate of growth for the 

linear and exponential algorithms can be adjusted with a multiplier, based on those 

factors for how the disease spreads.   

When designing the system, the date-assignment algorithms were separated from other 

parts of the implementation in the rest of the system so that it would be easy to add more 

date algorithms to model different types of outbreaks. 

The algorithms are described in Fig. 1, below.  For the random algorithm, a random 

number is generated between 1 and the number of days in the cluster.  This produces a 

random date distribution.  For a linear distribution, we divide the day value (1, 2, 3, etc.) 

by the sum of the day values and multiply it by the total number of points to determine 



Bioterrorism Detection Cluster Creation Tool 22 

the fraction of the total points that occur on that day.  This is also scaled by a multiplier to 

alter the rate of linear growth.  Similarly for the exponential distribution, we divide 

e(multiplier*day number) by the sum of all of the e(multiplier*day number) day values and multiply by 

the number of points to determine the number of points that occur on that day.  Figures 2 

and 3 show examples of linear and exponential growth-pattern probability distribution 

estimations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Random: 

Linear: 

Exponential
: 

Figure 1: Three date algorithms have been implemented in the Cluster Creation program: Random, Linear, and 
Exponential. 
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Figure 2: An example of the linear date algorithm estimation for thirty points spanning three days. 

 

Figure 3: An example of the exponential date algorithm estimation for thirty points spanning three 

days. 

x = Day Number 

y = x 

x = Day Number 

y = e^x 
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Parameters for Cluster Creation Tool  

Input Parameters: Single Cluster 

The following are the current input parameters for creating a single patient cluster 

(Table 1).  Parameters can be added or deleted by updating the GUI and modifying the 

GenerateCluster function in the cluster generator class. 

Table 2: Parameters that can be altered when creating a single cluster. 

Outbreak Parameter Description of Outbreak Parameter 

Cluster ID Number  User specified reference or identification number for each 
cluster.  Within each cluster, every point will have its 
own identification number which will range from 0 to n-
1, where n is the number of cluster points.  

Number of Points in the cluster Number of patients or points in the generated cluster. 

“Reference Point” GIS 
Location 

The latitude-longitude coordinates of the reference point 
coordinate, which could be a hospital or a primary care 
facility, for example. 

Maximum cluster radius The distance of the outermost point in the cluster from 
the center of the cluster. 

“Angle” from the Hospital The angle of the cluster from the hospital with respect to 
the latitude/longitude of the reference GIS location, 
measured counter-clockwise from due east as zero 
degrees, using unit circle convention. 

Distance from the hospital The distance of the cluster center point from the hospital. 

Numbers of Days the Cluster 
should span 

The number of days from when the first person shows 
symptoms to when the last person does. 

Date Algorithm This specifies which of the three (additional are are 
possible) to choose. 

Description and output 
filenames 

The user can specify where the cluster data and user-
specified cluster description will be written. 
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Parameters for Cluster Creation Tool 

Input Parameters: Sets of Clusters 

The tool can generate a series of cluster which vary in one of five ways, which are 

described below.  The user specifies the number of clusters to create and selects which 

parameter to vary.  He also specifies a minimum and maximum value for which to vary 

the parameter, which will also be described below.  

• Number of points in the cluster – The total number of points in the cluster will be 

varied over all the clusters. 

• Maximum distance from cluster center point (radius) – A number of clusters will 

be created, all in the same location, but each with a different radius. 

• Number of days of cluster duration – This varies the number of days that each 

cluster spans. 

• Angle around the hospital – A number of clusters will be created around the 

hospital with the angle varied. 

• Distance from hospital – The clusters will be along the same line at different 

distances from the hospital. 

 

Output Files from Cluster Creation Tool 

The Cluster Creation Tool creates at least two output files every time it is run.  These file 

names are specified by the user in the input parameters.  The program creates a data file 

for every cluster that is created and a record file describing the cluster.  The data file 

contains the cluster point ID # (assigned numerically from 0 to the number of points 

minus 1), the longitude and latitude of the cluster point, and the relative date of the 
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cluster point.  Figure 4 displays a sample output file.  When generating a series of 

clusters, the program automatically generates n files with appended identifiers.  For 

example, when creating 10 clusters, the program would generate 10 files of the output file 

name each appended with a number from 0 to 9. 

 

 

 

 

Cluster Generator User Interface 
 

 The user interface, displayed below in Figure 5, for the cluster generator uses the 

Java Swing toolkit to allow users to quickly select desired parameters for cluster creation.  

The user enters appropriate values into the text boxes for the type of cluster creation (or 

series cluster creation methods) and then selects using radio button the desired time-

course for cluster entries.  Users may also select where in the file system to save the 

output files from the cluster generation.  There are two distinct output files for which the 

user should select a destination and a filename.  Once the user has made the appropriate 

selections, it is possible to create a single cluster or a series of clusters by clicking the 

appropriate button.  The user interface will alert the user whether the clusters were 

created successfully, and if they were not created successfully, an alert window will 

 
 
0,-71.10793353860446,42.360580952101984,4 
1,-71.10616263466369,42.3636042625572,3 
 

Figure 4: Sample data file output. 
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appear which describes the error or exception that was thrown from the generator 

program. 

 

 
Figure 5: Cluster Generator Graphical User Interface 

 

Results of Cluster Generation 
 

Two sample scenarios for use of the cluster creation tools are described below.  The 

first example demonstrates the use of the cluster creation tool to create a single artificial 

patient datapoint cluster, while the second demonstrates the use of the series of patient 

clusters creator.   
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Sample Program Input and Output: 

Example 1: Creating a Single Patient Cluster: 

The first example is the creation of a single artificial patient datapoint cluster.  This first 

cluster includes patient reports of an outbreak that spans five days with the following 

parameters: 

 

Cluster ID:   442 (randomly assigned by user) 

Number of Points in Cluster:  30 

Centerpoint:   (MIT) 

  Longitude: -71.09516 

  Latitude:  42.35666 

Cluster Radius:    600 m  

Angle from centerpoint:   90  

Distance from centerpoint:  1600 m 

Number of Days:   5 

Cluster Description:   Linear time-growth cluster North of MIT 

 

This linear time-growth cluster has been placed approximately 1 mile (1600m) due North 

of MIT, which is described by the latitude-longitude datapoint (-71.09516, 42.35666).   

 

Example 1: CSV Text Output Sample: 

The CSV (comma-separated output file, described above,) for the single cluster example 

is partially described by the portion of the sample output below.  Eleven points are listed, 
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but thirty are actually enumerated in the output file.  It is of value to notice that the dates 

are enumerated using the linear algorithm and so there are two points on the first day, 

four on the second day, six on the third day, continuing in the file to complete 

enumeration of the thirty patient points and five days spanned. 

0,-71.09600452536358,42.37455407329273,1 

1,-71.10149672138236,42.365894560466806,1 

2,-71.0954755413253,42.373890954435524,2 

3,-71.08968377859539,42.37242100053542,2 

4,-71.09281946336338,42.36955324904336,2 

5,-71.09564524977307,42.371694560897,2 

6,-71.09345472615571,42.370979504450304,3 

7,-71.09983295495935,42.369683605959985,3 

8,-71.09781606117451,42.37282397457113,3 

9,-71.09685871099056,42.37540065852763,3 

10,-71.0921214185705,42.37216701505921,3 

... (to point with ClusterID 29) 

 

Example 1: Microsoft MapPoint GIS Mapping Output for Single Cluster: 

The output csv file was next imported into a GIS analysis tool created by Microsoft, 

called MapPoint 2002.  The map below, Fig. 5, illustrates the faithful creation of the set 

of points in the single patient data cluster.  The date of each patient in the artificial 

outbreak cluster is described by the color of the patient circle. 
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Figure 6:  A single linear time-growth cluster north of MIT. 

 

Example 2: Creating a Series of Clusters (Varying Angle) 

Varied angle around centerpoint (MIT) and created 4 clusters. 

Minimum angle:  0 

Maximum angle:  270 

Number of Clusters:  4 

Centerpoint:   MIT (same LongLat point as above) 

Cluster Radius:   400m 

Distance from MIT:  3000m 

 

In this example, the angle around MIT was varied in the series of four clusters that were 

generated.  The series cluster generator created four files automatically, and each file was 

imported into MapPoint with a different color, and charted, shown below in Fig. 6. 
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Figure 7: Creation of a series of four clusters about MIT (with the angle varied.) 

 

Creating a Set of Outbreak Datasets for Spatial Detection 
Algorithm Validation 

 
 To rigorously evaluate spatial detection algorithms, it will be valuable to create a 

set that contains patient cluster datasets that span a reasonably-valid range of parameter 

values, as described in Chapter 2.  A set of 360 artificial patient clusters were created 

using the cluster generator that varied over ranges of distance from the hospital, total 
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number of patients in the cluster, size of patient cluster (or cluster density), relative angle 

with respect to the hospital,  

 
Evaluating the Accuracy and Uniformity of Generated Clusters 
 

Semi-synthetic datasets created by the cluster generator fall within a specified set 

of parameter-based boundaries.  Cluster data points are created randomly within the 

domain defined by those parameters, so it is important to verify that the clusters are 

accurately and are close to uniformly generated.   

To measure uniformity of generated clusters, ten test clusters were created with 

one hundred points in each cluster.  The centroid of each set of cluster points was then 

calculated and compared to the specified centerpoint of that cluster.  In every case, the 

cluster centroid was within five percent of the specified cluster radius, in distance, from 

the specified centerpoint.  This result demonstrates that the datasets are uniform, on 

average, with a large number of points, as would be expected with a random distribution. 

To measure the accuracy of the geocoding engine, 360 clusters were made around 

a single centerpoint, varying the angle evenly (1 degree added per cluster,) and they each 

had a cluster centerpoint that fell exactly on the circle that they should have formed.  This 

same test was conducted at 5 random latitude-longitude locations and the same results 

were achieved. 
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Chapter 4: Implementation and Validation of 

M-Statistic Real-Time Spatial Detection 

A spatial detection algorithm was implemented to evaluate the cluster generation 

program described in the previous chapter.  The specific algorithm, the M-statistic, is an 

interpoint-distance based detection algorithm that analyzes patient distributions with 

single-syndrome, single-week sets of patients in an area.  A rich treatment of the basic 

algorithm and the metrics used is provided in the original paper. [13] 

To create a baseline set of values that would be expected to evaluate how spatially 

clustered each week’s patients are, historical patient address data are analyzed.  Four 

years of Children’s Hospital Boston data were taken and seasonally separated for each 

syndrome.  For each summer, for example, data for all patients with each syndrome were 

taken and combined.  Each patient’s distance to every other patient over the four 

summers was calculated in miles.  With N patients in those four summers, there are a 

total of N * (N – 1) / 2 distances that are calculated.   

All of those distances, in increasing order, were placed into 10 equally sized bins, 

such that each bin contained approximately 10 percent of the total distances.  The cutoffs 

were then determined for those seasonal, specific syndrome bins, as distances in miles.  

The first bin, for example, started with 0 miles and the final bin ended with 100 miles, 

because the total distance from the hospital that was maximally allowable in the study is 

50 miles.  (Two patients can each be 50 miles from the hospital, on opposite sides of the 

hospital, for a total inter-point distance of 100 miles.) 
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After the baseline distribution values have been calculated, it is possible to evaluate how 

different the distribution of patients from a specific single week might be.  For M patients 

that arrive at the emergency department in a specific week, the M ( M – 1 ) / 2 inter-point 

distance values are calculated.  Those values are then placed into the appropriate bins that 

were established in the baseline distribution calculation.  Now, inside the bins, there is an 

uneven distribution – originally the bins had each contained ten percent of the total inter-

point distances.  At this stage, because all of the inter-point distances in this calculation 

only depend on the patients that have arrived in the ED in the present week, these 

distances will likely be equally distributed into the bins with ten percent in each.   

The M-Statistic for the current week is then calculated using the formula below.  

The transpose of the vector observed minus expected values for each bin entry (ten 

entries for the ten bins) is taken and multiplied by the column vector product found by 

multiplying the inverse of the seasonal covariance matrix with the observed minus 

expected vector.  The final value recovered from this multiplication is a single inner-

product value  

 
M = (obs - exp)T  x  [S־ (obs - exp)] 
 

obs = 1 x 10 matrix of normalized observed proportions 

exp = 1 x 10 matrix of normalized expected proportions 

S = 10 x 10 variance-covariance matrix of the baseline proportions (calculated 

with data for 105 weeks) 

T  refers to the transpose of the matrix 

S־  refers to the Moore-Penrose generalized inverse of the S matrix 

 

Proportions were normalized as follows: 
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Proportion = bin freq ÷ (total for all bins x 100). 100 = maximum pair-wise 

distance 

 

Detection Strategies 
 
Outbreak detection systems must decide whether an outbreak has occurred in a relevant 

dataset.  To determine whether there is cause to alert public health officials, several 

detection strategies can be employed.  Each of these detection strategies accounts for a 

specific segment of the total domain of outbreak information that is derived from the M 

statistic test, including the spatial clustering ‘m’ value and the total number of patients, 

the ‘n’ value.  It appears that the n*m product value is also a useful metric for detection 

of patient clustering, as it accounts for so-called spatio-temporal clustering, which uses 

both knowledge of the abnormality of spatial clustering and temporal aberrations.  As a 

product, the value also increases the standard deviation of the distribution of possible 

achievable result values, thus potentially increasing the specificity of the test.  Below is a 

table which describes the rules that are associated with each of the four detection 

strategies and section of the n, m domain they each occupy. 

Table 3: M-Statistic Detection Strategies 

Strategy Description 

N > 95th percentile, by 
season 

Number of visits is too high, separate values for each 
season 

M > 95th percentile, by 
season 

M statistic is too high, separate values for each season 

MN > 95th percentile Calculate M × N, value is too high 

N and MN rules 
N is too high (top 0.5% distribution) 
OR  M × N  is too high (top 0.5% distribution) 
OR  both N is high (>80%) and M × N is high (>80%) 
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These detection strategies were chosen as possible cutoffs because they provide an 

observed significance level, or p-value, of 0.05.  The first three tests, N > 95th percentile, 

M > 95th percentile, and the product test, MN > 95th percentile, all have p-values of 0.05.  

These percentile cutoff values are determined by the specific statistical sampling that is 

done as the m-statistic baseline values are computed. [13]  The composite test, which 

uses three possible rules, also represents a p-value of 0.05.  Instead of simply being the 

tail-end of a normal distribution, these rule sets represent three separate piece-wise 

segments of the n, m domain that all sum to the a p-value of 0.05.  These detection 

strategies are described here because they each represent the same observed significance 

level, however one detection strategy, the product MN > 95th percentile strategy, has a 

higher observed detection rate, so it will likely be used to a greater extent in practice. 

Here, we will only use the m-statistic detection rates of semi-synthetic datasets to validate 

the m-statistic’s detection of those datasets, rather than to rigorously validate the m-

statistic.  A validation of the m-statistic itself should include a complete ROC curve, 

which describes the tradeoff between sensitivity and specificity of a specific test.  If this 

is not included in a validation of a test, it would allow for a test that always detects a 

cluster in a semi-synthetic dataset, but also often detects a cluster in a dataset without 

one.  However, this validation and ROC curve is out of the scope of this work, so we use 

the simpler detection rate analysis as an illustration of effective semi-synthetic dataset 

detection. 

 

Test Clusters Used for M-Statistic Validation 
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 A set of 252 synthetic test clusters were created to determine the detection rate for 

the M-Statistic test.  Those synthetic clusters were combined with authentic emergency 

department data from Children’s Hospital Boston (CHB).  Each of the cluster datasets 

was combined with each of 204 weeks of CHB ED patient data to create a total of 51,408 

semi-synthetic datasets for M-Statistic validation.  The test sets contained a range of each 

of the possible cluster generator parameters, enumerated in Table 3, below. 

 
Table 4: Test Cluster Parameter Values 

Cluster Parameter Values 

Distance from Reference Point 5, 15, 50 miles 

Radius of cluster 250, 500, 1000, 3000 meters 

Cluster Magnitude 10, 25, 40 patients 

Cluster Duration 1 day 

Angle from Reference Point 36, 72, 108, 144, 180, 216, 252, 288, 324, 360 deg. 
 
 
M-Statistic Detection Rates by Strategy 
 
Seasonally, using 12,852 (one fourth of the 51,408 total) test clusters, each detection 

strategy was used and overall detection rates were observed as listed in Table 5, below.  

These results represent the percentage of test clusters that were detected using each of the 

strategies for each season of data.  Some of these detection rates seem quite low, but that 

is because one third of the test clusters only added ten patients to the entire week of test 

data.  This small of a perturbation to the overall weekly datasets did not appear to be 

uncovered well by the N detection strategy (which depends entirely on the number of 

visits over the week.  There is a significant increase in the detection rates of spring and 

summer clusters using the N-based detection strategy.  This is likely due to the strong 
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seasonal decrease in hospital emergency room admissions during the spring and summer.  

The increase in seasonal admissions during the winter and fall decrease the ability to 

detect clusters purely on the number of emergency department admissions alone.  This is 

due to the overall number of patients and the variability (and standard deviation) of those 

admission rates during the winter and fall being significantly higher than those in the 

spring and summer.  

Table 5: M-Statistic Detection Rates for Various Strategies, by season 

Cluster Detection Strategy Percentage of test clusters that triggered alarms 

 All Seasons Winter Spring Summer Fall 

N > 95th percentile 16.24 11.40 21.67 19.66 11.97 

M > 95th percentile 49.13 43.61 49.42 55.35 48.01 

M*N > 95th percentile 62.32 55.43 63.49 70.90 59.27 

N and M*N Composite 55.83 66.60 49.61 55.01 52.52 
 

The purely spatial clustering detection strategy (M-based detection) also varies 

seasonally.  This is likely due to the nature of the type of detection strategy involved – 

while spatial clustering should be no more prevalent in the absence of actual outbreaks 

during any one season than another, it is likely that any cluster at all will stand out more 

when there are fewer patients.  This is the case during the summer, when there are 

sometimes fewer than half the number of patients (on average by week number) than 

there are during some winter weeks.  There is, however, a statistically significant 

decrease in the purely spatial detection strategy during the winter season.  One hypothesis 

as to why this might be true is that seasonally, during winter, there were significant 

influenza outbreaks in the test locations in each winter dataset that was used.  This type 

of outbreak would make the overall baseline clustering closeness threshold higher for the 
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winter than in other seasons, because a contagious (and likely closely-clustered) outbreak 

adds many more small inter-point distances to the baseline M-statistic inter-point distance 

distribution.   

 Another potentially interesting finding is that the N and M*N composite-based 

test serves as the best detection strategy during the winter season, and also, as a strategy, 

has its highest detection rates during the winter.  One potential reason for this is that the 

N and M*N composite detection strategy has as one option the rule ‘both N is high (>80 

percentile)’ and ‘M × N is high (>80 percentile)’, which appears to be a useful indicator 

in cases where there is neither a significantly high N nor a significantly high M*N value.  

With an N-based or M*N-based strategy percentile value of higher lower than 95, neither 

of those detection strategies will pick up potential clusters that have questionable 

numbers of patients and questionable spatial clustering.  Both of these together provide 

some motive for believing that there is a cluster present in a given dataset, and this is 

likely the case during the winter, when both N and M*N values are high, but not high 

enough to be detected using the other three alarm strategies. 

 Another controlled feature set component that can be used for separate analysis of 

the test cluster datasets is the size of the cluster in number of patients.  The artificial test 

datasets add either 10, 25, or 40 patients to each of the weeks of patient data.  Table 6 

contains the detection rates for each of the three cluster sizes, for each detection strategy. 
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Table 6: Sensitivity to detect simulated clusters of three sizes 

 Percentage of test clusters that triggered alarms 

Cluster detection strategy # extra 
visits All seasons Winter Spring Summer Fall 

M > 95 %ile, by season 10 8.30 6.30 7.81 11.73 7.32 
 25 57.41 47.09 60.34 65.52 56.36 
 40 81.69 77.44 80.10 88.81 80.34 
       
MN > 95 %ile 10 20.93 13.87 21.43 32.69 15.52 
 25 74.69 65.35 76.61 84.70 71.82 
 40 91.35 87.06 92.42 95.33 90.46 
       
N and MN rules 10 14.86 35.22 6.43 9.56 8.97 
 25 65.12 74.67 57.68 67.17 61.38 
 40 87.50 89.91 84.71 88.30 87.21 
 
 In all cluster detection strategies, larger clusters are more easily detected, which 

should be expected, because larger clusters provide larger changes from the expected 

distributions of patients.  The ability of M-Statistic detection using small sized clusters 

and only spatial data was very low during the winter, but detection was quite successful 

during the summer using only spatial data.  This is likely due to the fact that there are a 

greater number of patients in the winter, so additional patients with no aberrant spatial 

properties will be less easy to locate.  Another noticeable difference is that the spatial 

only (M-based detection) detection strategy has significantly lower detection rates than 

the other two detection strategies.  This is likely due to the fact that the other two 

detection strategies incorporate temporal data much more significantly, so an increase in 

the number of patients added should increase the chance that temporal detection values 

would be higher than normal.  This is confirmed by the increase of ten percent or more, 

seasonally.  Also worth noting is that in all strategies and in all seasons, the M-Statistic 

algorithm detected artificially added clusters of size 25 in over 75% of cases. 
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 Artificial clusters were added to authentic patient data at three different distances 

to the Children’s Hospital Boston centerpoint: 5, 15 and 50 km.  The detection rates for 

each of the M-Statistic strategies in each season are listed below in Table 7.  Increases in 

detection rates were observed as the clusters were added farther away from the hospital.  

This is likely due to the fact that the areas farther away from the hospital are less densely-

populated, so an increase in the number of patients there is more significant and visible to 

the system than is an increase in the number of patients in a more densely-populated 

neighborhood. 

 
Table 7: Sensitivity to detect simulated clusters at three distances from the hospital 

 Percentage of test clusters that triggered alarms 

Cluster detection strategy Km from 
hospital All seasons Winter Spring Summer Fall 

M > 95 %ile, by season 5 33.20 27.68 30.19 43.76 31.11 
 15 57.65 55.64 56.76 65.35 52.84 
 50 63.38 54.35 69.55 61.90 67.31 
       
MN > 95 %ile 5 49.33 41.82 50.58 60.26 44.42 
 15 69.81 62.78 71.01 76.89 68.35 
 50 73.41 67.51 74.40 80.13 71.40 
       
N and MN rules 5 42.44 56.21 34.10 40.92 39.08 
 15 62.87 72.02 57.47 62.91 59.43 
 50 67.92 76.03 63.90 67.25 64.80 
 
 
 One final controlled feature set component was the radius of the cluster; the 

radius defines the size of the space into which the same number of points are placed.  

This is then indirectly a measure of cluster density, which should have an appreciable 

effect on detection using the M-Statistic’s spatial strategies, because the spatial strategies 

measure the distribution of inter-patient distances.  Decreasing the radius should increase 

the number of patients that are close together in this distribution, so it should be expected 
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that smaller radius clusters should likely have higher detection rates.  An increasing trend 

as the radius of the cluster is decreased (with a single detection strategy and season,) but 

the detection rate appears to plateau below a radius of size 500 m.  This is somewhat 

unexpected, because the patients in a cluster with a 250 m radius are four times as 

densely packed as the patients in a cluster with a radius of 500 m.  One possible 

explanation for this observation is that the M-Statistic uses only ten bins to discretize the 

overall inter-point distance distribution in a given set of patients, with distances ranging 

from two patients in the same place (zero miles apart) to patients up to 100 miles apart.  

Because there are only ten bins into which to store the overall distribution, there may be a 

significant loss of small-scale patient visit information using this technique.  Even though 

the patients in the smaller clusters are four times as densely packed, they appear almost as 

densely packed to the M-Statistic algorithm, because most of those patients probably 

appear in the smallest size inter-point distance bin already.  One example of bin cutoffs, 

for Children’s Hospital Boston, GI, fall m-statistic: 

 

 

Table 8: Sensitivity to detect simulated clusters with four radius sizes 

 Percent time alarm was triggered 

Cluster detection strategy Radius 
in km All seasons Winter Spring Summer Fall 

M > 95 %ile, by season 250 m 54.75 48.10 55.56 61.47 53.67 
 500 m 53.82 47.48 54.24 60.58 52.81 
 1 km 51.73 45.72 51.81 59.05 50.18 
 3 km 36.24 33.15 36.08 40.31 35.36 

    0       2.45     4.23     6.08     8.09     10.64   13.92   18.11   23.59   30.85   100 miles 



Bioterrorism Detection Cluster Creation Tool 43 

       
MN > 95 %ile 250 m 66.97 59.54 68.82 75.04 64.25 
 500 m 66.41 59.10 67.67 74.96 63.68 
 1 km 64.71 57.75 65.94 73.11 61.82 
 3 km 51.21 45.32 51.53 60.51 47.33 
       
N and MN rules 250 m 60.67 69.52 55.00 61.18 57.34 
 500 m 59.93 69.12 54.10 60.33 56.55 
 1 km 58.28 67.91 52.47 58.33 54.81 
 3 km 44.44 59.87 36.88 40.21 41.38 
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Chapter 5: Discussion: Present Results and 

Future Development  

Use of the Cluster Creation Tool 

The current goal for use of the cluster creation tool is to evaluate multiple spatial 

detection algorithms using semi-synthetic datasets containing clusters that vary over all 

reasonable parameters and values.  In order to make the testing of this algorithm realistic, 

the clusters that are created by the tool must include the most realistic possible situations 

for actual patient cluster creation. 

 

Pertinent Syndromic Surveillance Future Objectives 

A good deal of work has been done in the field of epidemiology to determine what the 

most pertinent and realistic patient models of syndromic spread are.  Once the most 

realistic scenarios are assessed and mathematically described, they can be 

programmatically implemented and incorporated into the cluster creation tool.  Several of 

the most promising scenarios are described below and will be likely implemented as 

improvements to the current tool. 

 

Modeling the Super-Spreader Phenomenon 

Another valuable model to create in the cluster tool would be to create distributions of 

multiple sub groups within a cluster group that each grow in time, following the so-called 

“super-spreader” phenomenon.  In this example, one patient begins to spread (in time and 

space) a disease, which is then spread farther by super-spreaders, who each create their 
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own geospatial and temporal patient cluster distributions.  Those resulting distributions 

likely follow similar time courses and spatial growth patterns.  This super-spreader 

phenomenon has been observed with several diseases and would be expected in the case 

of a syndrome with an incubation time or another set of realistic conditions that lead to 

this type of spread. 

 
 

Nearest Neighbor Mapping 

At present, the cluster generator produces patient addresses in unrealistic locations such 

as rivers and oceans.  To address this problem, it is possible to map each point to its 

nearest neighbor in a database of patient addresses or in a database containing all physical 

addresses.  One issue with nearest neighbor mapping is that some locations will end up 

heavily populated with inappropriate cluster points.  For example, if a cluster is created in 

the ocean, all the cluster points will map to addresses along the coast line.  This is an 

unrealistic model set of points because the user was attempting to create a single, circular 

cluster, and may receive a bimodal or oddly-shaped cluster as output.  This problem may 

be alleviated by allowing no two points to map to the same point, or by deleting points 

which do not map closely to a physical address.  More work needs to be done to 

determine if either of these are accurate descriptions of how a disease might spread. 

 

Relating cluster density proportionally with population density  

Another pertinent question for future development is whether artificial cluster density 

should match location population density proportionally.  The benefits of this would be 

added realism in the test sets of clusters, because the number of patients that appears in 
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an outbreak is very likely related to the number of people per unit of area in a certain 

location.  Census data is publicly available at the census block group level that describes 

the population density for relatively small areas.  This data could be harnessed to allow a 

user to specify a number of patients to add to a cluster per unit of population density.  

Using a metric such as number of patients to add to the cluster per population per square 

mile would allow clusters to be created with a dynamic number of patients that would 

probably be more appropriate and interpretable than just a user-specified number of 

people. 

 

Cluster Location Distributions  

For specific types of outbreaks, different geographic patient distributions have been 

observed.  Similar to the addressed issues of time-evolution modeling of artificial patients 

in the cluster, the physical distribution of the patients in a cluster may be very valuable 

during analysis, because of the additional information that it may provide algorithms. 

This additional analysis information could be harnessed by a tool that might 

interpret geographic cluster distributions and give some sort of parameter-set or value 

back to describe the orientation and/or distribution of the points.  With this basic analysis 

of the distribution, specific algorithms could be chosen for analysis and there would also 

be an additional set of clues as to the possible sorts of illnesses that might be involved. 

There are also considerations related to the types of geospatial distributions.  It 

will be valuable to research how those clusters could be situated in real-life examples.  

Geographic possibilities are Gaussian, Linear, Exponential, teardrop, among others. 
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Limitations of Cluster Generator 
 

An advantage of controlled feature set simulations is that any set of parameters 

can be chosen to mimic a known or theoretical outbreak.  However, the use of any 

simulated data for benchmarking syndromic surveillance systems carries the risk of 

evaluating performance under unrealistic conditions. The controlled feature set 

simulation approach entails the explicit assumption that the historical data are pure noise 

and contain no signal.  For bioterrorism-related events, this assumption is almost 

certainly true.  However, it is quite possible, and even likely, that detectable outbreaks of 

naturally occurring infection are contained within the historical data.   

Another limitation is that this approach does not account for processes occurring 

at the syndromic grouping stage, because artificial cases are injected directly into the data 

stream.  When a case of true upper respiratory infection presents to the ED, it may or may 

not be correctly assigned to the proper syndromic group based on a chief complaint or 

ICD code.  The approach could be modified, however, to introduce simulated cases 

earlier in the process, hypothetically presenting them to the syndromic classifier, enabling 

modeling of the accuracy of the syndromic grouping process.  Also, in live syndromic 

surveillance systems, records representing specific events for a given day may be 

transmitted from the data sources at different points in time.  Such time delays could be 

incorporated into the controlled feature set simulations.  In the experiments described, 

several discrete parameter values are assigned.  Another approach would be to use a 

method such as Monte Carlo simulation to redefine the model parameters over a 

smoother distribution of values.  Importantly, the application of controlled feature set 
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simulation to surveillance using multivariate data streams requires explicit assumptions 

about the relationships among the signal features across data sets.  

 
Conclusion 

 

The use of semi-synthetic datasets containing authentic background noise and 

outbreaks defined by a controlled feature set provides a valuable means for benchmarking 

the detection performance of syndromic surveillance systems.  A cluster generator was 

implemented with the ability to quickly create semi-synthetic test clusters for use in 

evaluating detection rates of spatial detection algorithms under a variety of controlled 

feature set conditions. 
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Appendix A: Real-time M-Statistic 
Documentation 
 

Real-Time M-Statistic Patient Spatial-Clustering Detection System 
Calculates the real-time M-Statistic values for a specific hospital, syndrome, 

and date span against a baseline computed separately.  An implimentation of the M-

Statistic spatial cluster detection approach. 

 

Libraries Imported 
java.sql.*; 

java.lang.Math.*; 

java.lang.Object.*; 

java.util.*; 

java.io.*; 

Jama.*;  

 

The first five imported libraries are Sun Java(TM) 1.4.2 libraries.   Jama.* is the 

numerics and matrices Java Class Library that helps store and manipulate M-Stat 

matrices, and is publicly available from http://math.nist.gov/javanumerics/jama/ , created 

by The MathWorks and the NIST. 

 

M-Stat API-Level Methods     
public static void executeCompositeMstatForRegion ( int region_id, int 

int_num_prev_days ) 

This method computes the composite m-statistic for a region ( which is comprised of a 

group of hospitals with the same region_id field value. )  This uses all patients from all of 

those hospitals that meet the basic inclusion requirements for the computation (same 

syndrome, same date span.) 
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This method does not allow for customization of the m-stat query and only takes the 

region_id and the number of days to compute each syndrome's mstat.   

Outbreaks are entered into the outbreaks table of the database as appropriate. 

 

public static void executeAllMstatsForRegion( int region_id, int num_prev_days ) 

This method independently executes all of the relevant mstat calculations for a region, 

but does not combine the patients from different hospitals into one single mstat 

calculation for each syndrome.  Instead, patients with each syndrome, from each hospital 

are run independently of one another.   

Outbreaks are entered into the outbreaks table of the database as appropriate. 

 

public static void executeAllMstatsForSpecHosp ( int num_prev_days ,int hosp_id  ) 

This method calculates the mstat values for each syndrome from a single hospital for the 

past n days.   

Outbreaks are entered into the outbreaks table of the database as appropriate. 

 

public static void executeAllMstatsGeneralNDays ( int num_prev_days ) 

This method independently executes all of the relevant mstat calculations for a region, 

but does not combine the patients in the calculation.  Patients with each syndrome from 

each hospital are run independently of one another. 

Outbreaks are entered into the outbreaks table of the database as appropriate. 

 

public static Vector getSyndromeIdVector() throws ClassNotFoundException, 

SQLException 

This method returns a vector of Integer objects that contains the active syndromes in the 

database relation syndrome_info.  Active syndromes are determined by inspection of the 

active field, which has a value of '1' for active syndromes. 

 

public static Vector getHospitalIdVector() throws ClassNotFoundException, 

SQLException 
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This method returns a hospital id vector which is a vector of Integer objects that contains 

only hospitals with an active field = 1 in the hospitals table. 

 

public static Vector getHospitalIdVectorInRegion(int region_id) throws 

ClassNotFoundException, SQLException 

This method returns a hospital id vector which is a vector of Integer objects; this only 

returns the active hospitals in a specific region.  Active is described in the hospitals 

relation of the database with active = 1. 

 

public static void executeMstatLastNDaysSingle ( int num_prev_days, String 

season, int syndrome_id , int hospital_id  )  

This is a helper method that simply handles getting the Timestamps that are relevant for 

the date span that will be part of the actual Mstat calculation. 

 

public static void executeMstatSpecific ( String season, int syndrome_id, int 

hospital_id, Timestamp start_date, Timestamp end_date ) 

This method is the most specific execution method for the mstatistic.  It allows for a 

specific start and end date, specific hospital_id, syndrome_id, and season, and 

automatically retrieves the appropriate values, calculates the specific m-statistic value, 

compares that calculated value against the baseline value in the database, and then 

writes an outbreak into the outbreaks table of the database as appropriate. 

 

public static void writeOutbreaksToDatabase(Vector outbreakVector) throws 

ClassNotFoundException, SQLException 

This method takes a Vector of Outbreak objects and writes it to the outbreaks table.  

Outbreak objects follow the descriptions in the Outbreak class section of the 

documentation, and specify whether the calculated mstat value was over the expected 

threshold by some specified amount. 

 

 

 



Bioterrorism Detection Cluster Creation Tool 52 

public static Timestamp getCurrentTimestamp() 

This method returns the current time as a java.sql.Timestamp.  It is a helper used to 

calculate specific date spans for methods that require timestamps. 

 

public static Timestamp getTimestampNDaysBefore( Timestamp 

currentTimestamp, int daysBefore ) 

This method takes a java.sql.Timestamp and returns a java.sql.Timestamp that 

corresponds to the date/time of the current time less n days before.  This is a helper 

method used to calculate specific date spans for methods that require them, as well. 

 

public static String findCurrentSeason() 

This helper method returns a String that is either “winter”, “spring”, “summer”, or 

“fall”, depending on the appropriate season.  This is a potential change in v.2.0 to ints 

with findCurrentSeasonInt(). 

 

public static Vector requestLongLatsFromDatabaseSpecific( Timestamp start_date, 

Timestamp end_date, int syndrome_id, int hospital_id ) throws 

ClassNotFoundException, SQLException 

Helper method to retrieve a Vector of LongLat Objects for a specific date span, 

syndrome_id, and hospital_id.  This method must be called from a try/catch loop. 

 

public static Vector requestVisitsFromDatabaseForHosp( Timestamp start_date, 

Timestamp end_date, int hospital_id ) throws ClassNotFoundException, 

SQLException 

This method returns the Visit objects that meet the criteria from a specific hospital and  

date span.  There is a Visit class described separately. This method retrieves Visit objects 

corresponding to patients with all active syndromes. 

 

public static Vector requestVisitsFromDatabaseForRegion( Timestamp start_date, 

Timestamp end_date, int region_id ) throws ClassNotFoundException, 

SQLException 
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This method returns the Visit objects that meet the criteria from all hospitals in a specific 

region and date span.  There is a Visit class described separately.  This method retrieves 

Visit objects corresponding to patients with all active syndromes. 

 

public static Matrix calcObsMinusExpMatrix( Matrix binCountsMatrix, int 

vectorSize ) 

This method is used by the calculate Mstatistic methods to actually calculate the 

observed minus expected value vector described in the m-statistic literature. 

 

public static Matrix sortDistancesIntoBins( Matrix binMatrix, Vector 

distanceColumnVectors ) 

This helper method sorts the interpoint distances into the ten value-based bins, as 

described in the m-statistic literature. 
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Appendix B: Availability and Program 
Requirements 
 

• Project name: AEGIS Cluster Creation Tool 
• Project home page: http://sourceforge.net/chipcluster/  
• Operating system(s): Platform independent 
• Programming language: Java 
• Other requirements: Java 1.3.1 or higher 
• License: e.g. GNU LGPL 
• Any restrictions to use by non-academics: none 

 

 List of abbreviations 
 

• ED – Emergency Department 
• GIS – Geographical Information Systems 
• ICD-9 – International Classification of Diseases, 9th Revision 
• GUI – Graphical User Interface 
• CSV – Comma-Separated Values 
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