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Adding the Arrows:
Beyond Pair-wise Comparisons

Isaac S. Kohane

pital MW Lanoard
Program 4? Medical School

What we are
hoping to re-
create

Translocation
Induction

Inhibition




black.”

An engineer, a physicist, a mathematician, a computer scientist, and
a statistician are on a train heading north, and had just crossed the
border into Scotland. They look out the window and see a black
sheep for the first time.

The engineer exclaims, “Look! Scottish sheep are black!”

The physicist yells, “No, no. Some Scottish sheep are black.”
The mathematician looks irritated and says, “There is at least one

field, containing at least one sheep, of which at least one side is

The computer scientist says, “Oh, no, a special case!”

Finally, the statistician says, “It is not statistically significant!”

Pathways in
Dendrograms?

Dendrograms

Comparison on a
cDNA analysis of
fibroblast
response to serum
(lyer et al., 1999)
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from data alone?

® |f dendrograms do not give arrows and..
® |f hand-coded pathway maps limit what is illuminated

® Can we get closer to causal pathways/maps

Causality ab initio
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Time and causality

® Three Conditions for Inferring Cause:

v' Covariation the cause and effect have to be related.
< “Guilt by association”

v Time precedence of the cause, the cause had to
precede the effect in time

v No plausible alternative explanation of the effect

John Stuart Mills (System of Logic, 1843).
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Time and Functional Genomics

® Slopes vs. Statics
® Signal Processing Approach

® Making order and time matter in clusterin




Time and causality

® Three Conditions for Inferring Cause:
v' Covariation the cause and effect have to be related.

v Time precedence of the cause, the cause had to
precede the effect in time

v No plausible alternative explanation of the effect

John Stuart Mills (System of Logic, 1843).
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Interim Summary

® Traditional biological knowledge sources (a.k.a.
pathways and literature) are useful transducers of
noisy data.

® Time series experiments will bring us closer to
mechanistic underpinnings.

@ Systematically explore alternate models explaining
data

v Probabilistic framework is useful to this end.
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Let’s Revisit Causality at
Genomic Level




The New
Histopathology

® New Diagnosis?

® B-cell signature
(CD20+) in
Cluster A (and
others)

“ ORIGINAL ARTICLE ”

Molecular Heterogeneity in Acute Renal
Allograft Rejection Identified by DNA
Microarray Profiling

Table 3. Clinical Correlates of CD20 Status in Renal-Biopsy Samples Findi
from Patients with Acute Rejection. Indaing
Biopsy
Retrospective Samples
Series Included inthe | o New Prognosis
of Biopsy Microarray
Samples Analysis ® New Therapeutic
Variable (N=31) (N=20) Opportunity
CD20+ on staining — no. /total no. (%6) 9/31 (29) 9/20 (45) ® New Research
Opportunity
In patients with CD20+ sample — 7/9 (78) 8/9 (89)
no./total no. (%)
In patients with CD20- sample — 9/22 (41) 1/11(9)
no./total no. (%)
P value 0.11 <0.001
Glucocerticoid resistance |
I patients with CU20+ sample — 8/9 (89) 4/9 (44)*
no./total no. (%)
In patients with CD20- sample — 1/22 (5) 1/11(9)
no./total no. (%)
P value <0.001 0.01




® How can we study how variants

ACT >ATT in genes (e.g. CD20) influence disease?
vWhat the the variants?

® How can we perform association studies more
cost-effectively?

Where to go?
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Haplotype Tagging SNP’s (htSNP’s)
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HapMap
Praject

Typical Approach

Probabilistic framework
v Probabilistic dependencies
v “80% of variation” associated with the following htSNP’s
OR
v Enumerate all possible combinations of SNP’s that can account for
the haplotypes and assess coverage.
OR
v A new deterministic algorithm to determine the provably optimal
minima set of htSNP’s
v Best Enumeration of SNP Tags- BEST
< http:/Mww.chip.org/home/resources.cgi
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® Deterministic

® Fast (takes < 1 pmedure BEET(S)

second for any of
the available
data sets)

® Provably optimal

enid Ramoni, PNAS, 03

BEST(Best Enumeration of SNP Tags)

He—;
Fir i < |5

i mod DERTVARLE(S;, (5 — S;) ) then H—H U 8
vad
R
for i < |5 do

IS, ¢ and mod DERIVARLE[ S 0 | (luen Fe— FL 5y
card
NB—§ B—{H} ::; Note that I3 is & sat of sats now intialized &s the single set IT.
while Ji, = Hj|jpeErivEn{ )] < | da

o i = :E-'i (i1}

for § < || do
I, ¢ i thea N B30 83 ) UNH,
el

end

He—N By| max pERIVED{N H,); N B
end
i 35| 2H; £ B DERIVABLE( (B, \ k]) them

BEST(#) Y0, € B
else return 0 £ 8| min | B

11



lospital  ™™8 Hanear

htSHPs Rato

a0%

50%

0%

=0 al 100 120 140

Mumber of SMPg

European Americans

Direct Digital
Assessment
of Variants

Aromatic

Hydrophobic

Charged

12



Exploit Phylogenetic information

An example of PFAM alignments:

1432 HUMAH
1437 MOUSE
1437 SHEEP
143 MOUSE
143E_RAT
143 HUMAN
143F_BOVIN
1433 HENLL
057469
1437 XENLL
1434 CAEEL

FHNELVOEAKLAEQAERYDDHNAACHESVTEQGL
FHELVOKAKLAEQAERYDDMAACHESVTEQGL
FHNELVOEAKLAEQAERYDDMAACHESVTEQGL
ESELVOKAKLAEQLERYDDMAAANKAVTEQGH
KSELVOQEAELAEQAERYDDHAAANEAVTEQGH
KIELVOQKAKLAEQAERYDDMAAAMEAVTE QGH
KIELVOEAKLAECQLERYDDMAAANEAVTEQGH
——————— ARLIEQAERYDDMAASHEAVTELGA
FHNELVOQEAELAEQAERYDDHAACHERVTEEGG
FHNELVOKAKLAEQLAERYDDMAACHERVTEEGG
KEELVNRAKLAECQAERYDDMAASHEEVTELGL

» How conserved is the position where the SNP/mutation occursin the

protein domain: positional entropy

» How often a specific allele appears in the cross-species

alignment f5 and fg, (fo - fg), or fg/fa

* L arge missense mutation studies: up to 13 different

Microbial Mutation Datasets

mutations at each position 6059 in total.

* Phenotypic screen: biochemical measurements, categorized

relative to WT function.
Sudy Species Target | Method total # |# mutatoins| Phenotypic
mutations | /position Screen
lacl E. coli entire Nonsense 3744 12-13
(Suckow et al, protein | suppression beta-galactosidase
1996) assay (fold of
inhibition)
T4 lysozyme|Bacteriophage| entire Nonsense 2015 12-13
(Rennell et al, protein | suppression
1991) plaque-forming
ability
HIV protease HIv-1 entire saturation 336 1-10
(Loeb etal., protein | mutagenesis
1989)
western blot assay
f1 gene V [Bacteriophage| entire saturation 313 1-11
(Zabin et al, protein | mutagenesis cell growth
1991) inhibition

13



Automatic (Bayesian) Discovery of Predictor of Phenotype

Changes
@& D D
+
1 | f'

g
X

Pail_Spec_Nokima

Hpha Hely Propensiy

Can we make the leap from microbe to
human?

® 200 OMIM genes: variants annotated to cause disease

® Same genes but no disease associated with variants (yet)

Specificity: 70-80%, Sensitivity 50-60%

v That is: if the variant is identified as “pathogenic”, 4 out of 5
times it is disease-causing

So, why don’t we just apply the algorithm to CD20?

14



Dynamics

® Neglected until recently in functional genomics?

® \Why?

® \What do we lose by ignoring dynamics analyses in
our current data sets?

® Work of Kohane, Shahar, Musen, and other in clinical
informatics suggests that:
v We lose discrimination
v We lose insights into processes

B by @

Are They Similar?

25

VAN —
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Autoregressive Models

POX, | Xgs Xqyeeas Xpq)

® Take a time series, of dependent observations:
XO® X1® X2® X3®

® Approximate with an autoregressive model:
P(x, |xt_p,...,xt_l)

the basic assumption is that t, is independent of the
remote past given the recent past.

® The length of the recent past is the Markov Order p.

16
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Bayesian Model Selection

® Clustering is a statistical model selection problem.

® We are looking for the model with maximum
posterior probability given the data.

Bayes’ Theorem

o(M[D )_ p(DIM)p(M)
Prior / p(D)

Posterior

M_O_L cee M_Cd M_G.I. cee M_Cd
p(M,) - % p(M, ID) - p(Mq, |D)
—\_ —_—ly -
/\//,\/ /\/

pital .'_’.-" II:L"| ard
43

Program

Marginal Likelihood

® \We want the most probable model given the data:
_ p(Mi,D) _ p(D|M;) p(M;)
p(M; | D)=
p(®) p(0)
® But we use the same data for all models:
P(M;D) 1 p(D [M;)p(M).
® \We assume all models are a priori equally likely:
P(MID) 1 p(D [M)).

® This is the marginal likelihood, which gives the most
probable model generating D.

17



Four Clusters

Interleukin 8

Interleukin 6 (interferon
beta 2)

Prostaglandin-
endoperoxide synth 2

E B
F C
G

H

|

J

Cluster Members

Cytokine Cluster Cluster 2 | Cluster 3| Apoptosis Cluster

Tyrosine kinase-like orphan
receptor 2
TRAF-binding protein domain

Death-associated protein kinase

Transcription termination factor-
like protein

DKFZP586G1122 protein
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Validation

Back in 1999, 238 out of 517 genes were unknown.

We relabeled the genes according to the current state of the art and
less than 20 are left unknown.

There are 19 repeated genes in the dataset:
v Original clustering puts 4 of these in different clusters;
v We put 1 of these in two different clusters.

Interestingly enough, if we run the clustering with Markov order O
(assuming uncorrelated iid data), we get 4 “misplacements” as well,
albeit of other genes.

Conclusion:

v Temporal order provides more accurate insights into concerted
behavior of gene expression.

v Sound statistical basis for models rather than the “looks right” test

v Now being applied to several time-series in heart disease model,
brain development, transplant rejection, insulin effect

14
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Tax1 (human T-cell leukemia virus type 1) binding protein 1

19



rl foy faly Children's Hospital =2 Hanvard
- . \LI) I'.ﬁ.-' Infonmatics Program :ﬂ‘ Medical School

Are they really the same?

25

2 AND
CAGED / )<
15 http:/Bio.chip.org/bi n?

1 2 3 4

6 7 8 9 10 11 12 13

5
DKFZP56601646 protein

Ii'_"". Children's |
B Infonmatics

Dissimilarity Metrics

Finding the right representation for
genomic data
At least as important as employing an
optimal analytic algorithm
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Framework

Experiment 1

Experiment 2

Experiment 3

Already addressed: Euclidean Distance

RNA Expr RNA Expr RNA Expr

Gene 1 Gene 2 Gene 3
0.7 0.3 7.3
1.2 1.9 6.5
1.1 0.9 8.1

N
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Experiment 1

Gene 2
0.,
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Gene 1
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Already addressed:correlation coefficient

® Useful when

v Negative
correlations
are of interest

v When
Euclidean
distance is
inadequate

Mutual Information

o
% ... .o...o
o.' :
o °
Gene A

22
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Gene A

Mutual Information (A,B) =
Entropy (A) + Entropy (B) — Entropy (A and B)

Gene B
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Similar Function Networks

® Nine networks with associations
linking genes with similar functions

v Histones

v" Acid phosphatases

v Ribosomal proteins

v Translation initiation

v 70 kDa heat shock proteins
v' Hexose transporters

v Mitochondrial ribosomal
proteins

6

MRP49 IMRPL13
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® Nine networks with associations
linking genes with similar functions

v Histones

v Acid phosphatases

v Ribosomal proteins

v Translation initiation

v 70 kDa heat shock proteins
v Hexose transporters

v Mitochondrial ribosomal
proteins

cn's Hospital =¥ Hanvan

ram ¥ Mo

Similar Function Networks
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Metrics that
Capture Dynamics
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Point by point slopes

® Different networks identified than in static networks
(why?)
® Artifactual high correlations near rest

Slope(n,n+l) =

(expression_level,,, —expression_level,)

(time,,; —time,)

Slope Results

r2=0.057 r2=0.054
AFHS et EUCI B
I
s © ®
% s -1 ° g e ®
3 A 3
0| o
! ;3
o o e = o ®
a ® -]
& e o .
O 2 q b Ve m ]

) ] Tt
‘Sopm of Ex veaon Lovel of APLER
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Reconstructing the source waveform

Eipples in Water
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® So far, our potential genetic networks are undirected
® Temporality is first step to determining causality
® Multi-frequency analysis, assuming nothing about genomic frequency

Gene A
Expression of Genes Transmitter

Biological
System

Amount of exprassion

4

0 2I0 4IIJ BIU 80 1 (I.'OIJ 120 G ene B
Seconds Receiver

—
0 0 nA . VAl A AL\
Y AVA" i A\VA v i
1
1 2 e filter 1 2
o o
2 “ = l ﬂ
© (o]
o / o / |
0 1 2 3 4 0 1 2 3 4

At each frequency, the relationship between oscillations of in

input and output are quantified by:
v Transfer gain: amplitude modulation from input to output.

v Transfer phase: time lead or time lag from input to
output.

v Coherence: linearity of relationship between signals.
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Signal Processing Finds Gene Regulation

® Given enough compute-power, digital signal processing can be successfully
applied to all possible pairs of genes

No Genes

5  pol2: DNA polymerase
epsilon large subunit (DNA
replication)

dpb2: Polymerase epsilon
80 kDa subunit (DNA
replication)
r=072

6  sne2: Synaptobrevin
homoleg (Secretion)
adh3: Alcohol
dehydrogenase Il
(Glycolysis)

r=057

Metrics, Submitted.

Expression Levels Transfer Coherence Transfer Gain
Phase Shift
POL2 DPB2 1
18 2
15
14 L=
12 1
1
0.8 05
0.6} o ]
o
SNC2 ADH3 % g
1
15
o .
0.5 e
0.7

Butte AJ, et al. Comparing the Similarity of Time-Series Gene Expression Using Signal Processing

How do you determine what is the
right dissimilarity measure

29



® For classification?

® For clustering?

What is the figure of merit?

y Children's Hospital =%% Harvard

- (h.'LI) |:a. Infonma

b

Table 1. Comparison of error rates for various classification

methods
Class Method FP FN T ™ S(M) Bake-off
TCA D-p 15VM 18 5 12 2,432 3
D-p 2 SYM 7 9 8 2,443 9
D-p 3 SVM 1 9 8 2,446 12 ® What does
Radial SWM 5 9 8 2,445 1 i )
Parzen 4 12 1 2,446 [ thls mean:
FLD 9 10 7 2,441 5
a5 7 17 0 2,443 7
MOC1 3 16 1 2,446 1
Resp D-p 1SVM 15 7 23 2,422 3
D-p 2 SVM 7 7 23 2,430 39
D-p 3 SVM 3 8 22 2,431 38
Radial SWM 5 11 19 2,432 33
Parzen 22 10 20 2,415 18
FLD 10 10 20 2,427 30
45 18 17 13 2,419 8
MoC1 12 26 4 2,425 4
Ribo D-p 1SVM 14 2 119 2,332 224
D-p 2 SVM 9 2 119 2,337 229
D-p 3 SYM 7 3 18 2,339 229
Radial SWM 6 5 16 2,340 226
Parzen 6 8 113 2,340 220
FLD 15 5 16 2,331 217
a5 El| 21 100 2,315 169
MOC1 26 26 95 2,320 164 Brown, PNAS ‘00
Prot D-p 15VM 21 7 28 2,411 35
D-p 2 SVM 6 8 27 2,426 43
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Concordance

Rater 1 - Yes Rater 1 - No

Rater 2 - Yes

A B

Rater 2 - No

C D

The Jaccard, J= A/(A+B+C)

Distribution of R
(alpha)

Permutation Test

+ signal + signal
= db2-1 = dbi10-1
db2-2 db10-2
db2-3 db10-3
= db2-4 = dbi0-4
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Multiple Evaluation/Scoring Techniques

® Robustness under noise

® Matching known associations/relationships
v Literature
v Gene Ontology

® Comparisons to alternative
results.

wet” measurement
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| Visual Inspection
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Bl dip @ e e
Figure of Merit has to be found in the
Scientific Method

® Example Biological Validation

I"_"". Children's Hospital 298 [aroard
3 Intfonmatics Program Y Medical Schoal

A short introduction to functional
genomic causality with Bayesian
Networks
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Comprehensive
Bioinformatics Approach:
All Data Are Grist

kTime?and a

Photo - JPEG decompressor
are needed to see this picture.

How do we combine all these data types

@ |f functional genomics is going to be meaningful we
will have to include:
v Phenotype data
v Environmental data
v Genomic data (RNA, SNP, Proteomic etc)
® Each data type has its own characteristics.

® How do we add evidence from different sources in a
principled way that is statistically sound?
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Bayesian Network: A Framework for
Probabilistic Relationships

Qualitative: A dependency graph made by:
Node: a variables X, with a set of states {X,,.. ,X.}.
Arc: a dependency of a variable X on its parents P.
Quantitative: The distributions of a variable X given
each combination of states p; of its parents P.

o e o o e o
N [w [~ o o [ ko

E
-
.
R=Age; E=Education; I=Income

Children pital MW Lanoard
S 1 e
Infonmat A t  Medical School

Finding the Most-likely Dependency Graph

® Goal: find the global model that best reflects the
data.
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Search

Problem: Searching for all the possible models is
intractable.

o o 6 8
o 6 8 8

Children's II pital ““’II:L"J_
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Growth in Number of Possible Models with
Variables
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Local Model Selection

X, (possible parents X,; X,):

® @ @J@@X@
Xy

X, (possible parent X;). Add “parents” only if

@ @ it increases the
margina likelihood

The model: of the model

i.e. plausible
alternative
explanation of the
effect

Application

Cases: 41 patients affect by leukemia.
Genomic: expression measures on 72 genes;
Clinicat 38 clinical phenotypes (3 used).
Representational Risks:
Deterministic links: hide other links more interesting.
Overfitting: Too many states for the available data.
Transformations:
Definitional dependencies: if suspected, removed.
Sparse phenotypes: consolidated (oncogene status).

With Adolfo Fernando Thomas Look, DFCI, Harvard Medical School.
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Dependency Strength

Bayes factor: ratio between the probability of 2 models.
Threshold: To add a link, we need to gain at least 3 BF.

. # Oncogene_Status =10] ]
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Validation

Cross-validation: A form of predictive validation.
1. For each case, remove it from the database;

2. Use these data to learn the probability distributions of
the network;

3. Use the quantified network to predict value on a
variable of the removed case.
Validation parameters:
Correctness: Number of cases correctly predicted;
Coverage: Number of cases actually predicted;
Average Distance: How uncertain is a prediction.

,l tiy /iy Children pital MSE Lpnoard
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Results

25 variables were isolated.
Cross validation conducted on two variables.
Oncogene Status:
Coverage: 100% (41).
Accuracy: 97.56% (40).
Average Distance: 0.03339.
Survival Status:
Coverage: 97.56% (40).
Accuracy: 100% (40).
Average Distance: 0.004146.
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