
Investigation of Hardware Transactional Memory

by

Andrew T. Nguyen

Submitted to the
Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2015

c○ Massachusetts Institute of Technology 2015. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 22, 2015

Certified by. .
Nir Shavit

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by .
Albert R. Meyer

Chairman, Masters of Engineering Thesis Committee

2

Investigation of Hardware Transactional Memory

by

Andrew T. Nguyen

Submitted to the Department of Electrical Engineering and Computer Science
on May 22, 2015, in Partial Fulfillment of the

Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Hardware transactional memory is a new method of optimistic concurrency control
that can be used to solve the synchronization problem in multicore software. It is
a promising solution due to its simple semantics and good performance relative to
traditional approaches. Before we can incorporate this nascent technology into high-
performing concurrent programs, it is necessary to investigate the physical capacity
constraints and performance characteristics of hardware transactions in order to bet-
ter inform programmers of their abilities and limitations.

Our investigation involves the first empirical study of the “capacity envelope” of
HTM in Intel’s Haswell and IBM’s Power8 architectures. We additionally survey how
contention parameters, such as transaction size or write ratio, affect HTM perfor-
mance and we capture these trends in a regression model for predicting the through-
put of HTM-enabled concurrent programs. Through our investigation, we aim to
provide what we believe is a much needed understanding of the extent to which one
can use HTM to replace locks.

Thesis Supervisor: Nir Shavit
Title: Professor of Computer Science and Engineering

3

4

Acknowledgments

Nir Shavit, my advisor, provided invaluable technical insight. His guidance helped

direct my focus toward relevant research problems, which ultimately led to our most

significant findings. I am grateful that he made himself available, even though he was

thousands of miles away on sabbatical!

My assistant advisor, William Hasenplaugh, was my pillar of support. Whenever I

encountered a confounding problem, he both encouraged me to keep pressing forward

and also guided me through solving the problem. Our frequent technical discussions

led to the key revelations in this thesis. I could not have completed this thesis without

his patience and support, and for that I am deeply appreciative.

I thank William Leiserson for facilitating my access to an HTM-enabled Intel

Haswell machine to conduct my experiments, and also for helping me sort out machine

issues that left me perplexed.

I further thank Pascal Felber and Patrick Marlier for allowing me to experiment

on their IBM Power8. Without access to this machine, I would not have been able

to collect the IBM experimental results.

Thanks! It has been a remarkable ride.

5

6

Contents

1 Opening 9

1.1 Introduction . 9

1.2 Related Work . 11

1.3 Background . 11

1.4 Experimental Setup . 12

2 Capacity Constraints 15

2.1 Intel . 15

2.2 IBM . 17

2.3 Implications . 19

3 Performance Characteristics 21

3.1 Multicore Basis Set . 22

3.2 Trends . 23

4 Throughput Prediction 37

4.1 Multivariate Linear Regression Models 37

4.2 Basis Parameters Decomposition . 39

4.3 Empirical Validation . 39

4.4 Use Case . 41

5 Closing 43

5.1 Future Work . 43

5.2 Conclusion . 43

7

8

Chapter 1

Opening

1.1 Introduction

As Moore’s law has plateaued [20] over the last several years, the number of researchers

investigating technologies for fast concurrent programs has doubled approximately

every two years. 1 High performance concurrent programs require the effective uti-

lization of ever-increasing core counts and perhaps no technology has been more antic-

ipated toward this end than Hardware Transactional Memory (HTM). Transactional

memory [9] was originally proposed as a programming abstraction with simple seman-

tics that could also achieve good performance, and Intel [13, 17] and IBM [3, 11, 15]

have both recently introduced mainstream multicore processors supporting restricted

HTM.

Hardware transactions offer a performance advantage over software implementa-

tions [4, 19] by harnessing the power of existing cache coherence mechanisms which are

already fast, automatic, and parallel. HTM has been shown to achieve the high per-

formance of well-engineered software using fine-grained locks and atomic instructions

(e.g. compare-and-swap [8]) [25] while maintaining the simplicity of coarse-grained

locks [25]. The source of their superior performance, however, is also the root of their

weakness: the Intel and IBM systems are both best effort hardware transactional

1This estimation was determined by searching the ACM Digital Library within years to find out
how many unique researchers were publishing papers with ’transactional memory’ in the title.

9

memory implementations [3, 7, 12, 13] because transactions can fail when the work-

ing set exceeds the capacity of the underlying hardware. The capacity constraints

that dictate the conditions under which these failures inevitably occur dramatically

influence whether the complexity of designing a software system using restricted HTM

is justified by the expected performance.

The feasibility tradeoff imposed by the capacity constraints is just one considera-

tion in the design of software systems using restricted HTM. If the ultimate goal is

to build fast concurrent programs, then we must also focus our attention on finding

the optimal use cases for HTM. This motivation leads us to explore the design space

of multicore programs to understand how hardware transactions perform in different

cases of contention.

Our goal in this paper is to characterize the capacity constraints of HTM and to

discover their performance characteristics with respect to contention parameters like

transaction size or write ratio. These are the steps we have taken to move closer to

this end:

∙ Empirically study the capacity constraints of hardware transactions to expose

the hardware implementations that dictate these limits

∙ Articulate a set of contention parameters, like transaction size or write ratio,

that sufficiently span the multicore design space and can be used to synthetically

generate different cases of contention for benchmarking

∙ Discover performance trends of hardware transactions with respect to different

contention parameters

∙ Capture these trends in a multivariate linear regression model that can be used

to predict HTM performance in real multicore programs

We anticipate these contributions will provide a much needed understanding of

hardware transactional memory to better enable its effective utilization in future

multicore programs.

10

1.2 Related Work

Recently, several researchers have considered variations of hybrid transactional mem-

ory (HyTM) systems [5, 6, 14] which exploit the performance potential of recent HTM

implementations, while preserving the semantics and progress guarantees of software

transactional memory (STM) systems [19]. Underlying all of this work is the assump-

tion that hardware constraints on the size of transactions are sufficiently unforgiving

that elaborate workarounds are justified. For instance, Xiang et al. [23, 24] propose

the decomposition of a transaction into a nontransactional read-only planning phase

and a transactional write-mostly completion phase in order to reduce the size of the

actual transaction. Similarly, Wang et al. [22] use a nontransactional execution phase

and a transactional commit phase in the context of an in-memory database in order

to limit the actual transaction to the database meta-data and excluding the pay-

load data. These related works validate the need for an understanding of the HTM

capacity constraints.

Wang et al. [21] studied the performance sensitivity of HTM to a variety of ap-

plication patterns. Our investigation takes this idea further by exploring HTM per-

formance in a broader expanse of the multicore design space. For example, we also

experiment with padding memory locations, varying the level of contention between

threads, and varying the amount of work done between transaction attempts.

1.3 Background

Transactions require the logical maintenance of read sets, the set of memory locations

that are read within a transaction, and write sets, the set of memory locations

that are written within a transaction [9]. Upon completion of a transaction, the

memory state is validated for consistency before the transaction commits, making

modifications to memory visible to other threads. Transactions may conflict abort

when one thread’s write set intersects at least one memory location in the read or

write set of another thread, as illustrated in Table 1.1. In addition to conflict aborts,

11

hardware transactions suffer from capacity aborts when the underlying hardware

lacks sufficient resources to maintain the read or write set of an attempted transaction.

𝑟𝑒𝑎𝑑𝐴(𝑋) 𝑤𝑟𝑖𝑡𝑒𝐴(𝑋)

𝑟𝑒𝑎𝑑𝐵(𝑋) commit abort
𝑤𝑟𝑖𝑡𝑒𝐵(𝑋) abort abort

Table 1.1: Read and Write Conflicts to Memory Location X Between Threads A and B

Read and write sets are often maintained in hardware using an extension to an

existing cache hierarchy. Caches in modern processors are organized in sets and

ways, where a surjection from memory address to set number is used in hardware

to restrict the number of locations that must be checked on a cache access. The

number of ways per set is the associativity of the cache and an address mapping to

a particular set is eligible to be stored in any one of the associated ways. To maintain

the read and write sets of a transaction, one can “lock” each accessed memory address

into the cache until the transaction commits. The logic of the cache coherence protocol

can also be extended to ensure atomicity of transactions by noting whether or not a

cache-to-cache transfer of data involves an element of a transaction’s read or write

set. These extensions to the caches and the cache coherence protocol are very natural

and lead to high performance, however the nature of the design reveals an inherent

weakness: caches are finite in size and associativity, thus such an architecture could

never guarantee forward progress for arbitrarily large transactions.

1.4 Experimental Setup

The performance characteristics of hardware transactions are naturally dependent

on the underlying hardware. The results from our experiments should only be fully

accepted with respect to the microprocessors we specify in this section, although the

conclusions will still generally apply to different generations of the hardware. The

Intel machine we experimented on contains a Haswell i7-4770 processor with

∙ 4 cores running at 3.4GHz

12

∙ 8 hardware threads

∙ 64B cache lines

∙ 8MB 16-way shared L3 cache

∙ 32KB per-core 8-way L1 caches

We also tested an IBM Power8 processor with

∙ 10 cores running at 3.425GHz

∙ 80 hardware threads

∙ 128B cache lines

∙ 80MB 8-way shared L3 cache

∙ 64KB per-core 8-way L1 caches

All experiments are written in C and compiled with GCC, optimization level -O0.2

Our experiments use the GCC hardware transactional memory intrinsics interface.

2We compiled with -O0 because we found that higher optimization levels sometimes caused
spurious transaction aborts, thus confounding our results.

13

14

Chapter 2

Capacity Constraints

Physical limitations to the size of hardware transactions are governed by how they are

implemented in hardware. Such capacity constraints determine when a transaction

will inevitably abort, even in the case of zero contention. We devised a parame-

terizable array access experiment to measure the maximum cache line capacity of

sequential read-only and write-only hardware transactions. We also experimented

with strided memory access patterns to detect whether the read and write sets are

maintained on a per-cache line basis or a per-read / per-write basis. With knowledge

of the maximum sequential access capacity and also the maximum strided access ca-

pacity, we can draw conclusions about where in the caching architecture the read and

write sets are maintained.

2.1 Intel

We experimentally support the hypothesis that the Intel HTM implementation uses

the L3 cache to store read sets and the L1 cache to store write sets.

Figure 2-1 summarizes the result of a sequential read-only access experiment where

data points represent the success probability of the transaction with respect to the

number of cache lines read. We see that a single transaction can reliably read around

75,000 contiguous cache lines. The L3 cache of the Intel machine has a maximum

capacity of 217 (= 131, 072) cache lines and it is unlikely for much more than half

15

Figure 2-1: Lines Read vs Success Rate Figure 2-2: Lines Written vs Success Rate

Figure 2-3: lg2 Stride vs lg2 Lines Readable Figure 2-4: lg2 Stride vs lg2 Lines Writable

of the total capacity to fit perfectly into the L3 due to the hash function mapping

physical address to L3 cache bank.

Figure 2-3 shows the result of a strided read-only access experiment. The stride

amount indicates the number of cache lines per iteration (e.g. reading cache lines 1,

5, 9, 13, 17 etc. indicates a stride of 4) and each data point represents the maximum

number of cache lines that can be reliably read with respect to the stride amount.

For example, the third data point in the graph indicates that when the stride amount

is 22 (= 4) (i.e. accessing every fourth cache line), the transaction can reliably read

214 (= 16, 384) cache lines and commit. We can see that the number of cache lines

that can be read in a single transaction is generally halved as we double the stride

amount, presumably because the access pattern accesses progressively fewer cache

sets while completely skipping over the other sets. It is important to note that the

plot plateaus at 24 (= 16) cache lines. When the stride amounts are large enough to

consecutively hit the same cache set we see support for the hypothesis that the read

set is maintained in the L3 cache because the minimum number of readable values

never drops below 16, the L3 associativity.

16

We also conducted similar experiments for write-only accesses patterns. Figure 2-2

illustrates the result of an identical array access experiment, except that the transac-

tions are write-only instead of read-only. A single write-only transaction can reliably

commit about 400 contiguous cache lines. The size of the L1 cache is 512 cache lines

and a transaction must also have sufficient space to store other program metadata

(e.g. the head of the program stack), thus we would not expect to fill all 512 lines

perfectly.

Figure 2-4 illustrates that the number of cache lines that can be written in a single

transaction is also generally halved as we double the stride amount. However, even

as we increase the stride amount significantly, the number of cache lines that a trans-

action can reliably write to does not fall below 8, corresponding to the associativity

of the L1 cache. This suggests that, at worst, one is limited to storing all writes in a

single, but entire, set of the L1 cache.

2.2 IBM

We experimentally support the hypothesis that the IBM HTM implementation uses

a dedicated structure to maintain read and write sets, choosing not to extend the

functionality of the existing cache structures as with the Intel implementation. In

addition, we observe that the dedicated structures used for read and write set main-

tenance is not shared among the 8 threads per core, but rather each thread is allocated

its own copy.

Figure 2-5: Lines Read / Written vs Success
Rate

Figure 2-6: Stride vs Lines Readable /
Writeable

The results of our sequential and strided access experiments for both read-only

17

and write-only transactions appear to be identical in Figure 2-5 and Figure 2-6, where

the maximum number of reads or writes in a transaction is 64 and that the maximum

transaction size halves as we double the stride amount with a minimum of 16. The

maximum observed hardware transaction size is far too small to be attributable to

even the L1 cache, which holds 512 cache lines. Thus, we conclude that there are

dedicated caches for transactions in the IBM implementation independent of the

standard core caches, and that these caches likely each have 4 sets and an associativity

of 16.

A natural next question is whether this IBM machine has 10 dedicated caches that

are spread across each core, or if there are 80 dedicated caches that are spread across

each hardware thread. To determine the difference, we experimented and measured

the number of successful write-only transactions that concurrently running threads

were able to complete. Each thread makes 10,000 transaction attempts to write 40

thread-local cache lines and then commit. The transaction size of 40 cache lines is

designed to sufficiently fill up the dedicated caches per transaction to induce capacity

aborts in the case of shared caches.

Figure 2-7: Number of Threads vs Committed Transactions (Thousands)

We see in Figure 2-7 evidence that there are dedicated caches for each hardware

thread and that they are not shared among threads within a core. Each spawned

software thread is pinned to a unique hardware thread in round robin fashion such

that the distribution is even across the 10 cores. If all 8 of the hardware threads on a

single core share a single dedicated cache, we would expect to see sublinear (or even

no) speedup as we spawn more running threads and assign them to the same core.

Instead, we observe a linear increase in the aggregate number of successfully com-

18

mitted transactions, while the average per-thread number of successful transactions

is constant. Although the general 45% success rate suggests some level of contention

between the running threads, it is most likely not due to per-core sharing of a ded-

icated cache because the addition of other threads does not decrease the aggregate

throughput.

2.3 Implications

Developers using HTM on Intel’s Haswell microprocessors have a lot of flexibility with

hardware transaction size, but they should be wary of how the behavior of nontransac-

tional code sharing a cache with transactional code might affect HTM performance,

as well as how the access pattern of transactional code can limit transaction size.

IBM’s Power8 developers should be cautious of the tight restriction on transaction

size, but fortunately they only need to reason about HTM performance within the

scope of a single hardware thread.

19

20

Chapter 3

Performance Characteristics

A program can be described by some combination of contention parameters, and it is

distinguishable from another program if even a single parameter setting is different.

For instance, a program with threads that only ever access 10 different memory

locations is inherently different from one with 100 different memory locations, and

that program is even further distinguishable from one with 1000 different memory

locations. These programs illustrate a few of the many different cases of contention

that exist in the multicore programming space.

To explore the behavior of HTM under these different cases of contention, we

model the use of hardware transactions by a parameterizable array access experiment.

A single run of the experiment involves measuring the aggregate throughput, given

a specific setting of the contention parameters, of concurrent threads transactionally

reading and / or incrementing counters of a shared array.

Even for a simple experiment like this, the space of all such multicore programs

is infinite because of the unbounded variability of contention parameters. Thus,

we constrained our parameter set and measured the performance characteristics of

hardware transactions in this controlled space.

21

3.1 Multicore Basis Set

The parameter space of multicore programs consists of many variables such as the

transaction size, the memory access pattern, or the number of concurrent threads.

For both the Intel and IBM machines, we experimented using the following contention

parameter set with corresponding values that sufficiently span the multicore program

space; we term this the multicore basis set :

∙ random ∈ (0 1)

denotes sequential array access or random array access.

∙ padded ∈ (0 1)

denotes accesses to a simple array of 32 bit counters or to one where individual

counters are padded to cache lines.

∙ counters ∈ (1 2 4 8 16 32 64 128 256 512 1024 2048 4096)

is the number of counters in the shared array; this simulates the level of con-

tention in a program–fewer counters result in higher contention for those fewer

memory locations, and vice versa.

∙ workBetween ∈ (0 5 10 15 20)

represents the amount of nontransactional work done between each transaction.

More specifically, threads execute a naive recursive fibonacci, fib(workBetween),

between transactions.

∙ workWithin ∈ (1 5 10 15 20)

is the number of memory locations accessed within each transaction; it is the

size of the critical section in a program.

∙ writeRatio ∈ (0 1 10 25 50 75 100)

is the percentage of write accesses in each transaction. To elaborate, writeRatio

= 25 means that 25% of the array accesses are writes (increments) and 75%

are reads.

22

rand pad counters between within write % threads success throughput
...

...
...

...
...

...
...

...
...

1 0 1024 5 5 25% 3 0.52 12.1M tx/s
1 0 1024 5 5 25% 4 0.36 10.6M tx/s
1 0 1024 5 5 50% 1 0.99 8.8M tx/s
...

...
...

...
...

...
...

...
...

Table 3.1: Intel x86 Example Experimental Results

∙ threads ∈ (1 2 3 4 8 16 32 64)

is the number of threads that are concurrently trying to atomically read and/or

increment the counters in the shared array. Note that our Intel machine ex-

periments omit the (8 16 32 64) values because the machine only has 4 non-

hyperthreaded cores.

For each cross product of our basis set, we run our experiment on that synthetically

generated case of contention and we record throughput and transaction success rate:

∙ throughput := 𝑡𝑥_𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠

𝑟𝑢𝑛𝑡𝑖𝑚𝑒

∙ success rate := 𝑡𝑥_𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠

𝑡𝑥_𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑒𝑠+𝑡𝑥_𝑟𝑒𝑠𝑡𝑎𝑟𝑡𝑠

The result is 36400 performance measurements for the Intel machine, and 63700

measurements for the IBM machine. Table 3.1 illustrates exemplary measurements

from the Intel results; the IBM results are identical in form.

3.2 Trends

With the 36400 Intel measurements and 63700 IBM measurements, we can plot

throughput and success rate while modulating individual contention parameters in

order to observe how those modulated parameters affect HTM performance. In all

subsequent plots, the unmodulated parameters are marginalized by averaging the

performance values.

Figure 3-1 illustrates the HTM performance difference between sequential and

random memory accesses while varying the number of counters on the Intel machine.

23

With fewer than 8 counters, it hardly matters whether the access pattern is sequential

or random because the contention for those few counters is so high that conflict

aborts are rampant. However, as we increase the number of counters in the array and

reduce the contention for those shared counters, we see much higher throughput when

accessing memory sequentially compared to accessing memory randomly. This makes

sense because when there are fewer conflict aborts, as is the case when there are more

counters that the concurrently executing threads can operate on, then optimizations

like data prefetching during sequential access begin to make observable differences

in performance. The results for the IBM machine in Figure 3-2 are very similar

to those of the Intel machine. When the number of counters is small, we see that

there is little difference between random access and sequential access. With more

counters, we again observe that sequential memory access results in higher transaction

throughput than random memory access. The implication of these results is that

when programming with hardware transactions, accessing memory sequentially will

generally result in higher performance than accessing memory randomly.

A common optimization in concurrent programming is to pad memory accesses

to reduce false sharing.1 We now do a comparison between unpadded versus padded

memory accesses that is similar to the previous analysis of sequential versus random

memory accesses. In Figure 3-3 we observe slightly mixed results for the Intel machine,

with some evidence of higher transaction throughput when padding memory accesses.

The reason for the slightly mixed results is because there are two conflicting effects of

padding. First, padding memory accesses reduces false sharing and reduces conflict

aborts, thus improving performance. Second, padding a single 4 byte counter to

the full 64 byte Intel machine cache line results in less batch accessing, which can

actually reduce performance because many more (up to 16x) cache lines may need to

be fetched in the padded case than in the unpadded case when accessing the same

number of counters.

1False sharing occurs when two logically independent memory locations reside on the same cache
line and one or both of those memory locations are accessed by different threads, resulting in an
invalidation of the whole cache line. Padding memory locations to reside entirely on different cache
lines eliminates this false sharing problem.

24

Intel: Num Counters / Random Access vs Avg Throughput

Figure 3-1: Sequential memory access results in higher transaction throughput than random
memory access on the Intel machine

In Figure 3-4 we actually see distinct regions in the IBM results when one phe-

nomenon dominates the other. When the probability of conflicting memory accesses

between threads is sufficiently high due to contention (≤ 1024 counters), padding

memory accesses results in higher throughput because false sharing is reduced and

the rate of conflict aborts is reduced. However, when the probability of conflicting

accesses is lower (≥ 2048 counters), we see the performance penalty of unbatched

memory accesses overcome the performance benefit of reduced false sharing. The

IBM machine cache line is 128 bytes wide, which means that up to 32x more cache

lines may need to be fetched in the padded case than in the unpadded case when ac-

cessing the same number of counters; this makes the unbatched access penalty much

more significant on the IBM machine than the Intel machine.

25

IBM: Num Counters / Random Access vs Avg Throughput

Figure 3-2: Sequential memory access also results in higher transaction throughput than
random memory access on the IBM machine

From these observations, we conclude that padding memory accesses generally

improves transaction performance on the Intel machine, but the effect on the IBM

machine depends on the level of contention.

Next we examine the effect of modulating the write ratio while also varying the

number of threads. Each individual block in Figure 3-5 is labeled with the specified

number of threads and write ratio, along with the measured throughput and success

rate on the Intel machine. Throughput is visually depicted by the size of the block–the

larger the block, the higher the throughput. We see that as we increase the number

of threads, which is visualized by the color of the blocks, throughput increases and

success rate decreases. The increased performance makes sense because more work

can be done with more concurrent threads; this increase is sublinear, however, as

26

Intel: Num Counters / Padded vs Avg Throughput

Figure 3-3: Padding memory accesses on the Intel machine generally improves transaction
performance

27

IBM: Num Counters / Padded vs Avg Throughput

Figure 3-4: Padding memory accesses on the IBM machine improves transaction perfor-
mance when contention is high, but it reduces performance when contention is low

28

increasing the contention by adding more threads also has the effect of increasing

conflict aborts which lowers throughput.

We can further break down Figure 3-5 by examining the effect that the write ratio,

which is visually represented by the color gradient of the blocks, has on transaction

performance across different numbers of threads. For a single thread, the percentage

of writes to reads generally has no effect on the throughput or success rate. For any

number of threads greater than 1, however, we see that the higher the write ratio

is and the darker the block is, the lower the throughput and success rate is and the

smaller the block is. There is a clear trend indicating that transaction performance

of a concurrent program is negatively correlated with the write ratio, and the mag-

nitude of this negative relationship increases as the number of threads increases: the

performance for 0% writes is 2.27x the performance for 100% writes in the case of 2

threads, 2.84x in the case of 3 threads, and 3.43x in the case of 4 threads.

In Figure 3-6 we have an analagous picture for the IBM machine. Each block is

again labeled with thread count / write ratio / throughput (M tx/s) / sucess rate.

We omit the data corresponding to the cases of fewer than 4 running threads for

lack of space in the figure. We similarly observe that as we increase the number of

threads, throughput increases and success rate decreases, and the negative correlation

between performance and write ratio increases in magnitude as the number of threads

increases. The IBM results contain data for very large thread counts, and the effects

of modulating write ratio is much more evident than when analyzing results on the

Intel machine. On the IBM machine, the marginal difference between 0% writes and

1% writes results in a huge performance difference, 1.39x throughput, for the case of

32 threads, and the difference is even more significant, 1.9x, for the case of 64 threads.

With so many concurrently running threads, even the slightest increase in contention

causes conflict aborts to surge, thus reducing performance greatly. For multicore

programs with sufficiently high write ratios, the throughput gain from increasing the

number of threads might hardly be worth the cost. For instance, the performance for

64 threads is 2.2x the performance for 4 threads in the case of 25% writes, despite

the 16x increase in resources used.

29

Intel:
N

u
m

T
h
read

s
/

W
rite

R
atio

vs
A
vg

T
h
rou

gh
p
u
t

F
igure

3-5:
P
erform

ance
is

negatively
correlated

w
ith

w
rite

ratio,
and

the
m

agnitude
of

this
relationship

increases
w
ith

thread
count

30

IB
M

:
N

u
m

T
h
re

ad
s

/
W

ri
te

R
at

io
vs

A
vg

T
h
ro

u
gh

p
u
t

F
ig

ur
e

3-
6:

P
er

fo
rm

an
ce

is
ne

ga
ti
ve

ly
co

rr
el

at
ed

w
it
h

w
ri

te
ra

ti
o,

an
d

th
e

m
ag

ni
tu

de
of

th
is

re
la

ti
on

sh
ip

in
cr

ea
se

s
w
it
h

th
re

ad
co

un
t

31

A peculiar observation about the IBM results is that performance is slightly better

in the case of 100% writes than 50% writes or 75% writes. It could be that the

mechanisms in place for implementing transactions in the IBM Power8 hardware favor

homogenous (i.e. read-only or write-only) transactions, but this is pure speculation.

Note that even when there are no writes and no conflict aborts, the success rate

is not 1.00 because the IBM machine is sensitive to capacity aborts, as we previously

discovered. Even for fairly small transaction sizes of 20 counters, it is possible for

these 20 counters to reside on at least 16 different cache lines that map to the same

cache set, which will cause a capacity abort because the dedicated 4-set, 16-way cache

will not be able to fit that transaction. This point serves to illustrate the significance

of understanding the capacity constraints of hardware transactions.

When we increase transaction sizes, we naturally expect lower throughput, which

is measured as transactions completed per second, because there is simply more work

being done within each transaction. The top two plots in Figure 3-7 exactly illus-

trate this intuition for both the Intel and IBM machines. However, when analyzing

weighted throughput–which is calculated as 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡*𝑤𝑜𝑟𝑘𝑊𝑖𝑡ℎ𝑖𝑛–we actually see

an increase in the number of operations completed per second in the middle two plots.

There is inherent overhead to implementing a hardware transaction, regardless of the

amount of work done within it, so when we increase the transaction size, the fixed

cost is amortized. The large jump in weighted throughput from 𝑤𝑜𝑟𝑘𝑊𝑖𝑡ℎ𝑖𝑛 = 1

to 𝑤𝑜𝑟𝑘𝑊𝑖𝑡ℎ𝑖𝑛 = 5 suggests that there is increased efficiency in batching opera-

tions within a transaction. Beyond 𝑤𝑜𝑟𝑘𝑊𝑖𝑡ℎ𝑖𝑛 = 5, however, there are diminishing

gains to weighted throughput because larger transactions also raise the probability

of conflict aborts, thus lowering transaction success rate, as depicted in the lower

plots of Figure 3-7. From these observations we anticipate that an optimal value for

hardware transaction size is around 5, because this value seems to balance the per-

formance benefit of batching operations with the performance penalty of increased

conflict aborts.

The work a program does between critical sections is inherent to the program

and significantly affects the transaction throughput of that program. We can draw

32

Work Within vs Throughput, Weighted Throughput, Success Rate

(a) Intel (b) IBM

Figure 3-7: Increasing the work within transactions decreases throughput, measured as trans-
actions completed per second, but increases weighted throughput, measured as operations
completed per second

33

meaningful insights by viewing how workWithin interacts with workBetween to affect

performance because these two parameters together determine the ratio of critical

to noncritical sections in a program. We plot, for different values of workBetween,

the effect of modulating transaction size on the Intel machine in Figure 3-8. When

the amount of work that threads do between transactions is minimal and the pro-

gram is frequently in the critical section, as is the case when 𝑤𝑜𝑟𝑘𝐵𝑒𝑡𝑤𝑒𝑒𝑛 ≤ 5,

increasing transaction size significantly decreases throughput as we observed before.

On the other hand when there is more time between critical sections, such as when

𝑤𝑜𝑟𝑘𝐵𝑒𝑡𝑤𝑒𝑒𝑛 ≥ 10, we see that the amount of work done within each transaction has

less of an influence on performance because less of the program runtime is spent exe-

cuting transactional code. The results on the IBM machine are very similar and have

thus been omitted. While these observations fall in line with our expectations and

may not appear novel, it is still meaningful to empirically validate our intuitions in

this effort to fully understand the performance characteristics of HTM under different

cases of contention.

34

Intel: Work Between / Work Within vs Avg Throughput, Success Rate

Figure 3-8: The amount of work done within a transaction significantly affects performance
when concurrent threads do little work between transactions and are frequently in the crit-
ical section. The work within does not matter as much when the amount of work between
transactions is large and relatively little time is spent in the critical section

35

36

Chapter 4

Throughput Prediction

In analyzing the experimental results from our synthetically generated contention

experiments, we found many compelling performance trends that suggest the potential

for predicting HTM performance in programs that are not precisely defined in our

multicore basis set. We wanted to leverage the large amount of performance data we

collected to somehow enable a prediction about other points in the infinite multicore

programming space; Figure 4-1 illustrates our goal to predict the throughput of any

arbitrary, real program.

To this end, we trained1 a multivariate linear regression model on each of our

Intel and IBM experimental result sets. The goal of these two models is to be able to

predict the throughput of any multicore program that synchronizes using HTM.

4.1 Multivariate Linear Regression Models

To train the multivariate linear regression models, we first transformed the Intel

and IBM result sets using a radial basis function [16] with 𝛾 = 0.0001 in order to

improve the fit, because some of the first degree relations were found to be nonlinear.

These transformed results were then used as input training data for the models.2 To

mitigate the problem of overfitting to the training data, we methodically generalized

1We used a supervised learning algorithm.
2We used the python scikit-learn module.

37

3D Basis Subspace

Figure 4-1: Projection of a linear probing hash table into a 3D subspace of our parameter
set. Knowing the throughput of adjacent points in our multicore basis set should somehow
inform us of the throughput of the unknown point

38

the models with 5-folds cross validation [18]. The resulting goodness-of-fit [1] values,

𝑅2
𝑖𝑛𝑡𝑒𝑙 = 0.96 and 𝑅2

𝑖𝑏𝑚 = 0.90, for both models were quite high, and this reinforces our

intuition about the potential for predicting the throughput of programs that utilize

hardware transactions.

4.2 Basis Parameters Decomposition

In order to use the multivariate linear regression models to predict the throughput of

an arbitrary multicore program, one must first decompose the program into a vector

of parameters that matches the dimensionality of our basis set:

<random, padded, counters, workBetween, workWithin, writeRatio, threads>

Most parameters are either binary (random, padded), or they are straightforward

approximations (counters, workWithin, writeRatio, threads); the one confounding

parameter is workBetween. To measure the work done between critical sections of

a program, a simple Intel pintool [2] can be used to instrument the program to

count the number of CPU instructions both inside and outside of a program critical

section. Recall that we modeled this parameter in our experiment as the execution

of a naive recursive fibonacci, fib(workBetween), between transactions. Considering

the algorithmic complexity of naive fibonacci is 𝑂(2𝑁), the parameter workBetween

can thus be calculated by the formula:

𝑤𝑜𝑟𝑘𝐵𝑒𝑡𝑤𝑒𝑒𝑛 = 𝑙𝑜𝑔2(
#𝑜𝑢𝑡𝑠𝑖𝑑𝑒
#𝑖𝑛𝑠𝑖𝑑𝑒

· 𝑤𝑜𝑟𝑘𝑊𝑖𝑡ℎ𝑖𝑛)

Figure 4-2 captures the process of decomposing an actual program and using the

resulting vector of parameters to produce a throughput prediction from the multi-

variate linear regression.

4.3 Empirical Validation

To empirically validate the regression models, we compared the predicted throughput

values to actual measured values for three concurrent data structures: a stack, a

39

Throughput Prediction Flow

Figure 4-2: Decomposing a hash table implementation into a vector of parameters to pass
into the multivariate linear regression model for throughput prediction. The parameter trans-
formation step is an artifact of our model training process when we further transformed the
input data to maximize regression fit

linear probing hash table, and a skiplist. Table 4.1 shows the results comparing the

predicted and measured values for the Intel machine, and Table 4.2 shows the results

for the IBM machine. In each case, we decomposed the concurrent data structure into

a vector of parameters using the described method before applying the multivariate

linear regression models to predict throughput.

While the predictions on the Intel machine are not 100% accurate, they are at

least a reasonable approximation from the actual stack, linear probing hash table, and

skiplist measurements. The same is true of the stack and hash table measurements

on the IBM machine. These measurements empirically validate the accuracy of our

regression models.

We were unable to record an actual measurement for the concurrent skiplist im-

plementation on the IBM machine. When the skiplist became sufficiently large, the

critical section accessed too many different memory locations, thus exceeding the max-

imum HTM capacity. Infinitely repeating capacity aborts left the program in a state

of livelock [10] and the execution never finished. While failure to predict this livelock

scenario is a failure of the IBM regression model, we still consider this example to be

constructive because it validates the need for an understanding of the limitations of

hardware transactions–without the knowledge we found from our capacity constraint

experiments, we may have never realized the problem in this execution.

40

stack hash skiplist
random 0 1 1
padded 1 0 0

𝑙𝑜𝑔2(𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠) 0 9 12
workBetween 5.19 2.33 2.15
workWithin 2 10 18
writeRatio 50% 10% 20%

𝑙𝑜𝑔2(𝑡ℎ𝑟𝑒𝑎𝑑𝑠) 0 0 0
predicted 15.2M ops/sec 5.0M ops/sec 3.3M ops/sec

actual 17.2M ops/sec 4.1M ops/sec 2.6M ops/sec
error 13.2% 22.0% 26.9%

Table 4.1: Intel: Comparing Predicted and Measured Throughput of Concurrent Data Struc-
tures

stack hash skiplist
random 0 1 1
padded 1 0 0

𝑙𝑜𝑔2(𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠) 0 9 12
workBetween 5.19 2.33 2.15
workWithin 2 10 18
writeRatio 50% 10% 20%

𝑙𝑜𝑔2(𝑡ℎ𝑟𝑒𝑎𝑑𝑠) 0 0 0
predicted 4.7M ops/sec 1.5M ops/sec 1.7M ops/sec

actual 5.3M ops/sec 1.9M ops/sec N/A
error 12.8% 26.7% N/A

Table 4.2: IBM: Comparing Predicted and Measured Throughput of Concurrent Data Struc-
tures

4.4 Use Case

With these models, a programmer can now simplify the design of a multicore program

that synchronizes with hardware transactions. An illustrative use case is to leverage a

model to predict the throughput of different design iterations of a program (each with

different respective parameter decompositions), compare the predicted throughputs,

and select the design iteration that yields the best predicted performance. While

the regression models may not predict absolute performance metrics well, they will

be able to sufficiently capture the relative performance difference between iterations.

41

This distinction is enough to inform a decision about the most high-performing design,

even before any programming investment is made.

42

Chapter 5

Closing

5.1 Future Work

Due to limitations of the existing Intel hardware, the Intel machine experiments did

not involve more than 4 non-hyperthreaded hardware threads. It will be meaningful

to further explore the Intel performance characteristics with more hardware threads

once larger chips with HTM support are developed.

GCC optimization level -O0 was used in our experiments because we were inter-

ested in investigating the pure performance characteristics of hardware transactional

memory without the confounding effects that would come with different compiler

optimization levels. That said, compiler optimizations are necessary to build the

fastest programs. A future study of high-performing multicore C programs using

HTM should include different optimization levels.

5.2 Conclusion

With the advent of hardware transactional memory in new Intel and IBM micro-

processors, a new solution to the synchronization problem in multicore programs

is available. We ran capacity constraint benchmarks to expose the hardware im-

plementations that dictate the limits of HTM. We gathered synthetically generated

performance data that informed us about how different cases of contention correlate

43

with hardware transaction performance. We captured these performance trends in

multivariate linear regression models that we have shown to be useful in predicting

the throughput of arbitrary concurrent programs and facilitating their design. We an-

ticipate that the contributions from this investigation will provide a much needed un-

derstanding of HTM, ultimately enabling its proliferation into future high-performing

multicore programs.

44

References

[1] P. Bentler and D. Bonett. Significance tests and goodness of fit in the analysis

of covariance structures. Psychological Bulletin, 88(3):588–606, November 1980.

[2] S. Berkowits. Pin - a dynamic binary instrumentation tool. Intel Developer Zone,

June 2012.

[3] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and H. Le. Robust

architectural support for transactional memory in the power architecture. In Pro-

ceedings of the 40th Annual International Symposium on Computer Architecture,

ISCA ’13, pages 225–236, New York, NY, USA, 2013. ACM.

[4] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras, and S. Chat-

terjee. Software transactional memory: Why is it only a research toy? Queue,

6(5):40:46–40:58, Sept. 2008.

[5] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: Streamlining STM by

abolishing ownership records. In Proceedings of the 15th ACM SIGPLAN Sym-

posium on Principles and Practice of Parallel Programming, PPoPP ’10, pages

67–78, New York, NY, USA, 2010. ACM.

[6] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum. Hy-

brid transactional memory. In Proceedings of the 12th International Conference

on Architectural Support for Programming Languages and Operating Systems,

ASPLOS ’06, pages 336–346, New York, NY, USA, 2006. ACM.

45

[7] R. Dementiev. Exploring intel transactional synchronization extensions with

intel software development emulator. Intel Developer Zone, November 2012.

[8] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming

Languages and Systems, 13(1):124–149, Jan. 1991.

[9] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support

for lock-free data structures. In Proceedings of the 20th Annual International

Symposium on Computer Architecture, ISCA ’93, pages 289–300, New York, NY,

USA, 1993. ACM.

[10] A. Ho, S. Smith, and S. Hand. On deadlock, livelock, and forward progress. Tech-

nical Report UCAM-CL-TR-633, Cambridge University Computer Laboratory,

May 2005.

[11] IBM. IBM power systems S814 and S824 technical overview and introduction.

Redpaper REDP-5097-00, IBM Corporation, Aug. 2014.

[12] IBM. Performance optimization and tuning techniques for IBM processors, in-

cluding IBM POWER8. Redbooks SG24-8171-00, IBM Corporation, July 2014.

[13] Intel. Intel architecture instruction set extensions programming reference. De-

veloper Manual 319433-012A, Intel Corporation, Feb. 2012.

[14] A. Matveev and N. Shavit. Reduced hardware NOrec: A safe and scalable hybrid

transactional memory. In Proceedings of the Twentieth International Conference

on Architectural Support for Programming Languages and Operating Systems,

ASPLOS ’15, pages 59–71, New York, NY, USA, 2015. ACM.

[15] R. Merritt. IBM plants transactional memory in cpu, August 2011.

[16] M. J. L. Orr. Introduction to radial basis function networks, April 1996.

[17] J. Reinders. Transactional synchronization in haswell. Intel Developer Zone,

February 2012.

46

[18] J. D. Rodríguez, A. P. Martínez, and J. A. Lozano. Sensitivity analysis of k-fold

cross validation in prediction error estimation. IEEE Transactions on Pattern

Analysis and Machine Intelligence, pages 569–575, January 2010.

[19] N. Shavit and D. Touitou. Software transactional memory. In Proceedings of the

Fourteenth Annual ACM Symposium on Principles of Distributed Computing,

PODC ’95, pages 204–213, New York, NY, USA, 1995. ACM.

[20] M. Y. Vardi. Moore’s law and the sand-heap paradox. Communications of the

ACM, 57(5):5–5, May 2014.

[21] M. D. Wang, M. Burcea, L. Li, S. Sharifymoghaddam, G. Steffan, and C. Amza.

Exploring the performance and programmability design space of hardware trans-

actional memory. In TRANSACT ’14, 2014.

[22] Z. Wang, H. Qian, J. Li, and H. Chen. Using restricted transactional memory

to build a scalable in-memory database. In Proceedings of the Ninth European

Conference on Computer Systems, EuroSys ’14, pages 26:1–26:15, New York,

NY, USA, 2014. ACM.

[23] L. Xiang and M. L. Scott. Composable partitioned transactions. In Workshop

on the Theory of Transactional Memory, 2013.

[24] L. Xiang and M. L. Scott. Software partitioning of hardware transactions. In

Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, PPoPP ’15, pages 76–86, New York, NY, USA, 2015.

ACM.

[25] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance evaluation of

intel; transactional synchronization extensions for high-performance computing.

In Proceedings of the International Conference on High Performance Computing,

Networking, Storage and Analysis, SC ’13, pages 19:1–19:11, New York, NY,

USA, 2013. ACM.

47

