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Abstract

Natural language is a pervasive human skill not yet fully achievable by automated
computing systems. The main challenge is understanding how to computationally
model both the depth and the breadth of natural languages. In this thesis, I present
two probabilistic models that systematically model both the depth and the breadth
of natural languages for two different linguistic tasks: syntactic parsing and joint
learning of named entity recognition and coreference resolution.

The syntactic parsing model outperforms current state-of-the-art models by dis-
covering linguistic information shared across languages at the granular level of a
sentence. The coreference resolution system is one of the first attempts at joint mul-
tilingual modeling of named entity recognition and coreference resolution with limited
linguistic resources. It performs second best on three out of four languages when com-
pared to state-of-the-art systems built with rich linguistic resources. I show that we
can simultaneously model both the depth and the breadth of natural languages using
the underlying linguistic structure shared across languages.
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Chapter 1

Introduction

Natural language is the fundamental mechanism of communication among humans.

Even though use of language is a fundamental human skill, we do not yet thoroughly

understand language and are unable to fully implement it in automated computing

systems. The inherent complexity of natural language makes it difficult for natural

language processing (NLP) systems to master both the depth (i.e., comprehensive un-

derstanding of a natural language) and breadth (i.e., common level of understanding

across natural languages) of language.

Natural language processing systems approach the depth of language understand-

ing incrementally. Each level of understanding is associated with a formal NLP task.

NLP systems build up from shallow-level to deep-level tasks in order to generate a

complete language understanding system. The more shallow depths include tasks

like sentence and token identification, while deeper depths of understanding are con-

cerned with tasks like semantics and pragmatics disambiguation. Despite exhibiting

high accuracy for the shallow tasks, NLP systems are challenged by the complex tasks

that require a deep understanding of language (e.g., text summarization, word sense

disambiguation, coreference resolution).

Regardless of the task, NLP systems do not display a common level of language

understanding across natural languages. Some natural languages are more commonly

investigated (i.e., English, Japanese, German, French, Russian, and Mandarin Chi-

nese) and consequently have a rich set of linguistic and computational resources
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available,[81] but most natural languages have had few linguistic resources devel-

oped for them. Linguistic resources range from corpora annotated for information

like parts of speech, syntactic or dependency structure, or meaning, to automated

systems specialized for specific NLP tasks. From the estimated 6000-7000 spoken

languages of the world, at least 1000 are present in written form on the Internet,[21]

but to my knowledge NLP systems have been developed on 17 languages at most.[59]

The more complex an NLP task is in regards to the depth of language understand-

ing, the harder it is to obtain high accuracy on natural languages, and in particular on

resource-poor languages. One solution to overcome the lack of resources and difficulty

in obtaining these for resource-poor languages is to transfer linguistic knowledge and

NLP systems from resource-rich languages to resource-poor languages. Even though

the research community has scaled its efforts in solving complex NLP tasks across mul-

tiple languages, the performance of such systems that learn from multiple languages

simultaneously (i.e., multilingual learning) lags far behind systems that learn from a

single language (i.e., monolingual learning).[73, 62, 16] This is due to both a lack of

available annotated resources in multiple languages and to the lack of an infrastruc-

ture for automatically porting the relevant linguistic phenomena from resource-rich

source languages to resource-poor target languages.

This thesis tackles the problem of creating natural language processing systems

that can handle both the depth and breadth of language understanding. Throughout

this thesis, the depth of language understanding is reflected by two deep-level NLP

tasks (i.e., sentence parsing and coreference resolution), and the breadth of language

understanding is represented by scaling the two mentioned NLP tasks to resource-

poor languages.

1.1 Motivation

Understanding a written text in a computational setting requires several steps, re-

gardless of the language of interest. Those steps can be broadly differentiated into

shallow-level analysis and deep-level analysis. Shallow-level analysis is concerned
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with pre-processing steps like token and sentence identification, text normalization,

and part-of-speech tagging. Given a text in the form of a single sentence s = She

ran the marathon yesterday, an NLP system could perform a combination of pre-

processing steps. One possible combination would be to first identify the set of

tokens {she, ran, the, marathon, yesterday} and then tag each token with a relevant

part-of-speech tag, i.e., {she:PRP, ran:VBD, the:DT, marathon:NN, yesterday:NN}.

The shallow-level analysis results become substrate to infer deeper understand-

ings of the text. Depending on the type of deep-level analysis, different approaches

may be taken. For example, mentions of pre-defined categories (e.g., people, orga-

nizations, locations) can be identified together with the hierarchical relations that

might exist between them. The identification of relations depends on the accuracy

of mention identification, and is a difficult task, as it requires both a syntactic and

semantic understanding of the written text.[27] For the sentence s above, many of

the hierarchical relations can be extracted from a syntactic hierarchical representa-

tion. Figure 1.1 presents a sample hierarchical representation in the form of a parse

tree for the sentence s. Given the parse tree, one can infer syntactic dependencies

between the subject of the sentence (i.e., she), the action being performed (i.e., ran),

the immediate object of the action (i.e., marathon), as well as temporal relations (i.e.,

yesterday).

Figure 1.1: Sample parse tree for the sentence “She ran the marathon yesterday”.

The problem of relation identification becomes more complex when relations span
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sentences. In these cases, the syntactic dependency formalism is usually designed

to tackle relations between the tokens within a sentence and not across sentences.

NLP systems that perform a comprehensive analysis are required in order to perform

parsing based on semantics and pragmatics understanding. In our case, the subject

of the above sentence is a generic person referred to by a pronoun She, and one

would expect a reference to the actual person name to be included earlier in the

text. Additional intricacies arise from the ambiguous nature of natural language. For

example, in the sentence I met the girl running on the hill, the phrase running on the

hill could refer to either the girl or to the location where the subject met the girl.

Such ambiguities cannot be explained by syntax alone.

One of the most common relation identification tasks in NLP research is corefer-

ence resolution. Resolving coreference is an important step in language understanding[31]

and facilitates other NLP tasks like information retrieval, question answering, and

text summarization.[6] Coreference resolution determines whether two expressions,

often referred to as named entities in NLP literature are coreferent, that is, linked

by an identity or equivalence relation. For example, given the sentences “I met my

friend Diana. She ran the marathon yesterday.”, the named entities Diana and she

are equivalent because they refer to the same person. Coreference resolution systems

build on shallow-level and syntactic parsing systems. Resolving coreference in a com-

putational setting involves a two-step process that initially requires the identification

of the named entities of interest. The identified named entities are then linked based

on equivalence relations. Having a sound coreference resolution system impacts many

areas of research that are dependent on automated text processing. For example in

the medical field, patient information is largely stored in the form of free text, and

coreference resolution can help extract information about disease development, pa-

tient progress, or medication effectiveness. The judicial system is another example,

as coreference resolution systems may help automate the process of offender profiling

from written police reports.

Despite ongoing research efforts in coreference resolution, the current state-of-the-

art multilingual NLP solutions still have important challenges to overcome.[56, 39]
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Past competitions on coreference resolution acknowledged the need for both better

external knowledge integration and better techniques for coreference resolution.[73,

16, 87] The 2010 SemEval[73] and the 2012 CoNLL[16] shared tasks on multilingual

coreference resolution also acknowledged inferior performance of coreference resolu-

tion systems on non-English languages. The most extensively researched language is

English. Proposed solutions range from rule-based to machine learning and proba-

bilistic methods, and from supervised to semi-supervised and unsupervised learning

settings. Even still, a recent systematic evaluation of state-of-the-art approaches in

coreference resolution reported a top performance of 0.77 F-measure on English.[1]

The performance levels are low mainly due to the inability of automated systems to

account for contextual cues, perform disambiguations, or generalize from training in-

stances in the supervised and semi-supervised settings.[44, 4] Coreference resolution

is a difficult task as it also requires a good understanding of syntax, semantics, and

pragmatics.[30] These three foundation layers required for coreference resolution are

not equally well understood and documented across all languages.

Recent research showed that supervised and unsupervised NLP systems trained

in a multilingual setting perform better than systems developed in a monolingual set-

ting when evaluated on individual languages.[?, 79] This finding was explained by the

fact that some languages express ambiguities at levels where other languages are very

clear. Using a multilingual context should help better clarify those ambiguities.[79]

Harabagiu and Maiorano[32] show that a supervised coreference resolution system

trained on a bilingual English-Romanian corpus outperforms monolingual English

and Romanian coreference resolution systems. Their system learns independently

on each language but makes use of aligned coreference relations in the other lan-

guage in order to improve on coreference resolution performance. Snyder et al.[79]

experimented with unsupervised multilingual grammar induction. They showed a

significant improvement of a bilingual system that uses bilingual cues to improve over

a monolingual baseline. These initiatives and ideas support the development of NLP

systems that can benefit from the multilingual context and solve NLP tasks across

multiple languages with increased accuracy.
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Community efforts helped the development of NLP tools in new languages, but

in general these tools were monolingual systems requiring expertise in the target

language and availability of human annotations. The NLP community has acknowl-

edged the need for language processing resources that solve more complex language

phenomena within a larger number of the world’s languages. Actions taken in this

respect range from the development of machine-translation systems,[37] preparation

of annotated resources in multiple languages,[9, 64] task-specific NLP systems tar-

geting multiple languages,[32, 41] and the organization of shared tasks that address

multilingual NLP tasks.[9, 64, 70] More recent initiatives propose to take advantage

of the plethora of text available in different languages and develop NLP systems that

can generalize linguistic properties from source languages to a target resource-poor

language.[59, 22]

Based on previous research efforts and the current challenges in coreference reso-

lution and multilingual processing, an immediate step needs to be taken in bridging

the gap on multilingual deep-level language processing.

1.2 Contributions

The work presented in this thesis advances NLP research in multilingual settings by

focusing on the design of NLP systems that can generate a deep language under-

standing across a broad range of natural languages. In order to reach this goal, I

first show how multilingual syntactic parsers can be trained to selectively learn deep-

level syntactic phenomena from several source languages, and successfully apply those

phenomena to resource-poor target languages. I then create a corpus with deep-level

annotations for multiple languages (i.e., named entities and coreference resolution). I

use the syntactic information learned from the multilingual syntactic parsers to build

an end-to-end coreference resolution system that performs joint named-entity recog-

nition and coreference resolution in a multilingual setting. And finally, I evaluate the

end-to-end coreference resolution system on the annotated corpus.

14



1.2.1 Multilingual structure detection and analysis

I design and implement a linguistic model that captures the universals of syntactic

structure shared across languages. My model uses the language universals to learn

dependency parsing models for languages for which linguistic resources are sparse.

I show that the proposed model can adapt itself based on the language it targets,

and that its best performance occurs when the model transfers information at the

sentence-level. My model performs better than or as well as state-of-the-art parsing

systems.

This work is grounded on the hypothesis that languages share structural charac-

teristics at a higher level, but differ in the way information is conveyed at a lower

level. Linguist Noam Chomsky advocates that the human brain contains a basic set

of rules for handling language, and those rules are universal and formalized within an

universal grammar.[17] One postulate of the universal grammar theory is that human

languages are built on a common fundamental structure. This abstract common struc-

ture and the levels of divergence between languages are illustrated by the Vauquois

triangle (see Figure 1.2).[89] At the bottom level of the triangle languages differ in

regards to their words. As we move upward the triangle, language properties become

more universal and get expressed at the syntactic and semantic levels. The syntactic

dependencies are more universal as they consider grammatical relations, which hold

more often across languages. The semantic dependencies are also transferable as the

meaning of a sentence will usually be carried across any language, just in a different

form. At the highest level of the triangle we have the interlingua abstractization,

the common structure shared by all languages. The Vauquois triangle is used as an

inspiration in the design of my multilingual structure detection algorithm.

I adopt the idea that most natural languages are comprehended through a funda-

mental structure and aim to predict a syntactic structure for a resource-poor target

language by using the shared language structure. The identified structure form can

(a) facilitate the transfer of NLP techniques across languages, (b) help clarify ambi-

guities across languages, and (c) ultimately help the advancement of NLP research
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Figure 1.2: The Vauquois triangle

across and within multiple languages. I perform analysis on the learned structure and

try to explain commonalities and dissimilarities across languages. Namely, how the

computationally induced structure compares to documented linguistic universals.

1.2.2 Multilingual parallel coreference resolution corpora

Motivated by the lack of available annotations in multilingual settings for semantically-

equivalent text, I develop a new corpus of multilingual annotations on top of parallel

corpora. My goal is to annotate semantically equivalent (i.e., parallel) text in differ-

ent languages in order to have a better informed analysis over the system errors and

the difficulty of the NLP task on each language. Such a corpus contains reference

annotations that can guide automated systems to gain a deep-level understanding

of language. Because the corpus consists of documents with semantically equivalent

content across the different languages, one can analyze the degree of variations and

idiosyncrasies present between languages. This is the first attempt at generating mul-

tilingual annotations for coreference resolution on parallel multilingual documents.

I choose a set of three named-entity categories commonly used in NLP literature
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- person, organization, and location - and annotate parallel text in the form of par-

liamentary proceedings of the European Union[84] for both named-entity recognition

and coreference resolution. I present inter-annotator agreement results together with

a discussion on the difficulty of the human annotation task.

1.2.3 Multilingual end-to-end coreference resolution

I develop a multilingual system for joint named-entity recognition and coreference

resolution, that builds on the multilingual syntactic structure mentioned above. My

system is the first attempt at jointly modeling named-entity recognition and corefer-

ence resolution in a multilingual setting.

In order to overcome the challenges faced by current coreference resolution systems

in semantic understanding, I design a system that integrates multilingual syntactic

structure learning with named-entity recognition and coreference resolution. Unlike

most state-of-the-art systems, my model jointly learns the named entities and solves

coreference on the learned entities, without relying on gold standard annotations

for the target language. This complex system benefits from the integration of soft

linguistic constraints that characterize syntactic and grammatical structures. I exper-

iment with manually specified shallow-level constraints, and show that the induced

constraints help guide the model learning.

1.3 Thesis Overview

In Chapter 2 I open with a discussion on multilingual syntactic parsing. I also

present my multilingual parsing system and the relevant experiment results together

with an analysis on system performance across languages. I continue in Chapter 3

by presenting my work on creating a multilingual-annotated corpus for end-to-end

coreference resolution. In Chapter 4, I give a literature review on multilingual

coreference resolution, I describe my implemented solution for the task, and discuss

its performance. I conclude in Chapter 5 with some final thoughts and directions

for future work.
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Chapter 2

Multilingual syntactic parsing

2.1 Chapter overview

I present a linguistic model that can capture the cross-lingual common properties of

syntactic structure, represented using dependency graphs. I hypothesize that within

each language and across languages there exists a wide degree of syntactic flexibil-

ity, while certain syntactic properties are maintained across languages. Even though

some languages are related and grouped into language families, the best predictor

source language for a target language does not necessarily come from its family (see

discussion in 2.7). The model discussed below can identify the best predictor source

language or the set of predictor source languages, and customize the predictor selec-

tion given a target language or given a sentence in a language. The model is not tied

to a certain configuration of the source or target language, and can transfer syntactic

structure across languages from different language families.

The next two sections give an overview on multilingual syntactic parsing (sec-

tion 2.2) and outline related work in the field of syntactic parsing (section 2.3). Next,

I introduce the multilingual syntactic parsing model (section 2.4). I then present

the experimental setup and model results (section 2.5), and I discuss the linguistic

phenomena discovered by my model (section 2.6). Finally, I conclude with the main

contributions brought by my model (section 2.8).
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2.2 Introduction

Language has long been studied by scholars, initially from a theoretical standpoint in

the field of linguistics, and later from a computational standpoint in the field of com-

putational linguistics. Linguistics attempts to systematically define formal rules that

characterize three aspects of the human language: language form, language mean-

ing, and pragmatics. Similarly, computational linguistics models the same language

aspects through statistical or rule-based computer algorithms.

To understand how language is generated, it is first important to understand its

structure. Linguists have defined language structure by closely examining the rules

followed by native speakers of a language. The formalization of this set of rules creates

the language grammar, with specific subfields of morphology, syntax, and phonology.

Language structure has been studied across a set of multiple languages, with the

goal of defining similarities and dissimilarities between languages based on struc-

tural properties.[33] Language typology focuses on the structural properties specific

to individual languages (e.g., different types of word order used in forming clauses),

while language universals focuses on what common properties are shared by languages

(e.g., all languages have nouns and verbs). Language universals are common to all

languages, regardless of their typological classification.

Typological properties of languages have been summarized in the World Atlas of

Language Structures (WALS),[33] a large online database of the structural properties

of languages manually gathered by a team of 55 scholars. WALS covers over 2676 lan-

guages in 208 language families, using 144 linguistic features in 11 different categories.

It presents the distribution of linguistic features for features categories that span over

all areas of language structure: phonology, morphology, nominal categories, nomi-

nal syntax, verbal categories, word order, simple clauses, complex sentences, lexicon,

sign languages, and others. The first eight categories are concerned with structural

properties of grammar, while the last three categories are more varied.

The set of WALS linguistic categories and the number of features included by each

category are presented in Table 2.1. The feature count per feature category varies
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from 28 in the nominal categories to two in the sign language category.

Feature Category Counts Sample Features

Phonology 19
Syllable Structure,

Consonant-Vowel Ratio
Consonant types (e.g., uvular, glottalized, lateral)

Morphology 10
Zero Marking of A and P Arguments

Prefixing vs. Sufixing in Inflectional Morphology

Nominal Categories 28
Numeral Classifiers
Number of Genders

Definite Articles

Nominal Syntax 7
Noun Phrase Conjunction
Adjectives Without Nouns
Possessive Classification

Verbal Categories 16
The Optative

The Past Tense
The Prohibitive

Word Order 17
Order of Object and Verb

Prenominal Relative Clauses

Simple Clauses 24
Passive Constructions
Negative Morphemes

Predicative Possession

Complex Sentences 7
“When Clauses”

“Want” Complement Subjects

Lexicon 10
Finger and Hand
Red and Yellow

Sign Languages 2 Question Particles in Sign Languages
Other 2 Para-Linguistic Usages of Clicks

Table 2.1: Description of the WALS database: feature category names with associated
feature counts and sample features.

Typological features, and specifically the WALS database, have been used for

investigating language universals. Georgi et al.[25] compared languages grouped based

on similar diachronic patterns (i.e., phylogenetic groups) to language groups created

by automated clustering methods built on the WALS features. The typologically-

based language groups looked different from the phylogenetic groups, but performed

better when used to predict characteristics of member languages. Typological features

were also used to induce better language models across languages by Naseem et

al.[59] These studies support further investigation of typological properties shared

across languages for multilingual modeling, and specifically finding a methodology

for automatically identifying the shared typological features for a set of languages.
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2.2.1 Language structure representation

Natural language processing systems assume the existence of a correct representa-

tion for language structure. The most commonly used structural representation in

computational models is the bag-of-words model,[76] but this model does not capture

relationships between words or discourse segments. Alternative structural represen-

tations are more complex and harder to generate. They usually evolve as an attempt

to explain aspects of the human language. Such alternative representations include:

Sequence prediction:[46, 36] The written form of the natural language has an in-

herent sequential structure, as conveyed by its representation as a sequence

of characters or tokens. This sequential form underlies the language model: a

probability distribution over the next symbol given by the symbols that precede

it. This language structure representation is the underlying foundation of many

NLP systems.

Sequence segmentation:[55] Sequences of written text can be broken down into con-

tiguous parts called segments. Two common choices for segment types are words

and sentences. Identifying the words of a piece of text (i.e., tokenization) or

sentences of a discourse are basic pre-processing steps assumed by most NLP

systems.

Sequence labeling : Because data are sparse, attempts are made to identify smaller

classes into which words can be grouped. Such methods that create refined

word classes are stemming, lemmatization, and word chunking[85] which map

each word or group of words to a simpler vocabulary. Another level of classes

that abstract away from the raw words are syntactic classes, or parts of speech

(POS).[91] Mapping words to POS involves assigning each word a POS tag

depending on the context it belongs to. Another type of sequence labeling

problem is that of named entity recognition, where each token gets labeled

based on its membership in a named entity category.[58]

Syntax :[69, 28] The previous steps output stand-alone linguistic information that
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must be further manipulated to obtain relationships between various sentence

and discourse segments. Syntax rules help label segments that are related to

each other via a process called parsing. This is a salient representation of

language structure as it helps build a higher order representation of natural

language: semantic representation or discourse representation.

Syntax emerges as the more complex and complete representation model of lan-

guage structure. Even though syntax cannot incorporate all the contextual infor-

mation relevant for discourse understanding, it is the closest language model with

a discrete structure that can be defined in mathematical terms and manipulated in

polynomial time by a computer program. Throughout this work I define language

structure as the syntactic dependency structure and aim to characterize and identify

language syntactic universals.

2.3 Related work

The field of syntax has been documented by grammarians since antiquity.[75] Syn-

tax focuses on formalizing the rules by which phrases and sentences are formed.

Syntax understanding is a building block in NLP research, as more complex NLP

tasks like machine translation rely on the availability of a syntax analyzer (i.e.,

parser). Linguists have taken two approaches to formalizing syntax, and defined

the constituency[2] and dependency formalisms.[34] In the constituency formalism, a

grammar is defined by syntax rules expressed at the level of syntactic phrases (i.e.,

segments which function as single units in the syntax of a sentence). This formal-

ism works well for languages like English that follow stricter word-order rules, but

for languages with more free word-order rules like Russian, constituency grammars

are not easily applicable.[18] On the other hand, the dependency formalism defines

grammars based on binary asymmetric relations between two words, where one word

represents the head and the second word represents a dependent.[63]

The dependency formalism generates a one-to-one correspondence between the

words in a sentence and the structural representation of the sentence. Specifically, for
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each word in the sentence there is only one node in the sentence structure that corre-

sponds to it. In contrast, the constituency formalism generates a one-to-one or one-to-

many correspondence between words and nodes in the structural representation of a

sentence, and consequently it requires a larger grammar size. Early approaches to de-

pendency parsing were hand-crafted grammars,[83] but machine learning approaches

quickly replaced the traditional methods. Machine learning methods developed for

dependency parsing were preferred over the constituency parser methods, since the

constituency parsers were computationally more demanding. For comparison, given

the sentence She ran the marathon yesterday with the constituency parse tree depicted

in Figure 1.1, one can see that the dependency parse tree presented in Figure 2.1 has

a more compact form, specifically in terms of the maximum path length from the

parent to its children.

She ran

nsubj
��

dobj

��

tmod

��

punct

��
the marathon

det
��

yesterday .

Figure 2.1: Dependency parse tree for the sentence She ran the marathon yesterday.

For each word in a given sentence (i.e., child), the dependency parsing model

generates (child, head,DEPREL) triplets, where DEPREL characterizes the type

of dependency relation between the child and one other word of the sentence, i.e., the

head. In Figure 2.1, one such triplet would be (the, marathon, det). A word can be

included in a triplet as a child one time only, but it can take the role of head for any

number of child words in the sentence. The DEPREL labels are formally specified

in the annotation guidelines of a dependency treebank, and consequently vary based

on the treebank and language of interest. Sample DEPREL labels from the Penn

Treebank[50] (a collection of English documents annotated for syntactic relations)

and from the UniDep Treebank[52] (a multilingual collection of documents annotated

with language universal dependencies) are included in Table 2.2. In this work, I focus
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on representing syntactic parse trees using the dependency formalism.

Penn Treebank

Modifier Description

vmod Reduced non-finite verbal modifier
nmod Noun modifier

cc Coordination

UniDep Treebank

Modifier Description

adp Adposition analyzed as dependent of noun (case marker).
aux Auxiliary verb (dependent on main verb), including innitive marker.
cc Coordinating conjunction (dependent on conjunct).

vmld Verbal modier (underspecied label used only in content-head version).

Table 2.2: Sample modifier DEPREL values from the Penn and UniDep Treebanks.

Approaches to generating dependency parse trees are grouped into two categories:

graph-based and transition-based. The two approaches learn probabilistic models for

scoring possible dependency trees for a given sentence. The difference between the

two approaches comes in the way in which they decompose the possible dependency

tree during scoring. The graph-based parsers decompose the dependency tree into

either individual arcs scored separately (i.e., arc-factored models) or higher order fac-

tors in which several arcs are treated as a unit, and scoring is performed at the unit

level.[24, 96] Higher order parsers have better accuracy but also involve higher compu-

tational cost. The research community has devoted time to developing approximation

methods that can reduce the computational cost while maintaining a minimum de-

crease in parser accuracy (e.g., structured prediction cascades,[92] cube-pruning,[13]

dual-decomposition[43]). The transition-based parsers build the dependency tree in-

crementally, through the application of a small set of parser actions. A pre-trained

classifier dictates each parser action. The most commonly used transition method

is the one proposed by Covington,[19] but additional methods were proposed by Ya-

mada and Matsumoto,[94] and Nivre and Nillson.[65] Properties of transition and

graph-based parsers were combined into a single parser and it was shown that the

combination of the two is beneficial, as each parser type makes different errors.[51]

24



2.3.1 Multilingual syntactic parsing

Language parsers were initially developed for English,[15] and subsequently for other

languages like Japanese,[45] Turkish,[67] German,[23] Spanish,[20] and French.[3] The

2006 and 2007 CoNLL Shared Task proposed the development of a standard depen-

dency corpus, evaluation scheme, and state-of-the-art analysis for syntactic depen-

dency parsing in multiple languages. The 2006 CoNLL Shared Task used 13 depen-

dency treebanks (i.e., Arabic, Bulgarian, Chinese, Czech, Danish, Dutch, German,

Japanese, Portuguese, Slovene, Spanish, Swedish, Turkish), while the 2007 CoNLL

Shared Task included 10 treebanks (i.e., Arabic, Basque, Catalan, Chinese, Czech, En-

glish, Greek, Hungarian, Italian, Turkish). The system performance in the supervised

training setting for the two shared tasks ranged from 80.95 label attachment score1

on English to 68.07 on Basque for the 2007 Shared Task, and 85.90 on Japanese to

56.00 on Turkish for the 2006 Shared Task. The 2006 and 2007 Shared Tasks showed

that even in the supervised setting, automated parsing systems cannot feasibly solve

the syntax parsing task for some of the languages.

In the setting of the two shared tasks, the availability of annotations and lin-

guistic resources has contributed to the performance of the best dependency parsing

systems. But developing the same level of resources for all natural languages is too

time consuming (and to some extent impossible for extinct languages). Thus, the re-

search community has started investigating methods for transferring knowledge from

source languages with more available resources to target languages without avail-

able resources. One such method of knowledge transfer is grammar induction from

one or more source languages to a target language with the aid of parallel corpora.

Wu[93] presents the concept of bilingual language modeling for sentence-pair parsing

on Chinese and English sentence-pairs. In his model, the parser takes as input a

sentence pair (sA, sB) rather than a sentence, where sA and sB come from different

languages, and generates dependency predictions using a specialized form of a gram-

mar that models sentence pairs simultaneously (i.e., the transduction grammar[47]).

Burkett and Klein use a similar idea of parser modeling on parallel text to show that

1See Section 2.3.2 for a detailed explanation of evaluation metrics for dependency parsers.
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parallel information substantially improves parse quality on both languages.[10] The

authors employ a maximum entropy parsing model that operates on English-Chinese

sentence-pair inputs. Their model maximizes the marginal likelihood of training tree

pairs, with tree alignments treated as latent variables. Snyder et al.[79] show that

even in unsupervised settings the presence of parallel bilingual information helps in-

crease the performance of a syntax parser on both languages. The authors propose a

generative Bayesian model that uses observed parallel data together with a combina-

tion of bilingual and monolingual parameters to infer parse trees for the languages of

interest.

Recent work has shown the possibility of transferring syntactic information across

languages in the absence of parallel data. Such transfer is possible due to the de-

pendency structure universals present in languages. Bern and Klein[7] investigate

multilingual grammar induction by extracting language similarities from patterns of

language evolution. The authors consider six Indo-European languages: English,

Danish, Portuguese, Slovene, Spanish, and Swedish. Their model couples together

different languages in a way that resembles knowledge about how languages evolved.

In general, models that couple more languages have better performance results than

models that only consider pairs of languages. When their model encodes properties

of language evolution within the same language family as well as across language

families, it obtains the best error reduction in dependency generation.

Naseem et al.[60] encode the language-structure universals in the form of hand-

written rules. Those rules guide grammar induction on the target language using

language-structure information available on a set of source languages. The model

proposed by the authors takes as input a corpus annotated with universal part-of-

speech tags and encodes a declarative set of dependency rules defined over the univer-

sal part-of-speech tags. The dependency rules are universal across languages and can

help disambiguate syntactic ambiguities that are difficult to learn from data alone.

In addition, the model incorporates the intuition that languages present their own

idiosyncratic sets of dependencies by requiring the universal rules to hold in expec-

tation rather than absolutely. Naseem et al. test their model on six Indo-European
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languages from three language families: English, Danish, Portuguese, Slovene, Span-

ish, and Swedish. The evaluation results on those languages show that universal rules

help improve the accuracy of dependency parsing across all languages. The model

outperforms other unsupervised grammar induction methods, and specifically the

model of Berg and Klein,[7] but has the downside of relying on a manually specified

set of universal dependency rules.

Cohen et al.[14] define a method for capturing the contribution of a set of source

languages to the target language. The authors use the annotated data from source

languages to generate dependency parsers for resource-poor target languages. Their

approach is to initialize a parsing model for the target language using supervised

maximum likelihood estimates from parsing models of the source languages. The

authors use maximum likelihood over interpolations of the source language parsing

models in order to learn a parsing model for the target language using unannotated

data. The model is evaluated over a set of four source languages – Czech, English,

German, and Italian – and ten target languages: Bulgarian, Danish, Dutch, Greek,

Japanese, Portuguese, Slovene, Spanish, Swedish, and Turkish. Yet, the authors only

report model evaluation results on sentences of length at most ten, and cannot be

easily compared to other state-of-the-art models.

Søogard[80] use the idea of source language weighting to represent the similarity

of data available in a source language to data available in a target language. The

authors rank the labeled source data from most similar to least similar to target

data and run experiments only with a portion of the source data that is similar to

the target data. The similarity is computed using perplexity per word as metric.

The source data most similar to the target data is used to then train a dependency

parser for the target language. The model is evaluated on Arabic, Bulgarian, Danish,

and Portuguese. It generates results comparable to more complex projection-based

cross-language adaption algorithms for dependency parsing.

Naseem et al.[59] propose a more generic method that can generate dependency

parsers for target languages by learning relevant syntactic information from a diverse

set of source languages. Their model learns which syntactic properties of the source
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languages are relevant for the target language. It first generates the distribution

of dependents for each part-of-speech tag using information available in the source

languages. The distribution of dependents is generated independent of the order the

dependents have inside the sentence. Then, it orders the dependents to match the

word-order of the respective target language. The dependency generation step is

universal across languages, and is learned in a supervised fashion across all source

languages. The ordering of the syntactic dependencies is only learned from languages

with word-order properties similar to the target language. The authors report results

on 17 languages from the CoNLL 2006/2007 corpora. The largest improvements

compared to state-of-the-art systems emerge on non Indo-European target languages.

Täckström et al.[82] study multi-source transfer of dependency parsers for resource-

poor target languages. The authors adapt feature-rich supervised parsers discrimina-

tively trained on source languages to a specific target language. Their target language

model incorporates parameters from source language models based on typological

traits. This transfer of parameters from source languages is possible due to the de-

composition of parser features into language-specific and language-generic sets. Their

resulting model outperforms the model of Naseem et al.[59] on 15 out of 16 languages.

Another approach for multi-source transfer of unlexicalized dependency parsers

for resource-poor target languages comes from McDonald et al.[54] The authors pro-

pose a simple method for transferring unlexicalized dependency parsers from source

languages with annotated data available to target languages without annotated data.

Their contribution is to show that unlexicalized parsers transferred from source lan-

guages can perform better than their unsupervised counterparts on target languages.

In addition, the authors use constraints extracted from parallel corpora to project a

final parser on the target language. The model is evaluated only on Indo-European

languages, with the set of source languages containing English, Danish, Dutch, Ger-

man, Greek, Italian, Portuguese, Spanish, and Swedish and the set of target languages

containing Danish, Dutch, German, Greek, Italian, Portuguese, Spanish, and Swedish.

The final model achieves state-of-the-art performance on eight Indo-European target

languages.
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My goal is to take advantage of multilingual learning in order to improve per-

formance on dependency parsing and provide new resources for less investigated

languages. I improve on the current state-of-the-art systems by proposing a new

methodology for transferring syntactic knowledge from source to target languages at

the more granular level of a sentence, as opposed to applying the knowledge transfer

at the language level. Similar to previous approaches, my model is delexicalized. It

does not assume the existence of parallel text between source languages and the tar-

get language. My model automatically learns which source language or set of source

languages is most similar to the sentences of the target language. My approach re-

sembles the approach of Søogard[80]. I innovate by leveraging the properties shared

between the source and target languages at a sentence level. Instead of specializing

the parsing model to the target language, I identify the source parsing model that is

expert at performing parsing on a structure similar to the one available in the target

language. Details of this approach are outlined in section 2.4.

2.3.2 Evaluation metrics

The performance of dependency parsers is evaluated using three standard metrics:

labeled attachment score (LAS), unlabeled attachment score (UAS), and label accu-

racy.

Given a set of triplets (child, head,DEPREL) predicted by a dependency parser,

LAS computes the fraction of child words that are assigned to the correct head and

labelled with the correct DEPREL. UAS considers the fraction of child words that

are assigned to the correct head, and the label accuracy represents the percentage of

words with correct DEPREL tags.

LAS =
# of words with correct head and DEPREL

# of words
(2.1)

UAS =
# of words with correct head

# of words
(2.2)
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Label Accuracy =
# of words with correct DEPREL

# of words
(2.3)

2.4 Model overview

Motivated by recent advances in multilingual parsing, I develop multilingual parsing

models that make use of syntactic universals. Specifically, I employ a multilingual

learning setup on dependency parsing and generate parsing models for languages for

which linguistic resources are sparse. The main focus is to learn linguistic structural

properties from a set of source languages constrained by the target language of in-

terest, and to use the linguistic structural properties to induce dependency parsers

on the target language. As shown by recent research, genetically related languages

might not be typologically related,[25] thus using language family as a criteria for

relatedness would not suffice and a more informed model for syntactic relatedness is

required.

In general, the transfer of information across languages relies on linguistic layers

that can be mapped across languages. The word-layer cannot be easily mapped as

it requires machine translation and semantic understanding. Yet, we can relatively

easily map word categories (i.e., parts of speech) between languages.[68, 97] My model

assumes the existence of language-specific POS gold standard annotations and uses

the method proposed by Naseem et al.[60] to map from language-specific POS tags

to universal POS tags. The resulting model is unlexicalized as it does not consider

the word-level information available for each language.

The model takes as input a set of source languages for which gold standard de-

pendency parse and POS annotations are available, as well as a target language for

which a dependency parser needs to be learned. The target language has associated

gold standard POS annotations. The model builds a parser for the target language

by selectively learning from each source language the syntactic universals applicable

to the target language.

I design and experiment with several multilingual parsing algorithms, and try
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to identify the right granularity at which to transfer the syntactic knowledge. I

investigate:

1. Language-level expert voting : In line with linguistic theories, I hypothesize that

some linguistic phenomena are shared across language subsets. In such a setup,

knowledge is transferred from a set of source languages S = {L1, L2, ..., Ln} to a

target language T . The gold standard of the source languages is used to collec-

tively train a dependency parsing model, which will then perform dependency

parsing on the target language by leveraging the shared syntactic properties.

2. Sentence-level expert voting : I hypothesize that each unit of communication

(i.e., sentence) has its own set of linguistic phenomena that it respects, and

linguistic knowledge could be better transferred at the level of a sentence. Con-

sequently, the language-level transfer of linguistic properties is not sufficiently

granular for capturing the linguistic diversity inherent in natural languages.

The intuition is that each sentence within a target language might have a dif-

ferent source language that it most resembles, and selecting a single set of

languages to perform dependency parsing on the target sentences could over-

look the sentence-level structural diversity. For languages that have multiple

linguistic influences, such as English, I expect that individual sentences might

derive from language structure in either another language from the same lan-

guage family (e.g., German, Dutch) or from a language from a different language

family. For languages that do not present close neighbors within the language

set of the working corpus, I expect less diversity in the set of source languages

that are selected by sentence-level expert voting.

My model builds on an existing set of source languages S = {L1, L2, .., Ln}, n ≥ 1

for which part-of-speech POS = {posL1 , posL2 , .., posLn} and dependency parsing

gold-standard annotations GS = {gsL1 , gsL2 , .., gsLn} are available. The goal is

to identify a method for selectively-sharing syntactic universals between source =

{L1, L2, .., Lk} ⊆ S, k ≥ 1 and a target language T /∈ S. The target language has

available gold standard posT annotations, but no dependency parse information.
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2.4.1 Language-level expert voting

My goal is to transfer syntactic knowledge learned on a subset of source languages

to a target language. In order to transfer syntactic knowledge most relevant to the

target language, I hypothesize that the model first needs to identify the languages

which are syntactically closer to the target language. Syntactically close languages

should exhibit similar linguistic phenomena that can be automatically transferred

to the target language. Discovering the degree of syntactic relatedness is done in a

stepwise fashion:

• Step 1 For each language Lk in the set of source languages S, I first train a

dependency parser on gsLk
and generate a language specific parsing model mk.

The language-specific parser is generated using the MST Parser,[53] a state-

of-the-art dependency parser proved to generalize well to other languages in

addition to English in a monolingual setting (i.e., when working on individual

languages).

• Step 2 I use the universal syntactic properties incorporated in each language

model mk in order to parse the target language of interest. Specifically, I ap-

ply each source dependency parsing model mk, k = 1..n to the test set of the

target language T . I investigate the degree to which language models can be

transferred across languages without additional adaptation.

• Step 3 I hypothesize that syntactically close languages could share more sim-

ilarities, and aim to design a linguistic similarity metric to guide the transfer

of parsing models from the source language to the target language. I develop a

pairwise similarity metric LS(Lk, T ) to characterize the degree of syntactic sim-

ilarity between a source language Lk and the target language T . The LS metric

provides a ranking rT of the source languages in respect to the target language.

I employ rT to decide which source language Lk can positively contribute to the

parsing model mT of the target language T .

A graphical description of the system design is included in figure 2.2.
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Figure 2.2: Language-level expert voting model design

Language pairwise syntactic similarity

I investigate two syntactic similarity functions computed over language pairs. Both

similarity functions rely on external linguistic expert knowledge and output the degree

of similarity between two input languages.

1. Best predictor : I use the WALS word order features to decide the degree of

similarity between two languages. The word order features are equally weighted.

For each (Lsource, T ) language pair, I compute the degree of syntactic relatedness

lsWALS as the percentage of common WALS word order feature values. I select

the source language with the largest lsWALS value as the syntactically closest

source language candidate and refer to it by Lbest predictor. I hypothesize that

the parsing model of Lbest predictor should contain syntactic properties that are

also present in the target language, and could be directly applied to the target

language without further adaptation. Finally, I use mbest predictor, the parsing

model of Lbest predictor, to parse the test set of the target language.

In the rest of this chapter I refer to the best predictor model mbest predictor as the

PredictorWALS BEST model.
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2. Weighted predictors : I investigate whether the combined parsing predictions

of several source languages could outperform the strict selection of a closest

source language. I order the source languages in terms of their lsWALS degree

of syntactic similarity to the target language, and select the ω top languages.

Given the target language test set testT = {s1, s2, .., sT}, where each sk is a

sentence in the test set, I apply the parsing model of the selected s languages

to testT and record the predicted dependency trees on each sentence. For each

sentence sk = {word1, word2, ..., wordnsk
} I compute the set of child-parent

attachment probabilities {p(wordi, wordj)}, i ≤ nsk , j ≤ nsk , i 6= j based on

the dependency predictions made by ω source languages on the sentence sk.

The dependency probability p(wordi, wordj) represents the percentage of the ω

source languages that generated the wordi → wordj dependency. I employ the

attachment probabilities in a top-down parsing algorithm and generate a valid

parse tree for the sentence sk.

I investigate what is an optimal choice for the number of top languages ω such

that the contributions added by each language positively contributes to the final

dependency parser performance of the target language T .

In the rest of this chapter I refer to the weighted predictor model as the

PredictorWALS V OTED model.

2.4.2 Sentence-level expert voting

I observe that the best predicting source language varies based on the target sentence

on which predictions are made. Thus, I develop an algorithm that can identify the

best predictor source language given the target language T and the target sentence sT .

In order to identify whether a source dependency parser could correctly predict the

target sentence, I aim to identify the degree of similarity between the source sentences

and the target sentence. This similarity metric should capture the probability of

having the structure of the target sentence generated by the source language.

I define similarity of a sentence pair (sSk
, sT ) by looking at its POS-bigram lan-
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guage model. Specifically, I compute the sentence-pair similarity over the universal

POS transition probability matrixes of the two sentences sSk
and sT . I experiment

with both KL divergence and cosine similarity as metrics for sentence-pair similarity.

I choose the KL divergence as a final sentence-pair similarity measure due to bet-

ter performance results obtained when integrating the KL divergence metric in the

final dependency parser. For a given source language Sk and a target language T , I

compute:

CSk
(sT ) = {(sSk

, sT ), sSk
∈ Sk|KL(sSk

, sT ) ≥ t} (2.4)

where t is a set threshold.

The sentence pair similarity metric allows for ranking source languages based on

their similarity to the target sentence, instead of their similarity to the target language

alone. I select the parsing model mSk
of the source language Sk with the max(|CSk

|)

as the best source candidate for parsing the target sentence sT .

I investigate the performance of the sentence-level parsing model when the ωKL

top KL-similar source languages are used to generate a final target parsing model.

The voting model does not outperform the best source parsing model discussed in

the paragraph above. I hypothesize that this behavior is due to the large percent-

age of sentences that are predicted mainly by a single sentence (see discussion in

Section 2.6.5). Consequently, I only present the results for the best source parsing

model.

In the rest of this chapter I refer to the sentence-level parsing model as the

PredictorKL BEST model.

2.5 Experiments

2.5.1 Corpus and Annotations

The models I present are developed on top of two dependency treebanks. The first

treebank is annotated with language-specific annotation guidelines,[9, 64] while the

second is annotated with language universal annotation guidelines.[52] In order to
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compare my models against results presented in the literature, I evaluate them against

all-length sentences and the subset of at most 10-length sentences from each corpus.

Language specific dependency treebank

I work with the dependency corpora released by the 2006 and 2007 CoNLL Shared

Tasks.[9, 64] There are 19 available languages from 10 language families: Semitic (viz.,

Arabic), Sino-Tibetan (viz., Chinese), Japonic (viz., Japanese), Slavic (viz., Bulgar-

ian, Czech, Slovene), Germanic (viz., Danish, Dutch, English, German, Swedish),

Ural-Altaic (viz., Turkish), Romance (viz., Catalan, Italian, Portuguese, Spanish),

Isolate (viz., Basque), Finno-Ugric (viz., Hungarian), and Greek (viz., Greek). The

experiments presented in this chapter are run on all available languages.

The corpora contain literary, newspaper and newswire texts in sentence-delimited

format, together with manually-annotated POS tags and dependency trees. For lan-

guages included in both the 2006 and 2007 CoNLL Shared Tasks, I use only the 2007

CoNLL version of the associated corpus as it contains additional text and annotation

fixes.

The sentence count and the average sentence length for the 2006 CoNLL data are

presented in Table 2.3, while Table 2.4 presents a description of the 2007 CoNLL data.

The largest average sentence length is observed for Spanish and Portuguese in the

2006 CoNLL data, and for Arabic and Catalan in the 2007 CoNLL data. The smallest

average sentence length comes from Japanese for the 2006 CoNLL and Chinese for

the 2007 CoNLL data. Both the Chinese and Japanese sentence length metrics are

computed over the gold standard tokens provided with the corpora.

Universal dependency treebank

I also evaluate my models on the universal dependency (UniDep) treebank developed

by McDonald et al.[52] This corpus contains newswire, blogs, and consumer reviews

documents. Unlike the 2006 and 2007 CoNLL corpora, the universal dependency cor-

pus is developed using a standardized annotation guideline for all languages. I expect

linguistic phenomena to be more clearly transferred when universal guidelines are
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Bulgarian Danish Dutch German Japanese Portuguese Slovene Spanish Swedish
Family Sla. Ger. Ger. Ger. Jap. Rom. Sla. Rom. Ger.

Training data
Sentences 12823 5189 13349 39216 17044 9071 1534 3306 11042

T/S 14.83 18.18 14.6 17.84 8.88 22.8 18.7 27.02 17.34
Test data

Sentences 398 322 386 357 709 288 402 206 389
Avg. T/S 14.91 18.17 14.46 15.95 8.05 20.37 15.89 27.64 14.54

Table 2.3: Description of the 2006 CoNLL Shared Task data used in this thesis. Lan-
guage families include Semitic, Sino-Tibetan, Slavic, Germanic, Japonic, Romance,
Ural-Altaic. T/S represents the average count of tokens per sentence.

Arabic Basque Catalan Chinese Czech English Greek Hungarian Italian Turkish
Family Sem. Isol. Rom. Sin. Sla. Ger. Hel. F.-U Rom. Tur.

Training data
Sentences 2912 3190 14958 56957 72703 18577 2705 6034 3110 4997

T/S 38.35 15.84 28.80 5.92 17.18 24 24.18 24.84 22.89 11.5
Test data

Sentences 131 334 167 867 365 214 197 390 249 623
Avg. T/S 39.1 16.1 30.0 5.78 16.03 23.38 24.38 18.83 20.46 12.11

Table 2.4: Description of the 2007 CoNLL Shared Task data used in this thesis.
Language families include Semitic, Isolate, Romance, Sino-Tibetan, Slavic, Germanic,
Hellenic, Finno-Ugric, and Turkic. T/S represents the average count of tokens per
sentence.

used as a starting point for annotation generation. The 2006/2007 CoNLL language

annotation guidelines present different annotation schemes for the same underlying

linguistic phenomena (e.g., different annotation schema for children of parent-token

“and”, when “and” is used as a coordinating conjunction). The universal dependency

annotations are available for 10 languages, but for consistency purposes I exclude the

Japanese corpus as it is differently tokenized from the CoNLL Japanese corpus. I thus

focus on English, French, German, Indonesian, Italian, Korean, Brazilian-Portuguese,

Spanish, and Swedish.

In Table 2.5, I describe the sentence count and average sentence length per each

language of the universal treebank. The shortest average sentence length is observed

for Korean (average of 8.8 tokens per sentence in the test set and an average of

11.15 tokens per sentence in the training set). The largest average sentence length

is observed for Spanish (average of 27.65 tokens per sentence in the test set and an

average of 26.54 tokens per sentence in the training set).
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English French German Indonesian Italian Korean Portuguese Spanish Swedish

Family Ger. Rom. Ger. MP. Rom. Kor. Rom. Rom. Ger.
Training data

Sentences 39832 14511 14118 4477 6389 5437 9600 14138 4447
Avg. T/S 23.85 24.2 18.76 21.78 23.34 11.15 24.9 26.54 14.98

Test data
Sentences 2416 300 1000 557 400 299 1198 300 1219
Avg. T/S 23.46 23.16 16.33 21.15 22.98 8.8 24.57 27.65 16.71

Table 2.5: Description of the universal dependency treebank. Language families
include Germanic, Romance, Uralic, Korean, Malayo-Polynesian, Japonic. T/S rep-
resents the average count of tokens per sentence.

Universal POS tagset

I use the fine-to-coarse tagset mapping proposed by Naseem et al.[61] and map the

language-specific POS tags to universal POS tags. The list of coarse POS tags is

included in Table 2.6.

Id Name Abbreviation

1 noun NOUN
2 verb VERB
3 adverb ADV
4 adjective ADJ
5 pronoun PRON
6 conjunction CONJ
7 adposition ADP
8 numeral NUM
9 determiner DET
10 punctuation sign .
11 other X

Table 2.6: Universal POS tagset.

2.5.2 Experiment setup

I design a set of experiments to evaluate the performance of the developed models and

to analyze their specific contributions. In the voting scenarios, the source languages

first generate dependencies for the target sentences. Then, the dependencies generated

by the majority of the source languages are run through a top-down parsing algorithm

to generate a valid dependency parse tree for each target sentence.
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Setting 1: One-to-one parser transfer: In this setup the parsing model mLk
of

each source language Sk is evaluated on the remaining target languages LTk
.

The goal of this experiment is to investigate which source language is the best

expert on a target language, and what is the performance of languages from

the same language family when evaluated on target languages from the same

language family.

Setting 2: All source language voting: I allow the parsing models of all source

languages to vote towards the parsing model for a given target language T .

The goal of this experiment is to identify whether there is a need for weighting

the source languages when generating a target parsing model, or whether all

languages equally contributing can bring a good parser performance on the

target language.

Setting 3: Language family-based parser voting: For a given target language,

I weight the contribution of the source languages towards the target parser

based on the language family membership of the source and target languages.

Specifically, if the source language and the target language are from the same

language family, then the source language is allowed to vote. Otherwise, the

source language is not included in the voting scheme. The goal of this exper-

iment is to evaluate whether using a voting scheme based on language family

membership is sufficient, or whether a more elaborate voting scheme is required.

Setting 4: Language-level expert voting: I compare the results of my models

PredictorWALS BEST and PredictorWALS V OTING against an Oraclelanguage level

model. The Oraclelanguage level system selects the parsing model mLk
stemming

from language Lk that performs best when directly applied to the target lan-

guage. The mLk
parser selection is done once only for a given language. In

order to determine the source language that performs best when applied to

the target language, the Oraclelanguage level requires access to the gold standard

of the target language. Thus, the Oraclelanguage level differs from all the other

parsing systems presented above by assuming the gold standard of the target
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language is available. Under the current setting, the Oraclelanguage level model

represents an upper bound for dependency parsing performance on the target

language given the information available in the source languages.

Setting 5: Sentence-level expert voting: I compare the results of my PredictorKL BEST

model against anOraclesentence level model. TheOraclesentence level system selects

a set of models mj
Lk
, j ≤ |T |, where each mj

Lk
performs best on parsing sentence

sj of the target language T . The mj
Lk

parser selection is done at the level of

sentence sj. In order to determine the source language that performs best when

applied to a sentence of the target language, the Oraclesentence level requires ac-

cess to the gold standard of the target language. Thus, the Oraclesentence level

differs from all the other parsing systems presented above by assuming the

gold standard of the target language is available. Under the current setting,

the Oraclesentence level model represents an upper bound for dependency pars-

ing performance on the target language given the information available in the

source languages.

Setting 6: State of the art comparison I compare the PredictorKL BEST model

to the state-of-the-art multilingual dependency parsing system of Naseem et

al.[59] Using typological features, the model of Naseem et al. learns which as-

pects of the source languages are relevant to the target language, and ties model

parameters accordingly. I choose the Best Pair setting of the model proposed

by Naseem et al. as a comparison point, in which target model parameters

are borrowed from the best source language based on accuracy on the target

language. The Best Pair model setting gives the best results on the target lan-

guages, and is chosen as a reference baseline as it respects similar experimental

settings as my Oraclelanguage level model.

I also compare the PredictorKL BEST model to the target language adaptation

model of Täckström et al.,[82] specifically the Similar model setup and, to the

multi-source transfer model of McDonald et al.[54], specifically the multi-proj

multi-source projected parser.
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The BestPair, Similar, and multi-source systems are evaluated on language

subsets of the CoNLL 2006/2007 language-specific corpus.

The performance of the three proposed models and of Oraclelanguage level and

Oraclesentence level is presented on both all-length sentences and the subset of at most

10-length sentences of each corpus.

2.6 Results

The multilingual dependency parsing systems developed in this thesis do not model

the DEPREL labels, but only the (child, head) dependency relations. This behavior

is due to the lack of universal dependency labels for the CoNLL corpora that could

be transferred across languages. Universal dependency labels are available for the

UniDep corpus, but to perform a standard comparison across corpora, the DEPREL

were not incorporated in the model. Thus, the results presented in this chapter are

reported in terms of UAS and not LAS. Following common practices in dependency

parse evaluation, I exclude punctuation signs when computing the UAS evaluation

scores.

2.6.1 Setting 1: One-to-one parser transfer

Tables 2.7 and 2.8 present the parsing results when the parsing model of a source

language is used to predict the dependency trees for every other target language,

including itself. The results are reported in terms of UAS over all-length sentences

from the language-specific dependency treebank (i.e., Table 2.7) and the universal

dependency treebank (i.e., Table 2.8). Each row label represents the selected source

language, and the column labels represent the target languages. The table main

diagonal contains the results of the parsing model evaluated on the same language it

was trained on (i.e., trained on the training data of the same source and tested on

the test data of the same target).

In general, for both the language-specific treebank and for the universal treebank,
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the performance on the target language is optimal when the source is identical to

the target language (see main diagonal results). The only exception is Czech, for

which the optimal performance is report by Slovene as source language. Looking at

the performance of the source language when the source and the target are from the

same language family, it can be seen that there is some variability in the UAS results.

Furthermore, the source languages from the same language family do not give inter-

changeable results when evaluated on a target language from the same language fam-

ily. For example, consider the Romance language family from the language-specific

treebank with available languages Catalan, Italian, Portuguese, and Spanish (see first

four columns in Table 2.8). The performance on target language Catalan is 73.72 UAS

when the source is Italian, 76.92 UAS when the source is Portuguese, and 68.72 UAS

when the source is Spanish. For the Germanic language family from the language-

specific treebank with available languages German, English, Dutch, Swedish, and

Danish, consider the setup where the target language is English (see column En in

Table 2.8). The model performance ranges from 45.53 UAS when the source language

is German to 57.80 UAS when the source language is Dutch. Similar observations hold

for the universal dependency treebank (see Table 2.8) with the Romance (French, Ital-

ian, Portuguese, and Spanish) and Germanic (English, German, Swedish) language

families.

It is important to notice that when the source language is not identical to the

target language, the best performing source language can come from a different lan-

guage family than the language family of the target language. In addition, the choice

of the best performing source language for a target language is not symmetric. Thus,

selecting a best source language LS for target language T does not guarantee that in

return T will be the best source language for LS. For example, the best performing

source language on the German target language for the language-specific treebank is

Bulgarian with 57.11 UAS, while the best performing source language for the Bulgar-

ian target language is Dutch with 61.28 UAS. Similarly, for the universal dependency

treebank, the best performing source language for the English target language is Ital-

ian with 72.13 UAS, while the best performing source language for the Swedish target
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language is also Italian with 68.33 UAS.

These results show that there exists a certain degree of variability in the parser

performance when the models are directly transferred from a source to a target lan-

guage. In addition, there is no consistent best source language across corpora to select

for a given target language. An intuitive approach would be to merge the predictions

made by each source languages in an optimal way, in order to maximize the benefits

brought by each individual language.
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S → T Fr It Pt Es En De Sv Id Ko

Fr 79.84 76.98 75.94 77.53∗ 70.60 59.95 67.33 66.99 30.78
It 77.18 81.43 77.08 77.69∗ 72.13 58.82 68.33 65.90 26.23
Pt 75.71 75.46 80.36 77.33∗ 70.15 60.70 66.85 66.88 25.65
Es 74.61 74.66 75.73∗ 78.50 68.01 56.75 67.46 63.69 29.68

En 62.89 62.63 62.68 61.99 84.76 51.16 63.61∗ 44.05 35.81
De 57.76 56.62 57.32 56.52 58.00 78.26 61.40∗ 55.81 35.12
Sv 68.16 68.41 67.76 68.14 69.16∗ 62.63 79.23 58.85 30.64

Id 48.25 52.77∗ 51.77 50.99 42.07 39.59 41.73 80.56 15.92
Ko 33.22 34.38 34.18 36.81 41.10 40.29 41.56∗ 23.45 73.39

Table 2.8: One-to-one language parsing UAS results for all-length sentences for the
universal dependency treebank. Languages are represented by the first two letters of
the language name. The row value represents the selected source language and the
column label represents the selected target language. Note: Bolded results represent
the same source-same target UAS; starred results represent the target language on
which the source language performs best; gray-filled cells represent the best source
predictor for each target language, when the source is different from the target lan-
guage. Double horizontal lines separate languages that belong to the same language
family.

2.6.2 Setting 2: All source language voting

I evaluate the performance of a parsing model created by merging the syntactic knowl-

edge from all source languages. Table 2.11 presents the UAS results for the language

specific treebank, while Table 2.12 presents the UAS results for the universal depen-

dency treebank. In general, the performance on the target languages drops when

compared to the performance of the same-source same-target setup presented in Ta-

bles 2.7 and 2.8. Target languages that have little similarity to the source languages

are more positively impacted by this voting, as the performance reported for these

languages is much lower (see Japanese with 30.84 UAS in Table 2.11 and Korean

with 38.90 UAS in Table 2.7). The all-source language voting scenario manages to

outperform the Setting 1 scenario on Portuguese, German, Bulgarian, and Arabic for

the language-specific treebank, and on French, Italian, Slovene, and Korean for the

language universal treebank. These results show that in order to obtain a good overall

parsing performance on the target languages, the source languages should contribute

in a more informed manner to the parsing process.
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Ca It Pt Es De En Nl Sv Da Bg Cs Sl Ar Eu Zh El Hu Ja Tr

71.68 68.9 78.38 62.93 60.72 51.56 58.64 63.62 54.13 71.24 50.49 46.10 53.05 36.64 47.61 61.76 58.14 30.84 30.52

Table 2.9: All-source language voting UAS results on all-length sentences for the lan-
guage specific treebank. Gray-filled cells represent target languages with performance
results better than the best source-predictor in Setting 1.

Fr It Pt Es En De Sv Id Ko

77.66 78.34 76.97 75.69 63.74 60.27 71.73 50.66 38.90

Table 2.10: All-source language voting UAS results on all-length sentences for the
language universal treebank. Gray-filled cells represent target languages with perfor-
mance results better than the best source-predictor in Setting 1.

2.6.3 Setting 3: Language family-based parser voting

I evaluate a simple voting scheme based on source and target language membership

to a language family. The main idea of this experiment is to validate the need

for a more complex voting methodology. Results are presented in Table 2.11 and

Table 2.12, where no results are included for languages that do not have another

language member from the same language family present in the corpus. The reported

results are larger than the results presented in Setting 2 only for three out of the 19

languages in the language-specific treebank and for three out of nine languages in

the language-universal treebank. In addition, I cannot compute results for languages

that do not have another language member from the same language family present in

the treebank. Choosing such a strict voting scheme would reduce the applicability of

the parsing model to languages for which one knows a priori the language family they

belong to, and for which one also has linguistic resources available for the associated

language family.

Ca It Pt Es De En Nl Sv Da Bg Cs Sl Ar Eu Zh El Hu Ja Tr

81.55 73.44 77.12 68.34 55.56 48.83 52.01 60.01 50.90 56.28 46.9 40.09 - - - - - - -

Table 2.11: Language family-based parser voting UAS results on all-length sentences
for the language specific treebank. Gray-filled cells represent target languages with
performance results better than the results reported in Setting 2.

The results discussed so far show that:
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Fr It Pt Es En De Sv Id Ko

78.71 77.40 76.52 54.59 60.48 65.37 64.08 - -

Table 2.12: Language family-based parser voting UAS results on all-length sentences
for language universal treebank. Gray-filled cells represent target languages with
performance results better than the results reported in Setting 2.

• source languages need to be weighed in order to contribute relevant syntactic

information to the target language

• the weighting scheme has to be more complex and customizable to the compo-

sition of the set of source languages and the input target language

2.6.4 Setting 4: Language-level expert voting results

The language-level expert voting results are included in Table 2.13 and Table 2.14 for

all-length sentences and at most 10-length sentence of the language specific treebank,

and in Table 2.15 for the universal dependency treebank. The tables contain the ex-

periment results forOraclelanguage level, PredictorWALS BEST, and PredictorWALS VOTING.

Column three of Table 2.13 shows that the Oraclelanguage level is not consistently

selected from the same language family with the target language. Specifically, for the

romance languages, Oraclelanguage level is always from the same language family, but

for the Germanic and Slavic languages, Oraclelanguage level is mainly represented by

source languages outside the target language family (e.g., best predictor language for

German is Catalan, for Slovene is Greek). In contrast, PredictorWALS BEST is from

the same language family as the target language for the Romance and Germanic

languages. PredictorWALS BEST overlaps with Oraclelanguage level in terms of the best

source language selection only for five of the target languages (Catalan, Chinese, Hun-

garian, Turkish, and Japanese). The average performance of the PredictorWALS BEST

model on all target languages is approximatively 8% lower than the average perfor-

mance of the Oraclelanguage level model on all target languages.

When I combine the top ω source languages in the PredictorWALS VOTING model, I

obtain better results than when using the PredictorWALS BEST model. In order to find
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Oraclelanguage level PredictorWALS BEST PredictorWALS VOTING

Target Language UAS Source Language UAS Source Language ω = 3 ω = 6(best)

Catalan 81.82 Italian 81.82 Italian* 81.04 77.56
Italian 73.72 Catalan 65.39 Spanish 68.14 72.16

Portuguese 78.00 Catalan 76.98 Italian 75.98 78.14
Spanish 70.23 Catalan 67.02 Italian 62.19 67.26

German 59.72 Catalan 57.46 Dutch 55.68 57.36
English 57.21 Swedish 37.24 Bulgarian 40.7 49.68
Dutch 57.70 Greek 42.18 German 48.36 57.46

Swedish 61.82 Portuguese 47.52 Danish 59.15 64.36
Danish 52.55 Basque 47.37 Swedish 49.92 52.91

Bulgarian 66.95 Portuguese 57.31 English 57.27 63.83
Czech 50.82 Slovene 36.10 English 45.52 48.01

Slovene 55.94 Greek 40.13 English 44.82 48.4

Arabic 52.71 Italian 51.22 Greek 51.77 53.29
Basque 39.94 English 30.92 Japanese 34.47 40.63
Chinese 59.32 Hungarian 58.50 Hungarian* 57.02 50.14
Greek 60.99 Italian 45.76 Bulgarian 54.63 60.04

Hungarian 58.24 Chinese 58.37 Chinese* 56.65 56.8
Japanese 64.2 Turkish 64.20 Turkish* 64.1 47.79
Turkish 54.58 Japanese 54.58 Japanese* 42.51 41.12

Average 60.86 - 53.64 - 54.54 57.20

Table 2.13: Language-level expert voting UAS results reported for all-length sentences
of the language specific dependency treebank. Row labels represent the target lan-
guage; the first two columns represent the UAS and the best predictor source language
as generated by the Oraclelanguage level model; the Oraclelanguage level model represents
an upper bound for dependency parsing performance on the target language, given
the information available in the source languages. Columns 3 and 4 represent the UAS
and best predictor source language as generated by the PredictorWALS BEST model.
The last two columns represent the UAS results for ω = 3 source predictors and ω = 6
source predictors in the PredictorWALS VOTING model. Note: Starred language names
are the best predictor source languages selected by the PredictorWALS BEST model that
overlap with the best predictor source language selected by the Oraclelanguage level

model. Double horizontal lines separate languages that belong to the same language
family.

the optimal ω that gives the highest average performance across all languages I run

the PredictorWALS VOTINGmodel with ω taking values from 1→ 19. The optimal ω is

6 with an average performance of 58.77 UAS across all languages, only 3% lower than

the performance obtained by Oraclelanguage level across all languages. The optimal ω

involves a high number of source languages, which implies that the syntactic diversity

cannot be captured by a small number of source languages alone. Similarly, adding
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too many source languages adds more noise to the model, so the language ranking

has to score the most optimal source languages to consider for a target language.

Oraclelanguage level PredictorWALS BEST PredictorWALS VOTING

Target Language UAS Source Language UAS Source Language ω = 3 ω = 6(best)

Catalan 100 French 100 French* 100 100
Italian 81.15 French 71.84 Spanish 76.85 79.24

Portuguese 81.91 Italian 79.46 Spanish 81.66 83.13
Spanish 77.73 Catalan 75.36 Italian 65.4 75.83

German 75.21 Dutch 75.21 Dutch* 70.99 69.31
English 77.61 Swedish 56.72 Bulgarian 60.45 64.93
Dutch 64.26 English 50.47 German 53.29 59.56

Swedish 78.25 Bulgarian 61.52 danish 74.68 79.69
Danish 61.15 Portuguese 55.41 Swedish 55.63 57.62

Bulgarian 78.89 Portuguese 72.19 English 68.65 71.43
Czech 57.78 Bulgarian 48.69 English 58.55 57.16

Slovene 66.62 French 44.99 English 49.64 54.98

Arabic 68.52 Italian 57.41 Greek 62.04 60.19
Basque 51.23 English 38.13 Korean 40.26 49.26
Chinese 62.86 Hungarian 62.86 Hungarian* 59.49 56.76
Greek 70.69 Portuguese 61.49 Bulgarian 68.39 71.84

Hungarian 72.8 Chinese 72.8 Chinese* 71.6 72.8
Japanese 76.91 Korean/Turkish 76.91 Turkish* 79.51 74.07
Turkish 67.21 Korean 55.87 Japanese 62.57 62.3
Average 71.84 - 64.05 - 66.26 68.36

Table 2.14: Language-level expert voting UAS results reported for at most 10-length
sentences of the language-specific dependency treebank. Row labels represent the
target language. The first two columns represent the UAS and the best predictor
source language as generated by the Oraclelanguage level model; the Oraclelanguage level

model represents an upper bound for dependency parsing performance on the tar-
get language, given the information available in the source languages. Columns 3
and 4 represent the UAS and best predictor source language as generated by the
PredictorWALS BEST model. The last two columns represent the UAS results for ω = 3
source predictors and ω = 6 source predictors in the PredictorWALS VOTING model.
Note: Starred language names are the best predictor source languages selected by
the PredictorWALS BEST model that overlap with the best predictor source language
selected by the Oraclelanguage level model. Double horizontal lines separate languages
that belong to the same language family.

When I evaluate my system only on sentences of length 10 or less, I observe

higher UAS performance (see Table 2.14 and Table 2.15). The Oraclelanguage level

model as well as PredictorWALS BEST model experience an approximative 10% in-

crease in overall UAS performance compared to the results over all-length sentences.
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All-length sentences

Oraclelanguage level PredictorWALS BEST PredictorWALS VOTING

Target Language UAS Source Language UAS Source Language ω = 3 ω = 6(best)

French 77.53 Spanish 77.53 Spanish* 76.83 77.81
Italian 77.69 Spanish 77.69 Italian* 76 78.6

Portuguese 77.33 Spanish 66.88 Portuguese 76.21 77.15
Spanish 75.73 Portuguese 74.66 Spanish 72.65 76.16

English 63.61 Swedish 61.99 English 59.14 63.37
German 61.4 Swedish 61.4 Swedish* 60.94 60.08
Swedish 69.16 English 69.16 English* 70.65 72.13

Indonesian 52.77 Italian 52.77 Indonesian 52.27 51.14
Korean 41.56 Swedish 40.29 German 40.13 41.48

Average 66.31 - 64.71 64.98 66.44

At most 10-length sentences

Oraclelanguage level PredictorWALS BEST PredictorWALS VOTING

Target Language UAS Source Language UAS Source Language ω = 3 ω = 6(best)

French 84.23 Portuguese 83.22 Spanish 83.22 85.87
Italian 82.93 French 79.47 Spanish 81.1 82.52

Portuguese 83.28 Spanish 74.69 Indonesian 84.17 84.84
Spanish 81.51 Italian 81.51 Italian* 76.23 78.87

English 76.94 Swedish 75.74 Spanish 75.15 77.01
German 75.4 Swedish 75.4 Swedish* 74.04 73.59
Swedish 81.16 German 80.67 English 81.21 83.3

Indonesian 62.01 Spanish 60.78 Italian 60.78 59.36
Korean 45.12 German 45.12 German* 44.13 44.25

Average 74.73 72.96 73.34 74.40

Table 2.15: Language-level expert voting UAS results reported for all- and at most
10-length sentences of the universal dependency treebank. Row labels represent the
target language. The first two columns represent the UAS and the best predictor
source language as generated by the Oraclelanguage level model; the Oraclelanguage level

model represents an upper bound for dependency parsing performance on the tar-
get language, given the information available in the source languages. Columns 3
and 4 represent the UAS and best predictor source language as generated by the
PredictorWALS BEST model. The last two columns represent the UAS results for ω = 3
source predictors and ω = 6 source predictors in the PredictorWALS VOTING model.
Note: Starred language names are the best predictor source languages selected by
the PredictorWALS BEST model that overlap with the best predictor source language
selected by the Oraclelanguage level model. Double horizontal lines separate languages
that belong to the same language family.

The same number of the PredictorWALS BEST languages identified by my system over-

lap with the Oraclelanguage level languages (5 PredictorWALS BEST overlap with the

Oraclelanguage level). The same performance difference is observed between the PredictorWALS BEST
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and the PredictorWALS VOTING when compared to the performance difference of the

two systems on the language-specific treebank. For the Germanic language family,

only one PredictorWALS BEST model is not selected from the same language family

with the target language family (i.e.: Bulgarian as predictor for English), meanwhile

for the Slavic language family all target languages have the same PredictorWALS BEST

model, specifically the English model.

I evaluate my system on the universal dependency treebank, and observe an im-

proved performance compared to the performance on the language specific CoNLL

corpus. On the target languages for which the source language set contains at least

one other language from the same language family, the PredictorWALS BEST model is

always selected from the same language family. The choice of the PredictorWALS BEST

is important even when it comes from the same language family, as different source

languages from the same language family will report different results on the target lan-

guage. My system performs better on the universal dependency treebank compared

to its performance on the language specific dependency treebank. It more often se-

lected the PredictorWALS BEST language that overlapped the Oraclelanguage level. In

general, the PredictorWALS VOTING model performs as well as or better than the ref-

erence Oraclelanguage level model on all languages except for German, Indonesian, and

Korean.

I further evaluate the impact of ω on the system performance (see Figure 2.3). I

notice a difference in performance based on the language family, but in general all

languages are best predicted by a number of 3 → 6 source languages. The average

performance on all of the languages drops systematically once the number of voting

languages ω is greater than 6.

2.6.5 Setting 5: Sentence-level expert voting results

Tables 2.16 and 2.17 present the results for sentence-level parsing. TheOraclesentence level

model outperforms both theOraclelanguage level and my PredictorWALS BEST and PredictorWALS VOTING

models. For some of the languages, the Oraclesentence level performs better than or as

well as the mk model, the MST Parser trained and evaluated on the same language.
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Figure 2.3: Multilingual dependency parsing performance with increase in count of
voting languages ω across language families

For the language specific treebank see Italian with 80.11 UAS by Oraclesentence level

vs. 79.72 UAS by MST Parser. For the universal treebank see French with 83.84

UAS by Oraclesentence level vs. 81.43 UAS by the MST Parser, Korean with 74.27

by UAS Oraclesentence level vs. 73.39 UAS by the MST Parser. The PredictorKL BEST

model outperforms the PredictorWALS VOTING model, for both the language specific

and the universal treebank for all languages of the corpus except for Basque, Chinese,

Japanese, and Turkish.

Table 2.18 shows the distribution of languages that contribute to parsing the tar-

get language in the Oraclesentence level model. The columns represent the top five con-

tributing language models, based on the percentage of sentences they predict better

than any other source language model. The percentage of best predicted sentences is

included in brackets following the language name. For the language-specific treebank,

the most common top language contributor is Catalan (top language contributor for

13 out of the 19 languages). The second best language contributor is more varied

across the set of target languages. In some of the cases, the top language contributor

is selected from language families completely unrelated to the target language: see

Chinese as the second best language contributor for English, Hungarian as the third
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Target Language Oraclesentence level PredictorKL BEST

Catalan 85.28 83.59
Italian 80.11 74.73

Portuguese 84.35 81.22
Spanish 72.75 69

German 69.89 61.24
English 66.36 53.63
Dutch 69.93 58.46

Swedish 74.4 66.67
Danish 63.71 55.58

Bulgarian 79.59 69.35
Czech 62.62 54.63

Slovene 70.22 56.5

Arabic 58.01 57.25
Basque 54.2 41.51
Chinese 75.82 63.15
Greek 73.11 66.53

Hungarian 69.56 63.37
Japanese 67.6 51.54
Turkish 62.1 50.04

Average 70.50 62.07

Table 2.16: Sentence-level expert voting UAS results reported for all-length sen-
tences of the language specific dependency treebank. Row labels represent the
target language. The first column represents the UAS results generated by the
Oraclesentence level model; the Oraclesentence level model represents an upper bound
for dependency parsing performance on the target language, given the information
available in the source languages The second column represents the UAS results gen-
erated by the PredictorKL BEST model. Double horizontal lines separate languages
that belong to the same language family.

best language contributor for Japanese. Some of the top language contributors are

languages for which most of the existing parsing models (including the ones presented

in this thesis) have difficulties generating a high-performance parser (see Basque as

the third best language contributor for Turkish). The top language contributors on

the universal treebank are more consistent across the language families, although for

the Germanic languages, most often Romance languages (French, Italian) rank high.
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Target Language Oraclesentence level PredictorKL BEST

French 83.84 80.03
Italian 83.92 79.88

Portuguese 83.08 79.58
Spanish 81.03 77.15

English 72.74 63.89
German 71.29 63.77
Swedish 79.15 74.41

Indonesian 60.21 54.59
Korean 52.53 45.49

Average 74.27 68.75

Table 2.17: Sentence-level expert voting UAS results reported for all-length sentences
of the universal dependency treebank. Row labels represent the target language. The
first column represents the UAS results generated by the Oraclesentence level model; the
Oraclesentence level model represents an upper bound for dependency parsing perfor-
mance on the target language, given the information available in the source languages.
The second column represents the UAS results generated by the PredictorKL BEST

model. Double horizontal lines separate languages that belong to the same language
family.

2.6.6 Setting 6: State of the art comparison

Table 2.20 presents the comparison between theOraclesentence level and PredictorKL BEST

models and the three state-of-the-art models - Best Pair, Similar, and multi-source.

As an optimal model, the Oraclesentence level model outperforms the Best Pair base-

line model across all languages. The PredictorKL BEST model manages to outperform

the Best Pair model on 12 out of 17 languages. It lacks in performance on Basque,

Chinese, Japanese, Arabic, and Turkish, languages that are not syntactically similar

to many of the source languages.

The Similar model presents performance results better than the Best Pair model.

Yet, my Oraclesentence level model outperforms the Similar model across the 16 target

languages for which Similar has reported performance results. The PredictorKL BEST

model manages to perform better than the Similar model only on 12 of the 16 target

languages. It is outperformed on Basque, Hungarian, Japanese, and Turkish. The

PredictorKL BEST and the Similar models obtain the same performance on Spanish.

The multi-source model performs better than the PredictorKL BEST model on Dutch
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Target Percentage of target sentences best predicted by source language

Catalan Italian (58.68) Spanish (16.76) Portuguese (16.76) English (1.79) Slovene (1.19)
Italian Catalan (52.4) Portuguese (15.2) Spanish (8.4) Greek (7.2) Slovene (3.2)

Portuguese Catalan (44.36) Italian (23.18) Swedish (8.65) English (6.92) Spanish (5.53)
Spanish Catalan (54.10) Italian (18.35) Portuguese (11.11) English (2.89) Greek (2.89)

German Catalan (39.38) Dutch (15.36) Portuguese (9.21) Italian (8.10) Bulgarian (6.14)
English Swedish (34.41) Chinese (13.02) Portuguese (9.76) Dutch (8.83) Greek (6.97)
Dutch Catalan (25.06) English (19.89) Greek (11.88) Italian (9.30) Swedish (7.49)

Swedish Catalan (26.15) Italian (12.56) Portuguese (10.76) Bulgarian (10.25) Dutch (8.71)
Danish Catalan (21.36) Portuguese (14.55) English (10.52) Italian (10.21) Bulgarian (8.66)

Bulgarian Catalan (27.81) Portuguese (21.80) Italian (9.02) Dutch (6.26) Danish (5.76)
Czech Catalan (19.67) Slovene (18.57) Dutch (10.10) Danish (10.10) Italian (9.83)

Slovene Catalan (25.55) Italian (17.61) Czech (13.89) Greek (13.15) Dutch (6.20)

Arabic Catalan (16.03) Italian (15.26) Greek (12.97) Dutch (10.68) Spanish (9.99)
Basque English (18.80) Dutch (11.04) Hungarian (10.75) Portuguese (9.25) Catalan (8.65)
Chinese Catalan (22.81) English (15.09) Hungarian (11.06) Dutch (8.75) Italian (8.52)
Greek English (21.71) Catalan (19.69) Dutch (14.64) Slovene (12.12) Italian (11.61)

Hungarian Swedish (17.90) Catalan (13.81) Chinese (10.99) Turkish (8.95) Dutch (7.67)
Japanese Catalan (51.54) Turkish (23.94) Hungarian (8.88) Basque (4.92) Italian (2.11)
Turkish Japanese (34.13) Catalan (16.66) Basque (8.97) English (6.57) Hungarian (5.92)

Table 2.18: Percentage of target sentences best predicted by source languages, or-
dered by highest source contribution over the language-specific treebank. Contri-
bution of source languages to parsing the target language is computed from the
Oraclesentence level model. The numbers in brackets represent the percentage of sen-
tences the language model predicts better than any other source language model.
Double horizontal lines separate languages that belong to the same language family.

Target Percentage of target sentences best predicted by source language

French Italian (42.53) Portuguese (19.93) Spanish (15.94) Indonesian (8.63) English (6.64)
Italian French (43.64) Portuguese (22.19) Spanish (15.71) English (11.47) Indonesian (3.99)

Portuguese French (39.53) Italian (20.85) Spanish (20.35) English 6.92 Indonesian (5.08)
Spanish French (40.53) Italian (24.25) Portuguese (21.59) English (5.31) Indonesian (4.98)

English French (31.98) Italian (19.81) Swedish (18.49) Portuguese (15.64) Spanish (0.88)
German French (29.47) Swedish (16.58) Italian (13.18) English (12.38) Indonesian (10.09)
Swedish French (35.32) Italian (17.62) English (12.62) Portuguese (12.21) German (10.57)

Indonesian Italian (36.73) French (23.11) Portuguese (18.10) Spanish (11.29) German (4.66)
Korean German (20) English (18) French (17.66) Swedish (13.33) Italian (12.33)

Table 2.19: Percentage of target sentences best predicted by source languages, or-
dered by highest source contribution over the language-universal treebank. Con-
tribution of source languages to parsing the target language is computed from the
Oraclesentence level model. The numbers in brackets represent the percentage of sen-
tences the language model predicts better than any other source language model.
Double horizontal lines separate languages that belong to the same language family.

and Slovene, but it is outperformed on the remaining six languages for which it has

reported performance results.
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Target Language Oraclesentence level PredictorKL BEST
State-of-the-art models

Best Pair Similar multi-source

Catalan 85.28 83.59∗ 74.8 80.2 -
Italian 80.11 74.73∗ 68.3 74.6 65.0

Portuguese 84.35 81.22∗ 76.4 78.4 75.6
Spanish 72.75 69 63.4 69 64.5

German 69.89 61.24∗ 54.8 58.1 56.6
English 66.36 53.63∗ 44.4 - -
Dutch 69.93 58.46 57.8 51.8 65.7

Swedish 74.4 66.67∗ 63.5 48.8 -
Danish 63.71 55.58∗ - - 49.5

Bulgarian 79.59 69.35∗ 66.1 62.4 -
Czech 62.62 54.63∗ 47.5 45.3 -

Slovene 70.22 56.5 - - 68

Arabic 58.01 57.25 57.6 52.7 -
Basque 54.2 41.51 42.0 46.8 -
Chinese 75.82 63.15 65.4 54.8 -
Greek 73.11 66.53∗ 60.6 59.9 65.1

Hungarian 69.56 63.37 57.0 64.5 -
Japanese 67.6 51.54 54.8 64.6 -
Turkish 62.1 50.04 56.9 59.5 -

Average 70.50 62.07 - - -

Table 2.20: Sentence-level expert voting UAS results reported for all-length sen-
tences of the language specific dependency treebank. Row labels represent the
target language. The first column represents the UAS results generated by the
Oraclesentence level model; the Oraclesentence level model represents an upper bound for
dependency parsing performance on the target language, given the information avail-
able in the source languages. The second column represents the UAS results generated
by the PredictorKL BEST model. The last three columns represent the UAS results of
the Best Pair model, the Similar model, and the multi-source model, respectively.
Double horizontal lines separate languages that belong to the same language family.
Starred results are languages for which the PredictorKL BEST model performs better
than the state-of-the-art models. Bolded results represent the best results per target
language obtained by the state-of-the-art models.

In general, the Oraclesentence level model represents a upper-bound on the perfor-

mance of a parsing model built from source languages at a sentence-level. Thus,

it manages to outperform the three state-of-the-art models. On the other side, the

PredictorKL BEST performs better than state-of-the-art models mainly on target lan-

guages for which a larger set of similar source languages are available. For example,

when compared to the Similar model, the PredictorKL BEST model is outperformed
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on Basque, Hungarian, Japanese, and Turkish, languages that are the only represen-

tatives from their respective language families. The multi-source model manages to

outperform the PredictorKL BEST model on Dutch and Slovene, even though for those

languages there exists a larger set of source languages from the same language fam-

ily. The improvements brought by the multi-source model can be explained by the

constraint driven algorithm that borrows syntactic knowledge from parallel corpora.

My PredictorKL BEST model has the advantage of precisely selecting which source

languages should parse each target sentence, instead of selecting a source or a set of

source languages to perform parsing over the entire set of target sentences, or generat-

ing a target parser using selective sharing of model parameters from source languages.

This advantage is more evident for the romance languages, where it achieves better

performance results compared to the Best Pair, Similar and multi-source models.

The largest performance improvement on the Romance languages is on Portuguese,

where my model obtains 81.22 UAS compared to 78.4 UAS the best performance of

the state-of-the-art systems. Based on the best source language selection made by

the Oraclesentence level model, a relatively large percentage of target sentences are pre-

dicted by source languages that are not typologically close to the target language. On

Portuguese in particular, 8.65% of the target sentences are best predicted by Swedish

and 6.92% by English. One possible explanation why my model could achieve bet-

ter performance is because it ranks source languages based on the KL divergence on

the distributions of POS transitions for a specific sentence, instead of only ranking

languages that are typologically similar.

2.7 Discussion

In general, the systems perform better when evaluated over shorter sentences, re-

gardless of the implementation methodology. In addition, using the voting scheme

performs better than automatically selecting the PredictorWALS BEST language. Also,

the PredictorWALS VOTING model tends to favor languages from the same language

family with the target language, in contrast to the Oraclelanguage level model which
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can be selected from totally unrelated language families (see Greek as a source pre-

dictor for Dutch and Slovene).

The universal dependency treebank allows some interesting conclusions to surface.

First, I observe that the dependency parsing results are in general better than the ones

obtained on the language specific CoNLL treebank. Secondly, Germanic languages

are predicted at a higher accuracy when using the universal dependency annotations.

I conclude that the universality together with the consistency of the annotations

allows for parsing models to correctly select and transfer the language phenomena

that are consistent across languages. These universals are also correctly evaluated as

they have the same schema across all languages. When using the universal treebank I

notice that the Oraclesentence level language is from the same language family with the

target language. This follows the linguistic intuition and also matches the automated

predictions made by my system PredictorWALS BEST. My system does not manage to

greatly outperform the Oraclelanguage level model predictions when using the universal

treebank, but instead it manages to match the performance of the best predictor

languages Oraclelanguage level by learning linguistic phenomena from the available data.

Thus, my PredictorWALS BEST model is able to identify which language can best parse

a target sentence via available linguistic knowledge.

2.8 Conclusions

I conclude that sentence-level knowledge transfer is more appropriate in the multilin-

gual setting when compared to the language level. At this level one can more finely

identify syntactic rules and select the language from which to import the appropriate

rules. I show that, even though source languages are available from the same lan-

guage family, the best parser performance on a target language is not always given by

a source language from the same language family. I attribute this to both a diversity

in treebank annotations across languages and to the degree of diversity inherent in

the natural language generation process.
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Chapter 3

Corpus Creation

3.1 Chapter overview

I present the process of creating a multilingual corpus annotated for named entities

and coreference resolution. I give an overview of existing corpora spanning across

multiple languages, and I present the novelty introduced by my corpus. I discuss the

annotation process and the inter-annotator agreement on the tasks of named-entity

recognition and coreference annotation.

3.2 Introduction

The goal of NLP systems is to emulate a human-like understanding of natural lan-

guage. In order to evaluate how accurate the designed system is, one needs to

compare it against the expert in the domain, in this case the human. Such eval-

uations are carried out against decisions made by humans on specific documents,

where the decisions are dictated by the NLP task of interest. The process of making

decisions on documents is defined as annotating specific portions of the document

(i.e., tokens, sentences, or even paragraphs) with a finite set of given tags. Such

tags are {verb, noun, adjective, ...} for the task of part of speech identification, or

{beginning mention, inside mention, not a mention} for the task of mention identifi-

cation.
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In general, natural language is an ambiguous medium of communication. Even

human experts exhibit disagreement over how ambiguous language should be inter-

preted. In order to conclude the gold standard, the annotations made by k different

annotators are presented to a human expert arbitrator who has to reconcile disagree-

ments.

3.3 Related work

Multilingual annotation efforts for natural language were carried out mainly on the

newswire genre, where different NLP tasks were investigated.[70, 62, 77] In the multi-

lingual newswire domain, the SemEval and the CoNLL Shared Tasks made multilin-

gual corpora for several NLP tasks available to the research community. For example,

the SemEval shared task prepared multilingual corpora for semantic textual similarity

in English and Spanish[77], for multilingual word sense disambiguation in English,

French, German, and Spanish[62], and for coreference resolution in Catalan, Dutch,

English, German, Italian, and Spanish [73]. Similarly, the 2012 CoNLL corpus[70]

generated several layers of annotations including named entities and coreference res-

olution in Arabic, Chinese, and English. The corpora prepared by both SemEval

and CoNLL contain different documents for each of the languages, and there is no

semantic equivalence between the texts of the documents.

The main concern with multilingual annotations is that the texts available for

each language could have different writing styles or belong to different genres. Conse-

quently, the task of annotation might be more ambiguous and implicitly more difficult

due to the different text that has to be annotated in each language. In order to over-

come the issue of unequal comparison points between multilingual corpora, some au-

thors have proposed working with parallel corpora, i.e., corpora where the same text

is available in the different languages of interest. In most settings, parallel corpora

are composed of bilingual corpora. Exceptions are the multilingual corpora prepared

through the OPUS initiative,[84] that include corpora spanning different genres. The

EuroParl corpus is an OPUS member and contains a collection of proceedings of the
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European Parliament in 11 European languages. To my knowledge, this corpus has

not been previously annotated for named entities or coreference resolution.

3.4 Corpus description

The EuroParl corpus is part of the OPUS initiative of the European Union and

contains approximatively 40 million words per each of 11 European languages.[84]

I select a subset of European languages (i.e., English, French, and German) and

annotate them for named entities and coreference resolution. The named entities

belong to standard named-entity categories frequently used in the literature: person,

organization, and location. The annotation guidelines used for this task are included

in Appendix A. In the rest of this thesis I refer to the annotated parallel corpus as

EuroParlparallel.

The EuroParlparallel corpus contains the written proceedings from two meetings of

the European Parliament in the form of two distinct documents. After annotation,

I split the EuroParlparallel corpus into a training and test sub-corpus by allocating a

proceedings document to the training corpus and one to the test corpus. No split was

made over the paragraphs or sentences of the large corpus, as the two proceedings

documents are stand-alone documents.

I select one native speaker of English, German, and French, respectively, with

previous experience in annotating documents for named entities and coreference res-

olution on English documents. Each annotator is trained on using the annotation

software (i.e., NotableApp)[38] and the given annotation guidelines using an online

training process. The annotators are then required to annotate documents in their

native language. Annotation reconciliation is performed by a fourth annotator (i.e.,

arbitrator) fluent in the three languages.

The annotators first identify the mentions of the three semantic categories within

the text. If a mention is semantically identical to a previous mention then the two

are linked. The linked mentions create a chain, usually of length 2 or more. The

mentions that are not linked to any previous mention in the document are referred
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to as singletons.

Several statistics on the training and test corpus are presented in Table 3.1. Each

language has 171 total paragraphs in the training corpus, and 72 in the test corpus.

Even though all languages have the same number of paragraphs, there is a slight

variation in the number of sentences: there are 397 sentences for English and French

in the training corpus compared to 413 sentences for German in the training corpus,

and 145 sentences for English, 147 sentences for French, and 146 sentences for German

in the test corpus. For both the training and the test corpus, the average number

of words per sentence varies across the set of languages. German has the smallest

average number of words per sentence (i.e., 20.43 average sentence length on the

training corpus, and 21.85 average sentence length on the test corpus). French has

the largest average number of words per sentence (i.e., 26.87 average sentence length

on the training corpus, and 26.89 average sentence length on the test corpus). The

total number of words per corpus is highest for French (i.e., 10670 words in the training

corpus and 3954 in the test corpus) and smallest for German (i.e., 8439 words in the

training corpus an 3201 in the test corpus).

Language # Paragraphs # Sentences Average Sentence length # Words

Training
English 171 397 22.77 9042
French 171 397 26.87 10670

German 171 413 20.43 8439
Test

English 72 145 23.04 3342
French 72 147 26.89 3954

German 72 146 21.85 3201

Table 3.1: EuroParlparallel description: sentence and paragraph count, and average
sentence length, i.e., average number of words per sentence.

Tables 3.2 and 3.3 present the number of mentions and coreference chains for

each of the languages in the training and test corpus, respectively. The total number

of mentions is 703 for English, 719 for French, and 701 for German in the training

corpus, and 293 for English, 294 for French, and 289 for German in the test corpus.
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French has the largest number of mentions as well as the largest number of chains

(97 chains in the training corpus and 48 chains in the test corpus). Even though

French has the largest number of mentions, the largest average chain size comes from

German, with an average of 6.36 mentions per chain in the training corpus and 5.63

average chain length in the test corpus. In the training corpus, the largest number of

mentions and singletons come from the person category, while in the test corpus the

person category has the highest number of mentions but the location category is the

most numerous in number of singletons.

Language # Mentions # Chains Average Chain Size # Singletons

Person
English 339 60 4.56 65
French 350 62 4.53 69
German 352 62 4.62 65

Location
English 42 10 3.1 11
French 51 11 3.27 15
German 45 8 3.87 14

Organization
English 322 24 12.16 30
French 318 24 11.91 32
German 304 22 12.18 36

Overall
English 703 94 6.35 106
French 719 97 6.21 116
German 701 92 6.36 115

Table 3.2: EuroParlparallel training corpus description: the number of mentions,
chains, the average chain length, and the number of singletons. Singletons are ex-
cluded when computing the statistics over the chains.

In the following section I discuss the inter-annotator agreement process and ana-

lyze the complexity of performing annotations across multiple languages. The work

presented in the following chapter was carried out together with Cosmin Gheorghe,

as part of his MIT Undergraduate Advanced Project requirement.
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Language # Mentions # Chains Average Chain Size # Singletons

Person
English 109 23 4.56 4
French 113 25 4.36 4
German 109 23 4.52 5

Location
English 93 8 5.66 21
French 99 10 7.9 20
German 98 9 8.55 21

Organization
English 91 14 6.85 17
French 82 13 5.13 15
German 82 12 5.58 15

Overall
English 293 45 5.57 42
French 294 48 5.31 39
German 289 44 5.63 41

Table 3.3: EuroParlparallel test corpus description: the number of mentions, chains,
the average chain length, and the number of singletons. Singletons are excluded when
computing the statistics over the chains.

3.5 Inter-annotator agreement

Traditionally, inter-annotator agreement is computed for annotators working on the

same task and document. In my setup, each annotator was given a document in a

different language, but all annotators worked on the same task. Thus, I cannot com-

pute language-specific inter-annotator agreement, and I only present inter-annotator

agreement results for the cross-lingual annotations.

Inter-annotator agreement is computed by running two comparisons:

• Comparison of annotator decision against the final gold standard: I

analyze how often the annotator decisions agree with the reconciled annotations.

I compare the agreement of each annotator with the resolved annotations in

terms of mention recognition and coreference resolution.

I compute annotator agreement to the gold standard using the Precision, Recall,

and F-measure metrics on named entities. For coreference resolution, I use
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the MUC,[90] B3,[5] and CEAF metrics.[49] See Section 4.3.3 for a detailed

description of those metrics.

The annotator agreement results on coreference resolution are reported for the

test section of the corpus only. Because of an error generated by the annotation

software, the annotator training files had offset chain numbers that broke parts

of the coreference chains. This problem is fixed in the gold standard files, and

did not occur for the annotator test files.

• Comparison of inter-annotator decisions: I perform a pairwise compari-

son on the annotator decisions to evaluate the agreement between annotations

on different languages. Because each individual annotator worked on an inde-

pendent language, this evaluation involves finding an alignment between the

languages of interest.

Given two annotators A and B with associated languages LA and LB, I first

perform language alignment between the sentences in languages LA and LB

using the Giza++ software.[66] The alignment process takes as input a pair

of manually aligned sentences (sA, sB) from languages LA and LB respectively,

and outputs the word alignment on those sentences. If a sentence sA is aligned

to {s1B, s2B...}, than the set of sentences {s1B, s2B...} are concatenated into a sin-

gle sentence. The sentence alignment is manually generated by the author

based on gold standard paragraph alignment available with the raw text of the

EuroParlparallel corpus.

The output of the word-based alignment process is a set of word pairs (wLA
k , wLB

j ),

where either wLA
k or wLB

j could be NULL, which means no alignment was found

for the specific word. I assume that if an aligned word pair is annotated with

the same named-entity label, then the two words belong to the same mention

in the two different languages. The words that are not aligned by the alignment

algorithm are discarded when computing the IAA scores.

I compute inter-annotator agreement (IAA) on mention recognition using the

Cohen’s kappa metric[11] as well as word-level Precision, Recall, and F-measure
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over the named-entity annotations.[35] I compare the results of the two metrics

for consistencies and disagreements in IAA evaluation.

1. Cohen’s kappa takes an aligned word pair and defines a correctly labeled

alignment as:

Matchnamed entity: word pair where both words are assigned the same

category label for named entity, or where both words are not labeled.

Cohen’s kappa is defined as:

k =
Pr(a)− Pr(e)

1− Pr(e)
(3.1)

where:

Pr(a) =
Matchesnamed entity

#words
is the observed agreement between the annota-

tors

Pr(e) is the probability of random agreement between the annotators

#words is the total number of aligned words between the two languages.

Cohen’s Kappa has a range from 0− 1.0 and larger values represent better

annotator reliability. In general, k > 0.70 is considered satisfactory. I

compute Cohen’s Kappa results over the entire set of annotations, without

a distinction on the different named-entity categories.

2. Word-level Precision, Recall, and F-measure are defined as:

Precision =
#Correct aligned words from each mention marked by evaluated annotator

#Aligned words marked by evaluated annotator
(3.2)

Recall =
#Correct aligned words from each mention marked by evaluated annotator

#Aligned words marked by reference annotator
(3.3)

F −measure =
2 ∗ Precision ∗ Recall

Precision + Recall
(3.4)
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I define in turns each of the annotators to be the reference annotator, and I

consider the remaining annotators to be the evaluated annotator. A correct

word wA is a word aligned to a word wB in the reference annotations that

has the same named-entity annotation as wB.

I compute Precision, Recall, and F-measure results over each named-entity

category. I report the overall IAA performance as the unweighted average

over Precision, Recall, and F-measure.

3.5.1 Inter-annotator agreement results

Comparison of annotator decision against the final gold standard

Table 3.4 presents the results of evaluating each annotator decisions on named-entity

recognition against the gold standard for the respective language. For each of the three

languages, the precision results are higher than the recall results (approximatively

95% precision and .90 recall), but the F-measure results are around 93% for all three

languages. The high evaluation results for named-entity recognition convey that the

annotators are very close to the gold standard in their annotation decisions.

P R F

English 97.7 89.51 93.43
French 94.69 92.41 93.54

German 98.47 89.89 93.98

Table 3.4: Named-entity recognition evaluation against the gold standard. P = Pre-
cision, R = Recall, F = F-measure.

Table 3.5 presents the evaluation results for the coreference chains created by

the annotator against the gold standard coreference chains. The languages with an-

notations closest to the gold standard are English and German. Across the three

coreference resolution evaluation metrics, the annotators present an approximatively

83% F-measure on English, approximatively 80% F-measure on French, and approx-

imatively 84% F-measure on German.
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MUC B-CUBED CEAF

P R F P R F P R F
English 88.99 77.94 82.81 85.49 78.32 81.75 84.29 84.29 84.29
French 83.49 83.49 83.49 78.44 76.55 77.48 82.89 75.98 79.28

German 96.08 83.49 89.35 90.12 65.81 76.07 84.68 86.77 85.72

Table 3.5: Coreference resolution annotation evaluation against the gold standard. P
= Precision, R = Recall, F = F-measure.

Comparison of inter-annotator decisions

Table 3.6 presents the kappa results for English-German, English-French, and German-

French on the training and test corpus. The IAA results range from 0.65 to 0.77. For

the training corpus, the best IAA comes from the English-German language pair

(0.77), while the worst IAA is observed for the German-French language pair (0.73).

The test corpus has larger IAA results, with a best IAA of 0.87 on the English-

German language pair. The observed kappa values for the English-French language

pair of the training corpus are larger due to the larger percentage of words that are

not part of a mention and are annotated by both annotators with a Not Mention tag:

approximatively 80% of the word pairs in the training corpus are labeled with Not

Mention by both annotators, compared to 74% of the word pairs in the test corpus.

In general, the IAA results show a satisfactory agreement of annotations made across

the three languages (i.e., English, French, and German) on both the training and test

corpus.

Table 3.7 presents the IAA results in terms of precision, recall, and F-measure.

In general, the IAA results are higher when the reference annotator is the English

annotator, mainly due to better word-alignenment results. The difference in IAA

results when the reference and evaluated annotator are switched is 1% for English-

German and for English-French, and 7% for German-French. The kappa results and

the overall unweighted F-measure IAA results are consistent with each other: 0.87

kappa vs. 0.88 overall unweighted F-measure for English-German, 0.71 kappa vs.

0.71 overall unweighed F-measure for English-French, and 0.75 kappa vs. 0.74 overall

unweighted F-measure for German-French. In general, the person category has the
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Language Pair kappa Not Mention

Training set

English - German 0.77 80%
English - French 0.75 80%
German - French 0.73 78%

Test set

English - German 0.87 74%
English - French 0.71 75%
German - French 0.75 74%

Table 3.6: IAA results on named-entity recognition: kappa and percentage of word
pairs labeled with Not Mention by both annotators.

highest IAA F-measure, followed by the location, and organization categories.

Reference Evaluated
Person Location Organization Overall

P R F P R F P R F P R F

English German 0.95 0.91 0.93 0.89 0.89 0.89 0.86 0.79 0.82 0.9 0.86 0.88
German English 0.91 0.90 0.90 0.89 0.87 0.88 0.96 0.82 0.84 0.92 0.86 0.87

English French 0.89 0.70 0.79 0.62 0.84 0.71 0.72 0.53 0.62 0.74 0.69 0.70
French English 0.74 0.87 0.81 0.88 0.61 0.72 0.54 0.68 0.61 0.72 0.72 0.71

German French 0.93 0.95 0.94 0.55 0.76 0.64 0.79 0.54 0.64 0.75 0.75 0.74
French German 0.75 0.87 0.81 0.81 0.45 0.58 0.57 0.70 0.63 0.71 0.67 0.67

Table 3.7: Precision (P), Recall (R), and F-measure (F) IAA results on named-entity
recognition.

3.6 Discussion

In general, the annotators found the content of the documents less ambiguous when

annotating documents in English. I consequently ran an experiment where annota-

tors were first given an English document to annotate and then handed the German

equivalent of the same document. Both the English and the German documents were

new to the annotator working on them. The German document was much easier

to work with after the annotator had already annotated the document in English,

in terms of both the time required for annotation and the amount of uncertainty

in annotations. Thus, even for the human experts there is a valuable gain to be
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achieved in retrieving information from parallel documents simultaneously, compared

to retrieving information from a single language.

The process of reconciliation showed that annotator disagreements are caused by

language subtleties and are inherently difficult to resolve. Depending on context and

language, mentions would be missing or would not be annotated for coreference as

the context did not explicitly include reference to a previous mention. Some of the

languages were more verbose, and consequently it was more difficult to track the

coreference links and to correctly identify the entire span of a mention.

Given that named-entity recognition and coreference resolution are challenging

tasks for human experts, I expect automated systems to be similarly hindered by the

complexity of those tasks.

3.7 Conclusions

I present a parallel multilingual corpus annotated for named entities and coreference

resolution in English, German, and French. The annotations are evaluated for quality

and consistency. I also investigate the difficulty of retrieving information from a

text available in a single language compared to multiple languages. The generated

annotations are consistent across the three languages with an average kappa of 0.75

on the training corpus and 0.77 on the test corpus. From empirical observations I

conclude that the human experts benefit from using parallel text available in multiple

languages.

The multilingual corpus is made available for research purposes at http://web.

mit.edu/andreeab/www/multilingual_coreference.html.
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Chapter 4

Multilingual end-to-end

coreference resolution

4.1 Chapter overview

Humans make use of prior knowledge when communicating through natural language.

This knowledge can be grouped intro linguistic knowledge that helps form the dis-

course, and contextual knowledge that helps disambiguate discourse meaning. In

general, the human brain can perform multiple language-related tasks simultaneously

- like reading a text and following the main character’s evolution, extracting rela-

tionships between concepts mentioned inside the text, or performing disambiguation

of ambiguous language. This behavior is not currently implemented in many NLP

systems, as most processing is done sequentially rather than in parallel. I aim to

tackle the challenge of knowledge incorporation and joint solving of related NLP

tasks across languages with respect to the named-entity recognition and coreference

resolution task.

My goal is to develop a coreference resolution system that builds on the syntactic

knowledge previously discussed, and further integrates contextual knowledge in the

form of soft linguistic constraints induced in a Bayesian setting. The model presented

in this chapter performs joint learning of named entities and coreference resolution

relations.
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In the remainder of this chapter, I present an introduction and overview of related

work on coreference resolution, and specifically on multilingual coreference resolution

(see Section 4.2 and Section 4.3). I introduce the end-to-end multilingual coreference

resolution system in Section 4.4, followed by the experimental setup in Section 4.5. I

discuss the experiment results (Section 4.6), followed by a detailed analysis of model

performance across the investigated languages (Section 4.7), and I end the chapter

with some conclusions in Section 4.8.

4.2 Introduction

Coreference resolution determines whether two expressions are coreferent, that is,

linked by an identity or equivalence relation. In order to develop coreference resolu-

tion systems, one must first obtain the expressions of interest. In the first scenario,

the system receives the expressions of interest as input and identifies the relevant

relations. In the second scenario (the end-to-end coreference resolution) the system

identifies expressions from text and performs coreference resolution on the identified

expressions. The problem encountered by both scenarios is the lack of information

flow between the NLP system solving the named-entity recognition task and the NLP

system solving the coreference resolution. A coreference resolution system could guide

its decisions on the retrieval of coreference chains using the decisions made on the

named entities, and optimize the entire process across the two layers of retrieved

information.

Coreference resolution systems can be built solely from the training data pro-

vided. They may also include unbounded amounts of additional world knowledge

from external sources such as web sites, dictionaries, ontologies, etc. In general,

external knowledge is required by coreference resolution systems in order to com-

pensate for the lack of contextual information required for anaphora disambiguation.

An ideal language processing framework would allow for context-sensitive modeling

of language, but the computational complexity of context-sensitive models is a large

burden for natural language processing systems.
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In this thesis I approach the problem of joint modeling of named-entity recogni-

tion and coreference resolution in an end-to-end coreference resolution system using

linguistic knowledge induced through soft constraints. I further discuss multilingual

approaches to named-entity recognition and I present a review of the state-of-the-art

in multilingual coreference resolution.

4.3 Related work

In order to understand the progress made by the research community in multilingual

coreference resolution, I review the two steps usually undertaken by coreference reso-

lution systems: named-entity recognition and coreference resolution on the identified

named entities.

4.3.1 Multilingual named-entity recognition

Several research initiatives have investigated the named-entity recognition task for

parallel corpora. Yarowsky et al.[95] investigated the feasibility of projecting En-

glish named entity data over French, Chinese, Czech, and Spanish. They showed

that resources developed on a source language can be used to automatically induce

stand-alone text analysis tools. With a slightly different goal, Klementiev and Roth

(2008) proposed an algorithm for cross-lingual multiword named-entity discovery in a

bilingual weakly temporally aligned corpus. Richman et al.[74] used the multilingual

properties of Wikipedia to annotate a corpus with named entities using little human

intervention and no linguistic expertise. Shah et al.[78] used machine translation

techniques to develop a named-entity recognition system in which named-entity an-

notations are projected based on word-alignment. In general, the methods proposed

for multilingual named-entity recognition assume the availability of a multilingual

parallel or synchronous comparable corpora on which learning is based.[41, 40] Alter-

natively, they are based the model development on top of other linguistic processing

resources,[73] which might not be available for resource-poor languages.
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4.3.2 Multilingual coreference resolution

The field of multilingual coreference resolution has moved forward due to multilin-

gual coreference resolution shared tasks. The first shared task was organized during

the ACE 2004/2005 evaluations. It was followed by the SemEval-2010 Multilingual

Shared Task 1[73] which addressed coreference resolution in six languages (i.e., Cata-

lan, Dutch, English, German, Italian, Spanish), and the 2012 CoNLL Shared Task[70]

which handled only three languages (i.e., English, Chinese, Arabic). Both shared

tasks evaluate system performance without making a difference on the category of

the named entities. Results are reported across all possible chains instead of making

a separate classification of performance based on the type of the named entities.

The SemEval-2010 Shared Task provided multilingual corpora annotated for sev-

eral layers of linguistic knowledge including part-of-speech, morphological features,

syntactic dependency information, semantic information, named entities, and coref-

erence resolution. The Shared Task evaluated the participating system’s perfor-

mance when the provided linguistic knowledge was generated by human experts

(gold-standard setting) as well as when the linguistic knowledge was generated by

state-of-the-art NLP systems (regular setting). It also considered how systems per-

formed when integrating knowledge outside the provided corpora (open setting) ver-

sus when using only corpus-specific information (closed setting). Two of the best

performing systems in the SemEval-2010 shared task are the SUCRE[42] and the

UBIU system.[98] The SUCRE system is a supervised classification system trained

in a monolingual setting (i.e., it requires gold standard annotations for the target

language). It improves on previous state-of-the art systems by its feature engineering

technique built on top of a relational database. On the task of coreference resolution,

SUCRE obtains a 67.3 unweighted average F-measure on Catalan, 72.5 unweighted

average F-measure on English, 67.5 unweighted average F-measure on Spanish, and

65.2 unweighted average F-measure on Dutch under the closed gold-standard settings.

It obtains 45.2 unweighted average F-measure on Catalan, 60.76 unweighted average

F-measure on English, 48.26 unweighted average F-measure on Spanish, and 19.1
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unweighted average F-measure on Dutch in the closed regular setting. Similar to SU-

CRE, the UBIU system is also a classification system that makes use of a rich feature

set extracted from the corpora and the available annotations. UBIU obtains corefer-

ence resolution scores ranging from 40.93 unweighted average F-measure on Catalan

to 53.66 on English in the closed gold-standard setting, and from 29.3 unweighted

average F-measure on Catalan to 42.16 on English in the closed regular setting.

A common trend of the shared tasks was the design of supervised monolin-

gual coreference resolution systems, or generic coreference resolution systems easily

adapted to the target language. The problem of these approaches is the expectation

that annotated resources are available in the source languages. One could replace the

supervised approaches with unsupervised or heuristic methods. But in this case the

burden is placed on external linguistic knowledge necessary for designing coreference

rules[71, 57] or generative models.[29] To address the corpus annotation bottleneck,

Rahman and Ng[72] use a translation-based projection approach to coreference reso-

lution. The authors first automatically translate the target language into the source

language, produce annotations in the translated source language text using a language

specific coreference resolver. Finally they project the annotations from the source lan-

guage to the target language. Their system achieved 90% of the performance of a

supervised coreference resolver in Spanish and Italian, when only a mention extractor

for the target language was available. A projection-based approach was also taken

by de Souza and Orăsan[22], but the authors used parallel corpora for performing

the annotation projection. Harabagiu and Maioreanu[32] discuss the performance

of a system trained on a bilingual English-Romanian corpus that outperforms the

coreference resolution results of a monolingual baseline.
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4.3.3 Evaluation metrics

Mention evaluation

System performance on mention extraction is commonly evaluated using the precision

(P), recall (R), and F-measure (F) metrics. These metrics are computed based on

the true positives (TPs), false positives (FPs), and false negatives (FNs) of named

entities retrieved by a system. I define the TP, FP, and FN differently for mentions

that exactly overlap the gold standard mentions (i.e., exact overlap), and for mentions

that at least partially overlapped the gold standard mentions (i.e., at least partial

overlap).

For exact overlap, I define TP, FP, and FN as:

• TP: system mentions that exactly match with a gold standard mention anno-

tation, in both word offset and named-entity category.

• FP: system mentions that do not exactly agree with any gold standard mention

annotation, in either word offset or named-entity category.

• FN: gold standard mention annotations that do not exactly agree with any

system mention annotation, in either word offset or named-entity category.

For at least partial overlap, I define TP, FP, and FN as:

• TP: system mentions that at least partially match with a gold standard mention

annotation, in both word offset and named-entity category.

• FP: system mentions that do not at least partially agree with any gold standard

mention annotation, in either word offset or named-entity category.

• FN: gold standard mention annotations that do not at least partially agree with

any system mention annotation, in either word offset or named-entity category.

Precision, recall, and F-measure are then defined as:

Precision =
TP

TP + FP
(4.1)
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Recall =
TP

TP + FN
(4.2)

F -measure =
2 ∗ precision ∗ recall
recall + precision

(4.3)

Coreference resolution evaluation

I evaluate the systems’ performance on coreference resolution using three evalua-

tion metrics: MUC,[90] B3,[5] and CEAF.[49] Following common practices in the

literature,[88, 70] I use the unweighted average of the MUC, B3, and CEAF metrics

as a measure of system performance on coreference chains.

The MUC metric evaluates the set of system chains by looking at the minimum

number of coreference pair additions and removals required to match the gold stan-

dard coreference pairs. The pairs to be added represent false negatives, while the pairs

to be removed represent false positives. Let K represent the gold standard chains set,

and R the system chains set. Given chains k and r from K and R, respectively, MUC

recall and precision of R are:

RecallMUC =

∑
k(|k| −m(k,R))∑

k(|k| − 1)
(4.4)

PrecisionMUC =

∑
k(|r| −m(k,K))∑

k(|r| − 1)
(4.5)

wherem(r,K), by definition, represents the number of chains inK that intersected

the chain r. The MUC F-measure is given by:

F -measure =
2 ∗ precision ∗ recall
recall + precision

(4.6)

B3 metrics evaluate system performance by measuring the overlap between the

chains predicted by the system and the gold standard chains. Let C be a collection

of n documents, d a document in C, and m a mention in document d. I define the

gold standard chain that includes m as Gm and the system chain that contains m as
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Sm. Om is the intersection of Gm and Sm. B3 recall and precision are defined as:

RecallB3 =
1

n

∑
d∈C

∑
m∈d

|Om|
|Gm|

(4.7)

PrecisionB3 =
1

n

∑
d∈C

∑
m∈d

|Om|
|Sm|

(4.8)

The B3 F-measure is defined identically to the MUC F-measure, but on the B3-

specific definitions of precision and recall.

The CEAF metric first computes an optimal alignment (φ(g∗) ) between the

system chains and the gold standard chains based on a similarity score. This score

could be based on the mentions or on the chains. The chains-based score has two

variants, φ3 and φ4; in reporting the results for this thesis I use φ4, unless otherwise

specified.

φ3 = |Ki ∩Rj| (4.9)

φ4 =
2 ∗ |Ki ∩Rj|
|Ki|+ |Rj|

(4.10)

The CEAF precision and recall are defined as:

RecallCEAF =
φ(g∗)∑

i φ(Ri, Ri)
(4.11)

PrecisionCEAF =
φ(g∗)∑

i φ(Ki, Ki)
(4.12)

The CEAF F-measure is defined identically to the MUC F-measure, but on the

CEAF-specific definitions of precision and recall.
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4.4 Model overview

I design a system for joint learning of named entities and coreference relations from

a given document. I represent my solution using a graphical model, specifically a

factorial hidden markov model (FHMM),[26] in which separate hidden node variables

are used to model the named entities and coreference relations, respectively. My

approach is motivated by the work of Li et al. for pronoun anaphora resolution.[48] I

extend their work to noun-phrase mentions, and use a different model representation

in order to reduce the number of externally-induced model constraints. Specifically,

I encode in the model an additional queue storing the mention history, that helps

capture context-sensitive knowledge. In the rest of this chapter, I refer to my named

entity and coreference resolution FHMM model by NECR.

NECR is trained over entire sentences, where each time step t corresponds to a

word position inside the sentence and the transitions between time steps correspond

to sequentially moving through the words in a sentence. For the languages I consider

in this thesis, the states transitions are equivalent to moving left-to-right through a

sentence.

The NECR model consists of two hidden states (mention hidden state m and

coreference hidden state cr) and two observed states (part-of-speech observed state

pos and dependency head observed state dep) (see Figure 4.1). The m state has three

possible values {beginning, inside, outside}; the beginning state value specifies the

beginning of a mention; the inside state value specifies the inside of a mention; and

the outside state value specifies there is no mention. At each time step, the model

stores the most recently discovered mentions in a history queue H. The history

queue stores at most n = 6 mentions, in order to limit the model complexity. As new

mentions are discovered, they are added to the history queue, and the last mention

inside the history queue is removed if the queue is full.

The cr state is defined in relation to the mentions stored inside the history queue.

It specifies the mention inside the queue to which the mention at the current state

corefers. The cr state takes values from 1 to n, or none, where n is the size of the

79



history queue. Each state value represents an index inside the queue, or no index

(none) when no coreference relation applies.

It is worth pointing out that some of the NECR hidden state transitions are not

possible. For example, the m state cannot generate a sequence outside → inside →

beginning and the cr state cannot generate a sequence such as none → 2 → 3 → 2.

Similarly, a cr state with a value other than none cannot exist at time step t, unless

the m state at time step t has a value different from outside. Such restrictions on the

possible state sequences are captured by a set of soft constraints.

The NECR model has two observations: part-of-speech pos and dependency head

observed state dep. The pos observed state takes values from the universal POS tag

set discussed in Chapter 2. The dep observed state takes values from 1 to the sentence

length, and represents the head position inside the sentence.

Figure 4.1: NECR model design

The transition probability of the NECR model is defined in Equation 4.13. The

observed states depend on the two hidden states at each time step. In designing the

NECR model, I assume that the two observed states are independent of each other
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given the hidden states. The observation model is defined in Equation 4.14.

P (hidden statet|hidden statet−1) = P (mt|mt−1) ∗ P (crt|crt−1,mt) (4.13)

P (observationt|hidden statet) = P (post|mt, crt) ∗ P (dept|mt, crt) (4.14)

My NECR model is delexicalized, as the observations are constructed from a

combination of universal part of speech and dependency attributes at each time step

t and no lexical information is used during the model learning stage. The model

assumes the existence of universal POS tags and dependency annotations. The Se-

mEval corpus has associated POS annotations for each language, and I generate POS

annotations for the EuroParlparallel corpus using the state-of-the-art Stanford POS

Tagger.[86] Because the input corpora are not annotated with universal POS tags, I

map the corpus specific POS tags to universal tags using the mapping proposed by

Naseem et al.[60] I also generate dependency annotations for each sentence inside a

corpus using the PredictorKL BEST model presented in Chapter 2, in order to have a

universal parser for all languages in the input corpora.

The FHMM model is enhanced with a set of soft constraints that guide the learn-

ing process. The use of soft constraints has been previously shown to improve per-

formance of HMM models on the task of named-entity recognition[12] and relation

extraction.[8] A sample set of the constraints used in the NECR model is presented

in Table 4.1.

The NECR model is implemented on top of the HMM-learning with constraints

framework available from [12].
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Name Description

CoreferMaintained The coreference label has to be maintained across a mention

CoreferInQueue
If a coreference label is assigned, then a mention must exist

at the respective position inside the queue

CorefNoEntity
Coreference labels cannot be assigned if a named-entity label

does not exist at the specific time point
NEMaintained The named-entity label has to be maintained across a mention

NoPunct Punctuation signs should not be annotated
NoStartInside Named entities cannot begin with an inside label

Table 4.1: Sample NECR model constraints.

4.5 Experiments

4.5.1 Corpus and Annotations

I evaluate the performance of the NECR model on the coreference resolution tree-

bank released by the SemEval-2010 Shared Task.[73] The treebank contains newswire

texts for Catalan, Spanish, Dutch, English, German, and Italian. It is annotated

on several linguistic layers including named entities, coreference resolution, syntactic

dependency trees, prepositions, and word sense. The treebank is gold-standard an-

notated for named entities and coreference resolution for all of the languages. The

other layers of annotations are generated using state-of-the-art automated systems.

I exclude Italian when running comparison experiments in this thesis, as there is

no granular-to-universal POS mapping available for the granular Italian POS tagset.

The analysis presented in this thesis also excludes the German language, as it was

not available for public release together with the remaining languages.

Each SemEval language-specific corpus was annotated based on independent anno-

tation guidelines. Consequently, certain inconsistencies in annotations will be present.

In a cross-lingual learning setting those inconsistencies might hinder the system per-

formance. The named entities are not annotated for category, but only for the span

of the named entity.

The number of documents, sentences, and tokens for each of the SemEval lan-

guages used in this thesis is included in Table 4.2. The largest portion of the corpus
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is represented by the Spanish language, with 875 documents and 284, 179 tokens in the

training set and 168 documents and 51, 040 tokens in the test set, followed by Catalan

with 829 documents and 253, 513 tokens in the training set and 167 documents and

49, 260 tokens in the test set.

Language Type Train Development Test

Catalan
Documents 829 142 167
Sentences 8,709 1,445 1,698

Tokens 253,513 42,072 49,260

Spanish
Documents 875 140 168
Sentences 9,022 1,419 1,705

Tokens 284,179 44,460 51,040

English
Documents 229 39 85
Sentences 3,648 741 1,141

Tokens 79,060 17,044 24,206

Dutch
Documents 145 23 72
Sentences 2,544 496 2,410

Tokens 46,894 9,165 48,007

Table 4.2: Number of documents, sentences, and tokens in the 2010 SemEval corpus
used in this thesis.

I also report system results for named-entity recognition and coreference resolution

on the EuroParlparallel corpus developed by the author.

4.5.2 Experiment setup

In order to analyze the NECR model performance and identify its specific contribu-

tions, I evaluate the system under the following experimental settings:

Setting 1: Monolingual system I investigate how the NECR model performs

when trained in a monolingual setting. Under this setting, the model dep ob-

served state values are obtained from the multilingual PredictorKL BEST parser.

I report the model performance for both named-entity recognition and corefer-

ence resolution on the EuroParlparallel and SemEval corpora.

I refer to this setting of the model as the NECRmonolingual
KL BEST model.

Setting 2: Monolingual system in cross-lingual evaluation I investigate how
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the monolingualNECRmonolingual
KL BEST model performs when directly transferred to

other languages. Specifically, I use the NECRmonolingual
KL BEST model trained in a

monolingual setting on language L, and report its performance on the remain-

ing languages Lk 6= L. I report the model performance for both named-entity

recognition and coreference resolution on the EuroParlparallel and SemEval cor-

pora.

Setting 3: Monolingual training with language specific parsers In general,

NLP systems trained on gold standard annotations perform better than systems

for which training data is not available. This experiment investigates whether

the multilingual dependency parsers are detrimental to the final NECR system

performance, or whether they are as good or better than the parsers trained on

language-specific annotations (the language specific parsers).

In order to obtain language specific parsers I learn a dependency parsing model

from the available gold standard annotations for each specific language using

the MSTParser. The parser is trained on the CoNLL 2006/2007 corpus for each

respective language. The parser is thus transferred across corpora. I use the

output from the language-specific parsers for the observed states of the NECR

system, and refer to this setting as the NECRmonolingual
MST model.

I report model results on the SemEval corpus only, because gold standard de-

pendency annotations are not available for the EuroParlparallel corpus and I

consequently cannot train a language-specific parser for the latter corpus.

Setting 4: Multilingual source training In this experiment, I investigate whether

joint training on more than one source language can help improve the model

performance on a target language. I train the NECR with state values ob-

tained from the PredictorKL BEST parser on a subset Ssource training of k source

languages and report its performance on the remaining target languages Tj 6∈

Ssource training.

I experiment with different values for the number of source training languages

k and allow source languages to be selected from (1) the EuroParlparallel corpus,
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(2) the SemEval corpus, or (3) from a combination of the two corpora. I report

results on the target languages from the EuroParlparallel corpus only, in order to

facilitate an informed analysis of model performance without variance caused

by differences in the input texts specific to each language.

I refer to this experimental setting of the NECR model as NECRmulti source
KL BEST .

4.6 Results

4.6.1 Setting 1: Monolingual system

System results on the EuroParlparallel corpus

The named-entity recognition results of the NECRmonolingual
KL BEST model on the EuroParlparallel

corpus are included in Table 4.3. The system evaluates at 43.18 F-measure on English,

21.83 F-measure on French, and 10.98 F-measure on German on exact overlap. The

partial overlap results are better across all languages: 59.84 F-measure on English,

58.07 F-measure on French, and 18.43 F-measure on German for partial overlap.

Exact Partial
P R F P R F

English 48.3 39.04 43.18 66.94 54.10 59.84
French 29.76 17.24 21.83 79.16 45.86 58.07

German 27.85 6.77 10.98 47.14 11.45 18.43

Table 4.3: NECRmonolingual
KL BEST : named-entity recognition results on the EuroParlparallel

corpus. Results are reported in terms of precision (P), recall (R), and F-measure (F)
over exact and partial overlap.

Table 4.4 presents the NECRmonolingual
KL BEST coreference resolution results on the EuroParlparallel

corpus. The unweighted average F-measure is 19.98 on English, 8.11 on French, and

3.61 on German. In general, the system evaluates better in terms of the CEAF

metric, reporting a 22.58 CEAF F-measure on English, 13.1 CEAF F-measure on

French, and 6.14 CEAF F-measure on German.
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MUC B3 CEAF Overall
P R F P R F P R F P R F

English 16.56 12.56 14.28 25.84 20.89 23.1 23.43 21.78 22.58 21.93 18.41 19.98
French 7.27 1.94 3.06 12.53 6.06 8.17 17.85 10.34 13.1 12.55 6.11 8.11

German 5.71 0.96 1.65 12.08 1.75 3.06 15.71 3.81 6.14 11.16 2.17 3.61

Table 4.4: NECRmonolingual
KL BEST : coreference resolution results on the EuroParlparallel cor-

pus. Results are reported in terms of precision (P), recall (R), and F-measure (F) of
the MUC, B3, and CEAF metrics respectively, as well as the unweighted average of
precision, recall, and F-measure over the three metrics.

System results on the SemEval corpus

The named-entity recognition results of the NECRmonolingual
KL BEST model on the SemEval

corpus are included in Table 4.5. For exact overlap, the system reports a 27.3 F-

measure on Catalan, a 33.13 F-measure on Spanish, a 52.56 F-measure on English,

and a 28.94 F-measure on Dutch. The partial overlap results are larger across all

languages, with a 55.39 F-measure on Catalan, a 59.32 F-measure on Spanish, a

75.47 F-measure on English, and a 53.64 F-measure on Dutch. For English, the

named-entity recognition results on the SemEval corpus are larger than the results

on the EuroParlparallel corpus. This behavior is explained by the larger size of the

SemEval training corpus, compared to the EuroParlparallel training corpus.

Exact Partial
P R F P R F

Catalan 27.75 26.87 27.3 56.3 54.52 55.39
Spanish 30.83 35.8 33.13 55.2 64.11 59.32
English 50.46 54.6 52.56 72.75 78.42 75.47
Dutch 26.94 31.26 28.94 49.94 57.95 53.64

Table 4.5: NECRmonolingual
KL BEST : named-entity recognition results on the SemEval corpus.

Results are reported in terms of precision (P), recall (R), and F-measure (F) over
exact and partial overlap.

The coreference resolution results of the NECRmonolingual
KL BEST model on the SemEval

corpus are included in Table 4.6. The system evaluates at 15.15 unweighted average F-

measure on Catalan, 17.11 on Spanish, 35.70 on English, and 12.63 on Dutch. English

is the language with the best coreference resolution performance, while Dutch is the

language with the lowest results for coreference resolution.
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MUC B3 CEAF Overall
P R F P R F P R F P R F

Catalan 2.98 3.34 3.15 21.6 20.92 21.25 22.61 19.69 21.05 15.73 14.65 15.15
Spanish 2.35 3.41 2.78 20.3 25.69 22.68 26.1 25.64 25.87 16.26 18.24 17.11
English 31.43 17.53 22.51 44.68 41.76 43.17 36.57 47.82 41.44 37.56 35.70 35.70
Dutch 3.14 3.73 3.41 13.74 16.47 14.98 18.51 20.63 19.51 11.79 13.61 12.63

Table 4.6: NECRmonolingual
KL BEST : coreference resolution results on the SemEval corpus.

Results are reported in terms of precision (P), recall (R), and F-measure (F) of the
MUC, B3, and CEAF metrics respectively, as well as the unweighted average of
precision, recall, and F-measure over the three metrics.

Across both corpora, English obtains the best results on coreference resolution due

to the fact that it also manages to identify the highest percentage of exact overlap

mentions. The rest of the languages exhibit lower results on named entity recognition,

and those results impact the final performance on coreference resolution.

4.6.2 Setting 2: Monolingual system in cross-lingual evalua-

tion

System results on the EuroParlparallel corpus

Table 4.7 presents the NECRmonolingual
KL BEST results for named-entity recognition on the

EuroParlparallel corpus. The system performance on the target language varies based

on the source language. For all three languages, the best source NECRmonolingual
KL BEST

model is English when the task is evaluated over exact overlap (43.18 F-measure

on English, 36.05 F-measure on French, and 24.2 F-measure on German). The best

source NECRmonolingual
KL BEST is French when the task is evaluated over partial overlap (64.39

F-measure on English, 58.07 F-measure on French, and 49.31 F-measure on German).

When German is the source language, the NECRmonolingual
KL BEST model reports the lowest

results on all the target languages, including on German.

The NECRmonolingual
KL BEST coreference resolution results on the EuroParlparallel corpus

are presented in Table 4.8. The best performing NECRmonolingual
KL BEST model is based

on the English source language for all target languages. It reports an unweighted

average F-measure of 19.98 on English, 21.78 on French, and 8.72 on German. From
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Target
English

Exact Partial
P R F P R F

Source
English 48.3 39.04 43.18 66.94 54.10 59.84
French 43.55 36.46 40.53 72.03 58.21 64.39

German 34.61 9.24 14.59 48.71 13.01 20.54
French

Exact Partial
P R F P R F

Source
English 42.68 31.2 36.05 64.15 46.89 54.18
French 29.76 17.24 21.83 79.16 45.86 58.07

German 30.86 8.62 13.47 46.91 13.10 20.48
German

Exact Partial
P R F P R F

Source
English 18.67 34.37 24.2 34.52 63.54 44.74
French 17.26 26.73 20.98 40.58 62.84 49.31

German 27.85 6.77 10.98 47.14 11.45 18.43

Table 4.7: NECRmonolingual
KL BEST : named-entity recognition results on the EuroParlparallel

corpus. Results are reported in terms of precision (P), recall (R), and F-measure (F)
over exact and partial overlap. The row labels represent the source language, and the
column labels represent the target language.

all the target languages, the highest scoring language is French when the English

NECRmonolingual
KL BEST model is used (21.78 unweighted average F-measure). German proves

to be the most difficult language to model for coreference resolution: when used as a

source language, it does not manage to perform better than any of the other source

languages.

System results on the SemEval corpus

Table 4.9 presents the NECRmonolingual
KL BEST named-entity recognition results on the Se-

mEval corpus. The best results on exact overlap come from the English NECRmonolingual
KL BEST

model for all target languages: 49.13 F-measure on Catalan, 49.2 F-measure on

Spanish, 52.56 F-measure on English, and 34.39 F-measure on Dutch. The En-

glish NECRmonolingual
KL BEST model reports the best partial overlap results on the Catalan,

Spanish, and English target languages (67.31 F-measure, 69.08 F-measure, and 75.47

F-measure, respectively). The best source NECRmonolingual
KL BEST model for Dutch is the

Dutch NECRmonolingual
KL BEST model, with a 53.64 F-measure on partial overlap.
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Target
English

MUC B3 CEAF Overall
P R F P R F P R F P R F

Source
English 16.56 12.56 14.28 25.84 20.89 23.1 23.43 21.78 22.58 21.93 18.41 19.98
French 7.23 5.31 6.12 18.05 11.84 14.3 21.18 17.12 18.93 15.48 11.42 13.11

German 10 2.41 3.89 14.08 2.89 4.8 21.79 5.82 9.18 15.29 3.71 5.96
French

MUC B3 CEAF Overall
P R F P R F P R F P R F

Source
English 16.99 12.62 14.48 12.95 17.28 14.81 30.28 44.82 36.05 16.74 14.90 21.78
French 7.27 1.94 3.06 12.53 6.06 8.17 17.85 10.34 13.1 12.55 6.11 8.11

German 3.84 0.97 1.55 6.91 2.28 3.43 16.04 4.48 7 12.26 2.57 3.99
German

MUC B3 CEAF Overall
P R F P R F P R F P R F

Source
English 6.01 13.04 8.23 4.25 15.78 6.69 8.67 15.97 11.24 6.31 14.93 8.72
French 0.34 0.48 0.4 6.54 8.69 7.4 9.86 15.27 11.98 5.58 8.14 6.59

German 5.71 0.96 1.65 12.08 1.75 3.06 15.71 3.81 6.14 11.16 2.17 3.61

Table 4.8: NECRmonolingual
KL BEST : coreference resolution results on the EuroParlparallel cor-

pus. Results are reported in terms of precision (P), recall (R), and F-measure (F) of
the MUC, B3, and CEAF metrics respectively, as well as the unweighted average of
precision, recall, and F-measure over the three metrics. The row labels represent the
source language, and the column labels represent the target language.

Table 4.10 presents the NECRmonolingual
KL BEST coreference resolution results on the Se-

mEval corpus. The best system performance is given by the English NECRmonolingual
KL BEST

model, with a 30.53 unweighted average F-measure on the Catalan target language,

30.80 on the Spanish target language, 35.70 on the English target language, and 18.83

on the Dutch target language. The second best performing NECRmonolingual
KL BEST model is

the Spanish NECRmonolingual
KL BEST model for the Catalan, Spanish, and English target lan-

guages, and the Dutch NECRmonolingual
KL BEST model for the Dutch target language.

4.6.3 Setting 3: Monolingual training with language specific

parsers

Table 4.11 presents the NECRmonolingual
MST named-entity recognition results for the Se-

mEval corpus, when the dep observed variable is obtained from the MSTParser. The

best performing NECRmonolingual
MST model is the English NECRmonolingual

MST model for the

Catalan, Spanish, and English target languages, while Dutch is best predicted by the

Dutch NECRmonolingual
MST model. The best exact overlap results are 48.66 F-measure on
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Target
Catalan

Exact Partial
P R F P R F

Source

Catalan 27.75 26.87 27.3 56.3 54.52 55.39
Spanish 31.28 36.5 33.69 64.07 54.91 59.14
English 44.06 55.51 49.13 60.37 76.05 67.31
Dutch 37.63 22.94 28.51 65.62 40.01 49.71

Spanish
Exact Partial

P R F P R F

Source

Catalan 28.39 26.12 27.21 57.57 52.95 55.16
Spanish 30.83 35.8 33.13 55.2 64.11 59.32
English 45.11 54.11 49.2 63.34 75.97 69.08
Dutch 38.65 22.72 28.62 66.20 38.92 49.02

English
Exact Partial

P R F P R F

Source

Catalan 27.34 29.05 28.17 53.5 56.85 55.12
Spanish 26.81 34.28 30.09 49.76 63.63 55.84
English 50.46 54.6 52.56 72.75 78.42 75.47
Dutch 37.5 23.85 29.15 69.38 44.11 53.93

Dutch
Exact Partial

P R F P R F

Source

Catalan 16.04 31.15 21.26 33.20 65.22 44.01
Spanish 16.86 40.2 23.75 30.21 72.04 42.57
English 25.82 51.47 34.39 39.00 77.72 51.93
Dutch 26.94 31.26 28.94 49.94 57.95 53.64

Table 4.9: NECRmonolingual
KL BEST : named-entity recognition results on the SemEval corpus.

Results are reported in terms of precision (P), recall (R), and F-measure (F) over
exact and partial overlap. The row labels represent the source language, and the
column labels represent the target language.

target Catalan, 48.35 F-measure on target Spanish, and 51.15 F-measure on target

English. The Dutch NECRmonolingual
MST model obtains a 28.94 F-measure on Dutch. The

best partial overlap results are 67.87 F-measure on target Catalan, 68.37 F-measure on

target Spanish, and 74.63 F-measure on target English. The Dutch NECRmonolingual
MST

model reports the best partial overlap results on the Dutch target language, with a

55.00 F-measure.

The NECRmonolingual
MST coreference resolution results on the SemEval corpus are pre-

sented in Table 4.12. The English NECRmonolingual
MST model performs best on all the

target languages. On Catalan, it reports a 31.34 unweighted average F-measure,

a 32.17 unweighted average F-measure on Spanish, a 36.11 unweighted average F-
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Target
Catalan

MUC B3 CEAF Overall
P R F P R F P R F P R F

Source

Catalan 2.98 3.34 3.15 21.6 20.92 21.25 22.61 19.69 21.05 15.73 14.65 15.15
Spanish 2.53 3.57 2.96 21.26 26.48 23.58 27.09 27.45 27.27 16.96 19.16 17.93
English 23.66 14.38 17.89 38.95 36.89 37.89 28.64 47.85 35.83 30.41 33.04 30.53
Dutch 4.07 3.97 4.02 19.21 16.33 17.65 24.11 14.7 18.26 15.79 11.66 13.31

Spanish
MUC B3 CEAF Overall

P R F P R F P R F P R F

Source

Catalan 2.39 2.44 2.42 19.38 18.66 19.01 22.22 19.06 20.52 14.66 13.36 13.98
Spanish 2.35 3.41 2.78 20.3 25.69 22.68 26.1 25.64 25.87 16.26 18.24 17.11
English 27.13 14.74 19.1 33.62 40.33 36.67 29.7 47.87 36.65 30.15 34.31 30.80
Dutch 4.42 4.47 4.34 18.74 15.77 17.13 30.77 10.81 16 17.97 10.35 11.49

English
MUC B3 CEAF Overall

P R F P R F P R F P R F

Source

Catalan 2.91 5.35 3.77 17.6 25.94 20.97 26.98 19.74 22.62 15.83 17.01 15.78
Spanish 3.36 7.88 4.71 21.96 28.08 26.64 26.81 34.28 30.09 17.37 23.41 20.48
English 31.43 17.53 22.51 44.68 41.76 43.17 36.57 47.82 41.44 37.56 35.70 35.70
Dutch 3.63 3.94 3.78 24.32 19.05 21.36 32.54 14.25 19.82 20.16 12.41 14.98

Dutch
MUC B3 CEAF Overall

P R F P R F P R F P R F

Source

Catalan 2.05 3.28 2.53 10.03 14.95 12.01 9.31 24.22 13.45 7.13 14.15 9.33
Spanish 2.54 5.61 3.5 9.78 24.73 14.61 10.8 29.12 15.76 7.70 19.82 11.29
English 22.33 14.13 17.28 22.99 23.2 21.82 10.7 46.66 17.41 18.67 27.99 18.83
Dutch 3.14 3.73 3.41 13.74 16.47 14.98 18.51 20.63 19.51 11.79 13.61 12.63

Table 4.10: NECRmonolingual
KL BEST : coreference resolution results on the SemEval corpus.

Results are reported in terms of precision (P), recall (R), and F-measure (F) of the
MUC, B3, and CEAF metrics respectively, as well as the unweighted average of
precision, recall, and F-measure over the three metrics. The row labels represent the
source language, and the column labels represent the target language.

measure on English, and a 21.89 unweighted average F-measure on Dutch. When

NECRmonolingual
MST is trained on the same language it is evaluated on, it ranks third best

on Catalan, second best on Spanish, best on English, and second best on Dutch.

4.6.4 Setting 4: Multilingual source training

The named-entity recognition results of the NECRmulti source
KL BEST model on the EuroParlparallel

corpus are presented in Table 4.13. When the source languages are selected from the

EuroParlparallel corpus, the best exact overlap results come from the English-French

NECRmulti source
KL BEST model for the English, French, and German target languages. The

best partial overlap results are returned by the French-German NECRmulti source
KL BEST model
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Target
Catalan

Exact Partial
P R F P R F

Source

Catalan 27.98 26.55 27.25 55.56 52.66 54.07
Spanish 31.21 33.63 32.37 55.76 60.07 57.84
English 42.61 56.7 48.66 59.44 79.01 67.87
Dutch 37.63 22.94 28.51 60.46 65.29 62.79

Spanish
Exact Partial

P R F P R F

Source

Catalan 28.39 26.12 27.21 56.53 51.46 53.88
Spanish 31.65 33.43 32.52 55.89 59.03 57.42
English 43.36 54.63 48.35 61.32 77.26 68.37
Dutch 38.65 22.72 28.62 61.70 63.43 62.55

English
Exact Partial

P R F P R F

Source

Catalan 27.34 29.05 28.17 52.41 56.63 54.44
Spanish 27.67 33.67 30.37 50.36 61.27 55.28
English 46.39 57.01 51.15 67.68 83.18 74.63
Dutch 37.5 23.85 29.15 65.25 62.07 63.62

Dutch
Exact Partial

P R F P R F

Source

Catalan 16.04 31.51 21.26 33.36 64.47 43.97
Spanish 16.88 37.91 23.26 30.48 68.45 42.18
English 21.97 26.09 23.85 37.94 82.77 52.03
Dutch 26.94 31.26 28.94 43.52 74.74 55.00

Table 4.11: NECRmonolingual
MST : named-entity recognition results of on the SemEval

corpus. Results are reported in terms of precision (P), recall (R), and F-measure (F)
over exact and partial overlap. The row labels represent the source language, and the
column labels represent the target language.

for target English, by the English-French-German NECRmulti source
KL BEST model for target

French, and by the English-French NECRmulti source
KL BEST model for target German. For

English and German, the best partial overlap NECRmulti source
KL BEST model is trained over

source languages different from the target language. The combination of all three

source languages performs best only in the partial overlap setting, and only on the

French target language.

When the source languages are selected from the SemEval corpus only, the best

performing NECRmulti source
KL BEST model on named-entity recognition is the Catalan-English

NECRmulti source
KL BEST model for all the target languages on both exact and partial overlap.

The Spanish-English NECRmulti source
KL BEST model also gives the best exact overlap results
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Target
Catalan

MUC B3 CEAF Overall
P R F P R F P R F P R F

Source

Catalan 3.06 3.4 3.22 18.85 19.18 19.01 21.84 20.72 21.26 14.58 14.43 14.49
Spanish 3.12 4.17 3.57 20.53 24.22 22.22 23.49 25.3 24.36 15.71 17.89 16.71
English 24.16 16.31 19.48 32.53 43.29 37.14 29.4 51.31 37.4 28.69 36.97 31.34
Dutch 4.07 3.97 4.02 19.21 16.33 17.65 24.11 14.7 18.26 15.79 11.66 13.31

Spanish
MUC B3 CEAF Overall

P R F P R F P R F P R F

Source

Catalan 2.39 2.44 2.42 19.38 18.66 19.01 21.78 20.04 20.87 14.51 13.71 14.1
Spanish 2.84 3.78 3.24 22.98 24.27 23.61 26.48 23.38 24.83 17.43 17.14 17.22
English 26.38 16.51 20.31 38.4 38.03 38.22 29.98 49.68 37.39 31.58 34.74 32.17
Dutch 4.42 4.27 4.34 18.74 15.77 17.13 23.35 13.73 17.29 15.50 10.70 12.92

English
MUC B3 CEAF Overall

P R F P R F P R F P R F

Source

Catalan 2.91 5.35 3.77 17.6 25.94 20.97 22.26 23.65 22.93 14.25 18.31 15.89
Spanish 3.6 8.02 4.97 17.2 29.95 21.85 22.47 27.34 26.67 14.42 21.77 17.83
English 29.28 20.35 24.01 41.25 45.11 43.09 34.68 50.81 41.23 35.07 38.75 36.11
Dutch 3.63 3.94 3.78 24.32 19.05 21.36 27.08 17.22 21.05 18.34 13.40 15.39

Dutch
MUC B3 CEAF Overall

P R F P R F P R F P R F

Source

Catalan 2.05 3.28 2.53 10.52 20.67 13.94 9.31 24.22 13.45 7.29 16.05 9.97
Spanish 2.78 5.71 3.74 9.83 18.35 12.8 10.97 28.33 15.82 7.86 17.46 10.78
English 22.38 17.33 19.53 21.97 26.09 23.85 16.26 35.48 22.3 20.20 26.29 21.89
Dutch 3.14 3.73 3.41 13.74 16.47 14.9 18.51 20.63 19.51 11.79 13.61 12.60

Table 4.12: NECRmonolingual
MST : coreference resolution results on the SemEval corpus.

Results are reported in terms of precision (P), recall (R), and F-measure (F) of the
MUC, B3, and CEAF metrics respectively, as well as the unweighted average of
precision, recall, and F-measure over the three metrics. The row labels represent the
source language, and the column labels represent the target language.

on the French target language. For the French and Dutch target languages, the best

performing NECRmulti source
KL BEST model is trained over source languages different from the

target language.
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Table 4.14 presents the NECRmulti source
KL BEST coreference resolution results on the EuroParlparallel

corpus. The English-French NECRmulti source
KL BEST model reports the best unweighted aver-

age F-measure on all three target languages, when the source languages are selected

from the EuroParlparallel corpus only. The Catalan-English NECRmulti source
KL BEST model re-

ports the best unweighted average F-measure on all three target languages, when the

source languages are selected from the SemEval corpus only. The second best perform-

ing model is not consistent across target languages. When the source languages are

selected from the SemEval corpus only, the Catalan-English NECRmulti source
KL BEST model

gives the best results on named-entity recognition and coreference resolution across

all target languages.

Source Target

k Langs
English French German

P R F P R F P R F

EuroParl

2
En-Fr 24.74 14.34 18.13 11.43 24.94 15.64 11.35 10.10 10.67
En-Ge 11.04 6.66 8.28 10.5 7.81 8.42 8.18 5.11 5.96
Fr-Ge 21.59 11.13 14.32 13.41 3.8 5.89 9.24 7.92 8.32

3 En-Fr-Ge 13.37 8.08 10.02 10.10 6.01 7.45 9.19 5.02 6.44

SemEval

2

Ca-Sp 11.30 6.15 7.93 2.61 4.31 13.03 11.36 4.51 6.41
Ca-En 20.19 13.70 15.84 18.92 9.68 12.59 18.18 12.22 14.01
Ca-Du 14.83 6.92 9.39 12.81 2.69 4.41 12.9 5.21 7.4
Sp-En 14.64 6.09 8.58 15.44 3.26 5.32 14.74 4.65 6.99
Sp-Du 18.49 7.08 10.19 18.78 3.12 5.3 13.48 4.53 6.78
En-Du 16.75 9.33 11.89 14.87 4.11 6.43 14.53 6.25 8.73

3

Ca-Sp-En 15.58 6.66 9.27 15.6 3.44 5.61 13.01 5.09 7.29
Ca-Sp-Du 14.47 6.76 9.16 14.26 3.18 5.18 12.95 5.09 7.3
Ca-En-Du 15 6.8 9.31 15.04 3.11 5.12 12.64 4.7 6.83
Sp-En-Du 15.55 5.93 8.5 19.22 3.7 6.06 14.74 4.65 6.99

4 Ca-Sp-En-Du 15.58 6.66 9.27 16.16 3.06 5.09 12.13 4.24 6.26

Table 4.14: NECRmulti source
KL BEST : coreference resolution results on the EuroParlparallel

corpus, when the multiple source languages are taken from the EuroParlparallel corpus
only (see the first table section) and from the SemEval corpus only (see the second
table section). Results are reported in terms of the unweighted average of precision
(P), recall (R), and F-measure (F) over the MUC, B3, and CEAF metrics. The
row labels represent the source language, and the column labels represent the target
language. The first column represents k, the number of source languages used in
training, and the second column mentions the source language name abbreviations.

Table 4.15 contains the NECRmulti source
KL BEST named-entity recognition results on the

EuroParlparallel corpus when the source languages are selected from both the EuroParlparallel
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and the SemEval corpus. The best exact overlap performance for the English tar-

get language is given by the Catalan-EnglishSemEval-EnglishEuroParl NECRmulti source
KL BEST

model, with a 45.84 F-measure. The best partial overlap performance is given by

the Dutch-French NECRmulti source
KL BEST model, with a 64.70 F-measure. The Catalan-

EnglishSemEval-EnglishEuroParl NECRmulti source
KL BEST model also gives the best exact over-

lap performance for the French target language (34.82 F-measure) and the German

target language (31.55 F-measure). The best partial overlap performance for target

French is given by the EnglishSemEval-EnglishEuroParl NECRmulti source
KL BEST model (66.05

F-measure). The Catalan-English-German NECRmulti source
KL BEST model gives the best par-

tial overlap performance on German (54.72 F-measure). In general, the best exact

overlap results are given by a system modeled over a combination of two source lan-

guages. The best partial overlap results are given by a system modeled over two

source languages for the English and French target languages, and by a combination

of three source languages for target German.

The NECRmulti source
KL BEST coreference resolution results are reported in Table 4.16. The

best performing system for target English is the Catalan-EnglishSemEval-EnglishEuroParl

NECRmulti source
KL BEST model, with a 21.68 unweighted average F-measure. For the French

target language, the best performing system is the Catalan-EnglishSemEval-French

NECRmulti source
KL BEST model (17.16 unweighted average F-measure). For the German target

language the best performing system is the Catalan-EnglishSemEval-German NECRmulti source
KL BEST

model (15.83 unweighted average F-measure). The best performing models are trained

over a set of source languages that contains the target language. In general, the

number of source languages that give the best model performance is k = 3 source

languages.

4.7 Discussion

Across all experiment settings, the results on named-entity recognition are substan-

tially larger than the results on coreference resolution, regardless of the corpus on

which the experiments are run. For example, in Setting 2, the English named-entity
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# Langs
English French German

Exact Partial Exact Partial Exact Partial
P R F P R F P R F P R F P R F P R F

EuroParl & SemEval

2

Ca-En2 22.13 23.8 22.93 41.08 44.18 42.57 16.75 21.72 18.91 30.59 39.66 34.53 15.1 22.91 18.2 35.93 54.51 43.31
Ca-Fr 21.38 22.77 22.05 39.55 42.12 40.80 19.74 18.79 19.25 33.70 32.07 32.86 14.19 19.61 16.47 36.43 50.35 42.27
Ca-Ge 21.4 23.4 22.36 38.20 34.93 36.49 21.24 19.48 20.32 36.09 33.10 34.53 16.36 18.57 17.39 34.86 39.58 37.07
Sp-En2 22.26 19.06 20.53 36.36 42.47 39.18 12.19 22.41 15.79 24.77 45.52 32.08 15.48 22.04 18.19 31.71 45.14 37.25
Sp-Fr 19.69 19.55 19.62 37.76 38.01 37.88 16.38 19.82 17.94 31.34 37.93 34.32 18.12 18.75 18.43 35.23 36.46 35.84
Sp-Ge 21.4 18.76 20 36.10 38.70 37.36 15.47 22.41 18.3 27.62 40.00 32.68 17.84 20.13 18.92 33.23 37.50 35.24

En-En2 45.11 34.76 39.26 71.56 55.14 62.28 32.15 26.72 29.19 63.07 52.41 57.25 19.25 22.39 20.7 38.81 45.14 41.73
En-Fr 30.33 34.58 32.32 59.16 67.47 63.04 20.08 17.24 18.55 71.49 61.38 66.05 15.14 28.12 19.68 36.64 68.06 47.63
En-Ge 40.3 32.02 35.68 53.02 42.12 46.95 32.51 16.03 21.47 67.83 33.45 44.80 27.45 24.3 25.78 37.25 32.99 34.99

Du-En2 34.76 42.64 38.3 69.75 56.85 62.64 38.16 27.24 31.79 62.80 44.83 52.31 16.53 22.56 19.08 45.55 62.15 52.57
Du-Fr 44.52 45.93 45.21 65.72 63.70 64.70 32.22 15 20.47 69.63 32.41 44.24 21.6 32.63 26 41.84 63.19 50.35
Du-Ge 15.58 35 21.56 53.08 23.63 32.70 40.85 13.44 20.25 66.32 21.72 32.73 32.72 12.5 18.09 54.55 20.83 30.15

3

Ca-Sp-En2 16.96 22.6 19.38 33.42 44.52 38.18 11.96 27.06 16.59 23.48 53.10 32.56 15.58 23.43 18.72 31.64 47.57 38.00
Ca-Sp-Fr 19.69 18.6 19.13 37.54 39.73 38.60 13.59 18.96 16.08 27.16 36.90 31.29 17.19 18.92 18.01 33.75 37.15 35.37
Ca-Sp-Ge 18.3 23.8 21.02 36.59 46.23 40.85 12.61 24.13 16.56 23.78 45.52 31.24 16.31 21.18 18.42 30.91 41.32 35.36

Ca-En-En2 49.79 42.46 45.84 71.49 60.96 65.80 36.11 33.62 34.82 62.22 57.93 60.00 28.12 35.93 31.55 48.10 61.46 53.96
Ca-En-Fr 38.9 37.84 38.36 60.92 59.25 60.07 38.69 30.68 34.23 64.35 51.03 56.92 25.22 29.51 27.2 50.74 59.38 54.72
Ca-En-Ge 52.72 36.47 43.11 65.84 45.55 53.85 37 26.03 30.56 64.71 45.52 53.44 26.06 31.77 28.63 46.45 45.49 45.96

Ca-Du-En2 23.11 21.15 22.09 35.74 39.04 37.32 13.27 27.41 17.88 26.21 54.14 35.32 17.43 24.82 20.48 33.17 47.22 38.97
Ca-Du-Fr 19.69 19.69 19.69 41.10 41.10 41.10 14.28 19.31 16.24 29.34 39.66 33.72 20.88 18.92 19.85 36.78 33.33 34.97
Ca-Du-Ge 21.06 19.04 20 37.46 41.44 39.35 15.14 24.65 18.76 28.39 46.21 35.17 18.48 19.44 18.79 33.12 35.42 34.23
Sp-En-En2 25.51 20.81 22.92 36.87 45.21 40.62 15.42 37.24 21.81 28.86 69.66 40.81 17.43 26.38 20.99 36.01 54.51 43.37
Sp-En-Fr 19.86 20.64 20.24 39.15 37.67 38.39 16.57 21.37 18.67 32.35 41.72 36.45 20.55 19.27 19.89 38.89 36.46 37.63
Sp-En-Ge 21.06 22.44 21.73 37.23 34.93 36.04 16.35 28.96 21.05 28.54 50.00 36.34 19.87 21.52 20.66 36.86 39.93 38.33

Sp-Du-En2 25.51 21.34 23.24 37.54 44.86 40.87 12.74 31.72 18.18 25.21 62.76 35.97 16.26 25.52 19.86 30.97 48.61 37.84
Sp-Du-Fr 20.2 19.79 19.99 38.59 39.38 38.98 16.26 21.03 18.34 30.67 39.66 34.59 19.28 19.61 19.44 35.49 36.11 35.80
Sp-Du-Ge 21.4 18.76 20 36.94 42.12 39.36 14.36 22.44 17.45 26.50 41.03 32.21 17.63 21 19.17 32.94 39.24 35.82

En-Du-En2 26.71 20.96 23.94 42.74 54.45 47.89 13.97 40.34 20.76 28.08 81.03 41.70 13.96 24.82 17.87 37.50 66.67 48.00
En-Du-Fr 21.06 27.21 23.74 44.69 34.59 39.00 20.94 18.27 19.52 40.32 35.17 37.57 24.76 18.05 20.88 42.38 30.90 35.74
En-Du-Ge 22.6 23.82 23.19 40.07 38.01 39.02 16 28.96 20.61 29.90 54.14 38.53 18.82 22.22 20.38 35.59 42.01 38.54

4

Ca-Sp-En-En2 23.11 17.95 20.2 32.98 42.47 37.13 12.7 29.13 17.69 24.96 57.24 34.76 15.94 25.69 19.68 30.82 49.65 38.03
Ca-Sp-En-Fr 19.34 18.58 18.95 37.50 39.04 38.26 13.68 20.86 16.53 26.92 41.03 32.51 18.28 19.61 18.92 34.63 37.15 35.85
Ca-Sp-En-Ge 21.74 17.83 19.59 34.55 42.12 37.96 12.18 26.89 16.77 23.28 51.38 32.04 17.08 23.61 19.82 32.41 44.79 37.61

Ca-Sp-Du-En2 23.11 17.9 20.17 33.69 43.49 37.97 12.37 30.68 17.64 23.78 58.97 33.89 14.87 23.61 18.25 29.98 47.57 36.78
Ca-Sp-Du-Fr 20.03 17.83 18.87 37.80 42.47 40.00 13.55 21.55 16.64 26.25 41.72 32.22 18.85 19.44 19.14 34.34 35.42 34.87
Ca-Sp-Du-Ge 22.6 18.53 20.73 36.24 44.18 39.81 12.73 25.51 16.99 24.78 49.66 33.07 17.59 20.83 19.07 32.84 38.89 35.61

Ca-En-Du-En2 22.77 21.66 22.2 37.13 39.04 38.06 12.86 31.89 18.33 25.31 62.76 36.08 18.69 28.29 22.51 34.63 52.43 41.71
Ca-En-Du-Fr 20.03 20.74 20.38 41.84 40.41 41.11 15.7 21.55 18.16 31.16 42.76 36.05 22.1 18.57 20.18 38.43 32.29 35.09
Ca-En-Du-Ge 22.08 19.25 20.57 35.52 40.75 37.96 13.06 23.79 16.87 26.52 48.28 34.23 17.44 19.44 18.30 30.53 34.03 32.18
Sp-En-Du-En2 25.34 20.44 22.62 37.29 46.23 41.28 15.21 32.58 20.74 28.02 60.00 38.20 16.58 24.65 19.83 34.58 51.39 41.34
Sp-En-Du-Fr 20.03 21.29 20.59 40.22 38.01 39.08 16.09 20.86 18.16 32.45 42.07 36.64 21.18 19.27 20.18 38.55 35.07 36.73
Sp-En-Du-Ge 21.23 21.37 21.3 39.66 39.38 39.52 15.21 32.58 20.74 28.16 54.48 37.13 19.4 21.35 20.33 36.91 40.62 38.68

5
Ca-Sp-En-Du-En2 22.77 19.79 21.17 36.90 42.47 39.49 12.11 32.93 17.71 22.72 61.72 33.21 16.91 27.25 20.87 32.11 51.74 39.63
Ca-Sp-En-Du-Fr 20.71 19.7 20.2 39.41 41.44 40.40 13.91 22.41 17.17 27.41 44.14 33.82 19 19.79 19.38 35.33 36.81 36.05
Ca-Sp-En-Du-Ge 22.77 17.78 19.96 32.89 42.12 36.94 11.7 30 16.84 22.07 56.55 31.75 16.03 23.61 19.1 29.48 43.40 35.11

Table 4.15: NECRmulti source
KL BEST : named-entity recognition results on the EuroParlparallel

corpus, when the multiple source languages are taken from both the EuroParlparallel
corpus and the SemEval corpus. Results are reported in terms of precision (P), recall
(R), and F-measure (F) over exact and partial mentions. The row labels represent
the source language, and the column labels represent the target language. The first
column represents k, the number of source languages used in training, and the second
column mentions the source language name abbreviations. Note: The En2 language
represents the EuroParlparallel version of the English language.

recognition F-measure results range from 43.18 exact overlap F-measure to 59.84 par-

tial overlap F-measure on the EuroParlparallel corpus, and from 52.56 exact overlap

F-measure to 75.47 partial overlap F-measure on the SemEval corpus. Meanwhile,

the English coreference resolution results range from 19.98 unweighted average F-
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measure on the EuroParlparallel corpus to 35.70 unweighted average F-measure on the

SemEval corpus. The NECR system is, in general, better at identifying mentions

with partial overlap. It over-generates the mention spans for Romance languages,

and under-generates the mention spans for Germanic languages like German.

The NECR system performance varies across corpora and languages. For En-

glish, the only language common across corpora, I observe better results for both

named-entity recognition and coreference resolution on the SemEval corpus. This

behavior is explained by the larger size of the SemEval training corpus, compared to

the EuroParlparallel training corpus. The system performance varies across languages:

for both the EuroParlparallel and the SemEval corpus, English is the target language

with the best performance, while German is the target language with the lowest per-

formance from the EuroParlparallel corpus and Dutch is the target language with the

lowest performance from the SemEval corpus.

I do not observe large differences in system results when the MST language spe-

cific parsers are used, compared to when the PredictorKL BEST multilingual parsers

are used. On named-entity recognition, the English NECRmonolingual
MST model reports

a 67.87 F-measure on partial overlap for the English target language, compared to

67.31 partial overlap F-measure obtained by the English NECRmonolingual
KL BEST model. The

English NECRmonolingual
KL BEST model obtains better results on exact overlap for the English

target language: 49.13 F-measure compared to 48.66 exact overlap F-measure ob-

tained by the English NECRmonolingual
MST model. In general, the English NECRmonolingual

KL BEST

model obtains as good as or better F-measure results than the English NECRmonolingual
MST

model on both exact and partial overlap when Catalan, Spanish, and English are used

as source languages. These results validate the contribution of my PredictorKL BEST

parsing model to transferring syntactic information across languages, as it obtains

as good as or better results than a parsing model that has access to gold standard

annotations.

The experiments conducted in Setting 4 show that, overall, combining source lan-

guages from the EuroParlparallel and SemEval corpora contributes to a performance

increase on the named-entity recognition task, compared to the results obtained by
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the NECRmonolingual
KL BEST model on named-entity recognition. For the English target lan-

guage, the NECRmulti source
KL BEST model obtains a best of 45.84 F-measure on exact over-

lap and a best of 64.70 F-measure on partial overlap - both results larger than the

best results of the NECRmonolingual
KL BEST model. The best performance on German of the

NECRmulti source
KL BEST model is larger than the best performance of the NECRmonolingual

KL BEST

model evaluated on German, on both exact and partial overlap. The best performance

of the NECRmulti source
KL BEST model does not perform better than the best NECRmonolingual

KL BEST

model results on French for exact overlap, but only for partial overlap. The best

performing NECRmulti source
KL BEST models on named-entity recognition are generated by a

combination of two or three source languages, and usually do not include the target

language among the set of source languages.

Regarding the performance of the NECRmulti source
KL BEST model on the coreference reso-

lution task when the source languages are selected from both corpora, the results show

that combining several source languages results in performance results better than re-

sults of the NECRmonolingual
KL BEST model results for German only. The best NECRmulti source

KL BEST

model for German includes the German language among the source languages, to-

gether with the Catalan and English languages. Even though German has the lowest

performance as a source language alone when tested on itself, in combination with

Catalan and English it helps generate the best performance of the NECRmulti source
KL BEST

model when evaluated on the German target language.

When NECRmulti source
KL BEST is built from a combination of SemEval source languages

alone, it cannot perform better than the NECRmonolingual
KL BEST model on the English and

French target languages. Nevertheless, the mixed combination of SemEval and EuroParlparallel

source languages helps the NECRmulti source
KL BEST model perform as well as or better than

the NECRmonolingual
KL BEST model on those languages. The NECRmulti source

KL BEST model obtains

best results that outperform the best results of the NECRmonolingual
KL BEST model on German,

for both exact and partial named-entity recognition and for coreference resolution.

Similarly, when NECRmulti source
KL BEST is built from a combination of EuroParlparallel source

languages alone it outperforms the NECRmonolingual
KL BEST best coreference resolution results

on German only.
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4.7.1 Comparison to baseline systems

I include a comparison of the NECR system to two other baseline systems presented

in the literature,[42, 98] on the tasks of named-entity recognition and coreference

resolution on the SemEval data (see Table 4.17). I compare the SUCRE[42] and

UBIU[98] system results obtained in the closed regular setting of the SemEval-2010

Shared Task to the NECRmonolingual
KL BEST built on the English source language for the

Catalan, Spanish, and Dutch target languages, and on the Spanish source language

for the English target language. My system does not use the gold standard of the

target language during training, and does not use any other linguistic resources other

than the multilingual parser constructed from a set of languages different from the

target language, and the universal POS information.

On named-entity recognition, my system performs better than the UBIU system

on Catalan, Spanish, and Dutch. On Dutch, it manages to perform better than the

SUCRE and the UBIU system on named-entity recognition. It does not manage to

outperform either the SUCRE or the UBIU system on English. This behavior is

explained by the feature set design of the two baseline systems, that is well-tailored

to languages like English. On coreference resolution, my system performs better than

the UBIU system on Catalan, Spanish, and Dutch.

Without making use of training data for the target language or any other an-

notated linguistic information, NECR manages to perform better than the second

best state-of-the-art system, UBIU. NECR does not perform better than the SUCRE

system on any of the languages, and it performs less than both the SUCRE and

UBIU systems on English. On Dutch, a language that was reported as difficult to

model during the SemEval-2010 Shared Task, my system manages to show improved

performance on both named-entity recognition and coreference resolution.
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# Source Langs English French German
P R F P R F P R F

EuroParl & SemEval

2

Ca-En2 9.62 9.29 9.28 5.89 5.2 5.48 7.13 5.70 6.23
Ca-Fr 8.7 8.42 8.47 5.39 4.83 5.07 4.61 6.1 5.17
Ca-Ge 10.21 7.71 8.7 6.12 4.94 5.43 5.66 5.53 6.17
Sp-En2 7.82 7.08 7.27 5.73 3.76 4.51 7.73 5.84 6.56
Sp-Fr 6.39 6.39 6.23 5.32 4.43 4.79 6.02 6.04 5.83
Sp-Ge 6.62 6.35 6.36 6.74 5.04 5.70 6.92 6.83 6.69

En-En2 22.53 13.27 16.74 16.51 11.59 13.53 10.55 8.92 9.38
En-Fr 19.43 15.6 16.85 12.16 7.19 8.73 10.29 11.22 10.05
En-Ge 24.54 13.28 16.74 16.00 6.42 9.08 17.56 10.05 12.25

Du-En2 16.72 11.42 11.89 8.75 6.41 7.39 6.35 5.19 5.7
Du-Fr 21.41 12.59 15.25 9.95 3.41 4.98 10.79 10.1 9.98
Du-Ge 10.88 4.68 6.54 9.78 2.57 4.04 9.37 3.29 4.87

3

Ca-Sp-En2 7.69 6.57 6.92 8.15 4.01 5.37 8.33 6.32 7.06
Ca-Sp-Fr 6.4 6.39 6.18 5 3.73 4.17 6.43 6.32 6.13
Ca-Sp-Ge 7.98 8.01 7.86 7.09 4.13 5.19 6.97 6.28 6.48

Ca-En-En2 27.24 18.28 21.68 18.74 15.61 16.99 15.25 14.80 14.83
Ca-En-Fr 23.61 17.45 19.81 19.97 15.09 17.16 16.37 14.08 14.90
Ca-En-Ge 26.37 18.07 21.43 17.48 12.40 14.49 15.54 16.29 15.83

Ca-Du-En2 7.59 7.13 7.27 7.82 4.57 5.73 8.21 6.84 7.39
Ca-Du-Fr 6.86 6.92 6.74 4.70 3.58 4.04 5.94 6.82 6.28
Ca-Du-Ge 8.99 7.7 7.9 7.77 5.39 6.33 6.48 6.26 6.23
Sp-En-En2 7.14 7.39 7.19 9.61 4.22 5.85 8.25 6.59 7.25
Sp-En-Fr 6.59 7.16 6.88 5.35 4.65 4.95 6.04 7.57 6.57
Sp-En-Ge 8.05 6.88 7.28 5.81 4.15 4.82 7.95 6.74 7.16

Sp-Du-En2 10.35 9.20 9.60 11.62 5.08 7.04 9.21 6.43 7.52
Sp-Du-Fr 7.05 6.98 6.86 5.1 5.09 5.01 6.83 7.03 6.81
Sp-Du-Ge 8.61 7.41 7.71 8.03 6.19 6.87 7.51 6.69 6.97

En-Du-En2 8.36 8.57 8.4 11.39 4.54 6.47 7.93 5.04 6.14
En-Du-Fr 9.07 6.71 7.7 5.38 4.57 4.94 7.06 5.07 5.88
En-Du-Ge 9.41 7.51 8.32 8.39 4.84 6.13 6.16 6.24 6.16

4

Ca-Sp-En-En2 8.28 7.09 7.48 8.78 4.13 5.6 9.15 6.5 7.52
Ca-Sp-En-Fr 6.38 6.54 6.21 6.12 4.33 5.01 6.85 7.01 7.29
Ca-Sp-En-Ge 12.21 10.16 10.61 7.82 4.07 5.32 7.89 6.54 7.06

Ca-Sp-Du-En2 12.56 9.84 10.64 9.03 4.17 5.75 8.19 5.42 6.48
Ca-Sp-Du-Fr 6.88 6.37 6.63 5.68 3.97 4.66 6.58 6.85 7.30
Ca-Sp-Du-Ge 8.34 7.67 7.78 7.89 4.47 5.67 7.28 6.81 6.89

Ca-En-Du-En2 9.83 9.27 6.91 9.58 4.68 6.24 9.94 7.86 8.68
Ca-En-Du-Fr 6.88 7.20 6.91 5.98 4.65 5.2 5.9 7.2 6.45
Ca-En-Du-Ge 9.57 8.46 8.58 6.61 4.11 5.04 6.22 5.99 5.97
Sp-En-Du-En2 10.06 9.48 9.59 9.64 3.94 5.54 8.84 6.84 7.65
Sp-En-Du-Fr 7.49 7.01 7.12 4.7 5.46 5.02 6.74 5.89 6.22
Sp-En-Du-Ge 8.35 7.73 7.89 9.05 5.82 7.02 7.59 7.05 7.19

5
Ca-Sp-En-Du-En2 9.2 8.35 8.55 9.80 3.92 5.6 9.87 6.42 7.76
Ca-Sp-En-Du-Fr 6.88 7.32 6.86 6.16 4.1 4.9 6.67 6.92 6.64
Ca-Sp-En-Du-Ge 12.21 10.16 10.61 9.52 3.97 5.59 8.06 5.92 6.75

Table 4.16: NECRmulti source
KL BEST : coreference resolution results on the EuroParlparallel cor-

pus, when the multiple source languages are taken from both the EuroParlparallel cor-
pus and the SemEval corpus. Results are reported in terms of the unweighted average
of precision (P), recall (R), and F-measure (F) over the MUC, B3, and CEAF met-
rics. The row labels represent the source language, and the column labels represent
the target language. The first column represents k, the number of source languages
used in training, and the second column mentions the source language name abbrevi-
ations. Note: The En2 language represents the EuroParlparallel version of the English
language.
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System Name
Catalan English Spanish Dutch

ne cr ne cr ne cr ne cr

NECRmulti parser 67.31 30.53 55.84 20.48 69.08 30.80 51.93 18.83
SUCRE 69.7 45.2 80.7 60.76 70.3 48.26 42.3 19.1
UBIU 59.6 29.3 74.2 42.16 60 30.33 34.7 14.1

Table 4.17: Systems comparison results. Note: ne represents the F-measure results on
named-entity recognition and cr represents the unweighted average F-measure result
on coreference resolution.

4.8 Conclusions

I present NECR, a system for joint learning of named-entities and coreference resolu-

tion in a multilingual setting. I show that the NECR system benefits from linguistic

information gathered from multiple languages. Even though NECR does not make

use of gold standard annotations on the target language, it performs second best

among monolingual supervised state-of-the-art systems for three out of four target

languages. The performance of the NECR system shows that language modeling can

be performed in a multilingual setting even for deep NLP tasks. Due to its design,

the NECR system can be applied to resource-poor languages for which linguistic

information is unavailable or is very sparse.
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Chapter 5

Conclusions and Future Work

In this thesis I introduce (1) an NLP system for granular learning of syntactic infor-

mation from multilingual language sources, (2) a corpus annotated for named entities

and coreference resolution, and (3) an NLP system for joint-learning of named entities

and coreference resolution in a multilingual setting. The design of these multilingual

systems and resources represents a step forward in the development of natural lan-

guage processing systems for resource-poor languages and furthers the understanding

and analysis of linguistic phenomena shared across languages.

By learning syntactic information at the granular level of a sentence, my syn-

tactic parsing system improves over current state-of-the-art multilingual dependency

parsing systems. An automated parsing system can more finely identify the syntactic

rules common among languages when comparing lower units of language - in this case

sentences. This implies that due to the large diversity inherent within a language,

modeling multilingual NLP systems at a language level is not sufficient for capturing

all the possible similarities between languages. In addition, high-performing depen-

dency parsers can be built on top of source languages from different language families

than the target language. I attribute this behavior to both a diversity in treebank

annotations across languages and to the degree of diversity inherent in the natural

language generation process.

Even with no human annotations available for a resource-poor language, one can

build a system for syntactic parsing and coreference resolution with comparable per-
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formance to state-of-the-art systems. The systems I present take advantage of un-

derlying syntactic properties shared by languages in order to improve on final system

performance on the task of interest. It is worth pointing out that a system built

for the coreference resolution task, commonly known as a difficult task to solve in

both the monolingual and multilingual setting, manages to perform as well as or

better than current state-of-the-art systems when modeled with little syntactic infor-

mation. This is due to the delexizcalized joint-learning framework that ties together

the tasks of named-entity recognition and coreference resolution (similar to how the

human brain actually approaches them) and to the comprehensive characterization

of language structure done by the model representation through universal linguistic

information.

The multilingual corpus I present for named entities and coreference resolution

in English, French, and German represents a valuable resource for benchmarking

future multilingual systems on their performance across languages. By having a

corpus with semantically similar content across languages, one can perform a more

informed analysis of system performance. The fact that the annotation guidelines are

universally applied across languages guarantees that the same underlying linguistic

phenomena are consistently annotated across languages. It also guarantees that NLP

systems are not differently penalized during evaluation on account of differences in

the annotation guidelines.

5.1 Future work

The contributions presented in this thesis represent advancements to the state of

the art in multilingual parsing and coreference resolution. Yet, I envision several

directions for future work:

• In this work I was limited by the availability of coreference resolution anno-

tations to four Indo-European languages, and I do not show results of system

performance on a wider range of language families. I envision future work to

investigate system performance on a larger set of languages and on different
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language families, as well as on documents from different genres. One first step

towards achieving this goal would be to further annotate the EuroParl corpus

for coreference resolution on a larger set of languages. Because the EuroParl cor-

pus contains only Indo-European languages, a further step would be to identify

resources for creating corpora on non Indo-European languages.

• A common trend in the generation of multilingual annotations is to develop an-

notations across several natural language processing tasks (e.g., part-of-speech,

dependency parsing, coreference resolution). In order to facilitate an informed

analysis of the performance of computational systems for each of the linguistic

tasks across languages, this analysis should be carried across documents that are

semantically equivalent across languages. Thus, future work should invest into

generating additional layers of annotations for portion of the EuroParl corpus

already annotated for coreference resolution.

• The coreference resolution system presented in this thesis does not thoroughly

investigate the cross-lingual modeling of coreference relations. A more general

direction for future work is to incorporate explicit modeling of linguistic infor-

mation shared across languages when solving the coreference resolution task.

Specifically, this could be done by using parallel corpora to guide the learning

of coreference relations on target languages. Given parallel corpora, one could

enforce the model to (i) mainly predict coreference relations on mentions equiv-

alent between the target and source languages, (ii) predict coreference chains on

the target language that maintain similar properties to chains observed in the

source languages, in terms of chain length, average distance between mentions

involved in a chain, etc.

• I also envision an extension to the current modeling of the coreference resolution

hidden state, to better incorporate information available on the mentions stored

in the model queue. Specifically, similarity functions could be computed over

the queue mention and the current mention predicted by the model. The sim-

ilarity functions could incorporate morphological, syntactic, or external knowl-
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edge. These similarity functions can be either (i) language independence or (ii)

language dependent. They would bring additional information in the corefer-

ence resolution model, by biasing coreference relations to take place between

mentions that are more similar.

• One deficiency of my multilingual models is that they do not adjust the model

parameters to accommodate for the lexicon of the target language. It would be

interesting to investigate how the models perform when they are first learned

as a multilingual instance and then specialized to the syntactic and semantic

structure of the target language, both when annotated information is available

and when it is missing. Specializing the models to a specific lexicon could

allow for incorporation of contextual cues, as well as external knowledge from

resources like Wikipedia, online dictionaries, or large collections of documents.
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Appendix A

Annotation Guidelines

A.1 Overview

Rationale: The task of this project is to capture two layers of information about

expressions occurring inside a document. The first layer captures expressions as they

occur inside a document, based on their type. The second layer, the coreference layer,

links together all expressions of a given type that are identical to each other.

Document Structure These guidelines describe the specific type of information

that should be annotated for named entity extraction and coreference resolution and

provides examples similar to those that may be found in the EuroParl documents.

The instances that should be marked along with the examples in the surrounding text

that should be included in the annotations are described. Instances in this guideline

marked in BLUE are correctly annotated named entities. Instances marked in RED

are terms that should not be marked. Coreference pairs will be linked by a connecting

line.

Annotation Tool: www.notableapp.com/

A.2 General Guidelines for Named Entities

1. What things to annotate
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(a) Only complete noun phrases (NPs) and adjective phrases (APs) should be

marked. Named entities that fit the described rules, but are only used as

modifiers in a noun phrase should not be annotated.

• Media-conscious David Servan-Schreiber was not the first ...

• Deaths were recorded in Europe. Various European capitals ...

2. How much to annotate

(a) Include all modifiers with named entities when they appear in the same

phrase except for assertion modifiers, i.e., modifiers that change the mean-

ing of an assertion as in the case of negation.

• some of our Dutch colleagues

• Committee on the Environment

• no criminal court

(b) Include up to one prepositional phrase following a named entity. If the

prepositional phrase contains a named entity by itself, but it is the first

prepositional phrase following a named entity, then it is included as a

prepositional phrase and not annotated as a stand-alone named entity.

• President of the council of Ecuador

• President of Ecuador

• members of the latest strike

(c) Include articles and possessives.

• the European Union

• an executive law

• his proposed law

(d) Do not annotate generic pronouns like we, it, one that refer to generic

entities.

• It must be rainy today.

• We must oppose the vote.
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3. Hypothetical mentions do not annotate hypothetical and vague mentions.

• A potential candidate to the European Union.

A.3 Categories of Entities

Concepts are defined in three general categories that are each annotated separately:

Location, Organization, and Person. Named entities of other entity types should be

ignored. In general, an entity is an object in the world like a place or person and a

named entity is a phrase that uniquely refers to an object by its proper name (“Hillary

Clinton”), acronym (“IBM”), nickname (“Oprah”) or abbreviation (“Minn.”).

A.3.1 Location

Location entities include names of politically or geographically defined places (cities,

provinces, countries, international regions, bodies of water, mountains, etc.). Loca-

tions also include man-made structures like airports, highways, streets, factories and

monuments. Compound expressions in which place names are separated by a comma

are to be tagged as the same instance of Location (see “Kaohsiung, Taiwan”, “Wash-

ington, D.C.”). Also tag “generic” entities like “the renowned city”, “an international

airport”, “the outbound highway”.

A.3.2 Organization

Organization entities are limited to corporations, institutions, government agencies

and other groups of people defined by an established organizational structure. Some

examples are businesses (“Bridgestone Sports Co.”), stock ticker symbols (“NAS-

DAQ”), multinational organizations (“European Union”), political parties (“GOP”)

non-generic government entities (“the State Department”), sports teams (“the Yan-

kees”), and military groups (the Tamil Tigers). Also tag “generic” entities like “the

government”, “the sports team”.
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A.3.3 Person

Person entities are limited to humans (living, deceased, fictional, deities, ...) identified

by name, nickname or alias. Include titles or roles (“Ms.”, “President”, “coach”) and

names of family members (“father”, “aunt”). Include suffixes that are part of a

name (Jr.,Sr. or III). There is no restriction on the length of a title or role (see

“Saudi Arabia’s Crown Prince Salman bin Abdul Aziz”). Also tag “generic” person

expressions like “the patient”, “the well-known president”.

NOTE: some expressions tend to be ambiguous in the category to which they

belong (see “Paris”, both the capital of France (Location) and a proper name (Person);

“Peugeot”, both an organization (Organization) and a proper name (Person)). We

ask that you specifically disambiguate those cases, and annotate the expression with

the category best defined by the context in which it is used.

A.4 General Guidelines for Coreference Resolu-

tion

The general principle for annotating coreference is that two named entities are coref-

erential if they both refer to an identical expression. Only named entities of the

same type can corefer. Named entities should be paired with their nearest preceding

coreferent named entity.

NOTE: For ease of annotation, the pronouns in each document have been anno-

tated. If a pronoun is involved in a coreference relation with a named entity annotated

in step 1, then a coreference link should be created. See the examples below for when

a pronoun should be linked to a named entity.

1. Bound Anaphors: Mark a coreference link between a “bound anaphor” and

the noun phrase which binds it.

• Most Politicians prefer their.
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• Every institution reported its profits yesterday. They plan to realease full

quaterly statements tomorrow.

2. Apposition: Typical use of an appositional phrase is to provide an alternative

description or name for an object. In written text, appositives are generally set

off by commas.

• Herman Van Rompuy, the well-known president...

• Herman Van Rompuy,president.

• Martin Schultz, who was formerly president of the European Union,became

president of the European Parliament.

Mark negated appositions:

• Ms. Ima Head, never a reliable attendant...

Also mark if there is only partial overlap between the named entities:

• The criminals, often legal immigrants...

3. Predicate Nominals and Time-dependent Identity: Predicate nominals

are typically coreferential with the subject.

• Bill Clinton was the President of the United States.

• ARPA program managers are nice people.

Do NOT annotate if the text only asserts the possibility of identity:

• Phinneas Flounder may be the dumbest man who ever lived.

• Phinneas Flounder was almost the first president of the corporation.

• If elected, Phinneas Flounder would be the first Californian in the Oval Office.

A.4.1 Coreference Annotation Arbitration

Each batch of documents will be annotated by two independent human annotators.

The merged document batches will then will then undergo arbitration by a third

annotator.
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