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Abstract

The heating in Enceladus in an equilibrium resonant configuration with other saturnian satellites can be estimated independently of the physical properties of
Enceladus. We find that equilibrium tidal heating cannot account for the heat that is observed to be coming from Enceladus. Equilibrium heating in possible past
resonances likewise cannot explain prior resurfacing events.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Enceladus is a puzzle. Cassini observed active plumes emanating from
Enceladus (Porco et al., 2006). The plumes consist almost entirely of water
vapor, with entrained water ice particles of typical size 1 µm. Models of the
plumes suggest the existence of liquid water as close as 7 m to the surface
(Porco et al., 2006). An alternate model has the water originate in a clathrate
reservoir (Kieffer et al., 2006). Both models require substantial energy input
to drive the plumes. The plumes originate in the features dubbed the “tiger
stripes,” in the south polar terrain. The heat emanating from the south polar ter-
rain has been estimated to be 5.8 ± 1.9 GW (Spencer et al., 2006). So some
heating mechanism provides about 6 GW of energy to the system. The esti-
mated rate of radiogenic heating is 0.32 GW, and the estimated current rate of
tidal heating resulting from the small orbital eccentricity of Enceladus is about
0.12 GW, for an assumed k2 of 0.0018 and a Q of 20 (Porco et al., 2006). So
these sources of heating are inadequate.

Squyres et al. (1983) remark that even if the current rate of tidal heating was
sufficient to maintain Enceladus in an active state, much greater heating would
be required to initiate the process. They suggest that heating of order 25 GW
is necessary to initiate melting, and propose that this might have been obtained
by a much larger orbital eccentricity.

Any mechanism for supplying the required energy must pass the “Mi-
mas test” (Squyres et al., 1983). Mimas has an ancient surface, but is closer
to Saturn than Enceladus and has a larger orbital eccentricity. Any mech-
anism that is proposed to heat Enceladus must not substantially heat Mi-
mas. Using the conventional tidal heating formula (Peale and Cassen, 1978;
Peale, 2003), the estimated tidal heating in Mimas is about 11 times the heating
in Enceladus, if the rigidity of the two bodies is the same. Thus conventional
tidal heating in the current orbital configuration does not pass the test.
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One mechanism for heating Enceladus that passes the Mimas test is the
secondary spin–orbit libration model (Wisdom, 2004). Fits to the shape of
Enceladus from Voyager images indicated that the frequency of small amplitude
oscillations about the Saturn-pointing orientation of Enceladus was about 1/3
of the orbital frequency. In the phase-space of the spin–orbit problem near the
damped synchronous state the stable equilibrium bifurcates into a period-tripled
state. If Enceladus were trapped in this bifurcated state, then there could be sev-
eral orders of magnitude greater heating than that given by the conventional
tidal heating formula. What was special about Enceladus compared to Mimas
was its shape. New fits of the shape to Cassini images of Enceladus showed
that Enceladus was not near the 3:1 secondary resonance, but, remarkably, was
near the 4:1 secondary resonance (Porco et al., 2006). A similar analysis shows
that if caught in this secondary resonance, the system could again be subject
to several orders of magnitude additional heating. Unfortunately, the predicted
libration was not seen. An upper limit placed on the magnitude of the libra-
tion was 1.5 degrees, which in turn places an upper limit on the heating from
the secondary resonance mechanism of 0.18 GW (Porco et al., 2006). So if
the limits of the libration amplitude are reliable, then the secondary resonance
spin–orbit mechanism is ruled out for the present system. It may still be possi-
ble that the system was locked in this resonance in the past. Note that the large
heating that would result from libration in the secondary resonance would damp
the orbital eccentricity, and at sufficiently small eccentricity the secondary res-
onance becomes unstable. Thus the secondary resonance mechanism could at
most produce an episode of heating.

Lissauer et al. (1984) suggested that Enceladus might have recently been in-
volved in a 2:1 mean motion resonance with Janus. Janus is evolving outwards
due to torques from Saturn’s rings. At present, Janus is just 1000 km outside the
resonance. Only a few tens of millions of years ago Janus was at the resonance.
If Janus encountered the resonance when the eccentricity of Enceladus was
low, the probability of capture into the e-Enceladus resonance would be high.
They found that if Janus and Enceladus were trapped in the resonance and were
in an equilibrium configuration then Enceladus would be subject to 4.5 GW of
heating, which is comparable to the observed heating. But the model has numer-
ous limitations (Peale, 2003). The value of the mass of Janus has been revised

http://www.elsevier.com/locate/icarus
mailto:meyerj@mit.edu
mailto:wisdom@mit.edu
http://dx.doi.org/10.1016/j.icarus.2007.03.001


536 Note / Icarus 188 (2007) 535–539
downwards, and this leads to smaller tidal heating (see below). The angular
momentum in the A-ring is limited, so the resonance could only have persisted
for a limited time in the past. More importantly, Enceladus shows evidence of
multiple resurfacing episodes. The resonance with Janus could at most explain
the most recent activity. In addition, the model has to appeal to an impact to
get the system out of the resonance. The alternative escape mechanism sug-
gested is that the Janus resonance became unstable when the Enceladus–Dione
resonance was reached. But this seems unlikely, as Enceladus and Dione are
not deeply in the resonance and Dione has little effect on the orbital evolution
of Enceladus at present (Sinclair, 1983). There may also be a problem damp-
ing down the implied equilibrium eccentricity of Enceladus to the present low
value of 0.0047 in the short time (tens of millions of years) since the resonance
was purportedly disrupted. Actually, the simplest scenario for the encounter of
Janus with the 2:1 e-Enceladus Janus–Enceladus resonance is that Janus just
passed through the resonance with little effect on the orbit of Enceladus. In this
scenario Janus encounters Enceladus at its current eccentricity, but at this ec-
centricity the system has a low probability of being captured by the resonance.
We find that the capture probability at the current eccentricity of Enceladus is
only 0.7%.

There are other possibilities for resonance configurations involving Ence-
ladus in the past (see Fig. 1). Perhaps tidal heating in these resonances was re-
sponsible for past resurfacing events. These resonances include the 3:2 Mimas–
Enceladus and the 3:4 Enceladus–Tethys resonances. If the Q of Saturn is
sufficiently low numerous other resonances could have been encountered. Evo-
lution through these has not been studied in detail, but we can estimate the
equilibrium tidal heating expected while trapped in the resonances (see below).

Ross and Schubert (1989) investigated tidal heating in Enceladus using
multilayered viscoelastic models of the satellite. They find that equilibrium
heating in a homogeneous Maxwell model at the current eccentricity can be
as large as 920 GW. The heating is proportional to the Love number of the
satellite and in the viscoelastic models the dynamic Love number can be or-
ders of magnitude larger than the elastic Love number. They also investigate
heating in a two layer model consisting of a conductive elastic lithosphere
overlying a Maxwell interior and a three layer model with a liquid water–
ammonia layer between the lithosphere and the Maxwell core. These models
are tuned to give a heating rate of about 4 GW, similar to that found by Lissauer

Fig. 1. The approximate locations of the first-order resonances among the sat-
urnian satellites are shown for QS = 18,000. The shift of position of the reso-
nances due to Saturn’s oblateness has been ignored. Also shown are the tidally
evolved orbits as a function of time. The dotted line shows the synchronous ra-
dius. The minimum QS is determined by placing Mimas at the synchronous
radius at the beginning of the Solar System. The current 2:1 and 4:2 resonances
between Enceladus–Dione and Mimas–Tethys are not shown.
et al. (1984) in their Janus model. These models require a low conductivity
insulating layer. Thus, it appears to be possible for tidal heating to provide
enough input energy to account for the observed energy output from Ence-
ladus. The Mimas test is not addressed by these models; it seems likely that
if similar viscoelastic models were applied to Mimas then there would also
be large tidal heating in Mimas, contradicting its cold inactive state. Never-
theless, viscoelastic enhancement of the Love number has been presented as
a simple solution to the problem of heating Enceladus (Spencer et al., 2006;
Stevenson, 2006).

In this paper we calculate the equilibrium rates of tidal heating in Enceladus
independent of the physical properties of Enceladus, based on conservation of
energy and angular momentum. We find that tidal heating in Enceladus is much
less than the observed radiated heat.

2. Heating from torques

One mechanism of heating is tidal dissipation in a synchronously rotating
satellite. As a system evolves deeper into an eccentricity-type resonance, the
eccentricity grows. As the eccentricity of a satellite grows the rate of energy
dissipation in the satellite grows, with the square of the orbital eccentricity. Dis-
sipation of energy in a satellite tends to damp the eccentricity. As tidal torques
push the system deeper into resonance, the eccentricity grows, until the rate of
growth is balanced by the rate of decay, due to the internal dissipation. At equi-
librium, the eccentricity no longer changes and there is a steady state rate at
which angular momentum is transferred to the outer satellite. The rate of an-
gular momentum transfer is related to the rate of heating in the satellites. The
equilibrium rate of heating can be calculated using conservation of energy and
angular momentum (Lissauer et al., 1984).

The angular momentum L and energy E of a satellite of mass m in an
Keplerian orbit of semimajor axis a about a primary of mass M are

(1)L = m

√
GMa(1 − e2),

(2)E = −GMm/(2a).

The rate of change of the Keplerian energy can be related to the applied
torque. The energy can be written in terms of the angular momentum and ec-
centricity: E = Ẽ(L, e). Let n =

√
GM/a3; we have

(3)
∂Ẽ

∂L
= n√

1 − e2
≈ n,

ignoring corrections of order e2. The rate of change in angular momentum is
the torque

(4)
dL

dt
= T .

Ignoring the change in energy due to the change in eccentricity, the rate of
change in orbital energy from an applied satellite torque is

(5)
dE

dt
= ∂Ẽ

∂L

dL

dt
= nT√

1 − e2
≈ nT ,

again ignoring corrections of order e2.
Assume there are two satellites, and that there is some resonant interaction

between the satellites so that angular momentum can be transferred between
them.

For the sake of qualitative reasoning, let us ignore contributions to energy
changes due to orbital eccentricities. Consider a small impulsive torque that
causes a change in the angular momentum of the system �L. For simplic-
ity assume that the torque is applied only to the inner satellite. The energy
change due to this angular momentum change is approximately �E = n0�L.
This is the energy input to the satellite system. Now let us take into ac-
count the exchange of angular momentum between the satellites. The change
in angular momentum �L is now distributed in some way between the two
satellites �L = �L0 + �L1. The change in energy of the orbits is then
�E = n0�L0 + n1�L1. Because n1 < n0, this energy change is less than
the energy gained by the satellites. The remaining energy goes into heating the
satellites.
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The energy input to the system is the sum of the energy inputs for the indi-
vidual satellites. This presumes there is no cross tidal interaction between the
satellites. So the total rate at which energy is transferred to the satellites from
the rotation of the planet is n0T0 +n1T1, ignoring corrections of order e2. This
energy changes the orbits and heats at least one of the satellites.

So we can write

(6)n0T0 + n1T1 = d

dt
(E0 + E1) + H,

where Ei are the Keplerian energies of the satellites, and H is the rate of heat-
ing. We have ignored the gravitational interaction energy of the satellites. If
most of the heating is in one satellite, we can take H to be the heating rate of
that satellite.

As an eccentricity-type resonance is approached one of the satellite ec-
centricities grows. Near a j : (j − 1) mean motion resonance, the eccentricity
depends on a parameter δ = jn1 + (1 − j)n0 that measures how close the sys-
tem is to resonance. The condition of resonance equilibrium is that the rate of
change of δ is zero. This implies

(7)j
dn1

dt
= (j − 1)

dn0

dt
.

Close to resonance the parameter δ is small, so jn1 ≈ (j − 1)n0. Dividing
these, we find that

(8)
1

n0

dn0

dt
≈ 1

n1

dn1

dt
,

which in turn implies

(9)
1

a0

da0

dt
≈ 1

a1

da1

dt
.

Following Lissauer et al. (1984), let us assume that T0 � T1. Conservation
of the angular momentum of the system requires

(10)
d

dt
(L0 + L1) = T0 + T1 ≈ T0.

Using Eq. (1) at small e, we find

(11)
1

2

L0

a0

da0

dt
+ 1

2

L1

a1

da1

dt
= T0.

Using the equilibrium condition, Eq. (9), we find

(12)T0 = 1

2a0

da0

dt
(L0 + L1).

Using Eq. (6), assuming n0T0 � n1T1, the rate of change in energy of the
system is equal to

(13)n0T0 = d

dt
(E0 + E1) + H.

Using this equation, Eq. (12), and the equilibrium condition again, we derive

(14)H = n0T0 − T0

L0 + L1

(
GMm0

a0
+ GMm1

a1

)
.

Again ignoring corrections of order e2, we derive

(15)H = n0T0

(
1 − 1 + m1a0/(m0a1)

1 + (m1/m0)
√

a1/a0

)
.

Lissauer et al. (1984) generalize this formula to three satellites in equilibrium.
For the torque on each satellite we use the formula

(16)T = 3

2

Gm2R5
S
k2S

a6QS

,

where k2S and QS are the potential Love number and Q of Saturn, m is the
mass of the satellite, RS is the radius of Saturn, and a is the orbit semimajor axis
(Schubert et al., 1986). For k2S we use the value 0.341 (Gavrilov and Zharkov,
1977). The minimum QS for Saturn may be determined by the condition that
Mimas be outside the synchronous orbit at the beginning of the Solar System—
this gives about QS � 18,000. A maximum can be placed on QS if we adopt
the tidal origin of the Mimas–Tethys resonance. The age of the Mimas–Tethys
resonance for a QS of 18,000 is 2 × 108 yrs (Sinclair, 1983). Placing the origin
of the Mimas–Tethys resonance at the beginning of the Solar System limits the
QS of Saturn to be less than 4 × 105.

The principal resonances that exist now or might have been operative in
the recent past that involve Enceladus are: 2:1 Enceladus–Dione, 3:2 Mimas–
Enceladus, 3:4 Enceladus–Tethys, and the 2:1 Janus–Enceladus resonances. For
each of these we can calculate the equilibrium tidal heating given the torque
on the inner body. This torque is tidal for all but Janus, for which it is a
ring torque. Applying the equilibrium heating rate formula to each of these
resonances we find, for QS = 18,000: 2.4 GW for the 2:1 Enceladus–Dione
resonance, 0.71 GW for the 3:2 Mimas–Enceladus resonance, 1.2 GW for the
4:3 Enceladus–Tethys resonance, and 0.81 GW for the 2:1 Janus–Enceladus
resonance. For the Janus–Enceladus resonance Lissauer et al. (1984) found
4.5 GW, but they used the larger mass of Janus determined through Voyager ob-
servations. Peale (2003) found 0.95 GW using the pre-Cassini mass of Janus,
2.0 × 1018 kg, determined by Yoder et al. (1989). Keep in mind that Enceladus
and Dione may not be in an equilibrium configuration (see below). Also, the
assumption that one torque dominates is invalid.

If the torque to the innermost satellite does not dominate then the formula
needs to be generalized. Beginning with Eq. (6), we use the resonance condi-
tion, Eq. (9), to get

(17)H = n0T0√
1 − e2

0

+ n1T1√
1 − e2

1

− T0 + T1

L0 + L1

(
GMm0

a0
+ GMm1

a1

)
.

The formula readily generalizes to an equilibrium of three satellites, by adding
an additional term to each of the sums. And this formula reduces to that of
Lissauer et al. (1984) at small eccentricity if T1 is set to zero.

Using this formula we recalculate the equilibrium heating rates for each
of the resonances given above, assuming QS = 18,000. We find: 1.1 GW for
the 2:1 Enceladus–Dione resonance, 0.48 GW for the 3:2 Mimas–Enceladus
resonance, and 0.75 GW for the 2:1 Janus–Enceladus resonance. The implied
heating of the Enceladus–Tethys resonance is negative; this resonance has no
equilibrium as the orbits are diverging. Adding the torque on the outer satellite
has reduced the heating for all resonances.

For the Enceladus–Dione and Mimas–Enceladus resonances these are up-
per limits to the heating rates because we have used the lower bound of 18,000
for the Q of Saturn. For larger QS , the torques and heating rates will be pro-
portionally lower (see Fig. 3).

The nonsolar radiated power from Enceladus is estimated to be 5.8 ±
1.9 GW (Spencer et al., 2006). This is larger than all the equilibrium heating
rates.

3. Equilibrium eccentricity

The equilibrium heating rate corresponds to an equilibrium eccentricity of
Enceladus. We can derive the equilibrium eccentricity by requiring that the
equilibrium heating rate be equal to the heating rate in a synchronously rotating
satellite in an eccentric orbit (Peale and Cassen, 1978; Peale, 2003):

(18)H = 21

2

k2E

QE

GM2
S
R5

E
n

a6
e2,

where k2E and QE are the potential Love number and Q of Enceladus, and e

is the eccentricity. Using Eq. (16) and Eq. (17), we find

e2 = 1

7D

{
1 − 1 + m1a0/(m0a1)

1 + (m1/m0)
√

a1/a0

(19)+
(

m1

m0

)2(
a0

a1

)6[
n1

n0
− 1 + m1a0/(m0a1)

1 + (m1/m0)
√

a1/a0

]}
,

where D is a measure of the relative strength of tides in Enceladus versus tides
in Saturn:

(20)D = k2E

QE

QS

k2S

(
MS

mE

)2(
RE

RS

)5
.

Thus the equilibrium value of the eccentricity depends on the unknown
k2E/QE of Enceladus and the unknown QS . Note that if the torque on the
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Fig. 2. The eccentricity of Enceladus approaches an equilibrium value as the
system evolves into the e-Enceladus 3:2 Mimas–Enceladus resonance.

Fig. 3. The solid line shows the k2E/QE for which the current configuration
of Enceladus (with eccentricity 0.0047) and Dione is a tidal equilibrium for the
given value of QS . The dotted line shows the value of k2E/QE using Kelvin’s
formula for the Love number, using a rigidity of 4×109 N m−2, and a Q of 20.
The dashed line gives the equilibrium heating rate H in Enceladus as a function
of QS .

outer body is negligible then the term with square brackets in Eq. (19) can be
ignored, but for the satellites considered here this is not the case.

We can illustrate the approach to equilibrium and confirm the equilibrium
value of the eccentricity by performing numerical integrations of the evolution
of the system. Our model is an averaged resonance model that includes terms
in the disturbing function up to order e2, with dissipative terms that affect both
the semimajor axes and eccentricities. We have applied this model to study the
evolution into the eE -type 3:2 resonance between Mimas and Enceladus. For
this resonance, Eq. (19) becomes e2 ≈ (59.5D)−1. For k2 = 0.0018, QE =
100, and QS = 18,000, the equilibrium eccentricity is calculated to be 0.022.
The simulated evolution is shown in Fig. 2. We see the eccentricity of Enceladus
approach the predicted value.
For Enceladus and Dione in the current eE -type 2:1 resonance, the equi-
librium eccentricity is e2 ≈ (30.69D)−1. The value of D depends upon the
unknown k2 and Q of the satellite. Conventionally, Kelvin’s formula (Love,
1944),

(21)k2 = 3/2

1 + 19μ
2ρgR

,

has been used to estimate Love numbers of small satellites, where μ is the
rigidity, ρ the density, g the surface acceleration, and R the radius. For Ence-
ladus, taking μ = 4 × 109 N m−2, we find k2 = 0.0018. With an assumed QE

of Enceladus of 20, the equilibrium eccentricity of Enceladus is 0.014. This is
above the current eccentricity of 0.0047; so in this approximation, Enceladus is
not in equilibrium and is still evolving deeper into resonance. Note that if the
eccentricity is below the equilibrium eccentricity, and if the heat flow is steady,
then the heating rate is lower than the equilibrium heating rate.

However, Ross and Schubert (1989) have shown that the dynamic Love
number can be much larger than this conventional estimate. If the dynamic
Love number is large enough then, in principle, Enceladus could be at a tidal
equilibrium today. If Enceladus is at the equilibrium, then the estimates of the
last section apply, and the heating in Enceladus is 1.1 GW for a QS = 18,000.
If QS is larger than this then the heating is proportionally smaller. Thus even
with an enhanced dynamic k2 the equilibrium heating rate is lower than the
observed heat flux.

For which parameter values is the current Enceladus–Dione system at equi-
librium? Given the current eccentricity of 0.0047, and a value for QS , we can
determine the required value of k2E/QE for equilibrium. This is the solid
curve shown in Fig. 3. Above this curve, the current eccentricity is above the
equilibrium value and below this curve it is below the equilibrium value. The
horizontal line shows the k2E/QE for Kelvin’s estimate of the Love number
(calculated above) and for QE = 20. We see that for this value the current sys-
tem is at an equilibrium for QS = 159,000. The equilibrium heating rate for the
2:1 Enceladus–Dione resonance as a function of QS is also shown in Fig. 3.

Keep the “Mimas test” in mind. If k2E is significantly enhanced over the
Kelvin value because of the viscoelastic properties of ice, then one might expect
this also to be the case for Mimas.

4. Conclusion

The rate of heating of Enceladus in an equilibrium resonant configuration
with other saturnian satellites can be estimated independently of the physical
properties of Enceladus. Our results update the values obtained for the equilib-
rium tidal heating found by Lissauer et al. (1984) and Peale (2003). We find
that equilibrium tidal heating cannot account for the heat that is observed to be
coming from Enceladus, and current heating rates are even less for conventional
estimates of k2E . Even allowing a dynamic k2E much larger than the conven-
tional k2E , as can occur for viscoelastic models (Ross and Schubert, 1989),
the equilibrium tidal heating is less than the heat observed to be coming from
Enceladus.

One resolution is that the tidal equilibrium is unstable and that the system
oscillates about equilibrium. Yoder (1981) suggested that Enceladus might os-
cillate about equilibrium if the Q of Enceladus is stress dependent. An alternate
suggestion was made by Ojakangas and Stevenson (1986), who emphasized the
possible temperature dependence of Q. In these models Enceladus would now
be releasing heat stored during a recent high eccentricity phase. There may be
other mechanisms to produce episodic behavior. For instance, perhaps Ence-
ladus could just store the tidal heat as the system evolves monotonically and
release it episodically. These mechanisms may be consistent with the episodic
character of the resurfacing events as suggested by spacecraft images. But it is
curious that one has to appeal to nonequilibrium tidal oscillations or episodic
activity to heat both Io and Enceladus (Ojakangas and Stevenson, 1986). If the
fraction of time spent in an active state is, say, of order 20%, for each satellite,
then the probability that both are found in an active state today is only 4%.

Other low-order resonance configurations are possible for the saturnian
satellites in the past. These include the 3:2 Mimas–Enceladus and the 3:4
Enceladus–Tethys resonances. The latter resonance has no equilibrium because
the orbits are diverging, and the former has an equilibrium heating of only
0.48 GW. So equilibrium heating at past resonances is no more successful at
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explaining past resurfacing events than equilibrium heating is at explaining the
present activity.
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