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ABSTRACT
We describe a counter-intuitive performance phenomena relevant to
concurrency research. On a modern multicore system with a shared
last-level cache, a set of concurrently running identical threads that
loop – each accessing the same quantity of distinct thread-private
data – can suffer significant relative progress imbalance. If one
thread, or a small subset of the threads, manages to transiently en-
joy higher cache residency than the other threads, that thread will
tend to iterate faster and keep more of its data resident, thus in-
creasing the odds that it will continue to run faster. This emergent
behavior tends to be stable over surprisingly long periods.

Economic model + some thread(s) randomly become rich + zero-sum game : somebody else become poor + rich stay rich + persistent stratification + Inequality and inequity + http://en.wikipedia.org/wiki/Matthew_effect

Positive feedback loop - self-reinforcing Identify and recognize then respond/address with remedy Possibly use intentional and explicit noise injection to perturb - nudge out of steady-state. This is probabilistic but possibly viable. Detect with via disparity in L2/LLC miss rates over cores Performance isolation
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1. INTRODUCTION
Multiple threads concurrently accessing a shared last-level cache

(LLC) can encounter competition for cache residency and destruc-
tive interference. This behavior is well-known [2]. We observe,
however, that such a group of homogeneous threads accessing pri-
vate data regions can suffer from significant imbalance in their rela-
tive rates of progress. We found this behavior somewhat surprising
and a possible confounding factor for experiments and benchmarks.

After analysis, we determined this unfairness occurs when a small
subset of the threads manage to achieve relatively better LLC res-
idency. Those threads then tend to run faster, which in turn sup-
ports their occupancy. This state can be stable over periods of min-
utes. When this form of residency-based unfairness is present, the
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progress rates of the threads tend to be bimodal : threads are ei-
ther fast or slow. A thread’s LLC miss rate and observed cycles-
per-instruction (CPI) is inversely proportional to – and inversely
correlated with – that thread’s progress rate. The onset of the effect
occurs when the sum of the private working sets of all the threads is
near the capacity of the shared LLC. The stratification effect abates
when the working set grows sufficiently larger than the cache ca-
pacity and most accesses miss in the LLC.

To further establish etiology and causation, we performed an ex-
periment where we intentionally inserted a transient stall, and were
able to transform a fast thread to a slow thread, as the stall caused
the thread to lose LLC residency. Once disadvantaged, the thread
remained slow.

We believe this new phenomena should be noted by designers
and researchers and added to the set of existing concerns – such
as false sharing, for example – taken into account when analyzing
concurrent program behavior.

2. EVALUATION
Figure 1 depicts the magnitude of the phenomena on an Oracle

SPARC T4-1 [6] system running Solaris 11 and an x86 system run-
ning Linux 3.11 on an Intel i7-4770 “haswell” processor. The T4-1
has 8 cores with 8 pipelines per core for a total of 64 logical thread
contexts. The shared L3 LLC is 4MB with a non-most-recently-
used (NMRU) replacement policy and is inclusive of the L1 and L2
caches. The i7-4770 has an 8MB LLC shared over 4 cores with 2
pipelines per core for a total of 8 logical thread contexts. Both sys-
tems are single-socket non-NUMA and have 64-byte LLC cache
lines, and both have core-private L1 and L2 caches.

Each thread allocates a circular ring of intrusively linked nodes
which form the thread-private data. Each node resides on its own
cache line and is 64-bytes in length. The order of the nodes is
randomized in order to reduce the influence of automatic hard-
ware prefetch facilities. To reduce the influence of TLB pressure,
each thread invokes mmap() to allocate a set of contiguous pages
from which its set of nodes is in turn allocated via a simple “bump
pointer”. This gives the system the opportunity to provision the
region underlying the nodes with large pages, and minimizes the
number of pages underlying a given ring. This approach also en-
sures balanced placement of nodes over cache indices [1]. The
number of elements in the ring – the circumference – is config-
urable via command line parameters.

We use a 60-second measurement interval during which each
thread executes a top-level loop that repeatedly traverses its ring.
At the end of the measurement interval the benchmark reports the
number of traversals completed by each of the threads.

In our experiments we ran with 8 threads for all data points.
Both the Linux and Solaris schedulers are work-conserving and all
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8 threads ran for the entirety of the measurement interval. With just
8 ready threads, Solaris will place each thread on its own core in
order to avoid contention for pipeline and L1/L2 resources. That
is, Solaris balances the distribution of threads over core-level re-
sources. On the Linux x86 platform, pairs of threads share a core.

On the X-axis we show the total size of all thread-private data
expressed as a fraction of the LLC size. On the Y-axis we report
the spread – the degree of unfairness as defined by the number of
traversals completed by the fastest thread divided by the number of
traversals completed by the slowest thread. We report the median
spread from 7 runs. For our experiments turbo boost was disabled
on the Intel processor and the clock rate was fixed at 3.4GHz for all
cores.

In other experiments we replaced the per-thread rings with fetches
from randomly selected locations in thread-private arrays. This
variant exhibited similar unfairness.

In supplemental experiments we modified the loops executed by
the threads to first acquire a contended central MCS lock [5], fol-
lowed by by 10000 steps of a register-based random number gener-
ator [4]. No memory is accessed in the critical section. The thread
then releases the lock and traverses its ring. No store instructions
are executed, so there is no induced coherence traffic. We opted for
a top-level loop with an MCS lock and critical section to illustrate
that the problem manifests even under a fair FIFO lock. As con-
figured, the lock is contended and threads typically wait for entry.
Again, we observed similar levels of unfairness. It is commonly
the case that a slow thread S might release the lock, passing owner-
ship to some fast thread F, only to find that F completes the critical
and non-critical sections more quickly than S can complete its non-
critical section, so F races ahead and queues on the lock before S .
F can erode S ’s residency faster than S can erode F’s residency, so
F maintains its relative advantage.

We note that being fast or slow seems to be happenstance from
the perspective of the programmer, and is not to related to thread
placement within the system topology or geography.

As can be seen in the graph, the onset of unfair progress rates
starts near the LLC capacity, and the worst-case magnitude is over
5X for both platforms. Note that the onset occurs before the frac-
tion reaches 1.0 because our caches are not ideal fully-associative.
We believe the slightly different shapes exhibited by the T4-1 and
the i7-4770 are due to differing cache architectures, the ability to
leverage memory-level parallelism, and the depth of the speculation
windows. Finally, notice that the i7-4770 exhibits minor unfairness
when the LLC fraction is very low. We have 2 threads sharing
the per-core L1 and L2 caches, and find the unfairness phenomena
manifests at those levels of the cache hierarchy.

3. CONCLUSION
Cache behavior is taking an increasingly important role in mul-

ticore software design, and properly understanding cache sharing
and eviction policies is often key to delivering good concurrent
performance. We presented an interesting new cache phenomena
whose effects should be noted by designers and researchers when
analyzing concurrent program behavior.

We note that improved hardware cache replacement algorithms
specifically designed for shared caches [3] may provide relief.

In the future we hope to explore techniques to better identify and
respond to the phenomena. Experiments suggest that we may be
able to moderate the behavior in software by periodically suspend-
ing randomly selected threads for a very brief period. This serves
to disrupt and perturb the steady-state and provides statistical per-
formance isolation over the long term by injection of randomized
noise.
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Figure 1: Fairness
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