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Adding the Arrows: 
Beyond Pair-wise Comparisons

Isaac S. Kohane

What we are 
hoping to re-

create

Translocation

Induction

Inhibition

…
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The engineer exclaims, “Look! Scottish sheep are black!”

The physicist yells, “No, no. Some Scottish sheep are black.”

The computer scientist says, “Oh, no, a special case!”

Finally, the statistician says, “It is not statistically significant!”

The mathematician looks irritated and says, “There is at least one 
field, containing at least one sheep, of which at least one side is 
black.”

An engineer, a physicist, a mathematician, a computer scientist, and 
a statistician are on a train heading north, and had just crossed the 
border into Scotland.  They look out the window and see a black 
sheep for the first time.

Pathways in 
Dendrograms?

Comparison on a 
cDNA analysis of 
fibroblast 
response to serum 
(Iyer et al., 1999)

Dendrograms
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Pathway tools

l What do they do?
l Why do investigators 

like them?

Causality ab initio

l If dendrograms do not give arrows and…
l If hand-coded pathway maps limit what is illuminated

l Can we get closer to causal pathways/maps 
from data alone?
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Time and causality

l Three Conditions for Inferring Cause: 
ü Covariation the cause and effect have to be related.

F“Guilt by association” 

ü Time precedence of the cause , the cause had to 
precede the effect in time

ü No plausible alternative explanation of the effect 

John Stuart Mills (System of Logic, 1843).

Time and Functional Genomics

l Slopes vs. Statics
l Signal Processing Approach
l Making order and time matter in clustering
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Time and causality

l Three Conditions for Inferring Cause: 
ü Covariation the cause and effect have to be     related. 
ü Time precedence of the cause , the cause had to 

precede the effect in time
ü No plausible alternative explanation of the effect

John Stuart Mills (System of Logic, 1843).

Interim Summary

l Traditional biological knowledge sources (a.k.a. 
pathways and literature) are useful transducers of 
noisy data.

l Time series experiments will bring us closer to 
mechanistic underpinnings.

l Systematically explore alternate models explaining 
data
ü Probabilistic framework is useful to this end.
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But there’s more…

The leverage of prior knowledge
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The leverage of prior knowledge

Let’s Revisit Causality at 
Genomic Level
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The New 
Histopathology
l New Diagnosis?

l B-cell signature 
(CD20+) in 
Cluster A (and 
others)

Finding

l New Prognosis

l New Therapeutic 
Opportunity

l New Research 
Opportunity
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Where to go?

ACT ATT l How can we study how variants
in genes (e.g. CD20) influence disease?
üWhat the the variants?

l How can we perform association studies more 
cost-effectively?

CD20

l Which variant to study?
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SNPs and Haplotypes
Daly et al. 2001

Haplotype Tagging SNP’s (htSNP’s)

5q31

Typical Approach

l Probabilistic framework
ü Probabilistic dependencies
ü “80% of variation” associated with the following htSNP’s

l OR
ü Enumerate all possible combinations of SNP’s that can account for 

the haplotypes and assess coverage.
l OR

ü A new deterministic algorithm to determine the provably optimal 
minima set of htSNP’s

ü Best Enumeration of SNP Tags— BEST
F http://www.chip.org/home/resources.cgi
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BEST(Best Enumeration of SNP Tags)

l Deterministic
l Fast (takes < 1 

second for any of 
the available 
data sets)

l Provably optimal

Ramoni, PNAS, 03

The Solution
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Operational Implications

European Americans

Direct Digital  
Assessment 

of Variants
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An example of PFAM alignments:

•How conserved is the position where the SNP/mutation occurs in the 
protein domain: positional entropy

•How often a specific allele appears in the cross-species 
alignment fA and fB , (fA - fB), or fB/fA

Exploit Phylogenetic information 

Microbial Mutation Datasets

•Large missense mutation studies: up to 13 different 
mutations at each position, 6059 in total.
•Phenotypic screen: biochemical measurements, categorized 
relative to WT function.

Study Species Target Method total # 
mutations

# mutatoins 
/position

Phenotypic 
Screen

  lacI 
(Suckow et al, 

1996)

E. coli entire 
protein 

Nonsense 
suppression

3744 12-13
beta-galactosidase 

assay (fold of 
inhibition) 

T4 lysozyme 
(Rennell et al, 

1991)

Bacteriophage entire 
protein 

Nonsense 
suppression

2015 12-13

plaque-forming 
ability

HIV protease 
(Loeb et al., 

1989)

HIV-1 entire 
protein 

saturation 
mutagenesis

336 1-10

western blot assay
f1 gene V 
(Zabin et al, 

1991)

Bacteriophage entire 
protein 

saturation 
mutagenesis

313 1-11
cell growth 
inhibition
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Automatic (Bayesian) Discovery of Predictor of Phenotype 
Changes

Can we make the leap from microbe to 
human?

l 200 OMIM genes: variants annotated to cause disease

l Same genes but no disease associated with variants (yet)

l Specificity: 70-80%, Sensitivity 50-60%

ü That is: if the variant is identified as “pathogenic”, 4 out of 5 
times it is disease-causing

l So, why don’t we just apply the algorithm to CD20?
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Dynamics

l Neglected until recently in functional genomics?
l Why?
l What do we lose by ignoring dynamics analyses in 

our current data sets?
l Work of Kohane, Shahar, Musen, and other in clinical 

informatics suggests that:
ü We lose discrimination
ü We lose insights into processes

Are They Similar?
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Two Gene Expression Courses?
Are They Similar? Does order Matter?
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Comparison on a 
cDNA analysis of 
fibroblast 
response to serum 
(Iyer et al., 1999)

Autoregressive Models

l Take a time series, of dependent observations:

l Approximate with an autoregressive model: 

the basic assumption is that t0 is independent of the 
remote past given the recent past. 

l The length of the recent past is the Markov Order p.

K→→→→ 3210 xxxx

)x,,x,x|P(x 1t10t −K )x,...,x|P(x 1-tptt −
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Bayesian Model Selection

l Clustering is a statistical model selection problem.
l We are looking for the model with maximum 

posterior probability given the data.

p(D)
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Bayes’ Theorem
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Marginal Likelihood

l We want the most probable model given the data:

l But we use the same data for all models:

p(Mi|∆) ∝ p(∆ |Mi)p(Mi).

l We assume all models are a priori equally likely:

p(Mi|∆) ∝ p(∆ |Mi).

l This is the marginal likelihood, which gives the most
probable model generating ∆.
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Four Clusters

Cluster Members

Cluster 2 Cluster 3 Apoptosis Cluster

Interleukin 8 D A Tyrosine kinase-like orphan 
receptor 2

Interleukin 6 (interferon 
beta 2)

E B TRAF-binding protein domain

Prostaglandin-
endoperoxide synth 2

F C Death-associated protein kinase

G Transcription termination factor-
like protein

H DKFZP586G1122 protein

I

J

Cytokine Cluster
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Validation

l Back in 1999, 238 out of 517 genes were unknown.
l We relabeled the genes according to the current state of the art and 

less than 20 are left unknown.
l There are 19 repeated genes in the dataset:

ü Original clustering puts 4 of these in different clusters;
ü We put 1 of these in two different clusters.

l Interestingly enough, if we run the clustering with Markov order 0 
(assuming uncorrelated iid data), we get 4 “misplacements” as well, 
albeit of other genes.

l Conclusion:  
ü Temporal order provides more accurate insights into concerted 

behavior of gene expression.
ü Sound statistical basis for models rather  than the “looks right” test
ü Now being applied to several time-series in heart disease model, 

brain development, transplant rejection, insulin effect

They are the same

Tax1 (human T-cell leukemia virus type I) binding protein 1
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Are they really the same?

DKFZP566O1646 protein
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CAGED

http://Bio.chip.org/biotools/

Dissimilarity Metrics

Finding the right representation for 
genomic data 

At least as important as employing an 
optimal analytic algorithm
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Framework

Already addressed: Euclidean Distance

RNA Expr
Gene 1
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Already addressed:correlation coefficient

l Useful when
ü Negative 

correlations 
are of interest

ü When 
Euclidean 
distance is 
inadequate 

Mutual Information

Gene A

G
en

e 
B
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Mutual Information

Gene A

G
en

e 
B
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Mutual Information (A,B) =
Entropy (A) + Entropy (B) –Entropy (A and B)
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1051 464

Similar Function Networks

l Nine networks with associations 
linking genes with similar functions

ü Histones
ü Acid phosphatases
ü Ribosomal proteins
ü Translation initiation
ü 70 kDa heat shock proteins
ü Hexose transporters
ü Mitochondrial ribosomal 

proteins
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Similar Function Networks

l Nine networks with associations 
linking genes with similar functions

ü Histones
ü Acid phosphatases
ü Ribosomal proteins
ü Translation initiation
ü 70 kDa heat shock proteins
ü Hexose transporters
ü Mitochondrial ribosomal 

proteins

Other Networks

l Largest network links 143 
genes
ü 102 are the various 

components of the large 
and small ribosomal 
subunits

ü 8 are translation initiation 
factors
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Framework

Metrics that 
Capture Dynamics
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Point by point slopes

l Different networks identified than in static networks 
(why?)

l Artifactual high correlations near rest 

Slope(n,n+1)

(expression_leveln+1 –expression_leveln)

(timen+1 –timen)

=

Slope Results

r2=0.057 r2=0.054
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Slope dynamics

Strong relationships not 
identified by static 
dissimilarity measures

Reconstructing  the source waveform
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Future Directions: Causality

l So far, our potential genetic networks are undirected

l Temporality is first step to determining causality
l Multi-frequency analysis, assuming nothing about genomic frequency

Biological 
System

Gene B
Receiver

Gene A
Transmitter

0 1 2 3 4

P
ow

er

1 2

0

0 1 2 3 4

P
ow

er

1 2

0

output

At each frequency, the relationship between oscillations of in 
input and output are quantified by: 

ü Transfer gain: amplitude modulation from input to output.
ü Transfer phase: time lead or time lag from input to 

output.
ü Coherence: linearity of relationship between signals. 

Schematic input

time domain (s)

frequency  (Hz) frequency  (Hz)

time domain (s)

filter

Overall approach
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Signal Processing Finds Gene Regulation

l Given enough compute-power, digital signal processing can be successfully 
applied to all possible pairs of genes

Butte AJ, et al. Comparing the Similarity of Time-Series Gene Expression Using Signal Processing 
Metrics, Submitted.

How do you determine what is the 
right dissimilarity measure
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What is the figure of merit?

l For classification?

l For clustering?

Bake-off

l What does 
this mean?

Brown, PNAS ‘00
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Concordance

Permutation Test

Distribution of R 
(alpha)
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Multiple Evaluation/Scoring Techniques

l Robustness under noise
l Matching known associations/relationships

ü Literature
ü Gene Ontology

l Comparisons to alternative “wet” measurement 
results.

Visual Inspection
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Figure of Merit has to be found in the 
Scientific Method

l Example Biological Validation

A short introduction to functional 
genomic causality with Bayesian 

Networks
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Comprehensive
Bioinformatics Approach:
All Data Are Grist 

QuickTime?and a
Photo - JPEG decompressor

are needed to see this picture.

How do we combine all these data types

l If functional genomics is going to be meaningful we 
will have to include:
ü Phenotype data
ü Environmental data
ü Genomic data (RNA, SNP, Proteomic etc)

l Each data type has its own characteristics.
l How do we add evidence from different sources in a 

principled way that is statistically sound?
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Bayesian Network: A Framework for 
Probabilistic Relationships

Qualitative: A dependency graph made by:
Node: a variables X, with a set of states {x1,… ,xn}.
Arc: a dependency of a variable X on its parents Π.

Quantitative: The distributions of a variable X given 
each combination of states π i of its parents Π.

E

A

I

A p(A)
Y 0.3
O 0.7

A p(A)
Y 0.3
O 0.7

E p(E)
L 0.8
H 0.2

E p(E)
L 0.8
H 0.2

A E I p(I|A,E) 
Y L L 0.9 
Y L H 0.1 
Y H L 0.5 
Y H H 0.5 
O L L 0.7 
O L H 0.3 
O H L 0.2 
O H H 0.8 

 

 

A E I p(I|A,E) 
Y L L 0.9 
Y L H 0.1 
Y H L 0.5 
Y H H 0.5 
O L L 0.7 
O L H 0.3 
O H L 0.2 
O H H 0.8 

 

 

A=A=AgeAge; E=; E=EducationEducation; I=; I=IncomeIncome

Finding the Most-likely Dependency Graph

l Goal: find the global model that best reflects the 
data.
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Problem: Searching for all the possible models is 
intractable.

X1

X2 X3

X1

X2 X3

X1

X2 X3

X1

X2 X3

X1

X2 X3

X1

X2 X3

X1

X2 X3

X1

X2 X3

Search

Growth in Number of Possible Models with 
Variables
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X1

X2 X3

X1

X2 X3

X1

X2 X3

X1

X2 X3

X2 X3X2 X3

XX22 (possible parent X(possible parent X33). ). 

XX11 (possible (possible parents parents XX22; X; X33):):
Local Model Selection

The modelThe model:: X1 X2 X3

Add “parents” only if 
it increases the 
marginal likelihood 
of the model 

i.e. plausible 
alternative 
explanation of the 
effect

Application

Cases: 41 patients affect by leukemia.  
Genomic: expression measures on 72 genes;
Clinical: 38 clinical phenotypes (3 used).

Representational Risks:
Deterministic links: hide other links more interesting.
Overfitting: Too many states for the available data.

Transformations:
Definitional dependencies: if suspected, removed.
Sparse phenotypes: consolidated (oncogene status).

With  Adolfo Fernando Thomas Look, DFCI, Harvard Medical School.
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Relationship between gene and phenotype

Dependency Strength

Bayes factor: ratio between the probability of 2 models.
Threshold: To add a link, we need to gain at least 3 BF. 
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Validation

Cross-validation: A form of predictive validation.
1. For each case, remove it from the database;
2. Use these data to learn the probability distributions of 

the network;
3. Use the quantified network to predict value on a 

variable of the removed case.

Validation parameters: 
Correctness: Number of cases correctly predicted;
Coverage: Number of cases actually predicted;
Average Distance: How uncertain is a prediction.

Results

25 variables were isolated.
Cross validation conducted on two variables.
Oncogene Status:

Coverage: 100% (41).
Accuracy: 97.56% (40).
Average Distance: 0.03339.

Survival Status:
Coverage: 97.56% (40).
Accuracy: 100% (40).
Average Distance: 0.004146.


