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The main equations in the paper “Episodic volcanism of tidally heated satellites with application to Io”
by Ojakangas and Stevenson [Icarus 66, 341–358] are presented; numerical integration of these equations
confirms the results of Ojakangas and Stevenson [Icarus 66, 341–358] for Io. Application to Enceladus is
considered. It is shown that Enceladus does not oscillate about the tidal equilibrium in this model by
both new nonlinear stability analysis and numerical integration of the model equations.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

We have shown that equilibrium tidal heating in Enceladus
cannot account for the nonsolar heat emanating from Enceladus
(Meyer and Wisdom, 2007): equilibrium tidal heating can account
for only 1.1(18000/Q S ) GW of the observed 5.8±1.9 GW (Spencer
et al., 2006). Provided the origin of the observed heating is tidal
heating, it is possible that Enceladus is oscillating about equilib-
rium. A model for oscillation about equilibrium has been presented
for Io by Ojakangas and Stevenson (1986). Fischer and Spohn
(1990) presented similar oscillation models for Io, emphasizing dif-
ferent rheologies. Ojakangas and Stevenson (1986) mentioned the
possible application of their model to Enceladus.

The Ojakangas and Stevenson model would only apply to Ence-
ladus if heat transport is mainly by convection. Squyres et al.
(1983) discuss whether convection occurs in Enceladus. They con-
sider a convecting region overlain by a nonconvecting, conductive
crustal ice layer. They find that for crustal thicknesses larger than
30 km, heat transport is dominated by convection. Here we assume
convection occurs and that the Ojakangas and Stevenson model is
applicable to Enceladus.

We first review the Ojakangas and Stevenson (1986) model.
We carry out a new linear stability analysis for their full model.
We show that, in fact, Enceladus does not oscillate about the
tidal equilibrium within the Ojakangas and Stevenson (1986)
model.
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2. Ojakangas and Stevenson evolution equations

Consider the thermal evolution of a satellite, with index 0, in
resonance with another satellite, with index 1, exterior to it. Let
mi be the mass of the satellite i, and ni be the mean motion. The
semimajor axis of the inner satellite is a and its orbital eccentricity
is e.

The physical parameters of the inner satellite are the heat ca-
pacity C p , the temperature T , the radius R , the density ρ , the
thermal diffusivity K , the surface gravitational acceleration g , the
thermal expansion coefficient αT , the kinematic viscosity ν(T ), the
critical Rayleigh number Rac , and the Love number k(T ) and the
tidal quality factor Q (T ). The values adopted for these physical pa-
rameters are listed in Table 1.

The basic equation for the thermal state states that the rate of
change of the thermal energy in the satellite is a balance between
tidal heating and loss from thermal convection:
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The temperature dependence of the factor Q /k is unknown, but
approximated by a power law near the solidus and a constant at
low temperature. A form that interpolates these characteristics is
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Table 1
The adopted physical parameters for Io and Enceladus are presented

Io Enceladus

Mp [1024 kg] 1898.8 568.5
m0 [1020 kg] 893.3 1.08
m1 [1020 kg] 479.7 10.95
R p [km] 71,492 60,330
Q p 105 1.8 × 104

a [km] 421,769 238,400
R [km] 1821.3 252.3
k2p 0.38 0.341
Rac 800 800
αT [K−1] 3.0 × 10−5 5.1 × 10−5

K [m2 s−1] 1.0 × 10−6 1.35 × 10−7

C p [J kg−1 K−1] 800 2100
Tm [K] 1400 273
ρ [kg m−3] 3500 1602
g [m s−2] 1.8 0.11
k2 0.027 0.0018
νT M [m2 s−1] 1012–1013 1010

β 13 30.7
γ 0.32 0.49
n 20–30 ?
m 8–12 13
L 20–30 35–37
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where Tm is the melting temperature, (Q /k)0 is the value of Q /k
at low temperature, and (Q /k)min is the minimum value of Q /k
that is reached near the melting temperature. The viscosity is
taken as a power law

ν(T ) = νT M(T /Tm)−L, (4)

where, in silicates, 20 < L < 30, and νT M = 1012–1013 m2 s−1. In
water ice, 35 < L < 37, and νT M = 1010 m2 s−1 (Durham et al.,
1997).

The equilibrium value of the temperature is
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where m = (L + 4)/3, and β = 13 for Io in the Io–Europa–
Ganymede resonance and β = 30.69 for Enceladus in the Encela-
dus–Dione resonance (Meyer and Wisdom, 2007). The equilibrium
value of the square of the eccentricity is

e2
0 = m2

0 R5
pkp

βM2
p R5 Q p

f (T0/Tm). (6)

The convective cooling timescale is

τth = R
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T 1−m
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The characteristic timescale for the equilibration of eccentricity
near equilibrium is

τe = m1α|C(α)|
2M pγ c0e0

, (8)

where α is the semimajor axis ratio a0/a1, C(α) is about −1.19
for a 2:1 mean motion resonance,
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and γ is about 0.32 for the Io–Europa–Ganymede resonance. For a
two-body j: j − 1 resonance,

γ = j − 1 − j
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For the Enceladus–Dione 2:1 resonance, γ = 0.49.
Let

p = τth
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= 6β
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For Io this constant is about 3.
Define the nondimensional temperature T N = T /T0, the scaled

eccentricity eN = e/e0, and the nondimensional time tN = t/τth .
With these definitions the nondimensionalized evolution equations
are
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The equilibrium heat flow is
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which is 0.53(100,000/Q J ) W m−2 for Io, and 1.48(18,000/Q S )

mW m−2 for Enceladus. The latter corresponds to a total power of
1.1(18,000/Q S ) GW emanating from Enceladus.

In integrating the evolution equations, several assumptions have
to be made. The temperature T does not rise above Tm . During an
interval in which T = Tm , the tidal heating rate is greater than the
convective cooling rate, and the excess energy is assumed to be
released through volcanism. The interval of T = Tm is terminated
when the rate of tidal heating falls (due to the declining eccentric-
ity) below the rate of convective cooling. The heat flow during an
interval in which T < Tm is given by the convective cooling term;
the heat flow during an interval in which T = Tm is given by the
tidal heating term.

In Fig. 1, we show a typical evolution of Io’s eccentricity and
heat flow in the Ojakangas–Stevenson model. We confirm the os-
cillating behavior found by Ojakangas and Stevenson (1986). In
Fig. 2, we show a typical evolution of Enceladus’s eccentricity and
heat flow in the same model. Both the eccentricity and heat flow
rapidly damp to equilibrium. No oscillations were found for Ence-
ladus.

3. Stability analysis

Ojakangas and Stevenson carry out a linear stability analysis
for their simplified model in which Q (T )/k(T ) is a power law.
They then introduce a more realistic form for Q (T )/k(T ) that ap-
proaches a constant for small T [see Eq. (2)]. However, they do not
carry out the stability analysis for this case. Here we describe how
the results of the linear stability analysis are modified for their
more realistic model.

For the simplified model they found that the equilibrium state,
eN = T N = 1, was unstable if n > m + p. Further, they found that
there were linear oscillations (either growing or decaying) pro-
vided

m2 + n2 + p2 − 2mp − 2mn − 2np < 0. (16)

When the tidal equilibrium is linearly unstable, the nonlinear sys-
tem oscillates.

We have carried out a linear stability analysis for the more re-
alistic model in which Q (T )/k(T ) is given by Eq. (2). We find that
the results of their analysis for the simplified model continue to
hold in the more realistic model if n is replaced by

n′ = nA(T0/Tm)n f (T0/Tm). (17)
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Fig. 1. The scaled eccentricity eN (solid) and the nondimensional heat flow qN (dot-
ted) for Io are plotted versus the nondimensional time. The timescale τth is about
135 Myr, the scale for the heatflow is 0.53 W m−2, and the scale for the eccentric-
ity is 0.0052. Here m = 12, n = 25, (Q /k)0 = 200/0.027, (Q /k)min = 3/0.027, and
Q J = 105.

Fig. 2. The scaled eccentricity eN (solid) and the nondimensional heat flow qN (dot-
ted) for Enceladus are plotted versus the nondimensional time.

Thus the equilibrium is linearly unstable if n′ > m + p, and there
are linear oscillations (growing or decaying) if

m2 + (n′)2 + p2 − 2mp − 2mn′ − 2n′ p < 0. (18)

For Io, n′ ≈ n, for n in the range of interest 20 < n < 30, and
T0/Tm ≈ 0.94. The system is linearly unstable and develops non-
linear oscillation at moderate n ≈ n′ .
Fig. 3. The parameter n′ (solid) is plotted as a function of n, for Enceladus. This is
to be compared with m + p (dotted) plotted as a function of n. For n′ < m + p the
system damps to the equilibrium state. The system is stable for all n. Here (Q /k)0

is 100/0.0018; (Q /k)0 is 100/0.0018; T0/Tm = 0.70; and m = 13.

For Enceladus, T0/Tm is smaller (T0/Tm ≈ 0.70) so the dropoff
in n′ at large n is more rapid. In fact, the peak of n′ is about 5,
for n about 8. At this n, p ≈ 51.2. Fig. 3 shows a graph of n′ and
m+ p as a function of n. Enceladus is not in the unstable region for
any n; instability requires n′ > m + p. This criterion cannot be ful-
filled for Enceladus for two reasons: the large value of p requires a
large value for n′ for instability, and the maximum value of n′ as a
function of n is small. Thus for any n the state of Enceladus damps
down to the equilibrium state. This conclusion is insensitive to the
values we have adopted for the physical parameters.

4. Conclusion

We have shown that Enceladus does not oscillate about the
tidal equilibrium within the Ojakangas and Stevenson (1986)
model. If Enceladus is oscillating about equilibrium, then another
model must be developed to describe those oscillations. One pos-
sibility is the idea expressed by Yoder (1981) that there might be
oscillations about equilibrium if the Q of Enceladus was stress de-
pendent, but this idea has not been developed.
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