Genomic Medicine: Basic Molecular Biology

Atul Butte, MD atul_butte@harvard.edu Children's Hospital Informatics Program www.chip.org

Children's Hospital • Boston Harvard Medical School Massachusetts Institute of Technology

Basic Biology

- Complementary nucleotides form base pairs
- Base pairs are put together in chains (strands)
 - Naturally form double helixes

• Redundant information in each strand

Chromosomes													
 We do not know exactly how strands of DNA wind up to make a chromosome Each chromosome has a single double-strand of DNA 22 human chromosomes are paired In human females, there are two X chromosomes In males, one X and one Y 													
)[) 2 12)†	11	56	11)[5 1+
	3 4	5 6	7	89	10	11 12	6	11	8	9	10	11	12
13 1	4 15 16		19	20 21	22		13 b 1 19	14 8 8 20	15	21	16 • • • 22	17	18 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

What does a gene look like?

- Each gene encodes instructions to make a single protein
- DNA before a gene is called upstream, and can contain regulatory elements
- Introns may be within the code for the protein
- There is a code for the start and end of the protein coding portion
- Theoretically, the biological system can determine promoter regions and intron-exon boundaries using the sequence syntax alone

Genome size

- We're the smartest, so we must have the largest genome, right?
- Not quite
- Our genome contains 3000 Mb (~750 megabytes)
- E. coli has 4 Mb
- Yeast has 12 Mb
- Pea has 4800 Mb
- Maize has 5000 Mb
- Wheat has 17000 Mb

Genomes of other organisms

• Plasmodium falciparum chromosome 2

Gardner M, et al. Science; 282: 1126 (1998).

mRNA is made from DNA

- Genes encode instructions to make proteins
- The design of a protein needs to be duplicable
- mRNA is transcribed from DNA within the nucleus
- mRNA moves to the cytoplasm, where the protein is formed

Digitizing amino acid codes

- Proteins are made of 20 (21) amino acids
- Yet each position can only be one of 4 nucleotides
- Nature evolved into using 3 nucleotides to encode a single amino acid
- A chain of amino acids is made from mRNA

Temporal Programs

• Segmentation versus Homeosis: same two houses at different times

Periodic Table for Biology

- Knowing all the genes is the equivalent of knowing the periodic table of the elements
- Instead of a table, our periodic table may read like a tree

More Information

 Department of Energy Primer on Molecular Genetics http://www.ornl.gov/hgmis/publicat/pr imer/primer.pdf

• T. A. Brown, Genomes, John Wiley and Sons, 1999.

Gene Measurement Techniques

DNA

- Sequencing
- Polymorphisms

RNA

- Serial analysis of gene expression
- DNA Microarrays
- Wafers

Protein

- 2D-PAGE
- Mass spectrometry
- Protein arrays

PHRED: base-quality score for each base, based on probability of erroneous cal PHRED quality score of X means 99.9% accuracy for base cal

Buetow KH, et al. Nature Genetics 21:323 (1999).

Assembly

- Contamination from non-human sequences removed
- Clones overlaid on physical map
- High-quality semiautomatic sequencing from both ends of very large numbers of numbers of human genome fragments
- Overlaps take memory: Drosophila 600 GB RAM
- Human 10 4-processor 4 GB and 16-processor 64 GB, 10K CPU hrs

Genome Browsers

- Genome browsers: University of California at Santa Cruz and EnsEMBL
- Overlap sequence, cytogenetic, SNP, genetic maps
- Overlap annotations, disease genes

Single Nucleotide Polymorphisms

- Three step approach
- First, find the genes you are interested in
- Second, catalog all the polymorphisms in a gene (by sequencing)
- Third, measure those polymorphisms in a larger population

Experiment Design

- Quantitate specific RNA expression before and after an intervention
- Compare expression between two tissue types
- Compare expression between different strains or constructed organisms
- Compare expression between neighboring cells

Luo L, et al. Nature Medicine; 5: 117 (1999).

Validation

- In situ hybridization
- Real-time Polymerase Chain Reaction

serum to identify ovarian cancer. *Lancet* 359, 572-7. (2002).

- The examples so far demonstrate identification, not quantification
- One can take advantage of the extreme sensitivity of detection of mass spectrometry
- · Add to the proteins a known amount of label

Gene Measurement Techniques

- Sequencing
- Polymorphisms

RNA

- Serial analysis of gene expression
- DNA Microarrays
- Wafers

Protein

- 2D-PAGE
- Mass spectrometry
- Protein arrays