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ABSTRACT 
 

Increasing numbers of methodologies are available to find functional genomic clusters in 
RNA expression data. We describe a technique that computes comprehensive pair-wise 
mutual information for all genes in such a data set. An association with a high mutual 
information means that one gene is non-randomly associated with another; we 
hypothesize this means the two are related biologically. By picking a threshold mutual 
information and using only associations at or above the threshold, we show how this 
technique was used on a public data set of 79 RNA expression measurements of 2,467 
genes to construct 22 clusters, or relevance networks. The biological significance of each 
Relevance Network is explained. 
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1   Introduction 

1.1  Increasing number of methodologies available to functionally cluster genes 

With the human genome sequencing nearing completion in one year and with the 

increasing use of microarrays to determine expression levels across the known genome, 

the problem of predicting the function of newly discovered genes has taken center stage. 

Newly developed techniques in bioinformatics use sequence, organism, and expression 

information to create clusters of genes with related functions. Current methodologies in 

functional genomics that use RNA expression data for clustering can be roughly divided 

into three categories: simple criteria matching, those that use Euclidean distance, and 

comprehensive pair-wise comparisons. 

The first category contains the simplest use of RNA expression data sets. Levels 

are measured before and after an intervention. Fold-differences are calculated for each 

gene and the genes are sorted accordingly. Genes that demonstrate a fold-change greater 

than a given threshold are then considered “clustered” with the intervention. There have 

been several studies using this technique. [1, 2] 

Self-organizing maps (SOM) are in the second category. This methodology uses 

multi-dimensional points corresponding to genes. Coordinates for these points represent 

expression levels at various time points. A grid of centroids is imposed in the multi-

dimensional space, then allowed to drift towards collections of points. When completed, 

centroids reflect clusters of genes demonstrating similar time-course behavior. In this 

way, related genes have a smaller Euclidean distance in the multi-dimensional space. 

Tamayo, et al., used this technique to functionally cluster genes into various patterned 

time-courses in HL-60 cell macrophage differentiation. [3] Törönen, et al., used a 

hierarchical SOM to cluster yeast genes responsible for diauxic shift. [4] 
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The third category reflects those methodologies that comprehensively compare all 

genes against each other using a dissimilarity measure. Eisen, et al., took expression 

levels at various time points and created a vector for each gene. He then compared all 

genes against each other and recorded the correlation coefficient between vectors, then 

constructed a phylogenetic-type tree with branch lengths proportional to the correlation 

coefficients. [5, 6] 

One methodology in both the second and third categories involves the 

construction of phylogenetic-type trees with branch length proportional to the Euclidean 

distance between genes, with coordinates again representing expression levels at various 

time points. Wen, et al., used this technique to find five waves of expression during 

embryonic neural development. [7, 8] 

1.2  Relevance Networks 

We have previously developed a methodology, termed relevance networks, that takes 

large data sets of clinical laboratory results and ascertains facts of human physiology by 

performing pair-wise correlation coefficients. [9] 

Relevance networks are a technique where one evaluates the similarity of features 

by comprehensively comparing all features with each other in a pair-wise manner over 

the same set of cases. Strictly speaking, relevance networks are defined and implemented 

as a graph 

{ } { } { }{ }
mmm ppn eeeeeeeeegggG ,...,,,...,,...,,,,...,,,,...,,

212121 122211121=  

where n nodes (
mnggg ,...,, 21 ) are connected by p sets of m edges 

({ } { } { }
mmm pp eeeeeeeee ,...,,,...,,...,,,,...,,

212121 1222111 ), where m = 
2

2 nn −
, and where each 

edge has a single value. In other words, each set of p edges completely connects the n 

nodes, where each pair of nodes is connected by a single edge. In practice, each set of p 
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edges represents a different dissimilarity measure (such as Euclidean distance, correlation 

coefficient, or mutual information), and several of these may be simultaneously applied to 

the same set of n nodes. When used with microarray data, genes are represented as nodes, 

and edges are labeled with a real-valued score, which represents the strength of 

association between two genes. 

Relevance networks are viewed or displayed by creating a subset Gs(f1, f2, …, fp, 

t1, t2, …, tp), where t1…tp are values (considered thresholds), and f1…fp are functions 

applying the threshold to each set of edges. For each i of the p sets of edges in G, only 

those edges where { }( )
miiiii eeetf ,...,,,

21
 is true are kept in the subset Gs. Typically, if the 

edges { }
miii eee ,...,,

21
 contain values between –1.0 and 1.0, then ti is set to a value between 

0 and 1 and fi returns true for ej if ij te >= , for all j between 1 and m, where je  means 

the absolute value of ej. When applied to microarray data, this translates into a biological 

hypothesis that those edges assigned a higher positive value or lower negative value are 

more likely to represent hypotheses of a biological relationship. Using a threshold serves 

to break apart the completely connected network graph into a set of smaller graphs. The 

resultant relevance networks are displayed in a graphical manner similar to figure 1. 

The choice of dissimilarity measures used to calculate the scores is arbitrary, and 

a previous implementation of relevance networks used correlation coefficient to score the 

SSB2

EFT1

Width of line is proportional to mutual 
information between genes

Length of line does not have meaning

Official Gene Symbol

 

Figure 1: Graphical representation of relevance networks. 
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similarity of patterns of features. [10] Relevance networks are interpreted by translating 

the scores, relations, networks and the dissimilarity measure used into a set of 

hypotheses. The hypothesis behind any interpretation of relevance networks is that those 

pairs of features with the highest (or lowest) scores correspond to a hypothesis of 

interaction that can be tested. 

Relevance networks have eight advantages over other clustering methods used in 

functional genomics. First, clustering algorithms based on Euclidean distance, like self-

organizing maps, cannot handle missing data. For example, it is not obvious where to 

place a gene in a multi-dimensional space when even a single gene expression 

measurement is inaccurately measured or missing. Relevance networks handle missing 

data without difficulty by ignoring any case in the calculation of a pair-wise dissimilarity 

measure that is missing either of the two measurements. 

Second, many clustering algorithms cannot handle negative interactions. As an 

example of a negative interaction in biology, p53 is a tumor suppressor gene, in that 

increased levels of p53 are known to be associated with decreased expression of other 

genes. The concept of negative interaction is clearly different than the concept of no 

interaction. Since Euclidean distance ranges from zero through the positive numbers, 

where zero is the strongest score, there is no representation for a negative interaction. In a 

multi-dimensional space, p53 and the genes under its control would not be close together, 

and clustering techniques using Euclidean distance would not cluster these genes 

together.  Dendrograms, as commonly used, also miss negatively correlated interactions. 

Without taking into account negative interactions, the behavior of tumor suppressor genes 

and other negative transcriptional factors will be ignored. Because relevance networks 

use correlation coefficients and mutual information as dissimilarity measures, the 

methodology take into account negative interactions between genes. 

Third, adding additional experiments worsens the dimensionality problem in 
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Euclidean distance. If a multi-dimensional space is constructed with each experiment as a 

separate coordinate axis, then adding additional experiments drastically increases the 

amount of “empty space”. This makes it increasingly difficult to find clusters that are 

biologically meaningful. Again, relevance networks can use dissimilarity measures where 

the confidence interval improves as additional experiments are added. [11] 

Fourth, constructing a dendrogram always attempts to connect all leaves. 

Phylogenetic-type trees are always constructed by trying to connect all leaves, and there 

is no rapid method for determining the stronger links (i.e. the more believable ones) 

compared to the weaker ones. In essence, relevance networks provide a dial for 

“believability.” One can quickly construct relevance networks at a high threshold, and 

then, if more novel hypotheses are needed, the dial can be lowered gradually to introduce 

slightly weaker links. 

Fifth, although biological functional clusters likely have variable numbers of 

genes in them, phylogenetic-type trees connect all clusters into a single structure. A 

visual inspection is often needed to determine where to cut the tree apart. Relevance 

networks create multiple networks containing varying numbers of genes. 

Sixth, phylogenetic-type trees can only cluster data of a single data-type. Mixing 

phenotypic measurements with expression measurements, for example, will produce trees 

with the leaves of phenotypic measurements scattered throughout the tree, which is not 

useful. Relevance networks can easily mix phenotypic measurements with expression 

measurements, and direct hypotheses and links are provided between different type data. 

[10] 

Seventh, features can only be positioned in a single place within a dendrogram. 

Each gene is directly connected to the tree with only one stem. In reality, a transcription 

factor may be responsible for regulating the expression of multiple other genes, but a 

phylogenetic-type tree methodology will link that transcription factor only with the one 
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gene it most closely resembles in expression pattern. Relevance networks clearly show 

that if a gene is closely linked to few or many other genes, then each link is shown 

separately. This is also important when a gene is similar to two different groups of genes, 

or when a pharmaceutical agent displays activity similar to two different classes of 

compounds. [10] 

Eighth, trees are constructed with only a single dissimilarity measure. A 

dendrogram can only cluster genes based on correlation coefficient or Euclidean distance, 

but not both. As mentioned above, relevance networks can mix multiple types of 

dissimilarity measures. For example gene A and gene B may be linked because of a high 

correlation coefficient, but gene B and gene C may be linked because of a high mutual 

information. Relevance networks can be constructed to include both types of links 

simultaneously. 

1.3  Using entropy and mutual information to evaluate gene-gene associations 

Our goal was to use this method to take large data sets of RNA expression measured 

under varying conditions and generate networks of hypotheses of gene-gene interactions. 

We compute the entropy of gene expression patterns and the mutual information between 

RNA expression patterns for each pair of genes. The entropy of an RNA expression 

pattern is a measure of the information content in that pattern, and is calculated using 

equation 1 

H(A) = – p(x ) log2( p(x ) )
i = 1

n

Σ ii
 

(Equation 1) 

where log2 is base 2 logarithm. [12] Higher entropy for a gene means that its expression 

levels are more randomly distributed. 

Gene expression is measured on a continuous scale, yet equation 1 shows how 

entropy is computed using discrete probabilities. To calculate entropy, we use a 

histogram or binning technique. We first calculate the range of values for each gene 
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separately, and then divide that range into n sub-ranges. In equation 1, p(xi) equals the 

proportion of measurements in sub-range xi. As n approaches infinity, the histogram will 

more accurately model the probability density function (PDF) for the gene. 

Ideally, n would be set to a specific appropriate value for each gene. For example, 

if a particular gene’s range of expression level is known to have only two functional 

states, say “on” and “off,” n for that gene could be set to 2. Previous work in applying 

mutual information to gene expression measurements have operated in this way, by 

assigning only two allowable states for all genes, and quantizing continuous expression 

measurements into these two states. [7] By assuming only binary values for each gene, 

one can represent a state of expression of all genes as a single Boolean vector. State 

transitions can then be modeled as a Boolean network, and logical rules can be intuited 

from these networks. [13] 

However, many genes are known to interact with other genes and proteins in a 

dose-response type of manner, where the specific amount of a gene affects downstream 

processes on a continuous scale. Most important, the specific number of functional states 

is currently unknown for the majority of genes. For our computations, we arbitrarily set n 

= 10 for all genes, though we acknowledge that changing this piece of a priori 

information can have a large impact on the ordering of gene-gene interactions by mutual 

information. [14] 

The mutual information is a measure of the additional information known about 

one expression pattern when given another, as shown in equation 2. 

MI(A, B) = H(A) – H(A | B) (Equation 2)

Equation 2 can be restated as equation 3. Mutual information can be calculated by 

subtracting the entropy of the joint RNA expression patterns from the individual gene 

entropies. 

MI(A, B) = H(A) + H(B) – H(A,B) (Equation 3)
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A mutual information at zero means that the joint distribution of expression values holds 

no more information than the genes considered separately. A higher mutual information 

between two genes means that one gene is non-randomly associated with the other. In this 

way, mutual information can be used as a dissimilarity measure between two genes 

related to their degree of independence. We hypothesize that the higher mutual 

information is between two genes, the more likely it is they have a biological 

relationship. 

1.4 Construction of Relevance Networks 

We used a publicly available RNA expression data set from Stanford, containing 79 

separate measurements of 2,467 genes in Saccharomyces cerevisiae. [5] The specific 

methodology of how RNA expression was measured has been previously described. [15] 

Genes were measured under a variety of conditions, including diauxic shift, mitotic cell 

division cycle, sporulation, and temperature and reducing shocks, and at various time 

points for each condition. Measurements of all genes were compared against each other, 

resulting in 3,041,811 total pair-wise calculations of mutual information, ranging from 

0.2 to 2.8. Each gene was thus completely connected to every other gene with a 

calculated mutual information. 

We then chose a threshold mutual information (TMI) and displayed only those 

genes that were linked to others with a mutual information higher than the threshold. Out 

of the completely connected network of genes, we were left with clusters of genes, or 

relevance networks, that were more strongly connected to each other than the TMI. 

We displayed the relevance networks graphically with nodes representing genes 

and lines between nodes representing hypothetical associations of genes. Relationships 

with higher mutual information were drawn with a thicker line. Nodes were positioned 

and edge crossings minimized using the Graph Editor Toolkit (Tom Sawyer Software, 

Berkeley, California). 
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2   Results 

2.1  Distribution of Mutual Information Calculations 

The distribution of the 3,041,811 pair-wise calculations of mutual information is shown 

in figure 2. The mode of the distribution of mutual information was 0.7. 

To determine the significance of this distribution, a permutation analysis was 

performed. [16-18] The expression measurements for each gene were independently 

randomly permuted, so that the average expression level for each gene remained constant. 

The pair-wise calculations of mutual information were then repeated, and a distribution of 

the new pair-wise mutual information was recalculated. This process was repeated 

independently 30 times, such that 30 independently-computed random permutations of 

the data were used, and 30 permuted distributions of pair-wise mutual information were 

calculated. 

The 30 permuted distributions were summed, and an average distribution was 

computed by dividing by 30. The average of the 30 permuted distributions is included in 

figure 2. Permutation was unable to create any associations with mutual information over 

1.3. Thus, associations found in the original data set with mutual information over 1.3 

could be viewed as significant. 
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Figure 2: Pair-wise mutual information was calculated between 79 measurements 

of RNA expression of 2,467 genes in Saccharomyces cerevisiae and the 

distribution of these is shown with filled circles. The same was calculated using 

permuted RNA expression measurements; the average distribution from 30 

permuted repetitions is shown with open circles. 
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2.2  Changing Threshold Affects Size and Number of Relevance Networks 

As the TMI is dropped from 2.0 to 1.2, the number and size of the relevance networks 

increases, as shown in figure 3. More nodes are introduced, and these nodes form large 

numbers of small networks. With an increasing number of nodes, the number of potential 

links between them increases; yet the connectivity, defined as the number of actual links 

relative to the potential number of links, drops from 100% to 1%. This indicates that most 

nodes are connected to only a few other nodes. When the TMI is decreased from 1.2 to 

0.8, the number of networks drops as the newly included nodes serve to merge existing 

networks with each other. 

At a TMI of 0.8, all the genes belong to a single relevance network. The 

connectivity of the networks then quickly increases until the TMI reaches 0.2, when the 

connectivity reaches 100%. 
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Figure 3: (A) Number of relevance networks as a function of the chosen 

threshold mutual information (TMI). (B) Number of generated hypothetical 

gene-gene associations versus TMI. (C) Number of genes used versus TMI. (D) 

Connectivity of relevance networks versus TMI. 
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Figure 4: Twenty-one of the 22 relevance networks created with TMI set to 

1.3. Node labels represent gene abbreviations; names can be found using 

http://www.ncbi.nlm.nih.gov/Entrez/nucleotide.html and are explained in the 

text. 
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2.3  Relevance Networks Seen in Saccharomyces cerevisiae 

Using the analyses above, we determined that the largest number of relevance networks 

was at a TMI of 1.2, and the highest mutual information reached in permuted data was 

1.3. Thus, we set the TMI to 1.3, which produced 22 relevance networks using a total of 

199 genes. Twenty-one relevance networks are shown in figure 4. Enlarged versions of 

these networks are available at http://www.chip.org/genomics/. We saw four main classes 

of networks: those that linked identical genes, those linking genes with similar functions, 

those that linked genes in the same biological pathway, and combinations of these. The 

majority of the hypothetical associations could be validated using the biological 

literature. 

Two networks were found to link identical genes. Network 17 linked two repeated 

open reading frames encoding cup1, a copper metallothionein, and network 22 connected 

two copies of L-aspariginase II found on chromosome 12. 

Nine networks clustered genes that have similar functions. Network 9 tightly 

linked eight genes coding for histones. Network 11 linked pho10 and pho11, two secreted 

acid phosphatases and network 12 linked s9b and l21a, two ribosomal proteins. Network 

13 connected hyp2 and anb1, both of which are involved in translation initiation. 

Network 19 connected ssa1 and ssa2, both 70 kilodalton heat shock proteins. Network 20 

clustered the three hexose transporters hxt4, hxt6 and hxt7, which are known to have 

increased transcription when extracellular glucose increases. Networks 6, 7 and 16 linked 

mitochondrial ribosomal proteins.  

Five networks linked genes known to be involved in the same biological pathway. 

Network 2 linked msh6, which repairs base pair mismatches and rnr3, induced as a 

response to DNA damage. Network 3 connected bcs1 and cox10, both known to be 

involved in assembly of the cytochrome complex. Network 21 linked tps2, trehalose-6-

phosphate phosphatase, and hsp104, a chaparone. This exact interaction has been 
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described in the literature; hsp104 contributes to the heat shock accumulation and 

degradation of trehalose. 

Network 15 linked ace2, a known regulator of chitinase expression, and chs2, 

chitin synthase II. Network 18 connected the two isoforms of the chaperone hsp90, hsp82 

and hsc82. Sti1, which is also connected in this network, is known to regulate hsp90 

ATPase activity and is involved in regulating activity of the glucocorticoid receptor. Ydj1 

works earlier in the maturation of the glucocorticoid receptor and was linked to sti1 in 

network 18. 

The remaining six networks contained various types of links, including a few 

associations not presently explained in the biological literature. Network 1 linked 

cytochrome B5 to F1F0-ATPase 5p, ubiquinol:cytochrome-C reductase subunit VIII, and 

the pak1 protein kinase. Ubiquinol:cytochrome C reductase is known to regulate 

cytochrome B5. F1F0-ATPase is known to regulate cytochrome C. The link to pak1 is 

unexplained in the biological literature.  

Network 4 connected mrpl35, a mitochondrial ribosomal protein, and caf16, 

possibly involved in essential mitochondrial function. Network 14 linked cln1, a G1 

cyclin and svs1, a gene required for vanadate resistance, but with no known role in cell 

cycle regulation. 

Network 5 linked pet123, a protein involved in mitochondrial translation and 

mef1, a mitochondrial translation factor. These both were linked to ppa2, a mitochondrial 

inorganic pyrophosphatase essential for mitochondrial function, but which has not been 

implicated in mitochondrial translation. 

 



 

 
 — 19 — 

 

YLR244C

YNL112W

YAL059W

YBR154C

YPR110C

YGL078C

YIR012W

YNL209W

YLR249W

YPL211W

YHR089C

YNL113W

YLL011W

YKL009W

YNL248C

YGR159C

YHR170W

YLR009W

YNL141W

YGL120C

YPR187W

YOL139C

YMR146C

YML106W

YHL033C

YDR385W

YOR133W

YPL037C

YAL003W

YOR167C

YKL081W

YJL138C

YKR059W

YHR019C

YER102W

YJL190C

YLR264W

YMR121C

YLR029C

YDR500C

YDR025W

YGR027C

YOR182C

YJL189W

YDR447C

YKR094C

YIL148W

YLR388W

YDL061C

YLR167W

YLR333C

YOR369C

YGL030W

YLR367W

YPL090C

YPL081W

YGL076C

YBR084C-A

YBL027W

YJL136C

YKR057W

YLR185W

YER074W

YOR096W

YPL198W

YLR448W

YOR234C

YNL178W

YBR181C

YOL121C

YLL045C

YGR214W

YLR048W

YNL301C

YJR145C

YHR203C

YJR123W

YJL177W

YOL040C

YDR418W

YNL069C

YPL131W

YIL018W

YHL015W

YIL133C

YER131W

YGL189C

YGR085C

YPR102C

YIL052C

YPR132W

YGR118W

YGR148C

YML063W

YLR441C

YGL031C

YLR325C

YKL006W

YLR075W

YOR293W

YIL069C

YHR141C

YDL082W

YGR034W

YLR061W

YOR312C

YDR471W

YNL096C YNL162W

YPL079W

YNL067W

YPR043W

YMR242C

YNL302C

YGL123W

YGL103W

YGL135W

YPL220W

YEL054C

YOL127W

YGL147C

YDR064W

YHR010W

YER117W

YOR063W

YDL075W

YOL120C

YCR031C

YOL039W

YOR276W

YBR031W

YLR340W

YDL081C

YDR382W

YLR344W

YBL092W

YKL156W

YHR193C

YDL191W

YPR033C

YER043C

YGR195W

YBR072W

DBP2

ECM1

RPB5

RPC40

DBP3

SQT1

NIP7

RPC19

SOF1

MRT4

RPA49

NSR1

NMD3

YLR009W
L24B?

AAH1

PRP43

SKI6

SSB2

YEF3

EFT1

RPL4A

SAH1

A

B

C

 

Figure 5: (A) Largest of the Relevance Networks created with TMI was set to 1.3. (B) 

and (C) Two branches enlarged from (A) and explained in the text. 
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The largest network, network 10, clustered 143 genes and is shown in figure 5a. 

Of these, 102 were various components of the large and small ribosomal subunits and 8 

were translation initiation factors. One branch from the larger network is shown in figure 

5b. Here, mrt4, presumed to be involved in mRNA turnover, was linked to aah1, 

involved in purine salvage; ski6, which represses double-stranded RNA replication; sof1, 

a protein involved in nucleolar rRNA processing; rpb5, a subunit of RNA polymerases I, 

II and III; and open reading frame (ORF) YLR009W, whose function is unknown. This 

ORF was linked to rpc40, a shared subunit of RNA polymerase I and III and dbp3, an 

RNA helicase, which in turn was linked to dbp2, another RNA helicase and prp43, an 

RNA helicase-like factor, and other ribosomal and RNA processing proteins. 

Another branch is shown in figure 5c, where eft1, an elongation factor, was linked 

to ssb2, a 70 kilodalton heat shock protein associated with translating ribosomes, which 

was linked to yef3, another elongation factor; sah1, s-adenosyl-l-homocysteine hydrolase, 

a cytoplasmic adenosine-binding protein; and rpl4a, one of two genes encoding 

ribosomal protein L4. 
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3   Discussion 

3.1  Summary of Findings 

Using this technique of linking all genes by calculating comprehensive pair-wise mutual 

information, then isolating clusters of genes, or relevance networks, by removing links 

under a threshold, we were able to find biologically relevant clusters. 

Although relevance networks can be made at any threshold mutual information 

(TMI), we successfully clustered 199 genes into 22 relevance networks at the TMI of 1.3. 

Decreasing the TMI will introduce more genes and hypothetical associations. Even 

though some of these new associations may be noise because high mutual information 

may still be calculated by chance, the associations at lower TMI may also represent novel 

hypotheses. Increasing the TMI will restrict the relevance networks to include only the 

strongest hypothetical associations. 

3.2  Strengths of Relevance Networks 

We found three specific advantages of the relevance network methodology. First, using 

mutual information is more general than using correlation coefficients to model the 

relationship between genes. The correlation coefficient is more easily distorted when 

points are not uniformly distributed across the axes. For example, two genes with a single 

high expression level measured in the same cellular condition will have a higher 

correlation coefficient regardless of the expression levels seen in other cellular 

conditions. In this way, outlying points bias correlation coefficients. Mutual information 

uses each expression level measurement equally regardless of the actual value, and thus is 

not biased by outliers. 

Because mutual information is a more general model, complex relationships 
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between genes can be modeled. For example, if one gene acts as a transcription factor 

only when it is expressed at a midrange level, then the scatterplot between this 

transcription factor and other genes might more closely fit a bell curve rather than a linear 

model, and might be scored with a low correlation coefficient. Mutual information does 

not require an a priori choosing of any particular model. 

A second advantage of relevance networks is that relationships are displayed in a 

graph instead of a phylogenetic-type tree. The advantage is that complex interactions are 

more easily visualized. Although biological functional clusters likely have variable 

numbers of genes in them, phylogenetic-type trees connect all clusters into one structure; 

relevance networks have variable size. 

In a phylogenetic-type tree, each gene is directly connected to only one other 

gene, the one it is most closely related to. Relevance networks connect nodes directly and 

indirectly with many or few links. There is valuable information in the number of links 

within a Relevance network. Nodes that are connected directly and indirectly with more 

links represent genes that are not only related directly to each other, but also as an 

aggregate. Relevance networks with higher degrees of cross-connection are thus more 

trusted, because they suggest that not only are two genes related, but that other genes 

exist that are related to both similarly. 

The third strength is that relevance networks need not be restricted to genomic 

clustering. Histological or clinical features can be quantitated and added to the array; 

pair-wise calculation of mutual information can easily include them and can thus 

potentially cluster expression of particular genes with specific phenotypes. 

3.3  Future Directions 

One important next step will be to construct relevance networks while modeling 

measurement noise. Like many measurement systems, RNA expression levels as 

measured by microarrays are not perfectly reproducible when experiments are repeated. 
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This noise in RNA expression level measurement can come from many sources: intrachip 

defects, variation within a single lot of chips, variation within an experiment, and 

biological variation for a particular gene. In our current methodology to calculate the 

mutual information between two genes, we model each sample/case as a point with a pair 

of quantized expression values as coordinates, and we use a two-dimensional histogram 

to approximate the joint PDF. 

If this were expanded into a continuous scale, and if one assumed a normal 

distribution for the measurement noise, one could instead represent each sample/case as a 

two-dimensional normal PDF, with the mean of the distribution centered at the actual 

coordinate pair of expression measurements, and the variance of the distribution 

calculated as a function proportional to the noise of the two measurements. Then, instead 

of using a histogram to calculate the mutual information from discrete points, one could 

instead use a Parzan density function to model the overall joint PDF as a sum of all the 

individual PDF. [14] From this, a continuous mutual information may be estimated or 

calculated. [12] 

This is important because as more is learned about the noise and reproducibility of 

expression level measurements, this methodology could be used to represent gene 

expression levels as a distribution instead of just a single point and can still find 

functional patterns. 

A gene-gene association with a high mutual information means the expression of 

one gene is predictable given the other. However, we acknowledge that there may be 

many gene-gene interactions that have high mutual information, yet contain a few points 

that do not fit the overall interaction. These samples/cases may indicate significant 

deviations from, or exceptions to, a gene-gene interaction model and should be studied 

separately. 

Finally, this technique will be used to analyze human gene expression patterns, 
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not only to find the functional clusters in normal physiology, but also to hopefully find 

targets susceptible to therapy in disease physiology. 
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