Health Enterprise Computing and Patient Identification

6.872/HST.950
February 13, 2003
Peter Szolovits
(with first half content from David Margulies)

Context: Evolution of Clinical Computing...

- Focus evolved from automating AR process in hospitals, to LAN-based SI of departmental systems, to enterprise clinical computing, toward region- and system-level process automation
- Changing healthcare organizational models and economic models ---> changing clinical computing priorities and designs
Phase 2: LAN-based SI -- Automate Data Distribution to MDs...

Phase 3: Data-based SI to Create an EMR...

Phase 4: Enterprise-level Clinical Process Automation...

DATA REPOSITORY
Most Installations...

- Medical Record
- Care Team
- Clinicians' Worksystem
- Clinical Data Repository

Evolutionary Stages

- Characteristics
 - Access Directly Via Progress
 - High Availability
 - HL7 Query Tools
 - Open Clinical Data Repository
 - ProMed Orders
 - CareNetwork
 - APACHE

- Examples
 - HL7 Query Tools
 - ORACLE
 - Open Clinical Data Repository
 - ProMed Orders
 - CareNetwork
 - APACHE

Different Imperatives, Different IT Strategies

- Computer-Based Patient Record
- World-Wide
- Multiple Facilities

- Care Team Support
- Community-Wide
- Common Clinical Ordering

- Critiquing
- Scheduling

- Electronic Chart Viewer
- Clinical Data Repository
- MPI/ADT Synchronization

- Independent Departmental Systems

Beyond the Enterprise: CHINs

- Valid needs, No Buyer...

- Network Applications
 - E-Mail
 - Database Application
 - Membership
 - Health Plan Server
 - Health Record Index

- Transaction Applications
 - Scheduling/Referrals
 - Report Management
 - Claims Consolidation
 - Utilization Review

- Transaction Systems
 - Client Billing
 - Financial Accounting

- Core Services
 - E-Mail
 - Database Systems

- Providers
 - Physicians
 - Hospitals

- Utility
 - Community
 - Health
 - Information Services

- External Organizations
Community Health Information Needs

- Person Identification Server
- Membership Server
- Plan/Eligibility Server
- Health Record Server
- Resource Scheduling Server
- Care Protocol Server
- Commerce Server

Care Maps

- Defined and tested clinical methods
- Specific paths through map individualized
- Multiple opportunities for triage and adaptation
 - by planned choice
 - by risk
 - by availability
 - by length of trajectory
 - by cost
 - by new information

THE EYE OF THE CLINICIAN

"EMERGING FROM THE COMMON PROCESS MODEL"
Summary...

- Diverse organizational models
- Healthcare IT emphasis moving from enterprise to health system focus
- Increased emphasis on patient’s role and MD risk
- An open, net-based commerce model fits in all organizational models

Definition...

- **Definition:**
 - “Net-based clinical commerce” is the ability for patients, physicians, and other buyers of healthcare products and services to arrange, track, and pay for services, purchase healthcare commodity products from an electronic exchange, and manage health records on the Internet.

Context: Evolution of Commerce on the Internet...

- Commerce-enabled Web
 - banking
 - retail
- Extensive use in healthcare
 - research
 - communication
- Toward Clinical Commerce!!

Healthcare Commerce Entry Barriers

- Consumers purchase health *processes*
- Processes are ongoing with multiple points of contact with the provider
- Payment is by assignment of entitlement
- Payer exerts significant control over choice
- Payer exerts significant control over care
- Some goods and services require license
Patient Identification

Example: Partners Health Care EMPI (Enterprise Master Patient Index)
– Lisa Adragna, J AHIMA 1998 Oct;69(9):46-8, 50, 52
– Probabilistic Models for Matching

Partners EMPI Goals

• (Context) Partners Healthcare is affiliation of Brigham and Women’s, Mass. General, North-Shore Medical Center, Dana-Farber Cancer Institute, Spaulding Rehab, McLean, Partners Community Healthcare, …, formed in 1994.
• Eliminate need to renumber existing systems by creating Partners-wide unique ID
• Foundation for Clinical Data Repository
• Minimally invasive to current operations
• Rapid installation

Partners EMPI Scope

• Medical record “crosswalk” across Partners
 – Local medical record numbers linked to Partners-wide ID
• Back-end, real-time, one-way interface
 – No modifications to existing systems
• Automated tools for identifying and resolving duplicates
 – No human intervention at “run time”
Partners EMPI Matching

- Three methods of lookup:
 - Last and First names
 - First name, Date of Birth and Gender
 - Social Security Number
- If no matches, create new EMPI number
- If exact match on all known features (above), then link to existing EMPI entry
- If multiple possible matches, create new entry and flag as potential duplicate; *manual intervention*

Partners EMPI Experience (1997)

- 1M records entered from BWH & MGH
- 170,000 pair of records identified as potential duplicates
- 80% of new registrations match a unique EMPI entry; ~1800/day
- Sites made 3308 “within-entity” merges
- EMPI Admin staff (3 FTE) resolved over 200,000 potential duplicates.

Models of Patient Matching

- *Ad hoc* methods are weak, and difficult to improve
- Motivational observation:
 - Two records that share the last name Kowalczyk are more likely to refer to the same individual than two that share the name Smith.

Computing posterior odds of a match

- \(O(\text{match}|\text{obs}) = O(\text{match})L(\text{obs}|\text{match}) \)
- \(O(\text{match}) = 1/N \)
- \(L(\text{obs}|\text{match}) = P(\text{obs}|\text{match})/P(\text{obs}|\sim \text{match}) \)
- \(P(\text{Smith,Smith}|\text{match}) = P(\text{Smith}) \)
- \(P(\text{Smith,Smith}|\sim \text{match}) = P(\text{Smith})^2 \)
- \(L(\text{Smith,Smith}) = .01006/.01006^2 = 99.4 \)
- \(L(\text{Kowalczyk,K…}) = 1/.00001 = 100,000 \)
Multiple evidence accumulates

- Smith has same Soundex code as Smyth
- L partially matches Liz
- Same street address number, street name
- Ave. vs. Blvd.
- Different phone numbers
- …
- Assume conditional independence

Soundex

- Developed in 1800’s to represent phonetic similarity of names
 - E.g., Smith ➔ S-530; Smyth ➔ S-530
- Rules:
 - 1 B, F, P, V
 - 2 C, G, J, K, Q, S, X, Z
 - 3 D, T
 - 4 L
 - 5 M, N
 - 6 R
 - Disregard the letters A, E, I, O, U, H, W, and Y.
 - Special rules for doubled consonants, prefixes, …

Soundex examples

<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szolovits</td>
<td>S-413</td>
</tr>
<tr>
<td>Beethoven</td>
<td>B-315</td>
</tr>
<tr>
<td>Smyth</td>
<td>S-530</td>
</tr>
<tr>
<td>Kowalczyk</td>
<td>K-422</td>
</tr>
</tbody>
</table>

Typing/Transcription Error Model

- Consider probabilities of
 - Insertion
 - Deletion
 - Transposition
 - (Mutation) – varies with key layout
- Compute “distance” between mismatched features
- Same idea in BLAST
Frequency of U.S. Last Names

--U.S. Census Bureau

Geographical Distribution of “Gonzales” vs. “Lewandowski”
A Theory for Record Linkage

- Estimate \(L(\text{obs}|\text{match}) \) for all possible observations
 - Normally must make independence assumption to factor contributions of different aspects of \(\text{obs} \)
- Define *decision policy*
 - \(P(\text{A+}|\text{obs}), P(\text{A?}|\text{obs}), P(\text{A-}|\text{obs}), \text{sum}=1 \)
 - Based on thresholds on \(L \)'s
- Yields errors
 - \(P(\text{A+}|\~\text{match}) \) or \(P(\text{A-}|\text{match}) \), minimize \(P(\text{A?}) \)

Blocking Sets

- Pair-by-pair comparison is expensive
 - E.g., 1M records at Partners \(\rightarrow 10^{12} \) comparisons
- Therefore, compare only smaller subgroups
 - E.g., assume first letter of name is never misspelled, as Soundex does
 - E.g., assume Soundex pronunciation code is correct, even if spelling is not
- Increased chance of missing matches, much faster