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Microarray Technology

Scope: Microarrays are reshaping molecular biology.
Task: Simultaneously measure the expression value of 

thousands of genes and, possibly, of entire genomes.
Definition: A microarray is a vector of probes measuring the 

expression values of an equal number of genes.
Measure: Microarrays measure gene expression values as 

abundance of mRNA.
Types: There are two main classes of microarrays:

cDNA: use entire transcripts;
Oligonucleotide: use representative gene segments.
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Statistical Challenges

Small N large P: Many variables, few cases.
Noisy results: Measurements are vary variable.
Brittle conditions: Sensitive to small changes in factors.
Design: Platforms are designed without

a clue about the analysis to be done.
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Clustering for Causality

(Statistical) Rules for Causality:
9 Correlation;
9 Time-lag;
9 No hidden-variables.

Challenge: data dimensionality.
Proof of concept: Cell cycle.
Method: clustering/eye-balling.
Argument: Identification of cell 

cycle phases.
Deficit: No method to identify 

gene control mechanisms.
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Bayesian Networks

Qualitative: A dependency graph made by:
Node: a variable X, with a set of states {x1,…,xn}.
Arc: a dependency of a variable X on its parents Π.

Quantitative: The distributions of a variable X given each 
combination of states πi of its parents Π.

Semantics: A graph encodes conditional independence.

E

A

I

A p(A)
Y 0.3
O 0.7

A p(A)
Y 0.3
O 0.7

E p(E)
L 0.8
H 0.2

E p(E)
L 0.8
H 0.2

A E I p(I|A,E) 
Y L L 0.9 
Y L H 0.1 
Y H L 0.5 
Y H H 0.5 
O L L 0.7 
O L H 0.3 
O H L 0.2 
O H H 0.8 

 

 

A E I p(I|A,E) 
Y L L 0.9 
Y L H 0.1 
Y H L 0.5 
Y H H 0.5 
O L L 0.7 
O L H 0.3 
O H L 0.2 
O H H 0.8 

 

 

A=A=AgeAge; E=; E=EducationEducation; I=; I=IncomeIncome



HST 950

Factorization

The graph factorize the likelihood: the “global” likelihood is 
the product of all local likelihood.
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Reasoning

Components of a problem:
Knowledge: graph and numbers.
Evidence: e={c and g}.
Solution: p(d|c,g)=?

Note: Lower case is an instance.
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Learning Probabilities

Learning of probability distributions means to update a 
prior belief on the basis of the evidence.
Probabilities can be seen as relative frequencies:

Bayesian estimate includes prior probability:

 αij /αi represents our prior as relative frequencies.
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Learning the Structure

Processes: Data are generated by processes.
Probability: The set of all models is a stochastic variable M

with a probability distribution p(M). 
Selection: Find the most probable model given the data. 

Computation: If we use the same data and we assume all 
models to be equally likely a priori, then:

p(M|∆) ∝ p(∆|M)
which is just the marginal likelihood. 

Strategy: Maximize the marginal likelihood 
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Module Networks

~P(Activator)

~P(Repressor|Activator)

~P(Gene|A=up,R=up)
~P(Gene|A=up,R=down)

~P(Gene|A=down,R=down)

Model

Segal, Nat Genet, 2003
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Module Networks
Conditions/experiments
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Chip ChIP Networks

Data: 500 expression datasets.
New Data: Chromatin Immuno-

precipitation (ChIP) DNA 
arrays measure interaction 
of binding sites and 
transcription factors in vivo.

Results: 655 genes partitioned 
in 106 modules and 68 
transcription factors working 
as hubs.

Validation: ChIP experiments to 
show activation of predicted 
transcription factors.

Bar-Joseph, Nat Biotech, 2004
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Chip ChIP Networks
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Scale Free Networks

Q: Are these findings useful?
A: Yes, if we can learn 

something about the global 
structure of the network.

Scale free network: Natural 
interactions create  robust 
substructures.

Method: Allow us to analyze 
global properties of a graph:
9 Hubs/Authorities;
9 Critical paths;
9 Islands and holes.
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Microarray Networks

Data: 102 cases/control 
prostate cancer patients 
(Singh et al., 2002).

Task: Classification and 
dependency discovery.

Today: Genes are assumed  
independent to find best 
independent predictors.

Bayesian networks: discover 
the model of dependency 
and predictors.

Validation: Cross validation 
92% of five fold.
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Microarrays and Multiple Phenotypes

Data: 41 leukemia patients.
Measures: 72 candidate genes.
Phenotypes: 3 phenotypes.
Validation: Cross validation.
Oncogene Status: 97.56% (40)

Average Distance: 0.03339
Survival Status:100% (40)

Average Distance: 0.00414
Confidence: Bayes factor -

P(M1|D)
P(M2|D)
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Distributional Assumptions

Microarrays produce data with skewed distributions.
Log-normal: take the logarithm, data are normal.
Gamma: they remain asymmetrical (exponential).



HST 950

Generalized Gamma Networks

Model gene expression data by Gamma distributions;
Encode general non linear dependencies
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Differential Analysis

Data: Prostate cancer dataset.
Rationale: Cancer is a disease 

of control. Can we 
differentiate which control 
mechanism change between 
normal and cancer rather 
than genes?

Design: Learn two networks, 
one from normal and one 
from tumor specimens, and 
compare their dependency 
structure.

Normal specimens

Tumor specimens
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Functional Differences

Normal 
specimens

Tumor 
specimens

µ=1/(.01+1.8/y.40282)

µ=1/(0.02+2/y.40282)

32598: gene with putative growth and transcription regulation functions
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Normal Samples
y.914 sample: 1500

  -10.0     0.0    10.0    20.0    30.0

    0.0
   0.05
    0.1
   0.15
    0.2

y.41706 sample: 1500

  -50.0     0.0    50.0   100.0

    0.0
   0.02
   0.04
   0.06

Tumor differentiation

Mean=16

Observe 40282_S_AT=300 (average value in normal specimens). 
Gene supposed to have a role in immune system.

300

Growth/differentiation factors

Mean=1.3
Oncogene
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y.41706 sample: 1000

-1.0E+3     0.0 1.00E+3 2.00E+3

    0.0
  0.002
  0.004
  0.006
  0.008

y.914 sample: 1000

 -100.0   100.0   300.0

    0.0
  0.005
   0.01
  0.015
   0.02

Tumor Samples

Changes in 40282_S_AT determine changes in tumor markers.

y.40282 sample: 1000

 -100.0   100.0   300.0

    0.0
 0.0025
  0.005
 0.0075
   0.01

70

Tumor 
differentiation

Mean=450 Mean=66
Oncogene
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SNPs Networks

Goal: Overt stroke in sickle cell 
anemia patients.

Subjects: 1392 case/control 
sickle cell anemia patients.

Genotypes: 80 candidate genes 
for approx 250 SNPs;

Risk factors: α-Thalassemia, 
clinical history, age, gender.

Validation: Stroke prediction of 
114 subjects from a different 
population.

Results: 98.5% accurate (100% 
true positive rate). Sebastiani et al, in press, 2004
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Seldi-Time Of Flight Proteomics

Automation Proteomic Data Streams
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Proteomic Networks

Domain: MDS (pre-leukemia).
Design: Over 100 case control 

patients to identify specific 
markers in peripheral blood.

Challenge: Identify proteins.
Model: A Bayesian network 

discovering dependencies 
and identify same/different 
proteins and controllers.

Results: G. Alterovitz, May 11th, 
Session 217-8 3:00pm, 
Seminar Room 217.

With G Alterovitz and T Libermann
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Integrate SNPs and Proteins

Task: Find pathogenic SNPs 
with no phenotypes.

Rationale: Test SNPs that are 
more likely pathogenic.

Training set: Microbial data of 
aminoacid substitution cause  
of phylogenetic, biochemical 
or structural changes.

Test set: Human dataset of 
allele variances from OMIM.

Task: Find changes that induce 
pathogenic phenotype.

Results: less than 10% FPR. Cai et al, Hum Mut, 2004

dataset class 0 class 1

LacI(1) WT+Int (2940) Sig (804) 5.45E+13

LacI(2) WT (2710) Sig (804) 6.79E+14

LacI(3) WT (2710) Int+Sig (1034) 1.38E+09

T4 lysozyme(1) WT+Int (1388) Sig (237) 6.66E+02

T4 lysozyme(2) WT (1115) Sig (237) 7.44E+10

T4 lysozyme(3) WT (1115) Int+Sig (510) 3.42E+04

LacI(1)+T4 lysozyme(1) WT+Int (4328) Sig (1041) 1.48E+21

LacI(2)+T4 lysozyme(2) WT (3825) Sig (1041) 4.17E+20

LacI(3)+T4 lysozyme(3) WT (3825) Int+Sig (1544) 2.17E+09

Training set Bayesian network Bayes 
Factor
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Take Home Messages

Summary:
Microarrays offer the opportunity to observe new phenomena, 
not only more genes.
The opportunity is to identify global structures of control, that 
cannot be observed in isolation (Holistic vs Reductionistic).
To grasp the opportunity, we need new, improved methods, and 
a new way to look at phenomena (Quantitative vs Qualitative).
To prove our results, we need also a new standard of proof, 
adequate for the new attitude (Predictive vs Descriptive).

Challenges:
Networks discover not only information but also domain specific 
emerging semantics (what does a link mean?).
How do we translate these discoveries to humans?


