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Abstract

The tidal evolution through several resonances involving Mimas, Enceladus, and/or Dione is studied numerically with an averaged resonance
model. We find that, in the Enceladus–Dione 2:1 e-Enceladus type resonance, Enceladus evolves chaotically in the future for some values of
k2/Q. Past evolution of the system is marked by temporary capture into the Enceladus–Dione 4:2 ee′-mixed resonance. We find that the free
libration of the Enceladus–Dione 2:1 e-Enceladus resonance angle of 1.5◦ can be explained by a recent passage of the system through a secondary
resonance. In simulations with passage through the secondary resonance, the system enters the current Enceladus–Dione resonance close to tidal
equilibrium and thus the equilibrium value of tidal heating of 1.1(18,000/QS) GW applies. We find that the current anomalously large eccentricity
of Mimas can be explained by passage through several past resonances. In all cases, escape from the resonance occurs by unstable growth of the
libration angle, sometimes with the help of a secondary resonance. Explanation of the current eccentricity of Mimas by evolution through these
resonances implies that the Q of Saturn is below 100,000. Though the eccentricity of Enceladus can be excited to moderate values by capture
in the Mimas–Enceladus 3:2 e-Enceladus resonance, the libration amplitude damps and the system does not escape. Thus past occupancy of this
resonance and consequent tidal heating of Enceladus is excluded. The construction of a coherent history places constraints on the allowed values
of k2/Q for the satellites.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Enceladus poses a problem. Cassini observed active plumes
emanating from Enceladus (Porco et al., 2006). The heat em-
anating from the south polar terrain is estimated to be 5.8 ±
1.9 GW (Spencer et al., 2006). Radiogenic heating is estimated
to account for only 0.32 GW (Porco et al., 2006). The sec-
ondary spin–orbit model (Wisdom, 2004) could account for the
heating, but the system was not found to be librating (Porco et
al., 2006). The only remaining source of heating is tidal heat-
ing. Tidal heating in an equilibrium configuration, one in which
the eccentricities no longer change as the semimajor axes con-
tinue to tidally evolve, can be estimated independent of satellite
physical properties using conservation of angular momentum
and energy. Equilibrium tidal heating can account for at most
1.1 GW of heating in Enceladus (Meyer and Wisdom, 2007a).
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One possibility is that Enceladus is oscillating about the tidal
equilibrium (Ojakangas and Stevenson, 1986). However, Meyer
and Wisdom (2007b) have shown that for the physical parame-
ters of Enceladus, the Ojakangas and Stevenson model does not
oscillate. Another possibility is that the resonance is dynam-
ically unstable. If the system exhibited a, perhaps temporary,
episode of chaotic variations in the eccentricity then the heating
rate could exceed the equilibrium heating rate. We have there-
fore undertaken a systematic exploration of the dynamics of the
saturnian satellite system, focusing on the evolution of Ence-
ladus. In particular, we study the evolution of Enceladus and
Dione in the current 2:1 e-Enceladus type mean motion reso-
nance. We also study the evolution of Mimas and Enceladus
through the several 3:2 mean motion resonances.

Though our study was primarily motivated by Enceladus, the
free eccentricity of 0.02 of Mimas also poses a problem. If pri-
mordial, it should have damped in the age of the Solar System.
What excited it? To address this problem we have extended our
study to include the Mimas–Dione 3:1 multiplet of resonances.
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2. Model

Our model is an averaged resonance model for a mean-
motion commensurability between two coplanar satellites. We
include all terms, both resonant and secular, in the disturbing
function up to third order in the eccentricities of both satellites.
We also model the oblateness of the planet, including J2, J4
and J 2

2 contributions. We include tidal evolution of the orbits
and tidal damping of the eccentricities. The physical parame-
ters, such as the QS of Saturn and the satellites, are all assumed
to be constant in time. Details of the model are presented in Ap-
pendix A. We use the Bulirsch–Stoer algorithm to integrate the
differential equations (Bulirsch and Stoer, 1966).

3. Equilibrium eccentricity

As a satellite system tidally evolves regularly into resonance,
the eccentricity of one (or both) of the satellites grows be-
cause of the resonance interaction. As the eccentricity grows
the dissipation grows with the square of the orbital eccentricity.
Dissipation within a satellite tends to damp the orbital eccen-
tricity. An equilibrium is possible: the satellites evolve deeper
into the resonance, until the increase of eccentricity due to the
evolution deeper into the resonance is balanced by the decrease
of eccentricity due to internal dissipation.

When only the eccentricity of the interior satellite is excited
the equilibrium eccentricity can be calculated (Meyer and Wis-
dom, 2007a):
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where ai , mi , and ni are the semimajor axes, the masses, and
the mean motions of the satellites (0 for interior, 1 for exterior),
and where D0 is a measure of the relative strength of tides in
the interior satellite versus tides in Saturn:
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Here k2,0 and k2S are the Love numbers, Q0 and QS are the
tidal dissipation factors, m0 and MS are the masses, and R0 and
RS are the radii, of the interior satellite and Saturn, respectively.
When only the eccentricity of the exterior satellite is excited
then the equilibrium eccentricity is given by the same formula
with the 0s and 1s interchanged.

As the equilibrium eccentricity is approached, the amplitude
of libration in the resonance can either decrease or increase.
It is either stable or unstable. In the case of Io in the Io–
Europa 2:1 e-Io resonance, the libration amplitude damps and
the equilibrium resonance configuration is stable. In the case
of the evection resonance in the evolution of the Earth–Moon
system, the libration amplitude grows as the equilibrium eccen-
tricity is approached (Touma and Wisdom, 1998). This allows
a natural escape from the resonance with an eccentricity near
the equilibrium eccentricity. In our studies of the evolution of
Mimas, Enceladus, and Dione, we found that sometimes the
amplitude of libration damped and sometimes it grew, depend-
ing on the resonance and the physical parameters. Sometimes,
as mentioned below, the escape from resonance is assisted by
temporary capture into a secondary resonance, as occurred for
Miranda (Tittemore and Wisdom, 1990).

After escape from resonance, the eccentricity decays with
the timescale (Squyres et al., 1983)
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where m is the satellite mass, a is the semimajor axis, n the
mean motion, M the planet mass, R the satellite radius, Q the
dissipation factor, and k2 the satellite potential Love number.
Note that the k2/Q for the satellite affects both the equilibrium
eccentricity (through the factor D0) and the timescale for ec-
centricity damping.

4. Enceladus–Dione 2:1 e-Enceladus resonance—Future

Enceladus and Dione are currently in the Enceladus–Dione
2:1 e-Enceladus resonance.1 Enceladus has a forced eccentric-
ity of about 0.0047. The system has a free libration of about 1.5◦
(Sinclair, 1972). We decided to explore the future evolution of
the system, with the primary goal of verifying the analytic pre-
dictions of the equilibrium eccentricity for various parameters.
To our surprise, we found that the system exhibits complicated,
sometimes (apparently) chaotic behavior.

The behavior we found depends on the assumed k2/Q of
Enceladus, which is unknown. So we made a systematic survey
varying this parameter. We explored the range of k2/Q between
1.8 × 10−5 to 9.4 × 10−4. The lower bound corresponds to a
Kelvin2 k2 = 0.0018 with a Q of 100. The upper bound corre-
sponds roughly to a k2 that is 10 times the Kelvin value with a
Q of 20.

For 1.8 × 10−5 < k2/Q < 7.8 × 10−5 the system tends
toward the expected equilibrium, but as the eccentricity ap-
proaches the equilibrium eccentricity the libration amplitude
increases. Eventually, the system escapes the resonance where-
upon the eccentricity decays.

For 7.8×10−5 < k2/Q < 9.4×10−5, the system exhibits an
unexpected and interesting behavior. As in the previous case,
the system tends toward equilibrium while the libration am-
plitude increases. Then the system enters a phase with large
chaotic variations in the eccentricity while the resonance an-
gle alternates between circulation and libration. Eventually the
system escapes resonance and the eccentricity decays. After

1 The resonant argument of the Enceladus–Dione 2:1 e-Enceladus resonance
is λE −2λD +�E , where λE and λD are the mean longitudes of Enceladus and
Dione, and �E is the longitude of pericenter of Enceladus. For this resonance
the eccentricity of Enceladus is excited.

2 That is, using Kelvin’s formula (Love, 1944)

k2 = 3/2

1 + 19μ/(2ρgR)

for the Love number of a homogeneous satellite of density ρ, radius R, surface
gravity g, and rigidity μ. We chose μ = 4 × 109 N m−2.
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Fig. 1. The future evolution of Enceladus’s eccentricity as it evolves deeper
into the Enceladus–Dione 2:1 e-Enceladus resonance. The system approaches
equilibrium, but the libration amplitude is unstable and the eccentricity enters
a chaotic phase with large variations in amplitude. Eventually the system falls
out of resonance. Here k2/Q of Enceladus is 8.6 × 10−5.

Fig. 2. The future evolution of Enceladus’s eccentricity in the Enceladus–Dione
2:1 e-Enceladus type resonance for k2/Q = 1.0×10−4. After the chaotic phase
the system enters a limit cycle in which the eccentricity oscillates.

the system leaves the resonance the libration angle decays to-
ward π . An example of this behavior is shown in Fig. 1.

For 9.4 × 10−5 < k2/Q < 1.76 × 10−4, the system exhibits
similar chaotic behavior to systems in the previous range of
k2/Q values, but the system ultimately does not escape the res-
onance. It settles into a finite amplitude librational equilibrium
about the equilibrium eccentricity, as shown in Figs. 2–4. For
Fig. 3. The initial evolution, spanning 1.3 Gyr, for k2/Q = 1.0 × 10−4 of
that shown in Fig. 2 is shown in the phase plane h0 = e0 sinσ0 versus k0 =
e0 cosσ0. The evolution begins with a libration near σ0 = 0, the amplitude in-
creases as the eccentricity increases. There is a chaotic transient which makes
a splatter of points on the phase plane. The system eventually settles down on a
limit cycle (see Fig. 5).

Fig. 4. The evolution of Enceladus in the Enceladus–Dione 2:1 e-Enceladus
type resonance for k2/Q = 1.0 × 10−4, eventually settles on a limit cycle,
shown here in the phase plane h0 = e0 sinσ0 versus k0 = e0 cosσ0. The plotted
segment of the orbit spans 3 Gyr.

larger values of k2/Q, the chaotic phase is more brief. The fact
that the evolution of the system settles on a limit cycle is inter-
esting. We are unaware of other examples in which the endpoint
of tidal evolution is a limit cycle.
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Fig. 5. The eccentricity of Enceladus in the Enceladus–Dione 2:1 e-Enceladus
type resonance for k2/Q = 3.3 × 10−4 reaches a stable equilibrium. The libra-
tion amplitude damps to zero.

For 1.76 × 10−4 < k2/Q < 2.80 × 10−4, the chaotic phase
disappears, leaving a system that grows into stable finite ampli-
tude libration about the equilibrium eccentricity.

For k2/Q > 2.80 × 10−4, the eccentricity reaches a sta-
ble equilibrium and the libration amplitude damps to zero, as
shown in Fig. 5. This behavior was observed up to k2/Q =
9.4 × 10−4, but presumably extends beyond the studied range.

We have seen that a diverse range of behavior is possible for
the future of the Enceladus–Dione resonance, depending on the
unknown k2/Q. In some of these scenarios, Enceladus has an
exciting future.

5. Mimas–Enceladus 3:2 e-Enceladus resonance

One possible mechanism for heating Enceladus beyond the
equilibrium limit is for Enceladus to evolve chaotically. The
Enceladus–Dione 2:1 resonance exhibited such behavior in the
future. The most recent first-order resonance that the system has
passed through is the Mimas–Enceladus 3:2 e-Enceladus reso-
nance, which was exited 1.16 Gyr ago (for a minimum QS of
18,000).3 So we explored this resonance for similar chaotic be-
havior. However, we found regular evolution into equilibrium,
with no excursions above equilibrium, chaotic or otherwise.

We examined the system for a range of k2/Q of Enceladus
of 6.0 × 10−6 to 9.4 × 10−4. In order to assure capture into
the e-Enceladus resonance,4 we chose semimajor axes corre-
sponding to a location just before the resonance and set the

3 Using a constant QS model, Mimas would be at the synchronous radius at
the beginning of the Solar System for approximately QS = 18,000 (Meyer and
Wisdom, 2007a).

4 The resonant argument of the Mimas–Enceladus 3:2 e-Enceladus resonance
is 2λM −3λE +�E . For this resonance the eccentricity of Enceladus is excited.
Fig. 6. The upper trace shows the evolution of the eccentricity of Mimas in the
Mimas–Enceladus 6:4 mixed ee′ resonance. The lower trace shows the evolu-
tion of the eccentricity of Enceladus. After leaving the resonance at −1.15 Gyr
(for QS = 18,000), the eccentricity of Mimas decays to the current free ec-
centricity. Here k2/Q for Mimas is 1.3 × 10−6, and k2/Q for Enceladus is
4.1 × 10−5.

eccentricity of Enceladus to be 0.0011 so the capture proba-
bility was high. In every case, the system was captured into
the e-Enceladus resonance and reached equilibrium. The li-
bration amplitude damped. No escape or chaotic behavior was
observed. We conclude that Enceladus was not captured into
this resonance because we found no natural mechanism for es-
cape.

6. Mimas–Enceladus 6:4 ee′ resonance

The eccentricity of Mimas is relatively high (0.020) and
has a short timescale for tidal decay. For a Q of 100 and a
Kelvin k2 of 0.00058, the timescale for decay of eccentric-
ity is about 325 Myr. Thus, either the eccentricity of Mimas
started at a much higher value, perhaps with a larger Q, or the
eccentricity has been recently excited. The most recent first-
order commensurability involving Mimas’s eccentricity is the
Mimas–Enceladus 3:2 mean-motion commensurability.

One of the resonances at the 3:2 mean-motion commensura-
bility is the Mimas–Enceladus 6:4 ee′-mixed resonance, which
was exited 1.15 Gyr ago (for QS of 18,000).5 We examined
evolution through this resonance as a possible explanation for
Mimas’s free eccentricity. We succeeded in explaining the cur-
rent free eccentricity if Mimas’s k2/Q is 1.3 × 10−6. The evo-
lution of the eccentricities of Mimas and Enceladus is shown in
Fig. 6.

5 The resonant argument of the Mimas–Enceladus 6:4 ee′-mixed resonance is
4λM − 6λE + �M + �E . For this resonance the eccentricities of both Mimas
and Enceladus are excited.



Tidal evolution of Mimas, Enceladus, and Dione 217
Fig. 7. The evolution of the eccentricity of Mimas as it encounters the Mi-
mas–Enceladus 3:2 e-Mimas resonance. The eccentricity approaches an equi-
librium value of 0.052, but as it reaches equilibrium, the libration amplitude
grows. Eventually the system escapes from the resonance and the eccentricity
decays to the current value at the present. Here k2/Q of Mimas is 1.42 × 10−6

and the timescale for eccentricity decay is about 1.3 Gyr.

The time of exit from the resonance depends upon the Q of
Saturn, which is here taken to be the minimum QS = 18,000.
For larger QS the required k2/Q of Mimas would be smaller.

7. Mimas–Enceladus 3:2 e-Mimas resonance

Another of the multiplet of resonances at this mean-motion
commensurability is the Mimas–Enceladus 3:2 e-Mimas reso-
nance,6 which was exited 1.14 Gyr ago (for a minimum Q of
Saturn of QS = 18,000).

We also examined evolution through this resonance to see
whether Mimas’s eccentricity can be explained. We found that
Mimas’s eccentricity could be explained and that there exists an
intrinsic dynamical mechanism of escape from the resonance.
In particular, the libration amplitude grows until the amplitude
of the libration reaches π whereupon the system falls out of
resonance.

For a k2/Q of 1.42 × 10−6 for Mimas, Fig. 7 shows the
evolution of eccentricity toward an equilibrium value of 0.052,
followed by a period in which the variations of the eccentricity
grow larger, and then as the system escapes from the resonance
the eccentricity decays to the present value at the current time.
This particular k2/Q was chosen so that Mimas’s eccentricity
would damp to the current value at the present from the equi-
librium eccentricity at the time at which the system left the
resonance. This exit time depends upon the Q of Saturn, which
is here taken to be the minimum QS = 18,000. For larger QS

the required k2/Q of Mimas would be smaller.

6 The resonant argument of the Mimas–Enceladus 3:2 e-Mimas resonance is
2λM − 3λE + �M . For this resonance the eccentricity of Mimas is excited.
Fig. 8. The resonance angle of the Mimas–Enceladus 3:2 e-Mimas resonance
versus time. There is a sudden growth in the libration amplitude because the
system was captured by a 3-fold secondary resonance. When the amplitude
reaches π , the system falls out of resonance. This figure corresponds to Fig. 10.

Fig. 8 shows the resonance angle for this resonance. The
libration amplitude shows a sudden increase as the system is
caught in a 3-fold secondary resonance, between the libration
frequency and the frequency of circulation of σ1. This is simi-
lar to the mechanism that took Miranda out of resonance at an
inclination near 4◦ (Tittemore and Wisdom, 1990).

Mimas’s eccentricity can be explained either by passage
through the 3:2 e-Mimas resonance, or the 6:4 ee′-mixed reso-
nance. Placing these resonances at the birth of the Solar System
limits the time-averaged Q of Saturn to be below 70,000.7

8. Mimas–Dione 3:1 resonance

As discussed in the following section on the past evolu-
tion into the Enceladus–Dione 2:1 resonance, the eccentricity
of Dione is required to exceed 0.001 at the time the system
encounters the Enceladus–Dione 2:1 e-Dione resonance. The
most likely mechanism for exciting the eccentricity of Dione is
temporary capture into the Mimas–Dione 3:1 ee′-mixed reso-
nance. In addition, capture into this resonance is another pos-
sible explanation for the current free eccentricity of Mimas.
Passage through this resonance occurred 0.75 Gyr ago, for a
QS of 18,000, after passage through the Mimas–Enceladus 3:2
resonance.

Another possible explanation of Mimas’s free eccentricity
is the Mimas–Dione 3:1 e2-Mimas resonance, which occurred
0.70 Gyr ago, for a QS of 18,000. A representative evolution
through this resonance is shown in Fig. 9. In this resonance, the
eccentricity of Dione is not excited. The former explanation of

7 QS may be non-constant—our calculations place limits on only the inte-
grated evolution.
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Fig. 9. The evolution of the eccentricity of Mimas as it encounters the Mi-
mas–Dione 3:1 e2-Mimas resonance. The eccentricity grows to an equilibrium
value of 0.07 before escaping the resonance and decaying to the present value
of 0.02. Escape from the resonance occurs via unstable growth of the libration
amplitude. Here k2/Q for Mimas is 3.0 × 10−6.

the eccentricity of Mimas is preferred because it also excites the
eccentricity of Dione.

Explaining Mimas’s eccentricity via either of these reso-
nances places an upper limit on the Q of Saturn of 100,000
(placing this resonance at the birth of the Solar System). To
reach the current eccentricity of Mimas at the present time
requires a k2/Q of Mimas of 3.0 × 10−6 in the e2-Mimas res-
onance or a k2/Q of Mimas of 2.6 × 10−6 in the ee′-mixed
resonance.

9. Enceladus–Dione 2:1 e-Enceladus resonance—Past

For an isolated first-order e-type resonance, the tidal evo-
lution into the resonance is simple. But when more than one
resonance is present, the evolution can be more complicated,
even though the multiplet of resonances associated with a com-
mensurability are split due to the oblateness of the planet.
The evolution of the Enceladus and Dione through the mul-
tiplet of resonances associated with the 2:1 commensurabil-
ity has been the subject of some discussion (Sinclair, 1983;
Peale, 1986). Here we study the evolution numerically.

We have carried out an extensive survey of the evolution
of the system through the multiplet of eccentricity-type res-
onances associated with the 2:1 commensurability between
Enceladus and Dione. We found that the evolution of the system
was more complicated than expected. In particular, we found
that it was rather difficult for the system to pass through the
other resonances of the multiplet before being finally captured
in the current resonance. The third-order Enceladus–Dione 6:3
ee′e′-mixed resonance8 is surprisingly important in the evo-

8 The resonant argument of the Enceladus–Dione 6:3 ee′e′-mixed resonance
is 3λE − 6λD + �E + 2�D .
lution. Also important is the Enceladus–Dione 4:2 ee′-mixed
resonance.9

In our simulations the system was initially captured by the
Enceladus–Dione 2:1 e-Enceladus resonance, before any of the
other resonances of the multiplet were encountered. As the sys-
tem subsequently passed through the Enceladus–Dione e-Dione
resonance, it was occasionally captured. However, once cap-
tured, the libration amplitude damps and precludes a natural
escape from the resonance; we conclude that the system was
not captured into this resonance. The next resonance encoun-
tered (in our model) is the third-order ee′e′ resonance. We
found that the system was easily captured into this resonance,
and that once captured the system had no natural mechanism
for escape. In rare cases, when the eccentricity of Dione was
near the critical value for certain capture, the system did es-
cape this resonance by unstable growth of the libration am-
plitude. But it is likely that this resonance was avoided by
the actual system. We found that in order to avoid capture
into this resonance the eccentricity of Dione had to exceed
about 0.001 at the time of e-Dione resonance encounter. (For
one mechanism to explain this eccentricity, see above.) We
also found that successful passage through the third-order res-
onance required that k2/Q of Dione be in certain ranges, de-
pending on the eccentricity of Dione at the time of the e-
Dione resonance encounter. For eD = 0.001, we found k2/Q

needs to be smaller than about 1.4 × 10−5. For eD = 0.003,
we found that k2/Q for Dione needs to be less than 8.8 ×
10−5.

Once the system avoids the third-order resonance, then in
our simulations it is almost always captured by the ee′-mixed
resonance (in only one case out of hundreds the system passed
through the mixed resonance without being captured). How-
ever, unlike the third-order resonance, in this resonance the
libration amplitude is always unstable and the system naturally
escapes. As it escapes we found that it falls directly into the
e-Enceladus resonance.

As the system falls into the e-Enceladus resonance the sys-
tem exhibits all the behavior catalogued in Section 4. But the
limiting behavior happens right away; the system does not fall
out of the resonance with an eccentricity much below the equi-
librium value. In a survey of the possible behavior as a function
of the k2/Q for Enceladus, we only found a behavior consis-
tent with the current state of the system if k2/Q was at or just
below the equilibrium value of k2/Q.10 The equilibrium value
is 8 × 10−4; we found values as low as 4.8 × 10−4 also passed
through the current state of the system. But usually, we found
the system escaped near the equilibrium value for a given k2/Q.
These results suggest that k2/Q for Enceladus is closer to the
equilibrium value than the Kelvin value (even with a Q as low
as 20). For values of k2/Q near the equilibrium value, the li-
bration amplitude damps in a few tens of millions of years once

9 The resonant argument of the Enceladus–Dione 4:2 ee′-mixed resonance is
2λE − 4λD + �E + �D .
10 By “equilibrium value” of k2/Q we mean the value such that the current
state of the system is at a tidal equilibrium, that is, the eccentricity is no longer
changing. See Meyer and Wisdom (2007a).
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Fig. 10. The past evolution of the eccentricity of Enceladus in the Ence-
ladus–Dione 2:1 multiplet of resonances. Feature ‘b’ shows the entrance into
the ee′ resonance and feature ‘d’ shows capture into a 2:1 secondary reso-
nance. In this simulation, the k2/Q of Enceladus is the equilibrium value of
8.0 × 10−4, so the constant equilibrium eccentricity of Enceladus, which it
achieves shortly after it leaves the secondary resonance, is the current value of
0.0047.

it enters the e-Enceladus resonance. Since the eccentricity of
Dione needs to decay to its current value, this rapid decay of the
libration amplitude may be inconsistent with the current state of
the system.

However, we found that once the system is in the e-En-
celadus resonance, it is often temporarily captured in a 2:1
secondary resonance between the libration frequency and
the frequency of circulation of the e-Dione resonance angle
(σ1).11 The system escapes the secondary resonance by unsta-
ble growth of the secondary resonance libration angle. Once
out of the secondary resonance, the libration amplitude in the
e-Enceladus resonance damps. The current libration ampli-
tude is probably evidence that the system has recently passed
through this secondary resonance. This allows time for the ec-
centricity of Dione to damp to its current value.

The evolution of the eccentricities of Enceladus and Dione
as the system evolves through the Enceladus–Dione 2:1 multi-
plet of resonances are shown in Figs. 10 and 11, respectively. In
this simulation, the k2/Q of Enceladus is 8.0 × 10−4, the value
for which the current eccentricity is the equilibrium eccentric-
ity. The k2/Q of Dione is 1.24 × 10−4. The event marked ‘a’
shows passage through the e-Dione resonance. Event ‘b’ is cap-
ture into the ee′-mixed resonance. Escape from the ee′-mixed
resonance (‘c’) is quickly followed by capture into the 2:1 sec-
ondary resonance (‘d’).

11 After this work was nearly complete we learned of the work of Callegari
and Yokoyama (2007), who noted the existence of secondary resonances in this
system.
Fig. 11. The past evolution of the eccentricity of Dione in the Enceladus–Dione
2:1 multiplet of resonances. Feature ‘a’ shows passage through the e-Dione
resonance. The rise in eccentricity between events ‘b’ and ‘c’ is due to the
ee′-mixed resonance. The value of k2/Q of Dione is 1.24 × 10−4.

10. Discussion

The values of k2/Q for the satellites in the above sections
were calculated for a minimum QS of 18,000. For a maxi-
mum QS that places the resonances at the beginning of the
Solar System, the values of k2/Q are smaller. We can estimate
the required values of k2/Q by assuming that the eccentricity
upon exiting the resonance is approximately the equilibrium
eccentricity. We then constrain k2/Q for each satellite by the
requirement that the eccentricity decay to the present value at
the present time. Fig. 12 shows the values of k2/Q, determined
in this way, for Mimas as a function of QS , for the Mimas–
Enceladus 3:2 e-Mimas resonance and for the Mimas–Dione
3:1 e2-Mimas resonance.

We see that, as expected, a larger QS requires a smaller
k2/Q for Mimas. Basically, this is because the time since ex-
iting the resonance is longer for a larger QS and to slow the
decay of the eccentricity k2/Q must be smaller. The k2/Q for
Mimas in the Mimas–Enceladus 3:2 resonance is smaller than
that in the Mimas–Dione 3:1 resonance. The 3:1 resonance oc-
curs closer to the present time, so the eccentricity must damp
more quickly, and also the 3:1 equilibrium eccentricity is larger
than the 3:2 equilibrium eccentricity.

The interpretation of these values of k2/Q depends on the
assumed rigidity through the Love number k2. The rigidity of
ice (and rock) at the conditions of Mimas is uncertain. In com-
puting the Kelvin value of the Love number presented above,
we used a rigidity of 4 × 109 N m−2. With this rigidity, the
Kelvin k2 of Mimas is 5.8 × 10−4. Thus the required Q of
Mimas for the free eccentricity of Mimas to be explained by
passage through the Mimas–Dione 3:1 e2-Mimas resonance
ranges from about 190 (for QS of 18,000) to about 1000 (for
QS = 100,000). The required Q for Mimas for the Mimas–
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Fig. 12. The solid line shows the k2/Q for Mimas for which the eccentricity of
Mimas will decay to the current value for a given QS if the system was caught
in the Mimas–Dione 3:1 e2-Mimas resonance. The dotted line shows the k2/Q

for Mimas for which the eccentricity of Mimas will decay to the current value
for a given QS if the system was caught in the Mimas–Enceladus 3:2 e-Mimas
resonance.

Dione 3:1 ee′-mixed resonance ranges from about 220 (for QS

of 18,000) to about 1050 (for QS of 100,000). The required Q

for Mimas for the Mimas–Enceladus 3:2 resonance ranges from
about 420 (for QS of 18,000) to about 1600 (for QS of 70,000).
But these values of Q are uncertain because of uncertainties
in the Love number. First, the rigidity assumed may be uncer-
tain by up to a factor of 3 in both directions (Moore, 2004).
Then there may be viscoelastic modification of the “dynamic”
Love number (Ross and Schubert, 1989). With these uncertain-
ties, the required values of Q should not be taken too literally.
Nevertheless, some may be uncomfortable with the large Q of
Mimas required at the larger QS end of the allowed range. This
might suggest that QS is closer to 18,000 than 100,000.

11. Conclusion

We have numerically explored tidal evolution through sev-
eral resonances, including the multiplets of the Enceladus–
Dione 2:1 resonance, the Mimas–Enceladus 3:2 resonance, and
the Mimas–Dione 3:1 resonance.

Enceladus may have an interesting future in the Enceladus–
Dione 2:1 e-Enceladus resonance. For a range of k2/Q, we
found that the system exhibits complicated and sometimes
chaotic behavior. Unfortunately, we only found this interesting
behavior in the future. Therefore, such chaotic episodes cannot
explain the current heating of Enceladus.

We then investigated the past Mimas–Enceladus 3:2 e-En-
celadus resonance to see if similar chaotic episodes occurred.
We found no chaotic behavior and moreover, no natural dynam-
ical mechanism for escape. If the system had been captured in
this resonance, it would have remained in the resonance until
the present time, contrary to its observed state.
We found multiple possible explanations for the large free
eccentricity of Mimas. The Mimas–Enceladus 6:4 ee′-mixed
resonance can explain Mimas’s current free eccentricity of
0.020 for a k2/Q of Mimas of about 1.3 × 10−6. Escape from
this resonance is by growth of the libration amplitude.

In addition, the Mimas–Enceladus 3:2 e-Mimas resonance
can excite Mimas’s eccentricity to large values, and for a k2/Q

of about 1.42 × 10−6, the eccentricity can decay from values
near the equilibrium value of 0.052 to the current value in the
1.14 Gyr since the resonance was exited (for QS = 18,000).
The system escapes as the libration amplitude grows to π ,
sometimes with the help of temporary capture in a secondary
resonance.

If Mimas’s eccentricity is explained by either of the above
mechanisms, the time-averaged Q of Saturn is constrained to
be less than 70,000 so that the Mimas–Enceladus 3:2 resonance
multiplet occurs after the birth of the Solar System.

Mimas’s eccentricity could also be explained via excitation
in the Mimas–Dione 3:1 e2-Mimas resonance for a k2/Q of
Mimas of 3.0 × 10−6 or the Mimas–Dione 3:1 ee′-mixed res-
onance for a k2/Q of Mimas of 2.6 × 10−6. In these cases,
the time-averaged Q of Saturn is constrained to be less than
100,000.

Of the Mimas–Enceladus 6:4 ee′-mixed resonance, the
Mimas–Enceladus 3:2 e-Mimas resonance, the Mimas–Dione
3:1 e2-Mimas resonance, and the Mimas–Dione 3:1 ee′-mixed
resonance, the Mimas–Enceladus 6:4 ee′-mixed resonance is
encountered first as Mimas tidally evolves. If it is captured
then the eccentricity of Mimas will be large after escape, so
subsequent capture into the Mimas–Enceladus 3:2 e-Mimas
resonance will be unlikely (we estimate 1.4% using the for-
mulae of Borderies and Goldreich, 1984). If the eccentricity
decays sufficiently, then there is a chance that the system will
be subsequently captured into the Mimas–Dione 3:1 e2-Mimas
resonance or the Mimas–Dione 3:1 ee′-mixed resonance. For a
maximum k2/Q for Mimas of 3 × 10−6 we estimate the proba-
bility of this capture in the 3:1 resonance at 4.5%. Alternatively,
the system may pass through the Mimas–Enceladus 6:4 ee′-
mixed resonance, and be captured into the Mimas–Enceladus
3:2 e-Mimas resonance. After escape, the system again has a
small chance of being captured by one of the Mimas–Dione 3:1
resonances. Capture into the Mimas–Dione 3:1 ee′-mixed reso-
nance is preferred because the scenario requires lower (perhaps
more realistic) Q of Mimas and also excites the eccentricity of
Dione to the level required for successful passage through the
Enceladus–Dione 2:1 multiplet.

The evolution into the current Enceladus–Dione 2:1 e-En-
celadus resonance is surprisingly complicated. The system
is first captured into the e-Enceladus resonance, well before
the point of exact commensurability. Subsequent evolution is
marked by passage through the e-Dione, ee′e′-, and ee′-mixed
resonances. In order to successfully arrive at the current state of
the system, the e-Dione and ee′e′ resonances must be avoided
because once captured, escape is unlikely. In our simulations,
we found that this requires that the eccentricity of Dione
must exceed 0.001 when it encounters the e-Dione resonance.
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A likely mechanism for exciting the eccentricity of Dione is
capture into the Mimas–Dione 3:1 ee′-mixed resonance.

Once the system has passed the e-Dione and ee′e′-mixed
resonances, the system is usually captured into the Enceladus–
Dione 2:1 ee′-mixed resonance and this phase of the evolu-
tion shows large variations in the eccentricity of Enceladus.
However, these variations are unfortunately not large enough
to substantially enhance the heating rate over the equilibrium
rate. The system naturally escapes the ee′-mixed resonance by
growth of the libration amplitude, and then is immediately cap-
tured back into the e-Enceladus resonance.

After leaving the ee′-mixed resonance, the system usually
is caught in a 2:1 secondary resonance between the libration
frequency in the e-Enceladus resonance and the circulation fre-
quency of the e-Dione resonance angle. This secondary reso-
nance temporarily increases the libration amplitude of the e-
Enceladus resonance angle. In some of our simulations, the e-
Enceladus libration amplitude damped to the current observed
value of 1.5◦ as the eccentricity of Dione damped to its ob-
served value of 0.0022.

Since the system always escapes this secondary resonance
close to equilibrium, we are able to conclude that Enceladus is
probably near its equilibrium eccentricity. Therefore the equi-
librium heating rate of 1.1(18,000/QS) GW (Meyer and Wis-
dom, 2007a) due to Enceladus–Dione 2:1 e-Enceladus reso-
nance applies. To exceed this rate of heating requires some form
of non-equilibrium behavior.
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Appendix A

We derived our model in a Hamiltonian framework and then
added dissipative terms. While terms up to third order in ec-
centricity were included in our model, we present only second
order terms here. The Hamiltonian is

(A.1)H = HK + HJ + Hs + Hr,

where HK is the sum of the Kepler Hamiltonians for all the
satellites, HJ is the Hamiltonian for the oblateness contribu-
tions, Hs is the secular Hamiltonian, Hr is the resonant Hamil-
tonian, which has both direct and indirect contributions. Each
of these is initially expressed in Jacobi coordinates to effect the
elimination of the center of mass (Wisdom and Holman, 1991).
We then reexpress each term in terms of canonical Delaunay
and then modified Delaunay elements. Finally, we make a polar
canonical transformation (Sussman and Wisdom, 2001) on each
pair of eccentricity-like momenta and conjugate coordinates to
get coordinates that are nonsingular at small eccentricity. The
individual steps will not be shown in detail.

The state variables are as follows:

(A.2)hi = ei cosσi,
(A.3)ki = ei sinσi,

(A.4)ãi = Λ2
i /miμi,

where we label the satellites with subscript i = 0 for the inner
satellite and i = 1 for the outer satellite in the resonant pair.
The mass of satellite i is mi , and μi = GmiM , where M is the
planet mass. The eccentricity of satellite i is ei . The resonance
variables are σi = jλ1 + (1 − j)λ0 − �i , where λi and �i are
the mean longitude and longitude of pericenter of satellite i. We
also have

(A.5)Λ0 = L0 − (1 − j)(Σ0 + Σ1),

(A.6)Λ1 = L1 − j (Σ0 + Σ1),

where Li = √
miμiai , for semimajor axis ai , and

(A.7)Σi = √
miμiai

(
1 − (

1 − e2
i

)1/2) ≈ Λie
2
i /2,

where Li ≈ Λi to first order in eccentricity. We define Σi =
ΛiΣ̄i . Note that in the absence of tides the state variables ãi

and the associated variables Λi are constants of the motion. The
osculating semimajor axes ai and the associated Li are not con-
stant.

Let

(A.8)
∂HK

∂Σi

= (1 − j)n0 + jn1,

where the mean motions are n0 = m0μ
2
0/L

3
0 and n1 = m1μ

2
1/

L3
1. We also define ñ0 = m0μ

2
0/Λ

3
0 and ñ1 = m1μ

2
1/Λ

3
1. In

terms of these, we define

(A.9)�n0 = ñ0

(
3
J2R

2

ã2
0

+ 45

4

J 2
2 R4

ã4
0

− 15

4

J4R
4

ã4
0

)
,

(A.10)�n1 = ñ1

(
3
J2R

2

ã2
1

+ 45

4

J 2
2 R4

ã4
1

− 15

4

J4R
4

ã4
1

)
,

(A.11)��̇0 = ñ0

(
3

2

J2R
2

ã2
0

+ 63

8

J 2
2 R4

ã4
0

− 15

4

J4R
4

ã4
0

)
,

(A.12)��̇1 = ñ1

(
3

2

J2R
2

ã2
1

+ 63

8

J 2
2 R4

ã4
1

− 15

4

J4R
4

ã4
1

)
.

These are the changes in the mean motions and the changes
in the rates of precession of the pericenters due to planetary
oblateness (Brouwer, 1959).

Next we define

(A.13)�σ̇0 = (1 − j)�n0 + j�n1 − ��̇0

and

(A.14)�σ̇1 = (1 − j)�n0 + j�n1 − ��̇1.

These are the changes in the rates of change of the resonant
arguments due to planetary oblateness.

The equations of motion are as follows:

(A.15)

dk0

dt
= ∂HK

∂Σ0
h0 + �σ̇0h0

− Gm0m1

ã1Λ0

(
Cs

ee′h1 + 2Cs
eeh0 + Cr

e

+ 2Cr
eeh0 + Cr

ee′h1
) + dk0

dt

∣∣∣∣ ,

t
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(A.16)

dh0

dt
= −∂HK

∂Σ0
k0 − �σ̇0k0

− Gm0m1

ã1Λ0

(−Cs
ee′k1 − 2Cs

eek0

+ 2Cr
eek0 + Cr

ee′k1
) + dh0

dt

∣∣∣∣
t

,

(A.17)

dk1

dt
= ∂HK

∂Σ1
h1 + �σ̇1h1

− Gm0m1

ã1Λ1

(
2Cs

e′e′h1 + Cs
ee′h0 + Cr

e′

+ 2Cr
e′e′h1 + Cr

ee′h0
) + dk1

dt

∣∣∣∣
t

,

(A.18)

dh1

dt
= −∂HK

∂Σ1
k1 − �σ̇1k1

− Gm0m1

ã1Λ1

(−2Cs
e′e′k1 − Cs

ee′k0

+ 2Cr
e′e′k1 + Cr

ee′k0
) + dh1

dt

∣∣∣∣
t

.

The tidal damping terms for satellite i are

(A.19)
dki

dt

∣∣∣∣
t

= −7

2
ciDia

−13/2
i kiη,

(A.20)
dhi

dt

∣∣∣∣
t

= −7

2
ciDia

−13/2
i hiη,

where

(A.21)ci = 3
k2

Q

m0

M

√
GMR5

and

(A.22)Di = k2i/Qi

k2/Q

(
M

mi

)2(
Ri

R

)5

.

The factor η is a “speedup” factor that artificially enhances the
rate of tidal evolution. We found in selected test evolutions that
the evolution was insensitive to the speedup factor over a range
of speedups of 1 to 1000. We typically used a speedup of 100
in our numerical explorations.

The tidal contribution to the rate of change of semimajor axis
ai is

(A.23)
dai

dt

∣∣∣∣
t

= ci

(
1 − 7Die

2
i

)
a−11/2η.

From Li = √
miμiai we have

(A.24)L̇t
i = dLi

dt

∣∣∣∣
t

= Li

2ai

dai

dt

∣∣∣∣
t

.

From Σ̄i = (h2
i + k2

i )/2 we have

(A.25)˙̄Σt
i = dΣ̄i

dt

∣∣∣∣
t

= hi

dhi

dt

∣∣∣∣
t

+ki

dki

dt

∣∣∣∣
t

.

From the definitions

(A.26)Λ0 = L0 − (1 − j)(Λ0Σ̄0 + Λ1Σ̄1),

(A.27)Λ1 = L1 − j (Λ0Σ̄0 + Λ1Σ̄1)
we differentiate to get

(A.28)Λ̇t
0 = L̇t

0 − (1 − j)
(
Λ̇t

0Σ̄0 + Λ̇t
1Σ̄1 + Λ0

˙̄Σt
0 + Λ1

˙̄Σt
1

)
,

(A.29)Λ̇t
1 = L̇t

1 − j
(
Λ̇t

0Σ̄0 + Λ̇t
1Σ̄1 + Λ0

˙̄Σt
0 + Λ1

˙̄Σt
1

)
.

Note that the nontidal contributions to L̇i and ˙̄Σi cancel be-
cause Λi are constant except for the tidal terms. Then we solve
for Λ̇t

0 and Λ̇t
1,

(A.30)

Λ̇t
0 = [

(1 + jΣ̄1)L̇
t
0 − (1 − j)Λ0

˙̄Σt
0 − (1 − j)Λ1

˙̄Σt
1

− (1 − j)L̇t
1Σ̄1

]/[
1 + (1 − j)Σ̄0 + jΣ̄1

]−1
,

(A.31)

Λ̇t
1 = (1 + (1 − j)Σ̄0)L̇

t
1 − jΛ0

˙̄Σt
0 − jΛ1

˙̄Σt

1 − jL̇t
0Σ̄0

1 + (1 − j)Σ̄0 + jΣ̄1
.

And finally, from here, we use the definition of ãi = √
miμiΛi

to get the rate of change of the state variables ãi :

(A.32)
dãi

dt
= 2

ãi

Λi

Λ̇t
i .

The disturbing function coefficients are as follows:

(A.33)Cs
ee = Cs

e′e′ = 1

8

(
2Dαb0

1/2(α) + D2
αb0

1/2(α)
)
,

(A.34)Cs
ee′ = 1

4

(
2b1

1/2(α) − 2Dαb1
1/2(α) − D2

αb1
1/2(α)

)
,

(A.35)Cr
e = 1

2

(−2jb
j

1/2(α) − Dαb
j

1/2(α)
)
,

(A.36)Cr
e′ = 1

2

(
(2j − 1)b

j−1
1/2 (α) + Dαb

j−1
1/2 (α)

) − 2αδj2,

(A.37)

Cr
ee = 1

8

((−5k + 4k2)bk
1/2(α)

+ (−2 + 4k)Dαbk
1/2(α) + D2

αbk
1/2(α)

)
,

(A.38)

Cr
ee′ = 1

4

((−2 + 6k − 4k2)bk−1
1/2 (α)

+ (2 − 4k)Dαbk−1
1/2 (α) − D2

αbk−1
1/2 (α)

)
,

(A.39)

Cr
e′e′ = 1

8

((
2 − 7k + 4k2)bk−2

1/2 (α)

+ (−2 + 4k)Dαbk−2
1/2 (α) + D2

αbk−2
1/2 (α)

)
,

where Dαf = α df/dα, k = 2j , and bm
l (α) are the usual

Laplace coefficients (Murray and Harper, 1993). We have eval-
uated the coefficients at α = ((j − 1)/j)2/3.
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