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Microarray Technology

Scope: Microarrays are reshaping molecular biology.

Task: Simultaneously measure the expression value of
thousands of genes and, possibly, of entire genomes.

Definition: A microarray is a vector of probes measuring the
expression values of an equal number of genes.

Measure: Microarrays measure gene expression values as
abundance of mRNA.

Types: There are two main classes of microarrays:
cDNA: use entire transcripts;

Oligonucleotide: use representative gene segments.
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Statistical Challenges

Small N large P: Many variables, few cases.
Noisy results: Measurements are vary variable.
Brittle conditions: Sensitive to small changes in factors.

Design: Platforms are designed without
a clue about the analysis to be done.
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Clustering for Causality

(Statistical) Rules for Causality:
v' Correlation;

v Time-lag;

v No hidden-variables.
Challenge: data dimensionality.
Proof of concept: Cell cycle.
Method: clustering/eye-balling.

Argument: Identification of cell
cycle phases.

Deficit: No method to identify
gene control mechanisms.
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Bayesian Networks

Qualitative: A dependency graph made by:
Node: a variable X, with a set of states {x,,...,x.}.
Arc: a dependency of a variable X on its parents I1.
Quantitative: The distributions of a variable X given each
combination of states r; of its parents I1.

Semantics: A graph encodes conditional independence.
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08 |

A=Age; E=Education; I=Income
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Factorization

% The graph factorize the likelihood: the “global” likelihood is
the product of all local likelihood.
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Reasoning

Components of a problem:
Knowledge: graph and numbers.

Evidence: e={c and g}.
Solution: p(d|c,g)=7?

Note: Lower case is an instance. ‘

0.3 0.6
0.7 0.4
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Learning Probabilities

% Learning of probability distributions means to update a
prior belief on the basis of the evidence.

¥ Probabilities can be seen as relative frequencies:
n(x| 7)
2. (x| 7)

% Bayesian estimate includes prior probability:

p(x | 7) =

@i+ n(x| )

2. i+ n(x | 7)

p(x|7)=

o;; /o, represents our prior as relative frequencies.
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Learning the Structure

Processes: Data are generated by processes.

Probability: The set of all models is a stochastic variable 4/
with a probability distribution p( 7).

Selection: Find the most probable model given the data.
p(AM) _ p(A|M)p(M)
p(d) p(d)

Computation: If we use the same data and we assume all

models to be equally likely a priori, then:

p(M|4) o« p(4M)

which is just the marginal likelihood.

Strategy: Maximize the marginal likelihood

pM |A)=
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Local Model Selection

A (possible parents B; C):

D% 8

B (possible parent C).
0 0@ O
00
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Module Networks
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Segal, Nat Genet, 2003
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Module Networks

Conditions/experiments
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Chip ChIP Networks

Data: 500 expression datasets. O o

New Data: Chromatin Immuno- E
precipitation (Ch|P) DNA e B Ge?iﬂ?ﬂfél’i?il ol
arrays measure interaction Gene expresson profie Transciptionfator binding p-vlues
of binding sites and b
transcription factors in vivo.
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in 106 modules and 68
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ranscrlp IO g Core gene set [a,b,c,d,e] 4"’7 pression
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. H — ?sregt{latt‘ed ?yt
transcription factors. h| o

<1 G=lab.cdefal
show activation of predicted amtion facors
Bar-Joseph, Nat Biotech, 2004
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Chip ChIP Networks
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Scale Free Networks

Scale-free é %;

Q: Are these findings useful?

A: Yes, if we can learn
something about the global
structure of the network.

Scale free network:
interactions create
substructures.

Method: Allow us to analyze
global properties of a graph:
v Hubs/Authorities;

v' Critical paths;
v Islands and holes.
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Data: 102 cases/control
prostate cancer patients
(Singh et al., 2002).

Task: Classification and
dependency discovery.

Today: Genes are assumed
independent to find best
Independent predictors.

Bayesian networks: discover
the model of dependency
and predictors.

Validation: Cross validation
92% of five fold.
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Microarray Networks
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Data: 41 leukemia patients.
Measures: 72 candidate genes.
Phenotypes: 3 phenotypes. -
Validation: Cross validation. S

Oncogene Status: 97.56% (40) SR - e &
Average Distance: 0.03339

Survival Status:100% (40)
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Distributional Assumptions
Microarrays produce data with skewed distributions.

Log-normal: take the logarithm, data are normal.
Gamma: they remain asymmetrical (exponential).
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Generalized Gamma Networks

% Model gene expression data by Gamma distributions;
% Encode general non linear dependencies

u(pa(y),0) = u(n(pa(y),0))

‘ “ ' n=20, +Z f(yl]
@ @ @ Can choose different link
functions

p=m; n=0,+2 0,
a p=1/n; n1=0,+3 06,y
o \\\ /’l:exp(ﬂ)ﬂ 77:90+Zj9jyij;

n=0,+..0,log(y,)
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Differential Analysis

Data: Prostate cancer dataset.

Rationale: Cancer is a disease ©

of control. Can we D
differentiate  which control — -
mechanism change between

normal and cancer rather Q
than genes? Normal specimens

A1465_At

Design: Learn two networks,

one from normal and one Q(KQ__)#

from tumor specimens, and |
compare their dependency T n
structure. |

5 38291_At

Tumor specimens
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Functional Differences

41706_At 37639_At
37598_At

Normal
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36201 At

u=1/(.01+1.8/y.40282)

Tumor ‘

I A1488_A1 o .-3259”t ) » w . 1000
specimens C{C u=1/(0.02+2/y.40282)

32598: gene with putative growth and transcription regulation functions
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Normal Samples

) sample: M n=1 .914 sample: —_
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o . . . 0.15}
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0.0F ool
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' 300
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Observe 40282 S AT=300 (average value in normal specimens).
Gene supposed to have a role in immune system.

Growth/differentiation factors
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Tumor Samples

y.41706 sample: 1000

o008 Mean=450 0.0 y.914 sample: 1000 Mean=66
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Changes in 40282 S AT determine changes in tumor markers.
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Goal: Overt stroke in sickle cell
anemia patients.

Subjects: 1392  case/control .o
sickle cell anemia patients. SHASYAN
Genotypes: 80 candidate genes =D\ o S

Risk factors: «-Thalassemia,
clinical history, age, gender. N\ S

Validation: Stroke prediction of .
114 subjects from a different || "o o
population. D @ O

Results: 98.5% accurate (100%

true positive rate). Sebastiani et al, in press, 2004
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Seldi-Time Of Flight Proteomics
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Automation Proteomic Data Streams
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Proteomic Networks

Domain: MDS (pre-leukemia).

Design: Over 100 case control
patients to identify specific
markers in peripheral blood.

Challenge: Identify proteins.

Model: A Bayesian network
discovering  dependencies
and identify same/different
proteins and controllers.

Results: G. Alterovitz, May 11th,
Session 217-8  3:00pm,
Seminar Room 217.

With G Alterovitz and T Libermann
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Integrate SNPs and Proteins

Task: Find pathogenic SNPs
with no phenotypes.

Rationale: Test SNPs that are
more likely pathogenic.

dataset class 0 class 1 Factor

Training set: Microbial data of | ot :;.@ —
aminoacid substitution cause e —

of phylogenetic, biochemical | icame |wremass| sgesn

6.66E+02

O r Stru Ctu r'a I Ch a n g es . T4 lysozyme®® WT (1115) Sig (237) 7.44E+10

T4 lysozyme®® WT (1115) | Int+Sig (510) 3.42E+04

TeSt S et . H U m a n d ata S et Of Lacl®+T4 lysozyme™ [WT+Int (4328)| Sig (1041) @ 1.48E+21
al Ie I e va rla nces from O M I M Lacl®+T4 lysozyme® | WT (3825) | Sig (1041) — 417TE+20
Lacl®+T4 lysozyme® | WT (3825) | Int+Sig (1544) 2.17E+09

Task: Find changes that induce
pathogenic phenotype.

. (o)
Results: less than 10% FPR. Cai et al. Hum Mut, 2004
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Take Home Messages

Summary:

% Microarrays offer the opportunity to observe new phenomena,
not only more genes.

% The opportunity is to identify global structures of control, that
cannot be observed in isolation (Holistic vs Reductionistic).

%* To grasp the opportunity, we need new, improved methods, and
a new way to look at phenomena (Quantitative vs Qualitative).

%* To prove our results, we need also a new standard of proof,
adequate for the new attitude (Predictive vs Descriptive).

Challenges:

% Networks discover not only information but also domain specific
emerging semantics (what does a link mean?).

% How do we translate these discoveries to humans?
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