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ABSTRACT

The resonance overlap criterion for the onset of stochastic behavior is applied to the planar
c1rcu1ar restricted three-body problem with small mass ratio (,u) Its predictions for

=10"310"% and 10~

* are compared to the transitions observed in the numerically deter-

mlned Kolmogorov-Sinai entropy and found to be in remarkably good agreement. In addition,
an approximate scaling law for the onset of stochastic behavior is derived.

I. INTRODUCTION

Is the solar system stable? There is as yet no answer
to this notoriously difficult question, but some important
steps have been made in the study of the stability of dy-
namical systems in the last two decades. Hénon and
Heiles (1964) discovered in their now-classic study that
the phase space of a simple nonlinear Hamiltonian sys-
tem with two degrees of freedom (a model for the motion
of stars in the Galaxy) was divided into regions that
contain quasiperiodic trajectories and regions in which
trajectories have a random character. Subsequent nu-
merical experiments by Hénon (1966), Bozis (1966), and
Jefferys (1966) then verified that the phase space of the
planar circular-restricted three- -body problem is similarly
divided. The existence of reglons of quasiperiodic tra-
jectories is very important since all such tI‘a_]CCtOI‘lCS
possess long-term stability. While there is no rigorous
way of predicting which regions will be stochastic, an
approximate criterion involving the overlap of zero-order
nonlinear resonances has been developed which has had
considerable success in other problems (see Walker and
Ford 1969 and the recent review in Chirikov 1979). The
solar system is far too complicated, though, for a direct
apphcatlon of the resonance overlap criterion. To get our
foot in the door of dynamical astronomy and gain con-
fidence in the overlap criterion, I begin instead with the
simplest of unsolved problems in dynamical astronomy.
In this paper I apply the resonance overlap criterion to
the planar circular-restricted three-body problem and
compare its results to some numerical experiments.

In Sec. I1, I review the resonance overlap criterion. I
then apply the method to the restricted three-body
problem in Sec. I11. A comparison of its predictions with

-some numerical experiments is presented in Sec. IV. In
Sec. V, I derive an approximate scaling law for resonance
overlap, and in Sec. VI, I state my conclusions.
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II. RESONANCE OVERLAP AND THE CHIRIKOV
CRITERION

Consider a Hamiltonian of the form

H=HoJ,Jo) +u )y X

=0 j==w
X H;j(J1,J2)cos(if; + jb2), (1)

where 0, are the coordinates canonically conjugate to the
momenta J; and u is a small parameter. One may at-
tempt to solve this problem by first solving the zero-order
Hamiltonian

HoJ1JD) + 1 X

X Hipkm (J1.J2)cos[k(nf; + mby)]  (2)

and then perturbing the zero-order solutions with the
remaining terms. This zero-order Hamiltonian will be
useful whenever the resonance condition

nw1(J1,J2) + mwy(J1,J2) =0 (3)
is approximately satisfied, where
d(Ho + wHoo)
aJ; ’

since the arguments of the cosines will then be approxi-
mately stationary. I assume » and m have no common
divisors. In terms of the resonance variables

1,0 = n01 + m02
and (%)
Y= —02/’1,

this Hamiltonian assumes the simpler form

H =

w;(Jl,Jz) = (4)

HY) = Ho(q"l’)+#ZHknkm(‘I>‘I’)COSk¢ (6)

where

\IJ=J1/I'I
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and
®=mJ, —nly (7

are the momenta canonically conjugate to ¢ and ¢, re-
spectively. Since H'9), has no explicit time dependence
and is cyclic in ¢, the system has two integrals of the
motion, the Hamiltonian itself and ®. Liouville’s theo-
rem (see Whittaker 1961) then guarantees that there is
a canonical transformation to the system in which these
integrals are the new momenta and the new Hamilto-
nian

HO, = A9 (HY), ®) (8)

is cyclic in the new coordinates and thus trivially inte-
grable. The character of the solutions is, however, most
easily obtained by studying the contours of H'), on
surfaces of constant ®. To illustrate this, I make three
simplifying assumptions. The first two are that we can
ignore H, m for all k except k = 1 and that H,,,
(P, W) is sufficiently well approximated near the reso-
nance by H, ,, (®,¥ ), where W is defined implicitly
by the resonance condition

dH,y (P, V)
ov

The third simplifying assumption is that Ho(P,¥) is
sufficiently well approximated by the quadratic terms
in its Taylor series about ¥ = Wp. Under these as-
sumptions the resonance Hamiltonian is approxi-
mately

w¢(<1>,‘I'R) = = 0. (9)

v=WV¥g

, 1 92H
0) ~ — 0
HO ~ Hy(®,Vg) + 302 |ymss

X (¥ = Wg)2+ uH, , (P, ¥g)cosy,

(10)

where the linear term is absent because of the resonance
condition (9). The level curves of this approximate H),
are then explicitly

\I’=\I’R:|:

1/2
Hig) = Ho (2.¥r) = Hon( @00t )
19%H,
2 92 V=¥pr

Figure 1 illustrates these contours in the Cartesian
coordinates x = (2W)!/2 cosy and y = (2W¥)!/2 siny.. In
drawing this figure, I have assumed HO, — H, (®, ¥ )
and H,,, (®, V) are opposite in sign, and have arbi-
trarily restricted W to be greater than zero. The ex-
tremum at the origin is an artifact of this restriction. It
is clear that if a contour does not enclose the origin, then
the angle ¥ oscillates, whereas if a contour encircles the
origin, ¥ circulates. The oscillation region has been

1123

F1G. 1. Contours of the approximate Hamiltonian (10) on a surface
of constant ®. The Cartesian coordinates are x = (2¥)!/2 cosy and
y = (W¥)/2siny.

shaded in Fig. 1. The contours that form the boundary
of the oscillation region are the so-called separatrices,
which play an important role in the resonance overlap
criterion. For the approximate Hamiltonian (10) the
separatrices are

Ve =WVir+ AW¥cos 4

R (12)
where the resonance half-width AW is defined by
‘ 1/2
AW =3 | #Han (B VR) (13)
02H,
oV? [w=vg

Now, if the three simplifying assumptions leading to the
approximate Hamiltonian (10) are valid, the contours
of the full resonance Hamiltonian (6) will be qualita-
tively the same as those in Fig. 1. For a more general
Hamiltonian than that of Eq. (10), the contours can be
quite different and require a detailed numerical mapping
to determine the oscillation regions.

Having, in principle, completely solved the zero-order
resonance Hamiltonian (6) by reducing it to the form of
Eq. (8), I now ask what effect the other terms in the full
Hamiltonian (1) will have on the unperturbed solutions.
In the system with H{% and ® as momenta, the full
Hamiltonian has the form

H= Hpy (HO, &)+ u ¥
i=0

X ¥ Hy (H, ®)cos(ih + je), (14)

j=—
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where 4 and ¢ are canonically conjugate to H'% and &,
respectively. If the resonance conditions of this Hamil-
tonian analogous to the resonance condition (3) of the
zero-order resonance Hamiltonian are sufficiently poorly
satisfied and the H;; are small enough, then the Kol-
mogorov-Arnol’d-Moser Theorem (see Moser 1973)
assures us that the motion is still quasiperiodic and only
slightly perturbed. On the other hand, if a second reso-
nance of the original Hamiltonian is “sufficiently close,”
then the motion is more complicated. In fact, there has
been no successful analytic attempt to solve for the mo-
tion under the simultaneous influence of two “close”
resonances, nor is there a rigorous analytic estimate of
what “sufficiently close” means. The basic idea of the
resonance overlap criterion is that two resonances are
“sufficiently close” when a separatrix of one resonance
has crossed a separatrix of the other resonance, i.e., when
the zero-order analysis indicates that two different res-
onance angles both oscillate. Ideally one would map all
initial conditions in the four-dimensional phase space
that lead to oscillation of each resonance angle and then
look for the overlap of these regions. In practice, it is
easier to specify initial values of 6; and 6, and then plot
the separatrices for each resonance in the J; — J; plane.
The simple example of Walker and Ford (1969) provides
an excellent introduction to this method. Chirikov (see
Chirikov 1979) has developed an approximate criterion.
Chirikov first calculates the half-width of each resonance
by Eq. (13), having made all three assumptions leading
to the approximate Hamiltonian (10) and implicitly
choosing 0, and 6, for each resonance to give the maxi-
mum width. He then calculates frequency half-widths
by the approximate relation

aw,

Awf ~—
@i OV |w=wg

AV, (15)

with the frequencies of Eq. (4). The superscript identifies
the resonance under study. The half-widths of nearby
resonances are then compared to the separation of the
resonance centers,

bt = |0t — o] (16)
If both inequalities
Awd + Awf > dwib
and (17)
Awl + Aw§ = dwit

are satisfied, then there is resonance overlap. This then
is Chirikov’s approximate criterion. In Sec. I11, I apply

“the resonance overlap criterion to the restricted three-

body problem.

[I1. RESONANCE OVERLAP IN THE RESTRICTED
THREE-BODY PROBLEM

In terms of the Delaunay canonical elements (see, e.g.,
Brouwer and Clemence 1961), the Hamiltonian for the
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planar circular-restricted three-body problem is
(1 =p2
H = — 7
R, (18)
where
R=p Y 3 KU»cosNG.J (19)
i=0 j=—w
and
NGD =il + j(t — g). (20)

I have chosen units so that the product of the gravita-
tional constant and the sum of the two masses is unity
and the separation of the two masses is also unity. In
these units the secondary has mass u, which I assume is
small compared to unity. In terms of the usual osculating
elliptic elements, the canonical momenta are L = [(1 —
w)al'/2and G = [(1 — w)a(l — e2)]'/2, where a is the
semimajor axis and e is the eccentricity. Their conjugate
coordinates are the mean anomaly / and the angle of
periapse g, respectively. K is a function of L and G,
and ¢ is the time. A resonance occurs when one of the
cosine arguments is nearly stationary. Since this Ham-
iltonian is time dependent, the resonance condition as-
sumes a slightly different form,

0==sw/(L,G) + (s +5)[1 — wg(LG)], (21)

where s and s” are integers and the frequencies are de-
fined in the usual way:

_ 0 (= =p)?
oL\ 2L
and (22)

w; — ukK©0 (L,G)

d
we = 2 [=HK @O (LG)].

If we ignore the terms proportional to u, we get the ap-
proximate resonance condition

0=—s/L3+ (s+s), (23)
or, in terms of the semimajor axis,
N = [S/(S + S,)]2/3~ (24)

Poincaré (1902) was the first to study motion near a
resonance in the restricted three-body problem by means
of a zero-order resonance Hamiltonian of the type dis-
cussed in Sec. I1. I perform a canonical transformation
to the Poincaré resonance variables, as generalized by
Woltjer (1923) and Hagihara (1943),

p=l+g—t
and (25)
Y=—sl+(G+s)(t—g)
via the generating function

F=[-sl+ (s+s)t—)V+[l+g—1t]1P. (26)
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Their respective conjugate momenta are
P = (s+s’),L-—sG
s
and (27)
L-G
Pt

V=

In terms of the osculating elliptic elements, these are

® = [(1 = p)a]? ((S +s)—s(1 — e2)l/2)

s/

= [(1 — p)a]'/? [1 +—s—,ez+o(e4)
2s

and
¥ =[(1—-wal/2[1=(1-ey)!/?]

= [(1 - wa]'P? [g + o(e4>].

The new Hamiltonian is
oF (1 = p)?
H=H+—=—-———""—
at 2(P — sWV)2
+(+s)V—-P—-R, (29)
where R is to be written in terms of the new variables.
In particular,

NG = ((S + S/s),‘p + ‘p) +j (¢ J;,S‘p). (30)

(28)

Note that this new Hamiltonian is explicitly time inde-
pendent and is thus an integral of the motion. In terms
of the Poincaré variables, the resonance condition is
o= ( —(1 = p)?
YT oW \2(® — sW)2
+(+s)V - - [.LK(O’O)) =0. (31)

The term uK©9 only shifts the position of the resonance
by a quantity of order u and will be ignored in the rest
of this paper. The zero-order resonance Hamiltonian
must contain all those terms with nearly stationary
arguments, i.e., those independent of ¢. Inspection of Eq.
(30) reveals that the terms independent of ¢ satisfy

js=—i(s+s), (32)
and that for these terms,
cos N lis.—i(s+s)] = cosilﬁ. (33)
If we define
K; = Klis.=i(s+s)], (34)

then the zero-order resonance Hamiltonian is
-1 = p)?

©) =
Hss 2(P —s¥)2

+(s+s)V¥

e i K;cosiy. (35)
i=1

1125
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FIG. 2. Contours of constant H'? on a surface of constant ® for ®
< &,. The extremum is marked by a cross (X). The region in which
W oscillates is shaded. Also shown is a plot of H along the x axis
which illustrates the definition of xmax.

[ will be primarily interested in direct motion inside the
secondary (a < 1) with small eccentricity (e < 0.15).
Because K; « eils'l and s’ = 1 when a < 1 (see Brouwer
and Clemence 1961), the most important resonances are
those with s/ = 1. | will consider only the s” = 1 reso-
nances. This greatly simplifies the application of the
resonance overlap criterion.

The contours of constant H'Y on surfaces of constant
® have been studied many times (see, for example,
Schubart 1964, Message 1966, Jefferys 1966, and Wie-
sel 1976). Here I will only review the results of these
discussions and mention some new features. For a given
resonance there are three critical values of ¢ which
separate qualitatively different types of contours. Figures
2 through 5 illustrate the contours for these four regions.
The Cartesian coordinates are x = (2W¥)!/2cosy and y
= (2W¥)!/2siny. Extrema are marked by a cross (X);
points at which contours cross are saddle points. Extrema
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b Y
D <D< D,

FIG. 3. The same as Fig. 2, but for ®; < & < ®,. There are now two
oscillation regions, two extrema, and a saddle point. Xmay is defined
as before.

and saddle points in the zero-order Hamiltonian corre-
spond to stable and unstable periodic orbits, respectively,
in the full problem (see Message 1966 for a discussion).
Though all the contours are symmetric about y = 0, it
is not obvious from the form of the Hamiltonian that all
the extrema and saddle points lie on the x axis. That this
is in fact the case for a < 1 was shown by Message
(1958). The behavior of the contours is thus completely
characterized by plots of H{ along the x axis, which are
also illustrated in Figs. 2 through 5. The regions in which
¥ oscillates are shaded. For & < ®, there is only one
extremum for which ¥ = 0, and only one oscillation re-
gion. The separatrix is that contour which passes through
the origin. It crosses the x axis again at xma,x =
2V max) /2, where W, is obviously defined by

HQ (®,¥ =0) = HY (P, ¥ max, ¥ = 0).  (36)

This is illustrated in Fig. 2. As ® is increased to ®;, a
cusp appears which bifurcates into a saddle point and an

1126

extremum for ®; < ® < (1 — w)!/2. P, is near but not
identical to ®;, which satisfies the modified “resonance
condition”

—s
k3
This interval in ® is further subdivided by ®,. Let ¥,

denote the value of W at the saddle point. The interval
P, < ® < P, is then characterized by the relation

and is illustrated in Fig. 3. There are now two oscillation
regions. The region that includes Y = 0 is simply a con-
tinuation of the oscillation region for ® < ®;. x .« is
defined in the same way as before. When @ is greater
than ®,, inequality (38) is no longer satisfied and the
contours change somewhat (see Fig. 4). The ¢ = 0 os-
cillation region now has both an x;, and an x,x. The

0=wylyop=735+(s+1). (37)

Dy<d<(l-p )2 |

(0)
b HS)

min max

F1G. 4. The same as Figs. 2 and 3, but for &, < ® < (1 — u)'/2. The
oscillation region that includes ¥ = 0 no longer extends to the origin.
The definition of xmin is illustrated in the plot of H9(y = 0) vs x.
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contours for ® > (1 — u)!/2 are illustrated in Fig. 5.
They are complicated by the appearance of a singularity
near the origin. The extremum with ¥ = & disappears
and a new saddle point appears with = 0. Near the
singularity one does not expect the zero-order Hamil-
tonian to represent the motion accurately, so this region
has been hatched.

The appearance of a new saddle point is quite inter-
esting and has never been mentioned before. As I said
above, saddle points correspond to unstable periodic
orbits. Thus, this new saddle point corresponds to a new
analytic family of periodic orbits in the restricted
three-body problem. Colombo et al. (1968) have nu-
merically traced out some families of periodic orbits.
They found that for some periods there are two periodic
orbits, whereas the usual perturbation theory (see, e.g.,
Message 1966) predicts only one. The appearance of this

-2 < @

FIG. 5. The same as Figs. 2 through 4, but for (1 — ©)!/2 < ®. xmin
and xmayx are defined as before. There is now a new saddle point with
x > 0. Near the origin the zero-order resonance Hamiltonian does not
represent the motion accurately, so this region has been hatched.
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FIG. 6. A comparison of the analytic periodic orbits, including those
of the new saddle point, to the periodic orbits found numerically by
Colombo et al. ag and e are the semimajor axis and eccentricity, re-
spectively, at periapse on the line of inferior conjunction.

new family then completes their theoretical explanation.
Figure 6 compares the analytic periodic orbits to those
found numerically by Colombo et al.

Rather than study the libration regions in the entire
four-dimensional phase space of initial conditions, I re-
strict my attention to the initial angles /o = 0 and go =
0, i.e., I study the motion of test particles started at
periapse on the line of inferior conjunction. It is clearly
possible, though, to repeat my analysis for any choice of
initial angles. The initial angles /o = go = 0 are especially
easy to analyze since the initial resonance angle Y is
then zero for all resonances. Given particular values of
ap and eq, one can calculate g and ¥ through Eqgs.
(28). The test for resonant oscillation when ¥ = 0 may
then be summarized as follows: If ®q < ®,, then Y os-
cillates if Wo < W ax (Po); if Po > P», then Y oscillates
if Winin (Po) < W < Wimax (Po). I have used this test to
solve numerically for the separatrices in the cases u =
1073, 1074, and 1075. I kept only the i = 1 term in the
resonance Hamiltonian (35) and included in it all terms
through cubic in the eccentricity (see Brouwer and
Clemence 1961). The separatrices of the s = 3 and s =
4 resonances for u = 1073 are plotted in Fig. 7. The
combination 1/(ag®? — 1) is equal to s when ag = .
The two separatrices for each resonance have been
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FI1G. 7. The oscillation regions of the s = 3 and s = 4 resonances when
w = 1073, illustrating the overlap of two resonances. The combination
1/(a3>? = 1) is equal to s when ag = ay).
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...3
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FI1G. 8. The oscillation regions for u = 1073, The two boundaries of
each region are drawn in the same line style. The regions in which two
or more resonances overlap are shaded.
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0-20 T

T

0.5} i

&y 0.0 i

0.05F-

0.00

5 7
1/(ag™3/2-1)
FI1G. 9. The same as Fig. 8, but for u = 1074,

plotted in the same line style and the oscillation regions
are labeled. The overlap of these two resonance oscilla-
tion regions is obvious. Figures 8-10 then show the
complete diagrams for the secondary masses u = 1073,
1074, and 107>, While each oscillation region can be
found by looking for two nearby lines with the same line
style, for clarity only the overlap regions have been
shaded. The resonance overlap criterion then predicts
that initial conditions chosen from the unshaded regions
will lead to quasiperiodic motion and those chosen from
the shaded regions will lead to motion with a random
character. In Sec. IV, I compare these predictions to
some numerical experiments.

IV. EXPONENTIAL SEPARATION AND THE
KOMOGOROV-SINAI ENTROPY

There are two numerical tools to determine whether
or not motion is quasiperiodic. The most intuitive is the
Poincaré surféce of section (see Hénon and Heiles 1964).
In this method a two-dimensional surface is chosen in the
four-dimensional phase space. The equations of motion
are then numerically integrated and each crossing of the
surface is recorded. If the motion is quasiperiodic, there
are two constants of the motion that constrain these
crossings to lie on a “simple” curve. If the motion is not
quasiperiodic, it is free to roam over some area of the
surface. This was the method used by Hénon (1966),
Bozis (1966), and Jefferys (1966) in their studies of the
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2

FIG. 10. The same as Figs. 8 and 9, but for u = 10-5.

restricted three-body problem. This method suffers from
the criticism that there is no way to tell whether the
crossing points are “random” (i.e., unconstrained) or
whether the calculation of more points would reveal that
they all lie on a “simple” curve. A more quantitative
method, requiring far less computer time, studies the
separation of initially nearby orbits with the same value
of the (time-independent) Hamiltonian. It has been
found (see Chirikov 1979) that in phase space such orbits
separate exponentially in the “stochastic” regions and
approximately linearly when the motion is quasiperiodic.
This is the method I used to study the restricted three-
body problem. I examined the separation of nearby orbits
for the same secondary masses, 4 = 1073, 10~4, and
10-3, as were studied in Sec. I11. I chose the initial ec-
centricities eg = 0.05 and g = 0.10. Initial semimajor
axes ag were chosen to span the ranges studied in Sec.
II1. Of course /p and gq are zero in all cases. If we con-
sider the system in a rotating frame of reference in which
the two masses are stationary, the test particle is started
at inferior conjunction with a velocity perpendicular to
the line of conjunction. Its partner is also started at in-
ferior conjunction but 107 closer to the larger mass,
with a velocity perpendicular to the line of conjunction
chosen so that the values of the Hamiltonian for the two
particles are the same. The equations of motion in ro-
tating (synodic) Cartesian coordinates (see Brouwer and
Clemence 1961) were then numerically integrated using
the algorithm of Bulirasch and Stoer (1966). As is cus-
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tomary for numerical integrations of the restricted
problem, the accuracy of the solution was monitored by
the variation of the Hamiltonian. In all cases presented
here the Hamiltonian never varied by more than ~10~10
from its initial value and usually varied by only ~10~!!
or 10712, Figure 11 presents a typical example of what
the phase space separation as a function of time looks like
in a quasiperiodic regime [u = 1074, eg = 0.05, 1 /(ag*/?
— 1) = 6.5]. Figure 12 is typical of the exponential sep-
aration in a “stochastic” region [u = 1074, ¢¢ = 0.05,
1/(ag? = 1) = 7]. Note the logarithmic scale in Fig.
12. The rate of divergence can be quantified by fitting
in a least-squares sense, the form

d(1) = do exp(hyt) (39)

to the phase space separation as a function of time, with
do equal to the initial separation. This leads to

; tiin(d(1,)/do)

h2= ZI?

(40)

Every point calculated in each numerical integration up
0 1 = fmax Is included in the corresponding sum. The
following values of ., were used: for =103t =
200; for u = 1074, tax = 250; and for u = 10~5, Fax =
300. In an exponential regime, 4, should be almost in-
dependent of ¢,,,« (until the separation of the two par-
ticles is of order 1), whereas in a linear regime A, should
decrease approximately as In(Zmax)/tmax. The quantity

1.00 x 1075

LIL AL AL O O O O

1

0.75 %1073

0.50% 1075

PHASE SPACE SEPARATION

0.25x107°

N NSNS NN NN N S N

USLINLE L ANLL L L B L B L B B

111107

150 200

p gl

100
t

Ll

O.OO0 50

1
250

FIG. 11. Typical phase space separation as a function of time in a
quasiperiodic regime [u = 1074, eg = 0.05, 1/(ag*? — 1) = 6.5]. Note
the small linear scale on the ordinate.
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FIG. 12. Typical phase space separation as a function of time in a
“stochastic” regime [u = 1074, eo = 0.05, 1/(ag>/* = 1) = 7.0]. Note
the logarithmic scale on the ordinate.

h is quite closely related to the Kolmogorov-Sinai en-
tropy h, which is defined by (see Chirikov 1979)

<hm — (lnd))

d—o dt

(41)

where the brackets denote an average over the trajectory
and d(t) is assumed to be infinitesimal. Figures 13-15
present the results of these calculations. Though the
scatter in these plots is fairly large, there is quite clearly
a critical value of ag in each such that for ag = acrisical,
h, increases sharply. Figure 16 compares these critical
values of ag to the predictions of Sec. ITI. The bars mark
the predicted locations of the stochastic instabilities as
given by the resonance overlap criterion. The left edge
of each bar is the point at which overlap first occurs (for
increasing ap) and the right edge is the point beyond
which there is only overlap. In each of the three cases
studied, the observed instability occurs within the pre-
dicted region. Thus the resonance overlap criterion seems
to work very well in the restricted three-body problem.
In Sec. V, I derive an approximate criterion for reso-
nance overlap which is valid for all u « 1.

V. SCALING LAW

Though the specific approximations leading to the
Chirikov criterion are not valid in the restricted three-
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body problem, the intuition gained in the numerical
study of the separatrices allows us to derive, in the spirit
of Chirikov, an approximate criterion for resonance
overlap. First, it is clear that no unique widths in semi-
major axis can be assigned. For small eccentricity (eg <
u!/2) the oscillation regions are quite broad and there is
overlap at most semimajor axes. For eccentricities
greater than ~u!/2, the oscillation regions are somewhat
more localized in semimajor axis, yet still not uniquely
defined. We can characterize the half-widths, though,
as the separation of the rightmost (ap > a;;) boundaries
at eg = 0 from ay. I call this semimajor axis a, since ®
(ay, eg = 0) = ®,. I turn then to the calculation of an
approximate expression for, ®,. Expanding the resonance
Hamiltonian (35) about ¥ = 0 and retaining only the
quadratic terms, one gets

—<I>)+(q)3+(s+1))

i

I have used the fact that for small W (small eccentricity)
the sum in Eq. (35) is well approximated by the single

1

O~ = —
Hs —( 23?2

B4 ) W2 — uKicosy. (42)

0.25
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FIG. 13. The entropy 4> for various initial conditions, with u = 1073,
Points with initial eccentricity eo = 0.05 are marked by a cross (X),
while points with initial eccentricity eg = 0.10 are marked by a plus

(+).
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FIG. 16. A comparison of the predictions of the resonance overlap
criterion (denoted by horizontal bars) with the location of the observed
instability (denoted by a dot with a circle). The dashed line is the ap-
proximate theory of Sec. V.

term i = 1. Further, for sufficiently small ¥ and ¢ < (1
— w)1/2, K, is well approximated by

K~ V)2 B (D, = 0). (43)

Changing to the Cartesian variables x = (2¥)!/2 cosy
and y = (2W¥)!/2 siny, the approximate Hamiltonian
(42) becomes, for y = 0,

HY (y=0) ~ (—ﬁ—@) (¢3+(s+1))

+‘(£j) — uxB(D, ¥ = 0). (44)

The extrema of HJ(y = 0) in this approximation can
be found by solving the cubic equation

HO(y=0) _1 (-—3s2) x3

0=8

ox P4
+ (@3 + (s + l)) —uB (P, ¥ = 0). (45)
First note that for & < &, there is only one root; thus this
®, approximates the ®; of Sec. I11. If we define
5P, =@, /P, — 1 (46)

and ignore terms of order 6%, compared to unity, it is
easy to show that for large s,

&) ~ (|uB|)¥3 (3/8s)1/3. 47
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For ag near unity, B; is well approximated by
—(s+1
B(ao) =~ it + (1 = ao))

+Kil(s + D1 —ag)l}, (48)

where Ko and K are the modified Bessel functions. This
expression is evaluated at ap = a5 ~ 1 — 2/[3(s + 1)].
Equation (47) is then
0P, ~ 0.62u2/3 s1/3, (49)
This result justifies the statement in Sec. 1II that &, is
near ®;. ®, is determined by the condition
H‘g(l)) ((IJL \I/sp7 lp = 71') = Hg(l)) ((bZr v = 0)» (50)

lLe.,

0 1 (—3s2

303
=5 o )%+§(s+ 1)5<I>2g—sz(<I>s,‘I’=0).

(51)
This equation, along with Eq. (45), allows us to solve for
the two unknowns:
xsp(P2) = —1.02u1/3571/3,

0P, =~ 0.79u2/3 s1/3, (52)

where ®, = &, (1 + 6®,). From the expressions (28) for
the Poincaré momenta in terms of the osculating elliptic
elements, we see that

P ~ (ag)'/2 (1 + sx%/2). (53)

The half-width of a resonance is then characterized
by

0ay = ayfa; — 1 ~ 206D,. (54)

Equating twice this width to the separation of resonances
in ao, which is approximately

Aa ~ 2/3s?, (55)

I derive an estimate of when resonances should begin to
overlap:

(56)

Equation (56) is plotted in Fig. 13. Since the width of a
resonance (in ag) increases as eg increases, Eq. (56) is
expected to overestimate Sgveriap-

Soverlap = 0.5 1u=2/7,

V1. CONCLUSION

A histogram of the number of asteroids versus semi-
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major axis (see, for example, Froeschlé and Scholl 1979)
reveals a precipitous drop in the number of asteroids with
semimajor axes outside the 2/1 resonance. This fact led
Lecar and Franklin (1973) to hypothesize a dynamical
origin for the absence of asteroids in this region. To test
their hypothesis they integrated 260 test objects dis-
tributed uniformly between 0.55a, and 0.85a,, where
ay is Jupiter’s semimajor axis, with eccentricities be-
tween 0.0 and 0.3. They found that objects started ex-
terior to 0.85a; were “ejected” immediately and that
within the 200 Jupiter revolution time span of their in-
tegrations, the region outside the 3/2 resonance was
cleared, except for some objects at the 4/3 resonance.
The region between the 2/1 resonance and the 3/2 res-
onance, however, remained well populated. They sug-
gested that longer integrations might deplete this region.
To test this hypothesis Froeschlé and Scholl (1979)
performed a similar experiment covering a time span of
105 yr. The region was still not sufficiently depleted. In
addition they found that after 60000 yr no more objects
escaped. Since the secular perturbations of the planets
cause variations in the orbital elements with time scales
of order 10° yr or longer (see Brouwer and van Woerkem
1950), it may be necessary to extend these numerical
experiments to several million years before they capture
all the dynamical features that are present. The extension
of these calculations to much longer times, though, ap-
pears to be prohibitively expensive. Even if their nu-
merical experiments had depleted the region outside the
2/1 resonance, we would have wanted a qualitative un-
derstanding of those dynamical features which led to the
instability. The failure of the numerical experiments and
the cost of extending them to the required time span
heightens the need for a qualitative understanding of the
instabilities in asteroidal motion. This paper constitutes
a first step towards this qualitative understanding. I have
applied the resonance overlap criterion to the planar
circular-restricted three-body problem and compared
its predictions to some numerical experiments. Since the
predictions are in remarkably good agreement with my
numerical experiments, great confidence has been gained
in the usefulness of the resonance overlap criterion for
obtaining a qualitative understanding of the instabilities
in the solar system.

It is a pleasure to thank Peter Goldreich for valuable
advice and helpful criticism. This work was partially
supported by NASA Grant NGL 05-002-003.
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