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ABSTRACT

The tidal evolution of the Earth—Moon system is reexamined. Several models of tidal friction are first
compared in an averaged Hamiltonian formulation of the dynamics. With one of these models, full
integrations of the tidally evolving Earth—Moon system are carried out in the complete, fully interacting,
and chaotically evolving planetary system. Classic results on the history of the lunar orbit are confirmed by
our more general model. A detailed history of the obliquity of the Earth which takes into account the

evolving lunar orbit is presented.

1. INTRODUCTION

The history of the Earth—Moon system is of central inter-
est and importance in planetary science, and numerous stud-
ies of the history of the lunar orbit have been undertaken [see
Boss & Peale (1986) and Burns (1986) for recent reviews].
Goldreich’s (1966) paper on the subject is classic and con-
tains several key results. Of foremost importance, as the
Moon approaches the Earth, the lunar orbit becomes highly
inclined to the Earth’s equator. This is in apparent contradic-
tion with most scenarios for the formation of the Moon,
which would naturally place the Moon initially in the equa-
torial plane. Of course this includes the presently in vogue
scenario of the Moon having been created by a Mars sized
impactor hitting the Earth. All lunar histories to date, includ-
ing the Goldreich model, make strong approximations in the
dynamics of the system to reduce the problem to manageable
size. Our goal is to reexamine the dynamics of the Earth—
Moon system under much less severe approximations.

In our quest we found it enlightening to first reexamine
various tidal models in the context of a Hamiltonian refor-
mulation of the multiply averaged theory presented by
Goldreich (1966). This endeavor revealed the essential indif-
ference of the dynamics to the particular tidal model in the
class of tidal models we considered, and emphasized the im-
portance of cross tidal interactions discovered to be impor-
tant by Goldreich, but since largely forgotten.

We incorporate Darwin’s 1872 model of tidal friction, as
formulated by Mignard (1981), into our symplectic integra-
tion scheme for studying the rotational and orbital motion of
extended bodies in the planetary n-body problem (Touma &
Wisdom 1993; Wisdom & Holman 1991). We use this
scheme to examine the history of the Earth—-Moon system
with accelerated tidal evolution. We also calculate new de-
tailed histories of the Earth—Moon system, including the
obliquity of the Earth, with realistic rates of tidal friction,
over the last few million years.
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2. GOLDREICH’S THEORY

Goldreich’s 1966 theory of the moon is classic. Here we
thoroughly reexamine the details of this work. Though we
follow Goldreich’s approximations, our Hamiltonian formu-
lation of the dynamics is quite different from his formulation.
Thus, this phase of our work provides a thorough indepen-
dent check on his calculations. Furthermore, we use this
framework for carefully examining the consequences of vari-
ous tidal models.

2.1 Assumptions

Goldreich ignores planetary perturbations, as well as ef-
fects due to the changing Earth—Moon system on the orbit of
the Earth—Moon system about the Sun. He assumes that the
orbit of the Earth—~Moon barycenter about the Sun is a fixed
circular orbit. The orbit of the Moon is likewise taken to be
a circular orbit, but is inclined relative to the ecliptic. The
gravitational potential of the Earth is restricted to second
order moments, and the Earth is assumed to be axisymmet-
ric. The finite size of the Moon is ignored. The disturbing
potential of the Sun on the Earth—Moon system is truncated
after second order terms in the ratio of the Earth—Moon dis-
tance to the distance to the Sun. His theory is a multiply
averaged “secular theory.” The orbital period effects are first
removed by averaging, motivated by the fact that the orbital
time scales (month and year) are shorter than the node re-
gression time scale (18 yr). Then motion on the nodal regres-
sion time scale is removed by averaging, motivated by the
fact that the nodal regression time scale is much shorter than
the time scale associated with tidal evolution. The first aver-
aging is carried out analytically, the second averaging is car-
ried out numerically.

2.2 Degrees of Freedom

Before deriving the equations of motion, we first note
how Goldreich’s assumptions reduce the number of degrees
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of freedom of the problem. A realistic model will surely in-
clude in some manner the motion of all the planets, the Sun,
and the rigid body motion of the Earth and the Moon. There
are of course three degrees of freedom for the translational
motion of each body, and three degrees of freedom for the
most general rotational motion. The assumption of a fixed
circular Earth—Moon orbit with respect to the sun drastically
reduces the number of degrees of freedom. The Earth—Moon
relative vector has three degrees of freedom. The Earth ori-
entation has three degrees of freedom. Axisymmetry, plus
principal axis rotation reduces to one the essential number of
degrees of freedom in the orientation of the Earth. Assump-
tion of a circular lunar orbit and averaging over orbital peri-
ods leaves one degree of freedom in the orbital motion. Av-
eraging also eliminates the time dependence in the Sun’s
disturbing potential. Averaging over the precession time
scale removes the remaining degree of freedom in the orbital
motion. The sole nontrivial degree of freedom remaining is
that associated with the obliquity and precession of the equi-
nox of the Earth, which is coupled to the orbital inclination
through the integrals of motion resulting from the averaging.
Tidal interactions induce changes in the semimajor axis and
the inclination of the lunar orbit, and affect the orientation of
the Earth. Note that since the dynamics under these assump-
tions have essentially one degree of freedom, chaotic behav-
ior is not a possibility.

2.3 Equations of Motion

Here we derive in detail the equations of motion used by
Goldreich. We start with the full equations of motion, and
then explicitly impose assumptions to reduce the problem.

The kinetic energy is the sum of the usual point mass
kinetic energy for each body. The potential energy V of in-
teraction of two bodies is the integral of the Newtonian po-
tential over the mass distributions of the bodies involved.
The Hamiltonian is the sum of the kinetic and potential en-
ergies:

1 n—1 pz
H=§2 —'+2 Vij. )]
i=0 M i<

Following Goldreich, we truncate the potential energy to
second order terms in the ratio of the radii of the bodies to
the distances between them. At this order, the potential en-
ergy for an axisymmetric body interacting with other bodies
(whether extended or not) has the form

Gm1m2

JoR?
V(x,s)=~— 1= —5= Py(cos 6) , 2

where R, is the equatorial radius of the extended body, r is
the magnitude of the vector x from the center of mass of the
extended body to the other mass, @ is the angle between x
and the unit vector § through the symmetry axis. Under these
assumptions, the potential energy is

Gmoml JzRg
== 1= —5— P;(cos ;)
To1 To1
Gm0m2 JzR2 Gm1m2
————P—zehmmm)— )
Yo2 To2 T2

where the indices 0, 1, and 2 refer to the Earth, Moon, and
Sun, respectively, and interactions with other planets have
been ignored.

2.3.1 Jacobi coordinates

To develop the equations further we need to choose a set
of canonical variables, and develop the explicit form of the
potential energy. The Jacobi coordinates separate the center
of mass motion from the relative motion, and preserve the
form of the kinetic energy as the sum over planets of squares
of momenta divided by mass factors. We use Jacobi coordi-
nates throughout because with them the disturbing potential
depends only on the coordinates and this should ease the
averaging steps. A convenient choice of the Jacobi indices
appears to be in order of Earth, Moon, Sun, Mercury, Venus,
Mars,... . The advantage is that the Earth—Moon relative vec-
tor will be one of the coordinates, and the rest will be close
to the usual heliocentric Jacobi coordinates used in the plan-
etary integrations.

We label the coordinates x; with the index running from 0
to one less than the number of planets n. To define the Jacobi
coordinates we introduce the notations

Sl omix;
with
j .
m=%mp ®)

where m; is the mass of body i. The interpretation is that X
is the center of mass of the system of bodies with indices up
to and including j. The Jacobi coordinates are simply

X =x—X;_1, (6)
for indices 0<i<n, and
x(;:Xn—l’ (7)

the barycenter of the whole system. Thus,

1 ”E_l pi 1'Q pi
T=— —_—— -, 8
25 m 22 m ®

where m| are the Jacobi reduced masses

m]=m,; Tict ©
i
We need to express the potential energy in terms of the
Jacobi coordinates. More specifically, we need an expression
for x;—x;, and its magnitude, in terms of Jacobi coordinates.
To this end, we note that
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X 1 —X =%X;,1—%—(X;—X;_;) (10) 3 (x-8\% 1
i+1 i i+1 i i i—1 PZ(COS 0{)____ 1’ -z (21)
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=X =X = x! (11)
A X; . The Hamiltonian can now be divided into the Keplerian

Any difference can be found from these; thus, in particular
-1
Xi— X=X+ —]x]'.. (12)

j=1 i

More explicitly,

—Xo=X;, (13)
M,
X;—Xo=X3+ — X1, (14)
7
and

m m
x2—x1=xé—x{+—1x{=xé——;9x{. (15)

1 1

The inverse of the distance rg, is then
1 1 m X, X' m2 r12 X’ . X'
[1 1 XX 171 vXl

—== ——‘—r+—z—z
roz 72

m mr rir;

(16)

The inverse distance ri, is expanded in the small ratio
ri/ry:

1 +m0 X x£+m§ r{2P (x{-xﬁ)_ﬁ_
= a2 2 b= el Al
rz 1y LU ) nr rir;

a7

The potential energy can now be obtained by substitution.
We make an approximation here and keep only the principal
terms:

Gmgm J,R?
V=—— 1[1——anlf>2<cos 0;)}
‘ rl r
Gm0m2 Jz my Xl X2
- {1 TPz(COS 03)— — —z
r2 T r;
,+m% ri? » (x{ xé) Gmym,
= -
7 2 rir; r3

X (18)
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Note that the terms proportional to x; - X; cancel, and the
last two terms involving P, can be combined.

Explicit expressions for the J, terms are also needed.
Again, let § denote the direction to the prmc1pa1 axis which
coincides with the symmetry axis. Then

rir;

w>

X
cos 0] =—— (19)
r .
and
X5-§
cos 0§=L,—. (20)
r
Thus,

terms and the perturbations. The Keplerian part of the Hamil-
tonian for the Earth—Moon system is

1 piz Gmoml

=—1_ 22
72 m) ri @2)
The Keplerian motion of the Earth—Moon system about the
Sun is described by a similar Hamiltonian.

2.3.2 Delaunay variables

The Delaunay elements are a set of canonical coordinates
which solve the Kepler problem. We consider a Keplerlan
Hamiltonian of the form

2
P_~ (23)

H Kepler = 2m r

The Delaunay elements are: H, the angular momentum pro-
jected on the z space axis, the conjugate coordinate &, the
ascending node of the orbit plane on the inertial reference
plane, G, the magnitude of the angular momentum, the con-
jugate coordinate g, the angle from the ascending node to the
pericenter (the argument of pericenter); the momentum L is
related to the total energy, and is conjugate to the mean
anomaly I. More specifically, G=ym ,ua(l—ez), where a
and e are the semimajor axis and orbital eccentricity, A=),
the longitude of the ascending node, H=G cos i, where i is
the orbital inclination, L=+mua, and ! is the mean
anomaly. .
The Keplerian Hamiltonian is

2
M mu
HKepler= - Q—a_ == 2L2 . (24)

For unperturbed Keplerian motion the only variable
which changes with time is the mean anomaly [/, all other
variables are constants of the motion. The mean motion # is

— oH Kepler muy

2 o .
i 17 Vma® @5)

2.3.3 Andoyer variables

We also need to choose a set of canonical elements to
describe the rotational motion of the Earth. The obvious
choice is the Andoyer variables (Andoyer 1923). For the free
rigid body they naturally express the conservation of the total
angular momentum and of the space projection of the angu-
lar momentum. For the axisymmetric Earth the obliquity and
equator will be represented by a single canonical pair of
coordinates.

The Andoyer momenta are defined in terms of compo-
nents of the angular momentum. The momentum H is the
projection of the angular momentum on the z space axis. The
angle h conjugate to H is the angle from the inertial refer-
ence longitude to the ascending node of the plane perpen-
dicular to the total angular momentum. The angle between
the angular momentum vector and the z space axis is I. Thus,
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if G is the magnitude of the total angular momentum, then
H=G cosI. The next canonical momentum G is the magni-
tude of the angular momentum. The conjugate angle g is the
angle between the ascending node of the angular momentum
plane on the reference plane to the ascending node of the
equator on the angular momentum plane. Finally, the projec-
tion of the angular momentum on the Z body axis is the
momentum L, which is conjugate to the angle / between the
ascending node of the equator on the angular momentum
plane to the X body axis. The angle from the angular mo-
mentum vector to the Z body axis is J, so L=G cosJ.
In the body frame the kinetic energy of a rigid body is

T —l(A 24 Bwi+Cwl) (26)
Body™ 5 Wy Wp wc),

where A, B, and C are the principal moments of inertia, and
@, , wpg, and ¢, are the projections of the spin vector on the
respective principal axes. In terms of the spin components
the components of the angular momentum are L,=Aw,,
Lp=Bwg, and L =Cw¢. Thus, the rigid body kinetic en-
ergy is

4,51 o

1
TB‘“*Y:E('X B C

Armed with this expression, we can directly derive the
Hamiltonian for the free rigid body. Aligning the body axes
with the principal axes with the C axis coinciding with the Z
body axis, we have Lec=L;=L=G cosJ,
Ly,=Ly=GsinJsinl, and Lz=Ly=G sinJ cosl. The
rigid body Hamiltonian is

e oo G*—L?\[sin? 1 N cos? | N L?
Body™| 9 A B 2C’

where we have used the identity G sin® J =G?— L2,

Note that the absence of g, H, and & from the Hamilto-
nian imply the conservation of G, h, and H, respectively. For
an axisymmetric body with A=B the Hamiltonian is also
cyclic in /, implying L is conserved as well.

(28)

2.4 Earth—-Moon Hamiltonian

We now put the pieces together to get the Hamiltonian
governing the evolution of the Earth—Moon system. We keep
only terms that affect the Earth—Moon system or the orien-
tation of the Earth. With u=Gmgm,, the Hamiltonian for

the Earth—Moon system is
miu? (Gi—L3\[sin? 1,
2L%

Hygpar=—

2 A B 2C

cos? IO] L(z,

. Gmgym, JzRg

+— —3 P3(cos 6])
T r

Gmom, J R?
+ =22 Py(cos 63)

r r
2 ’ !
Gmym, my ry X; X,
- 7 i T | (29)
r, Mr rr;

The Earth—Moon orbital variables have the subscript 1, cor-
responding to the Jacobi index; this distinguishes them from
the Andoyer variables which here have subscript 0. The first
term gives the unperturbed Kepler motion of the Earth—
Moon system. The second line gives the unperturbed rota-
tional motion of the Earth. The third line gives the Moon’s
torque on the Earth, and the effect of the Earth’s oblateness
on the Earth—Moon orbit. The fourth line gives the Sun’s
torque on the Earth, and if the Earth—Sun orbit were allowed
to vary, it would represent the effect of the oblateness of the
Earth on the orbit of the Earth—Moon system about the Sun.
The fifth line gives the Sun’s perturbation on the Earth—
Moon orbit, and if the Earth—Sun orbit was allowed to vary,
it would also represent the effect of the finite size of the
Earth—Moon system on the orbit of the Earth—Moon system
about the Sun.

2.5 Averaging Over Orbital Time Scales

In this section we carry out the averaging over the orbital
periods. At this point we incorporate Goldreich’s assumption
that the Earth—-Moon system follows a circular orbit with
respect to the Sun, and that the Earth—Moon orbit is circular.
That is, we assume r; = a; is fixed. With this, we also assume
that the mean anomaly of the Earth—Moon system evolves
uniformly with time /;=n;t, where the period is 27/n; .

For principal axis rotation, the direction of the spin axis
and the C body axis coincide with the direction of the angu-
lar momentum vector. The inertial components of § are
S,=sinI sinh, §,=—sin/ cos h, §,=cos 1. We will use the
relation cos I=H/G, to express the interaction in terms of
Andoyer variables. We have

ri cos 6;=x] sinI sin h—y/ sin I cos h+z] cos I.
(30)

Usingx; = a, cos(nyf),y; = a sin(nyf),andz; =0,
cos @;=sin I sin(h—n,t). (31)

The expressions for x; are more complicated because the
assumed motion is out of the plane. The vector x; is obtained
from the vector (a; cos nqt,a, sin n,t,0), by successive rota-
tions by the orbital inclination i about the ascending node
and then a rotation about the spatial z axis by the longitude
of the node (). The result is

x1=ay(cos Q cos nyt—sin Q cos i sin nt), 32)

y1=a;(sin Q cos nyt+cos  cos i sin nyt), (33)

zy=ay sin i sin nqt. (34)
We find

cos 6;=sin I sin(Q)—h)cos nyt
+[cos I sin i—sin I cos(Q}—h)cos i]sin n;t.
(35)

We also need x;-x,. We find

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1994AJ....108.1943T&amp;db_key=AST

rT992AT.- - CI08. 19431

1947 J. TOUMA AND J. WISDOM: EVOLUTION OF THE EARTH-MOON SYSTEM 1947

X1 Xy

P =(cos () cos nyt—sin ) cos i sin n;t)cos n,t
142

+ (sin £ cos nit+cos ) cos i sin nqt)sin nyt.
(36)

We substitute these into the Hamiltonian and carry out the
averaging over the orbital periods. At this point we also spe-
cialize to an axisymmetric Earth with A=B8. We find

g __miu’ Go-Ly L;  Gmom JoRS
Lonar ™ "o12 24 '2C" a4y 4

3
X 7 {sin? I sin?(hy— Q) +[cos I sin i—sin I

) 1\ Gmgm, J,R?
X cos i cos(ho-—ﬂ)]z}—i + z a%e
3 1\ Gmymymyat (3 1)
X| = sin® I- = |+ — — |z sin?i—=|.
(4sm I 2) a 77125 8sm L

@37
Note that the first square bracket is the square of the sine
of the mutual obliquity € of the spin axis with respect to the
orbit normal of the moon
sin? e=sin? I sin?(hy— Q)
+[cos I sin i—sin I cos i cos(hy—Q)]%.  (38)
It will be helpful to define some constants (keeping in

mind that the constants will change when tides are incorpo-
rated). Define

Gmomy J,R? 3
Ci=- —2 0 39
1 a; a% 4 ( )
Gmomz.]zRe3
sz" PR (40)
and

Gm1m2 mg a% 3
— . (41)
a Mn Z§ 8

C3—.,—

The constants are (from Allen 1973) the mass of the Earth
my=5976x10" g, the mass of the Moon
m;=my/81.301=7.350X10" g, the mass of the Sun
m,=1.989x10* g, the mean Earth—-Moon distance
a;=384400 km, the mean Earth-Sun distance
a,=1.495 979x10"3 cm, the angular momentum of the Earth
G=5.861x10* cm?gs™!, the oblateness of the Earth
J,=0.001082 64, the equatorial radius of the Earth
R,=6378.164 km, and the gravitational constant
G=667x10"% dyncm’g™®  We  deduce G,
= ym|Gmgmia,(1—€?) = 2.8552 X 10*' cm®* g s}, us-
ing €;=0.0549. In terms of these constants we can form
frequencies: a;=—2C;/G(=5.8139x10" 257!, q,=—2C,/
G(=2.6693X10"12 s, and a;=—2C;/G;=1.116743
x107% s, The corresponding periods are 34 245.80,
74 590.96, and 17.83 yr, respectively.

Using these definitions, ignoring constant terms, and writ-
ing the sines in terms of cosines, the Hamiltonian becomes

Hyynar=C cos? €+C, cos? [+C; cos? i. 42)

Note that the three cosines correspond to Goldreich’s vari-
ables: x=cos I, y=cos i, and z=cos €. Goldreich’s scalar an-
gular momenta correspond to canonical momenta: H=G,
and £=G,. Up to a scale factor Hy,,, is the same as x in
Goldreich’s paper. The C; are simply related to Goldreich’s
constants L, K;, and K,: C,=L/2, C,=K;/2, and
C3=K,/2, taking into account Goldreich’s definition of
J = 3] 2/ 2 .

Looking ahead at this point we note that Hamilton’s equa-
tions derived from this Hamiltonian will be singular when
either i or I is zero, for then the nodes are not defined. For
the evolution of the Moon as found by Goldreich the oblig-
uity does not get small but the inclination of the Moon does.
Thus, we only need to remove the orbit singularity. To avoid
the singularity we carry out a sequence of transformations.
First, it is convenient to change variables so that the momen-
tum conjugate to the node becomes small if the inclination is
small. A transformation that accomplishes this has the gen-
erating function

F=—hH{+(g,+h)G1+1L;. (43)

This gives h{=—hy, gi=g1+hy, [{=1;, but more impor-
tantlyH; = G, — H,,G{ = G,andL| = L,. We have

i
H|=G{—H;=G(1—cos i)=2G, sin’ 5 (44)

The momentum H7 is small with small i as desired.

Next, we make use of the fact that only one combination
of angles hy — Q = hy + h{ appears in the Hamiltonian. We
use the generating function

F=(ho+h1)H]+hyH;+identity, (45)

to yield H]{=H| and Hy=Hy—H{=Hy+H,— G, which is
conserved since the Hamiltonian does not depend on A3 .

Having made use of the obvious integrals, we need to
finish the job of removing the singularity. We define

i

x=+2H] cos h{=2+G sin ) cos(hy—Q), (46)
i

y=+2H] sin h{=2G sin 5 sin(hg—Q). 47)

The variable x is the momentum conjugate to the coordinate
y.

To write the Hamiltonian in terms of x and y we first
derive some intermediate results:

L X x“+y

s1nzcos(h0—Q)=\/?—1 1- G, (48)
i=1 2'2i—1 2x2+y2 49

cos i=1-2 sin’ 5= G, )’ (49)

and
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0.1 L

Yo 0.0 -

L
-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
Zo

FiG. 1. The x—y phase plane-for the present configuration of the Earth—
Moon system. The dashed line is the trajectory of the actual system. The
dotted lines show other trajectories in the phase plane. The solid line is the
boundary of the allowed phase plane.

cos €=cos i cos I+cos(hy—{2)sin i sin I

2,2
x“+ H
[ o[ Ho
4G, Gy
4 \/1 Xy 1 Hy (50)
VG, 4G, G

The Hamiltonian is then
x2+y?\ | H,
Gy

N X \/1 xz-f-y2 \/1 H(Z, 2+C H%
JG, 4G, G? 262

x>+ y2 2
1-2 4G,
with Hy = H + (x* + y?)/2. The Hamiltonian is a mess, but it
is not singular for x=y =0. Note that Goldreich must at each
step determine which of the two solutions of a quadratic
equation is the appropriate one to use. We have no such
ambiguity here.

Before proceeding we must understand the x—y phase
space. Keep in mind that x and y are conjugate variables.
The Hamiltonian is an even function of y so all of the tra-
jectories are symmetrical about the x axis. There is a single
fixed point for positive x with y=0 when the Moon is far
from the Earth. For convenience we define scaled versions of
xandy:x' = x/\/—CT, and y' = y/\/G_lo, G g is the value
of G, at the present. The phase plane for the present configu-
ration of the Earth—Moon system is shown in Fig. 1. The
trajectory of the Earth—Moon system is here put in relation
to other possible trajectories of the system. The phase plane
shows the dynamical context in which the actual trajectory

4G,

I{Lunarzcl[[l_2

+C; (51)

0.3 T T T T T

0.2

Yo 0.0 [

L 1
-03 -0.2 -0.1 0.0 0.1 0.2 0.3
Zo .

FiG. 2. The x—y phase plane for the Earth—Moon system when the semi-
major axis of the lunar orbit is near SR, . The dashed line is the trajectory of
the actual system. The dotted lines show other trajectories in the phase
plane. The solid line is the boundary of the allowed phase plane.

sits. To our knowledge, other treatments have not put the
dynamics of the Moon in context in this way. It is especially
interesting to note that when the Moon is close to the Earth
there is a second fixed point with negative x with y =0 (Fig.
2). The constants and state variables have here been chosen
self-consistently according to the evolution described below,
using the complete Darwin—Mignard tides with lunar—solar
cross terms. The second fixed point does not affect the evo-
lution of our Moon, but it is interesting to see that other,
qualitatively different, dynamical possibilities exist.

Note that the area on the x—y phase plane is nearly con-
served by the tidal evolution. The area enclosed by the sys-
tem trajectory (the dashed line) in Fig. 2 is only 4 percent
larger than the area enclosed by the system trajectory in Fig.
1, even though the values of the Hamiltonian and the angular
momentum of the Earth and Moon have each changed by
about a factor of 4 (4.585, 0.2898, 3.771, respectively). The
observed difference in area is not an artifact of numerical
error or the speed of tidal evolution, since the tidal time scale
can be scaled out of the equations of motion. Presumably, the
small difference in the areas reflects the nonadiabatic nature
of the evolution with dissipation. Another possibility is that
the phase plane area is only a first-order adiabatic invariant,
and that a more accurate adiabatic invariant exists. We be-
lieve our observation of the near adiabatic evolution of the
area on the x—y phase plane is nontrivial and new.

2.6 Tidal Equations

In this section we develop the equations for the variation
of the constants in terms of the tidal torques. For conve-
nience, we use Gol@reich’s potation: a is the unit vector
along the spin axis, b is the unit vector normal to the lunar
orbit plane, and ¢ is the unit vector normal to the ecliptic. Let
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T, be the torque on the Earth, and T, be the torque on the
Moon. Of course, in the absence of solar torques we have
T0= “Tl .

Components of the tidal torques directly affect corre-
sponding components of the angular momenta:

d—fTO=To-ﬁ, (52)

%=T0-é, (53)

d(% =T,-b, (54)
and

%srl-é. (55)

In the absence of solar torques Hp,=Hy+H; is constant.

The equations governing the evolution of x and y need
not be modified since these will be integrated only over the
precession period to carry out the averages for the longer
term tidal evolution of the constants. However, if these equa-
tions were to be integrated for a long time, then tidal correc-
tions would have to be added. Goldreich avoids computing
these corrections by computing the secular tidal evolution of
the Hamiltonian, and from the value of the Hamiltonian he
solves for the appropriate starting conditions for the nodal
precession equations (here, values of x and y). Following
Goldreich, we need to develop the equations for the secular
evolution of the Hamiltonian. As the evolution proceeds we
solve for the value of x with y=0 near the previous value
that has the correct value of the Hamiltonian. This is used as
the initial condition in the numerical integration over the
precessional period to compute the precessional averages of
the tidal equations derived below.

The equations governing the evolution of the constants
are simply derived. We note that a, is proportional to G2.
The moment J, is approximately given by

J,=kR3Q%/(3GI), (56)

where k;=0.947 is a secular Love number chosen to give the
known value of J,, Q is the angular rotation rate of the
Earth, and /=mR?. Recall that Q is proportional to G,.
Thus, C;%G3/GS, C,xG3, and C;xG%. We derive then

dc G, G To-d Ti-b
——1=cl(2—°—6—‘)=c1(2°——6 . ) (57)

dt Gy, G4 Gy G,

dc, G, T,-a

'—dT——Cz(Z G—O)—C2(2 G, )’ (58)
and

dc; G, T,-b

T—C3(4 G—l)_c3(4_G—1 . (59)

Next we develop the equations governing the tidal evolu-
tion of the three cosines: cos ¢, cos I, and cos i. The latter
two are easy:

d cos T HO GO To'é_COSITo'é
el e @
and
d cos i H, G,| T,-&é—cosiT,-b
dr s i(le" G_l) = G, - 6y

The direct derivation of the time derivative of cos € is
more complicated. However, Goldreich’s derivation is fairly
easy to follow, and the result can be checked by a direct
calculation. In our notation we have

dcose To-b—T,-4 cos €, T,-a—T;-b cos €
dt Go G, :

(62)

Combining terms, the time derivative of the Hamiltonian
is

dH ynar To-b T,-a T, b
T_ch cos € Gy + G, 4 cos € G,
+2C, cos 1 128
2 COS GO
+2C '(Tl'é+ Tub 63
3 COS I G cos i —=—|. )
2.7 Tidal Models

We examine the evolution with several tidal models. They
include (1) the MacDonald tides, (2) the Darwin tides with
constant and equal phase lags, (3) the Darwin tides with
phase lags proportional to frequency, and (4) Darwin—
Mignard tides. We consider the evolution with just the
Earth—Moon tides, the evolution with the addition of direct
solar tides, and the evolution with solar tides including
solar—lunar cross terms.

The MacDonald tides model the distortion of the body as
a second harmonic distortion. Friction is introduced by de-
laying the tide with respect to the tide raising potential. The
delay is incorporated as a constant phase lag, which does not
make any sense for eccentric orbits. Darwin’s (1880) ap-
proach is to Fourier expand the tide raising potential and
then introduce friction through phase lags in each (uniformly
moving) term. A problem with this approach is that the phase
lags are numerous and essentially unconstrained by observa-
tions, but the approach is more satisfying than MacDonald’s
approach which seems arbitrary. Mignard (1981) has devel-
oped a different formulation of the Darwin tides. In his for-
mulation the distortion of the body is again approximated as
a second harmonic distortion, but is delayed with respect to
the tide raising potential by a constant time lag. The Mignard
tide is equivalent to the Darwin tide if the phase factors are
taken to be proportional to frequency, and the sine of the
phase lag is small enough to be approximated by the phase
lag. The Mignard tides are appealing for us since they have a
simple analytic form. We shall see that the frequency depen-
dence of the tidal model is of secondary importance to cor-
rectly including all tidal interactions. An important contribu-
tion of Goldreich was the recognition that there can be
average tidal effects on one body due to tides raised by an-
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other body. If the spin axis is not aligned with the orbit
normal, then the spin can carry the tidal bulge out of the
orbital plane of the tide raising body. This out-of-plane
bulge, in turn, can produce average in-plane torques on a
third body. The effects due to these “cross terms” is more
significant than the effects due to direct solar tides.

Goldreich expresses the tidal torques in terms of the com-
ponents on one of two different sets of coordinates. One set
is referred to the orbital plane of the Moon and the other is
referred to the ecliptic Denote the coordinate directions of
the first system by_ €;, and the coordinate directions of the
second system by f We have e3—b the direction perpen-
dicular to the lunar orbit, and f3—c, tl}e normal to the egllp-
tic. The direction of €, is same as aXb; the direction of f; is
same as aX¢. The second coordinate directions are chosen to
form a right handed system (in ascending numerical order)
We write either T= T.6,+T,e,+Tse;, or T= Tlfl
+ T2f2+ T3f3, whichever is more convenient. The projec-
tions are

T-a=T, sin €+ T5 cos € (64)
=T} sin I+Tj cos I, (65)
T-b=T; (66)

=T, sin(hy—Q)sin i+ T, cos(hy—Q)sin i

+T; cos i, (67)
‘ sin i sin I sin(hy—
Té=T1(_ 7 ( 0 ))
sin €
cos I—cos i cos € +T . 68
2\ emne | TIscosi (68)
=Tj;. (69)

Goldreich asserts that since all 7; and T; are multiplied by a
factor of sin(hy,—(2) that the average of these terms is zero
and thus do not need to be considered further. This is incor-
rect, because some Ty and T; terms are nonzero and contain
an additional factor of sin(h,—{2). The product has a nonzero
precessional average. However, we have found that the ne-
glected terms do not significantly affect the evolution.

2.7.1 MacDonald tides

We copy here the expressions for the average MacDonald
(1964) torques from Goldreich (removing an incorrect extra
factor of n):

T,=0, (70)
2mA E(q)—q'*K
POl b M CUPRPYN (71)
may q
and
2mA
T;=— q'K(q)sin 28, (72)
ma,
with

3 5
A= 3 GmR ks, (73)

472=1_q2’ (74)

where g’ has the sign of z—a, with a=n /€, where n is
the mean motion of the lunar orbit, and (), is the angular
rotation rate of the Earth,

,  l-cos’e -

T = 1+a’2acos € 5)
and K and E are the usual complete elliptic integrals of the
first and second kind. The phase lag was taken to be 0.04635
rad. The precise value is not important here since it only sets
the time scale for tidal evolution, and the actual time scale is
unknown. Note that T'; is zero, so in this case the argument
about the average is moot. We do not consider solar torques
or solar—lunar cross torques in the MacDonald formulation.

2.7.2 Darwin—-Mignard tides

The Mignard tides are simply expressed. The torque per
unit mass is '

3k,Gm*R>

I e At{(rXr*)[r* (@Xr)+r-v*¥] (76)
=5 — (rXr*)(rr¥) (77)
+(r-r*)[(r o)r* — (r-r*)o+rxv*]}. (78)

The variables with superscript * are those of the tide raising
body; those without the superscript are those of the body
affected by the torques.

In the case where the orbits are taken to be circular orbits
the analytic averages of the Mignard torques over the orbital
periods are easily accomplished. The average lunar torques
due to lunar tides are

k,Gm3RS [3
T-a=At Z—G}—e [— Q, sin® €
a; 2

(79)

+3 cos €({)y cos e—ny)|,

. k,Gm3R3
T-b=At —F [3(Qg cos €e=ny)], (80)
1

. k,GmiR: [3
T-c=At¢ ——ag—

[ Qq(cos I—cos i cos €)
1

+3 cos i({2y cos €e—ny)|. (81)

The average solar torques due to solar tides are

. k,Gm3R3
T-é=At ——
2

3 -
5905111 1

+3 cos I(Q cos I—nz)], (82)
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. k,Gm3RS (3 . k,Gm2RS (3 3
T-b=At ——5— | 5 Q(cos e—cos I cos i) T-b=sin ¢, — 5 | = cos e+ — cos € sin? €|, (93)
a, 2 aj 2 4
+3 cos ({2 cos 1—n2)], (83) X k,Gm?R® (3
T-c=sin ¢, ——— | - cos i cos €
ay 4
. k,Gm3R>
c=At ——F—[3(Qq cos I—n,)]. (84) 9 s
a5 + g °°s i cos € sin” € 94)
The average lunar torques due to solar tides are
kyGmym,R] [3 3 ,
T 4= QOAt_Z__;__Z__{S sin? i sin? I cos 2(ho— ) +4—cosl+ﬁcoslsm2 e). (95)

3
—gsin2 i sin® I—Zcoslsinlcosisini

3
Xcos(hg— Q)+ 7 sin? I], (85)

T -b=0, (86)

szm1m2R 3 . .
cos i sin i sin /

T-é= QOAt—j—— :

Xcos(hO—Q)]. (87)

The average solar torques due to lunar tides are

k,Gmym,RS [ 3

T-a=QyAt % { sin? i sin® I cos 2(hyg—Q)
a1a2 8

3
) —gsinzisinzl——cosl sin I cos i sin i

4
3
Xcos(ho=Q)+ 7 sin? I], (88)
szm1m2R 3
T-b=0At g eostho=0)
Xsin i sin [ cos® i (89)
3
mgcos I cos i sin? i], (90)
T-&=0. ‘ 91

Of course, the reaction torques on the Earth are the opposite
of the torques on exterior bodies. The tidal time lag was
taken to be about 11.54 min. Again, the precise value is not
important since it sets an unknown time scale.

2.7.3 Darwin—Kaula—Goldreich tides

Goldreich focuses on the Darwin—Kaula tide with con-
stant and equal phase lags. We record here the summed
forms for these tidal torques.

The average lunar torques due to lunar tides are
k,GmiR3 (3 9 )

T-a=sin ¢, — 5 | =— — sin* € (92)
aj

The average solar torques due to solar tides are

Taes k,Gm3R (3 9 /), o6
-a=sin G,T E—Rsm (96)
k,Gm3R3 (3
T-b=sin e,ﬁ——— Zcosz cos
9
+— cos i cos I sin® I 97)
16
+3 + > in [ 98
4cose 16cosesm ) (98)

. . kGmiR] (3
T c=sin €& 8

3 ,
cosI+—cosIsin”I|. (99)
2 .

2 4

The average lunar torques due to solar tides are

T-a= sme,—ﬂ-— —sin? I— = sin* I

szmlmzR 3
4 8

2

9
-3 sin® i sin® I+ 16 sin® i sin* 1

— = cos i cos® I sin i sin I cos(hy— Q)

4

3

16 sin® i sin* I cos 2(hg— Q)], (100)
T-b=0, (101)

k2Gm1m2R 3
T-c=sin E‘T —gcoslsm i sin? I cos 2
2

3
X (ho—Q)— ( cos i sin i sin

3
—gcosisini sin® 1) cos(hO—Q)}. (102)

The average solar torques due to lunar tides are
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T k,Gmim,RS (3 . ; o ' ' ' '
a=sin € ————3—— — sin? I— = sin*
! 4 8

— —sin? i sin® I+ 2 sin® i sin* I e |
8 16 . i
3 . 3 o s e

— g cos i cos I sin i sin I cos(hy— ()

(103)

3
T sin? i sin* I cos 2(hy—Q) |,

szmlmzR
T-b=sin € 33
aa;

3

7 sin i sin I cos(hy—(2)

3 . <2 . 9 3. .
—gcosi cos I sin® i— g sin i sin I cos(hy— )

3
— = sin i sin® I cos(hy—Q)

8
27 1 ho—Q
32 sin® i sin® I cos(hy— Q)
+ 7 cos i cos I sin? i sin® I
33 — sin® i sin® I cos 3(hy—Q)|, (104)
T-é=0. (105)

The tidal phase lag was chosen to satisfy sin =0.0927.
Once again, the value that would best model the tidal evolu-

40° T T T T

30°

€ 20°

10°

0°

FIG. 3. The mutual obliquity € is plotted vs the semimajor axis of the lunar
orbit. In this and subsequent figures the evolution of a quantity is displayed
by plotting the maximum and minimum over a precession period. The evo-
lution with the average Darwin—Mignard torques is represented by the solid
line, the evolution with the Darwin—Kaula—Goldreich tides with equal phase
shifts is represented by the dotted line, and the evolution with the Mac-
Donald tides are represented by the dashed line. No solar tidal contributions
were included.

o LY . .
0 15 30 45 60 75
a/R, c

FiG. 4. The inclination of the lunar orbit i is plotted vs the semimajor axis of
the lunar orbit. The evolution with the average Darwin—-Mignard torques is
represented by the solid line, the evolution with the Darwin—Kaula—
Goldreich tides with equal phase shifts is represented by the dotted line, and
the evolution with the MacDonald tides are represented by the dashed line.
No solar tidal contributions were included. )

tion is unknown. We have chosen the tidal constants to give
similar evolutions of the semimajor axis of the lunar orbit at
the present.

2.8 Tidal Evolution

Computers are now fast enough that the integration of the
equations of motion can be implemented simply and clearly.
The tidal averages over the precessional period are carried

40° T T T T
30°
I 20°

100 |

o/R.

FiG. 5. The obliquity of Earth [ is plotted vs the semimajor axis of the lunar
orbit. The evolution with the average Darwin—Mignard torques is repre-
sented by the solid line, the evolution with the Darwin—Kaula—Goldreich
tides with equal phase shifts is represented by the dotted line, and the evo-
lution with the MacDonald tides are represented by the dashed line. No solar
tidal contributions were included.
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50

30
day[hours|

20 -

FIG. 6. The length of the day is plotted vs the semimajor axis of the lunar
orbit. The evolution with the average Darwin—Mignard torques is repre-
sented by the solid line, the evolution with the Darwin—Kaula—Goldreich
tides with equal phase shifts is represented by the dotted line, and the evo-
lution with the MacDonald tides are represented by the dashed line. No solar
tidal contributions were included.

out by adding extra differential equations to the precessional
equations to integrate the averages for the tidal evolution.
Thus, there is no extra step of integrating over a precom-
puted precessional trajectory as was done by Goldreich. Both
the precessional evolution and the tidal evolution are com-
puted with an implementation of the standard Bulirsch—Stoer
algorithm. The relative error per step was taken to be 1071

100 T T T T

80 -

Talyears]

40

F1G. 7. The period of precession of the lunar orbit is plotted vs the semima-
jor axis of the lunar orbit. The evolution with the average Darwin—Mignard
torques is represented by the solid line, the evolution with the Darwin—
Kaula—-Goldreich tides with equal phase shifts is represented by the dotted
line, and the evolution with the MacDonald tides are represented by the
dashed line. No solar tidal contributions were included.

75 T T T
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4 | .

a/R. i

15

0 : L L L
-2 -1 []
t[10°years)

FiG. 8. The semimajor axis of the lunar orbit is plotted vs time. The evolu-
tion with the average Darwin—Mignard torques is represented by the solid
line, the evolution with the Darwin—Kaula—Goldreich tides with equal phase
shifts is represented by the dotted line, and the evolution with the Mac-
Donald tides are represented by the dashed line. No solar tidal contributions
were included.

2.8.1 Comparison of tidal models

We first present comparisons of the evolution of the lunar
orbit with the different tidal models, including only the lunar
torques due to lunar tides on the Earth. This is the only case
for which we can compare all of our tidal models. Aspects of
the resulting evolution are displayed in Figs. 3—8. First, our

40°

30°

FiG. 9. The mutual obliquity € is plotted vs the semimajor axis of the lunar
orbit. Darwin—Mignard tides were used. The evolution with lunar tides only
is represented by the dotted line, the evolution with the addition of direct
solar tides is represented with the dashed line, and the solid line represents
the evolution with all tidal contributions.
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40° T T — T

3 - -

FiG. 10. The inclination of the Junar orbit i is plotted vs the semimajor axis
of the lunar orbit. Darwin—Mignard tides were used. The evolution with
lunar tides only is represented by the dotted line, the evolution with the
addition of direct solar tides is represented with the dashed line, and the
solid line represents the evolution with all tidal contributions.

formulation and implementation give evolutions which are in
excellent agreement with the evolution reported in Gold-
reich. Also, as noted by Goldreich, the differences between
the three tidal models are, for the most part, unimportant.
The most important difference is that the mutual obliquity €
is not as large at very small lunar semimajor axes for the
Darwin—Kaula—Goldreich tides as compared to the other
models. The evolution of the lunar semimajor axis presents
the well known time scale problem; the lunar orbit collapses
only a little over a billion years ago. Presumably, the tidal

40°
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I 20° |
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0° 1 L L I

FiG. 11. The obliquity of Earth I is plotted vs the semimajor axis of the lunar
orbit. Darwin—Mignard tides were used. The evolution with lunar tides only
is represented by the dotted line, the evolution with the addition of direct
solar tides is represented with the dashed line, and the solid line represents
the evolution with all tidal contributions.
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FiG. 12. The length of the day is plotted vs the semimajor axis of the lunar
orbit. Darwin—Mignard tides were used. The evolution with lunar tides only
is represented by the dotted line, the evolution with the addition of direct
solar tides is represented with the dashed line, and the solid lme represents
the evolution with all tidal contributions.

constants have changed as the continents have drifted. Thus,
the observed differences among models in the evolution of
the semimajor axis vs time are not important. We note only
that the Darwin—Mignard tides collapse faster because the
tidal constants are proportional to frequency and the frequen-
cies increase as the lunar orbit shrinks. :

2.8.2 Comparison of tidal contributions

Next we present a comparison of the evolutions for a
given tidal model with varying physical effects included

100 T T T T

60 [

Talyears)

40

20

0 L I L !
0 15 30 45 60 75
a/R.

FiG. 13. The period of precession of the lunar orbit is plotted vs the semi-
major axis of the lunar orbit. Darwin—Mignard tides were used. The evolu-
tion with lunar tides only is represented by the dotted line, the evolution
with the addition of direct solar tides is represented with the dashed line, and
the solid line represents the evolution with all tidal contributions.
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(Figs. 9-14). We use the Darwin—Mignard torques. We com-
pare the evolution with lunar tides only, lunar tides plus di-
rect solar tides, and lunar tides with direct and indirect solar
tides. Here the differences are more pronounced than in the
last set of comparisons. Thus, it is more important to cor-
rectly incorporate all the effects than it is to have the correct
tidal model. Note that the direct solar torques typically have
the opposite effect as the indirect cross terms, and that the
cross terms seem to be more important, as reported by Gol-
dreich.

2.8.3 Comparison of full models

Finally, we present evolutions computed with the
Darwin—Kaula—Goldreich torques and the Darwin—Mignard
torques, with all tidal effects included (Figs. 15-20). These
two models both include all the torques and cross torques,
but differ by the frequency dependence of the torques.

The agreement of our calculation using Darwin—Kaula—
Goldreich tides with the calculation by Goldreich is not bad,
but not perfect either. The origin of the discrepancy is un-
known; however, we have checked that it is not due to Gol-
dreich’s omission of T; and T terms.

These two models exhibit very similar evolution in the
past. The inclusion of cross terms and solar torques has a
much larger effect than changing the frequency dependence
of the tidal torques. In the future, the obliquity of the Earth
increases less rapidly in the constant tidal phase model than
in the model with frequency dependent phases.

A principal result of Goldreich’s paper was that the mu-
tual obliquity of the lunar orbit to the Earth’s equator is large
at small lunar semimajor axes. All of our models confirm this
result, though the evolution is different in detail. We are pre-
sented with an unresolved mystery. All theories of lunar for-
mation require that formation take place in the equator plane,
yet models of tidal evolution do not place the Moon there.

3. INCORPORATION OF TIDAL FRICTION INTO THE SYMPLECTIC
i INTEGRATION SCHEME

At this point, we leave the simple, but revealing model of
Goldreich, and move on to examine the tidal evolution of the
Earth—Moon system numerically. We are anxious to relax the
assumptions that were introduced earlier.

3.1 What a Mess: Ad Hoc Models of Tides

In our search for a physically plausible model of tidal
interactions, it was natural to consider the road taken by
ephemeris calculators. We considered a paper on the DE 102
ephemeris written by Newhall ef al. (1983). DE 102, “a nu-
merically integrated ephemeris of the Moon and planets
spanning 44 centuries,” used the following expression for the
tidally induced geocentric acceleration of the Moon:

: \;\t+y5
. ~3ku B\ [ R\’
rtidesz__r_i%z—m(l"_-_m)(_e) y—x6|,

(106)
#e rem

em z

where k, is the potential Love number of the Earth; &is the
phase lag of the tidal bulge raised by the Moon on the Earth;

M, is the gravitational constant times the mass of the Earth;
M., is the gravitational constant times the mass of the Moon;
R, is the radius of the Earth; r,, is the geocentric lunar
distance; x, y, and z are the components of the geocentric
position vector of the Moon expressed in the “true-of-date
system.” Since DE 102 does not integrate the Earth rotation,
a true-of-date coordinate system is obtained by performing
the ““necessary” orthogonal transformations on the reference
coordinate system.

The assumptions that go into deriving this expression for
the tides were not discussed in the DE 102 paper. However,
the authors referred to a paper by Williams et al. (1978) “for
further discussion.” The latter paper writes the same expres-
sion but again with very little explanation:

Mathematically a “tidal bulge” is raised by adding a term
to the potential of the Earth which is proportional to the
potential Love number k, and the second degree Legendre
polynomial P,. The symmetry axis of this bulge is then ro-
tated forward (right handed) about the spin axis of the Earth
by a phase angle &.

Instead of trying to make direct sense of the DE 102 tidal
accelerations, we decided to work with Mignard’s tidal
model. In our study of the multiply averaged theory just
presented, we found that the frequency dependence of the
tidal model was less important than including all the physical
effects. In particular, we found that the averaged Darwin—
Mignard torques gave very similar evolution to the averaged
Darwin-Kaula—Goldreich torques. We adopt the Mignard’s
model for our numerical work because it is analytically sim-
pler. Starting with the Mignard tides we can understand the
constraints that have to be applied in order to recover the DE
102 tidal accelerations. These constraints demonstrate why
the DE 102 model of tides is not applicable to the Earth—
Moon system in long (and perhaps short) term integrations.

So without further archeology, we proceed to discuss in
more detail the tidal model used by Mignard. Instead of a
constant phase delay ¢ in the tidal response, Mignard as-
sumes a constant time delay At and then Taylor expands the
delayed dynamic variables, assuming a small A¢.

The tide raising potential can be expanded in the usual
way in terms of Legendre polynomials. We consider the sec-
ond order term in the potential:

17
U0=ﬁ [3(r-1,)2=r?r2], (107)

where w, is the gravitational constant times the mass of the
tide raising body; r,, is the position vector of the tide raising
body; r is the point where the potential is calculated. The tide
raising potential produces an elastic deformation of the Earth
which leads to an additional potential at position r given by

5

U(r)=k, % [3(r-x,)2=r?r2], (108)
D

where as before k, is the potential Love number of the Earth
and R, is the radius of the Earth. This form of the potential
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holds in case the elastic deformation of the body is ideal.
In the presence of dissipation, we assume, with Mignard, that
the tidal response is delayed by-a time A¢ which is small
compared to the rotational and the orbital frequencies in the
problem. Thus, the additional potential at time ¢, evaluated at
position r(#), is equal to the additional potential produced by
an ideal response of the Earth with the perturbing body at
ry()=r,(t—At)+o(t) Xr,(t—Af). If we expand r,; for
small Az we find

r () =r,(t)— Atv, () + () X1,(t), (109)
where v,(1) is the velocity of the perturbing body at time ¢.
Next, we carry out the following steps: (1) replace r,, in U by
the approximate expression for ry; (2) expand the potential
up to terms of order A¢; (3) find the additional force at r due
to a perturber at r, by taking the gradient of the potential
energy with respect to r; (4) equate r to r,, in the expression
of the force to find the force experienced by the perturbing
body (the Moon) due to the deformations it produces on the
Earth.
We recover the force acting on the Moon due to a delayed
tidal bulge on the Earth:

3k2GM2 R3
Ftides= - r {remrem+ At[zl.em(rem em)
em

+ 12 (Com X @+ Vo) 1. (110)

The tidal torque acting on the lunar orbit is given by

3k,GMZR3At

T=r,pXF=~——q~—
. rem

X[(rem'w)rem_rzmw"'remxvem]' (111)
An equal and opposite torque acts on the Earth figure. We

finally give an expression for the geocentric tidal accelera-
tion of the Moon:

3kopnm| 1 M ~|R3
i:tides= - 10 . {rezrmrem+ At[2rem(rem : vem)
Fem
+ 1o (FemX @+ Vo) 1} (112)

Similar expressions can be derived for the cross terms by
taking the derivative with respect to the unstarred variables
and keeping the starred variables in the equations.

Under what conditions do we recover the DE 102 expres-
sion? First, we decouple the Earth rotation from the tidal
interaction: w=wk, where w is the angular velocity of the
Earth, and k is a unit vector along the z axis of the Earth.
Second, we assume an equatorial circular orbit for the Moon:

om=nKXr,,, , where n is the orbital mean motion. After
enforcing these constraints, the tidal acceleration becomes

3k2/.e,,,(1+—)R5

e

[t +AtH{(w—n)r,, ¥XK].
(113)

Setting =At(w— n), we recover the DE 102 expression.

A few remarks are in order. The Moon’s orbit is of course
neither equatorial, nor circular, nor even elliptical. This
model of the tides doesn’t apply to the Moon. Assuming we
were to ignore the eccentricity of the Moon, the misalign-
ment of the angular momenta of the lunar orbit and the Earth
is not negligible. An expression which would take that factor
into account is given by

Friges= — 3
1des rem

3kobm R]

i;tides 8
r
em

X[+ ALE X (0k—1kg)], (114)

where K, is a unit vector normal to the plane of the circular
lunar orbit. This expression is, however, not general enough
for our purposes. We use the more general expressions de-
rived above.

1+ £
e

4. THE MESS IN TIME: TIDES AND INTEGRATORS

We have derived Lie—Poisson integrators for rigid body
dynamics in the solar system (Touma & Wisdom 1994).
These integrators follow the free rigid body dynamics, the
Keplerian motion, point—point interactions and body—point
interactions. The algorithms preserve the symplectic struc-
ture and the total angular momentum of the system. Dissipa-
tion will affect the symplectic structure, but the total angular
momentum should remain constant.

Emphasizing the conservation properties of the dynamics,
we can write the differential equations in the following man-
ner:

d

7 (115)

X=vVy+vp,
where vy denotes the Hamiltonian vector field of the conser-
vative dynamics, and v, denotes the dissipative vector field.
The derivation of our symplectic algorithms relies on the
averaging principle and the Hamiltonian nature of the dy-
namics. However, if we focus on the maps as integrators then
they are clearly applicable to the approximation of general
vector fields, whether or not they are Hamiltonian. So what-
ever algorithm we use to integrate the Hamiltonian vector
field, we can write

x(t) =exp(vy+ vpt)x(0) =exp(vyt)exp(vpt)x(0)
+0(1?). (116)

Of course, higher order approximations of the dynamics can
be obtained in the usual fashion. The first order splitting
corresponds to the intuitive idea of a dissipative Kick to the
conservative dynamics.
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F16. 14. The semimajor axis of the lunar orbit is plotted vs time. Darwin—
Mignard tides were used. The evolution with lunar tides only is represented
by the dotted line, the evolution with the addition of direct solar tides is
represented with the dashed line, and the solid line represents the evolution
with all tidal contributions.

Having dealt with the Hamiltonian contributions in
Touma & Wisdom (1994), we briefly discuss the dissipative
effects. The dissipative kicks, given by Eqgs. (111) and (112)
act at a fixed radius, and depend linearly on the momenta.
The integral curves are given by the exponential of a con-
stant matrix. In our calculations, we found it well within the
order of the integration to keep the first two terms in the
Taylor expansion of the solution. Explicitly, over a time step
At, the tide raised by the Moon on the Earth kicks the spin
angular momentum of the Earth by

40° T T T T

30°

€ 20°

10°

0°

FIG. 15. The mutual obliquity € is plotted vs the semimajor axis of the lunar
orbit. The evolution with the average Darwin—Mignard torques is repre-
sented by the solid line, and the evolution with the Darwin—Kaula—
Goldreich tides with equal phase shifts is represented by the dotted line. All
tidal effects are included.
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FIG. 16. The inclination of the lunar orbit i is plotted vs the semimajor axis
of the lunar orbit. The evolution with the average Darwin—Mignard torques
is represented by the solid line, and the evolution with the Darwin—Kaula—
Goldreich tides with equal phase shifts is represented by the dotted line. All
tidal effects are included.

ALgy=TAt, (117)
and the geocentric velocity of the Moon by
AVen=FygesAl, (118)

where T and T4, are the torque and geocentric acceleration
vectors, given by Egs. (111) and (112). These vectors are
evaluated at the current geocentric position and velocity vec-
tors of the Moon and the current angular velocity vector of

40° T T T T

30°

I 20°

10°

a/R.

FIG. 17. The obliquity of Earth I is plotted vs the semimajor axis of the
lunar orbit. The evolution with the average Darwin—Mignard torques is
represented by the solid line, and the evolution with the Darwin—Kaula—
Goldreich tides with equal phase shifts is represented by the dotted line. All
tidal effects are included.
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FiG. 18. The length of the day is plotted vs the semimajor axis of the lunar
orbit. The evolution with the average Darwin—Mignard torques is repre-
sented by the solid line, and the evolution with the Darwin—Kaula—
Goldreich tides with equal phase shifts is represented by the dotted line. All
tidal effects are included.

the Earth. Kicks due to solar tides and cross tidal interactions
can be similarly applied.

Another consequence of the dissipation is the change inJ,
that results from the changing spin rate of the Earth. We take
account of this change by updating J, after each cycle of the
full integrator. We apply the Hamiltonian and dissipative
kicks as if the tensor of inertia were constant in time, then
use the resulting spin angular velocity of the Earth to update
J, via Eq. (56). We neglected off-diagonal contributions to

100 T T T T

Ta[years)

a/R.

FIG. 19. The period of precession of the lunar orbit is plotted vs the semi-
major axis of the lunar orbit. The evolution with the average Darwin—
Mignard torques is represented by the solid line, and the evolution with the
Darwin—Kaula—Goldreich tides with equal phase shifts is represented by the
dotted line. All tidal effects are included.
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FIG. 20. The semimajor axis of the lunar orbit is plotted vs time. The evo-
lution with the average Darwin—Mignard torques is represented by the solid
line, and the evolution with the Darwin—Kaula—Goldreich tides with equal
phase shifts is represented by the dotted line. All tidal effects are included.

the tensor of inertia, mostly because, in our simulations, the
Earth did not develop a substantial wobble.

5. PAST EVOLUTION OF THE EARTH-MOON SYSTEM

Equipped with our integrator, we proceed to examine the
tidal evolution of the Earth—Moon system. We consider a
Moon which interacts gravitationally with the rest of the so-
lar system. We keep only the J, term in the potential of the
Earth. We include dissipation in the Earth, and we allow
tides to be raised by both the Sun and the Moon, and account
for cross-tidal effects. We ignore dissipation in the Moon
because the rotational dynamics of the Moon presented some
complications which we will address in a separate paper. The
model as it stands is detailed enough to allow comparison
with existing calculations of the rotation of the Earth and the
history of the Earth—Moon system. Furthermore, it is flexible
enough to allow extensions to more detailed models of elas-
ticity and dissipation.

5.1 Physical Parameters

The initial position and velocity of the planets and the
Moon are those of DE202. The initial orientation of the spin
axis of the Earth was derived using the formulas in Davies
et al. (1989). The initial dynamical ellipticity was chosen, in
the usual manner, to provide the observed general precession
rate of the Earth: J,=0.003 267 11. We delayed the tidal
bulge raised by the Moon on the Earth by a phase that re-
flects the current tidal dissipation rate: Az=0.006 918 25
days.

5.2 Obliquity of the Earth over the Past 20 Million Years

We examine the evolution of the Earth—-Moon system in
the past 20 Myr. The results of our calculated obliquity are
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FiG. 21. The solution of the obliquity in this paper is superposed on the
solution of QTD. They are almost indistinguishable. The difference is plot-
ted on the same graph.

shown in Fig. 23. We compared our results to those of Quinn
et al. (1991, hereafter referred to as QTD) who calculated the
orbital evolution of the planets and the spin axis of the Earth
for the past 3 Myr. Our model differs from that of QTD. Our
Moon is a tidally evolving particle interacting with the plan-
ets and the Earth oblatness; their Moon is a ring in the plane
of the ecliptic with a tidally evolving radius. Our tidal model
is coupled to the dynamics of the Earth orbit and spin state;
their tidal model consists of a linear evolution of the spin rate
of the Earth and the radius of the Moon. We find that after 3
Myr of the evolution our calculated obliquity is virtually
indistinguishable from theirs, Fig. 21. The equinox, shown in
Fig. 22, shows a difference of a tenth of a degree after the
same period of time. This result provides an independent
check on the QTD model, as it demonstrates the accuracy of
our algorithm. With our confidence strengthened, we move
on to examine the long term evolution of the Earth—Moon
system-where QTD’s model is no longer valid and where our
model should capture most of the relevant dynamics.

5.3 Goldreich Revisited

Despite the algorithmic improvements introduced in this
paper, and despite the gain in computer speed, a full history
of the Earth—Moon system with the current dissipation rates
will have to wait for a year. Instead, during the slow phase of
the evolution, 60 to 30 Earth radii, we increased the dissipa-
tion rate in the Earth to 4000 times its current value, and set
it back to 100 times its current value before 30 Earth radii
where the dissipation is much more efficient. Further atten-
tion should be given to the possibility that resonances have
been missed during this evolution.

Our calculations do not show any fundamental departures
from the Goldreich picture. In particular, the inclination of
the lunar orbit to the Earth’s equator remains large at small
lunar semimajor axis. As can be seen in Figs. 24-27, the

1 T T

AQ 0 |

-3 -2 -1 0
time(10%rs)

FiG. 22. The Equinox calculated in this paper differs from the QTD Equinox
by a tenth of a degree after 3 Myr.

averaged evolution of the relevant dynamical variables is
preserved, with high frequency oscillatory features super-
posed on it. It was sobering to find, a few decades after its
inception, that Goldreich’s brush stroke captured the essence
of the dynamics.

Close to the Earth, the graphs are multivalued because in
the final stage of its evolution, the Moon receeds from the
Earth on a highly inclined orbit, until it finally escapes. This
behavior is a reminder of the lively dynamics of the early
evolution of the Earth—-Moon system. These dynamics are
still not properly represented in our model. As pointed out by
Boss & Peale (1986), the early evolution of the Earth—Moon
system is characterized by intense deformations, which are
poorly modeled by a quasistatic tidal bulge, and which could
lead to drastically different dynamics. Thus, the model stud-

25 T T T T

-6 -4
time(10%yrs)

FIG. 23. The obliquity of the Earth for the last 20 Myr.
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FiG. 24. The mutual obliquity -is plotted vs the semimajor axis of the orbit.

ied in this paper cannot provide a dynamical constraint on
the origin of the Moon. Rather, our success in reproducing
results of the averaged theory makes a case for our algorithm
as a building block of a more realistic model of the early
dynamics of the Earth—Moon system, as well as a tool for
examining the tidal evolution of planetary satellites in gen-
eral.

6. WHAT’S UP?

We have developed an accurate and efficient numerical
algorithm which allows the exploration of long term conse-
quences of tidal dissipation on the orbital and rotational dy-
namics of planets and their satellite(s). In doing so, we are a
step closer to a realistic modeling of the evolution of the
solar system. However, with regard to the Earth—Moon sys-
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Fic. 25. The inclination of the lunar orbit to the ecliptic is plotted vs the
semimajor axis of the orbit.
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Fic. 26. The obliquity is plotted vs the semimajor axis of the orbit.

tem, important steps remain to be taken in order to better
represent the dynamics. On the short term, the coupling be-
tween climate and rotation deserves attention and our algo-
rithm offers a secure building ground. On the long run, we
need to include dissipation in the Moon. This step is compli-
cated by the artificial excitation of wobble in the Moon as we
integrate backwards in time and by the early instability of the
Moon’s spin axis that was first studied by Ward (1982). Both
of these issues will be addressed in a companion paper. Fi-
nally, the elastic response we used in this paper is linear,
quasistatic and is expected to break down in the early evo-
lution of the Earth—Moon system. One can partially improve
this picture by modeling the Earth and the Moon as pseud-
origid bodies with viscoelastic material properties, thus al-
lowing a more intrinsic coupling between elastic deformation
and rotation.
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FiG. 27. The semimajor axis of the lunar orbit is plotted vs time.
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