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The sudden eccentrici ty increases  discovered by J. Wisdom (Astron J. 87, 577-593, 1982) are 
reproduced in numerical  integrations of the planar-elliptic restricted three-body problem, verifying 
that this phenomenon  is real. Max imum I .yapunov characterist ic exponents  for trajectories near  
the 3/I commensurabi l i ty  are computed  both with the mappings presented in Wisdom (1982) and by 
numerical  integration of  the planar-elliptic problem. In all cases  the agreement  is excellent,  indicat- 
ing that the mappings  accurately reflect whether  trajectories are chaotic or quasiperiodic.  The 
mappings are used to trace out the chaotic zone near the 3/I commensurabi l i ty ,  both in the planar- 
elliptic problem and to a more limited extent  in the three-dimensional  elliptic problem. The outer  
boundary of  the chaotic zone coincides with the boundary of  the 3/I Kirkwood gap in the actual 
distribution of  asteroids within the errors of  the asteroid orbital e lements .  

1. I N T R O D U C T I O N  

It has long been known that the 
Kirkwood gaps in the distribution of  semi- 
major axes of the asteroids are associated 
with mean motion commensurabilit ies of  
Jupiter (Kirkwood,  1867), yet no one has 
been able to demonstrate  exactly why these 
commensurabilities should lead to gaps. 
The greatest obstacle is that there is no real 
understanding of  the long-term dynamics 
near commensurabilit ies in the elliptic re- 
stricted three-body problem. There is no 
adequate analytic theory (as there is in the 
circular restricted problem), and the nu- 
merical studies, although numerous,  have 
actually contributed very little toward the 
understanding that is required. The limited 
success of  the numerical investigations is 
primarily due to the great amount  of com- 
puter time required to perform the numeri- 
cal integrations over  times that are long 
enough to characterize the motion. This dif- 
ficulty was largely overcome in Wisdom 
(1982), where a new method was presented 
for studying asteroid motion near commen- 
surabilities that is approximately 1000 times 
faster (cheaper) than previous methods. 
Namely,  algebraic mappings of  the phase 
space onto itself with the same low-order 

51 

resonance structure as the 3/! commensu- 
rability were derived. Trajectories are fol- 
lowed by iteratively evaluating these map- 
pings. Using this new method some very 
surprising behavior was discovered. Test 
asteroids placed near the 3/I commensura- 
bility may evolve with low eccentricity (e < 
0.1) for as much as a million years and then 
have a sudden increase in eccentricity to 
large values (e > 0.3). Since asteroids near 
the 3/I commensurabil i ty with eccentricity 
greater than approximately 0.3 can be Mars 
crossers,  it was hypothesized that the 3/I 
Kirkwood gap was cleared by collisions 
with Mars. As a test of  this hypothesis a 
distribution of 300 test asteroids near the 
commensurabili ty was " in tegra ted ,"  with a 
mapping, for 2 million years. When the ini- 
tial conditions of  those test asteroids that 
became Mars crossing (e > 0.3) within this 
2-my period were removed,  the distribution 
of initial conditions showed a gap at the 
proper  location, but it was too narrow when 
compared to the distribution of real num- 
bered asteroids in the TRIAD file. The 
comparison was somewhat improved when 
the inclinations and the secular variations 
of Jupiter 's orbit were included, but the 
predicted gap was still too narrow. A test 
asteroid near the boundary of  the predicted 
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gap was found to have a sudden increase in 
its eccentricity after 18 my, indicating that 
the full width of the gap might open over 
longer times. 1 closed the paper with the 
cautionary remark that these results should 
not be trusted until the sudden increases in 
eccentricity are seen in numerical integra- 
tions or until it is understood how they can 
happen in an approximate analytic theory. 
In the present paper both of these are pro- 
vided and the conflict between thc pre- 
dicted and observed distributions is re- 
solved. 

In general, it is expected that every com- 
mensurability will be accompanied by a 
chaotic zone (Chirikov 1979). This chaotic 
zonc may be large or microscopically small 
depending on many factors. In the planar- 
elliptic restricted three-body problem it is 
known that chaotic behavior does occur 
near commensurabilities. Using Schubart 's  
averaging procedure and the surface of sec- 
tion technique, Giffcn (1973) discovered a 
chaotic zone near the 2/1 commensurabil- 
ity. Following Giffen, Scholl and Froeschle 
(1974, 1976) found chaotic orbits near the 
3/I commensurabili ty,  but wcrc unable to find 
any near the 5/2 or 7/3 commensurabilities. 
Having tested a number of orbits near the 
2/1 and 3/i commensurabilities. Scholl and 
Froeschl6 (1976) concluded that " . . .  iso- 
lating integrals exist in the main part of the 
phase space. Ergodic orbits occur sel- 
dom."  

If indeed test asteroids " 'diffuse" through 
phase space until they reach a point where 
large eccentricity increases occur, as pro- 
posed in Wisdom (1982), then their trajecto- 
ries must have a chaotic character.  Quasi- 
periodic trajectories do not diffuse, except 
through computer  roundoff  error. Evi- 
dently, it is important to determine if the 
mappings accurately reflect whether trajec- 
tories are chaotic or quasiperiodic, as de- 
termined by numerical integrations of the 
differential equations. After a qualitative 
review of the mapping derivations in Sec- 
tion II and an explanation of the maximum 
Lyapunov characteristic exponent  and its 

importance for determining the character  of 
a trajectory in Section II1, Section IV ex- 
hibits the results of a number of calcula- 
tions of the maximum Lyapunov character- 
istic exponent using the differential 
equations for the unaveraged planar-elliptic 
restricted three-body problem, and com- 
pares them to equivalent calculations using 
a mapping. In all cases the two agree about 
whether the orbits are chaotic or quasipc- 
riodic. Note that this is a more stringent 
test of the mappings than a direct compari- 
son of orbits, as was done in Wisdom 
(1982). Orbits may look the same for a pc- 
riod of time, but have different characters 
when viewed over longer times. An excit- 
ing byproduct of these calculations is that 
in several cascs the numerical solutions dis- 
played jumps in eccentricity remarkably 
similar to those displayed by the mapping. 

Once it has been verified that the map- 
pings accurately reflect the character  of a 
trajectory, they can be used to trace out the 
boundary of the chaotic zone. If these sud- 
den eccentricity increases have any bearing 
on the origin of  the 3/1 Kirkwood gap then 
chaotic behavior must be common, not 
" se ldom."  That this is in fact the case is 
shown in Section V, where the chaotic 
zones are traced out for the planar-elliptic 
problem and to a more limited extent in the 
thrcc-dimensional elliptic problem. Evi- 
dently, the integrations of Scholl and 
Froeschl6 were not long enough to detect 
this chaotic behavior. 

Scholl and Froeschl6 show that the extra, 
nonclassical, integral that is obtained in the 
planar-elliptic restricted problem by Schu- 
bart 's averaging procedure constrains Gif- 
fen's chaotic orbit to eccentricities less 
than 0.18. There is an analogous quasi-inte- 
gral for the 3/I commensurabili ty and it is 
important to understand to what extent it 
confines these chaotic orbits. This problem 
is discussed in Section VI, where it is 
shown that this quasi-integral does not pre- 
vent close encounters  with Mars. In the 
three-dimensional problem the quasi-inte- 
gral provides even less constraint, and the 
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FIG. I. Eccentricity versus time using the planar- 
elliptic mapping with initial conditions: a = a~.~ 
0.48059aj, e = 0.055001, I = rr, and & = 0. tm~ is 
22,000 Jupiter periods, Tj, or approximately 250.000 
years. 

orbital eccentricity can reach very high val- 
ues. The quasi-integral may not signifi- 
cantly constrain the eccentricity of  Giffen's 
orbit in the three-dimensional problem ei- 
ther. 

The character  of  trajectories cannot 
change; a quasiperiodic trajectory cannot 
become a chaotic trajectory.  Nevertheless,  
the trajectory shown in Fig. I begins with a 
long stretch of apparently quasiperiodic be- 
havior, and then suddenly becomes more 
chaotic. A possible mechanism for this pe- 
culiar behavior is illustrated in Section VII 
with a simple two-dimensional system. 
More importantly, this simple system also 
exhibits apparently random transitions be- 
tween several modes of  behavior,  analo- 
gous to the apparently random transitions 
from low-eccentricity behavior to high-ec- 
centricity behavior  that is observed for test 
asteroids. 

Finally, it is shown in Section VIII that 
the outer  boundary of  the chaotic zone near 
the 3/I commensurabil i ty agrees with the 
observed boundary of  the 3/I Kirkwood gap 
in the actual asteroid distribution within the 
errors of  the asteroid orbital elements. 

Summary and conclusions follow in Section 
IX. 

II. REVIEW OF THE METHOD 

In general, it is possible to reduce the 
study of a Hamiltonian system to the study 
of a mapping of  the phase space onto itself. 
This can be accomplished by looking at the 
successive intersections of a trajectory with 
a given surface in the phase space, or by 
looking at the system stroboscopically, i.e., 
at fixed intervals of time. The latter method 
is especially useful when the Hamiltonian 
depends periodically on the time. A map- 
ping gives the state of  a system at some 
intersection in terms of  the state of the sys- 
tem at an earlier intersection. If this map- 
ping is explicitly given as an algebraic ex- 
pression, then the motion may typically be 
computed I000 times faster than the corre- 
sponding differential equations (Hrnon and 
Heiles, 1964). Thus, it is a t remendous ad- 
vantage to have an explicit mapping for a 
problem. Unfortunately,  explicit mappings 
for particular Hamiitonian systems are 
rarely found. Usually the only way to deter- 
mine exactly where a point is mapped is to 
integrate the equations of  motion until the 
section is crossed again. This may be use- 
ful, but it gives no computational advan- 
tage. However ,  in some cases where no ex- 
act, explicit mapping is known, the system 
can be approximated by an explicit map- 
ping. A good example is the motion of  a 
charged particle in an axially symmetric 
magnetic bottle. Chirikov (1979) has shown 
that the state of  this system at successive 
intersections of a particular plane is well 
approximated by the mapping 

I '  = l + K s i n o  q, 

O' = o q + l  '. 

The variables are defined in Chirikov 
(1979); I is related to the magnetic moment 
and 0 is a conjugate phase of  gyration. 
Chirikov calls this mapping the standard 
mapping. The mappings for asteroidal mo- 
tion near the 3/1 commensurabil i ty derived 
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in Wisdom (1982) are direct generalizations 
of Chir ikov 's  mapping. As a simple illustra- 
tion of how mappings can be derived, 1 will 
derive this standard map, and then outline 
the generalizations for asteroidal motion. 

Consider the t ime-dependent  Hamilto- 
nian 

I 2 K0 
H = 47r * 2rr cos 0 

- ~ ,  K . ( I ) c o s ( O -  nt),  (I) 

where I is a momentum and 0 is its canoni- 
cally conjugate coordinate.  Resonances oc- 
cur whenever  the argument of  one of the 
cosines is nearly stationary, that is, when- 
ever  I/2~r -~ 0 -~ n. If  the K,, are not too 
large, then the averaging principle (see Wis- 
dom, 1982) says that when I is near zero thc 
system is well approximated by the pendu- 
lum Hamiltonian 

12 Ko 
t lA = ~ + ~ cos O. (2) 

The other terms may be ignored at first be- 
cause they oscillate rapidly, and generally 
contribute only periodic oscillations about 
the motion determined by the averaged 
Hamiltonian. An important exception oc- 
curs for initial conditions near that infinite 
period trajectory which separates  the circu- 
lating trajectories from the oscillating tra- 
jectories,  the separatrix,  which is replaced 
by a narrow chaotic band when the high- 
frequency terms are present.  

If  it is a good approximation to ignore the 
high-frequency terms, it is an equally good 
approximation to modify them. This is what 
is done to derive a mapping. Consider the 
Hamiltonian 

12 K0 
HM = 4~, "- 2rr COS # 

K0 
+ ~ ~ cos09 - nt),  (3) 

n Z 0  

which differs from Hamiltonians (l) and (2) 
only in the choice of  the nonresonant  
terms. Since this Hamiltonian contains 

high-frequency terms the separatrix will 
again be chaotic,  as it was in the original 
system. In this respect  Hamiltonian (3) is 
superior to Hamiitonian (2L which is com- 
pletely integrable and yields no chaotic be- 
havior. Hamiltonian (3) may be rewritten in 
the forms 

12 Ko 
HM = ~ + ~ COS 79 .~, COS(nt) 

n 

12 
= 4---~ + K0 cos O .~, 6(t - 27rl) 

/ 

12 
= 4--~ + K0 cos # 82,(t), 

where the second equality follows from the 
well known Fourier t ransform of the Dirac 
delta function, and the last equality implic- 
itly defines 82= as a periodic delta function 
with period 2rr. This Hamiltonian is now 
" loca l ly"  integrable. The equations of  mo- 
tion across a delta function are 

"[ _ 3HM 
8 0  -- K0 sin 0 6(t) ,  

,'9 = 3HM = i___. 
31 27"; 

Since the delta function acts instanta- 
neously and I is finite, there is no change in 
O. The change in the momentum is 

&l = Kosin O. 

Between delta functions the equations of  
motion are 

i -  

which yields 

#ttM 

#IIM 1 
31 2rr ' 

~XO = 1 

for the change in the coordinate between 
delta functions. The state of  the system just 
belbre a delta function can thus be written 
explicitly as a function of  the state just be- 
fore the previous delta function 
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1' = 1 + K0 sin O, 

0 ' = 0 + I ' .  

Ecce,  the standard map. 
Essentially all studies of  the long-term 

behavior of asteroids near commensurabili-  
ties have employed averaged Hamiltonians, 
Hamiltonians where the high-frequency 
terms were removed either analytically (fol- 
lowing Poincar6, 1902) or numerically (fol- 
lowing Schubart,  1964). Thus, in the past, 
asteroidal studies have concentrated on an- 
alogs of Hamiltonian (2). Now, the stan- 
dard map was derived by adding new high- 
frequency terms to Hamiltonian (2) so that 
the system was locally integrable, yielding 
an analytic mapping of the phase space 
onto itself. Mappings for asteroidai motion 
near commensurabilit ies can be derived in a 
completely analogous manner. The Hamil- 
tonian for the elliptic restricted three-body 
problem can be written 

/xl 
H - 2o~ + tt~e¢(a, e,  i, O3,fl; 

a j, ej, i j ,  O3j, ~"~j) 

+Hrs,(a, e, i, 31j - - l ,  o3, ~ ;  

a j ,  e j ,  i j ,  o3j, ~),j) 

+Hhf(" • • , 3/j - 2 / , .  • .), 

where a, e, i, l, o5, and ~ are the semimajor 
axis, the eccentricity,  the inclination, the 
mean longitude, the longitude of the perihe- 
lion, and the longitude of  the ascending 
node, respectively. Jupiter 's  elements 
carry the subscript J. No approximation 
has been made, but the terms have been 
grouped into three parts. The secular part 
of  the Hamiltonian, H~c, contains all those 
terms in the disturbing function which do 
not depend on the mean longitudes; the res- 
onant part of  the Hamiltonian, H .... con- 
tains those terms which involve the reso- 
nant combination of  mean longitudes (here 
3/j - /); and the high-frequency part of the 
Hamiitonian, Hhf contains all other  terms, 
the terms with nonresonant  combinations 
of  mean longitudes. In order  to derive ana- 
lytic mappings, I first remove all of Hhf, as 

do the disciples of  Poincar6 and Schubart,  
and then add new high-frequency terms so 
that the Hamiltonian is " loca l ly"  integrable. 
It is important to realize that this is essen- 
tially the same approximation as that used 
by Poincar6 and Schubart;  each uses Ham- 
iltonians which differ from the actual Ham- 
iitonian by high-frequency terms. Symboli- 
cally 

/xl 
HM = --2---a + H~ec + Hre~Sz,(t). 

Between delta functions the Hamiltonian is 
analytically integrable if terms of  fourth or- 
der and higher in the eccentricities and in- 
clinations in H~c are ignored. It is also pos- 
sible to give analytic expressions for the 
changes in the elements as the delta func- 
tions are crossed, if the high-frequency 
terms are chosen properly. Except  for 
these few technical problems the derivation 
is completely analogous to the one above. 
The result is an analytic mapping of  the 
phase space onto itself which approximates 
asteroidal motion near the 3/1 commensura-  
bility. See Wisdom (1982) for the complete 
derivations and more thorough discussion 
of the approximations involved. For com- 
pleteness and because the mappings used in 
this paper have minor differences from the 
ones used in Wisdom (1982), I have in- 
cluded them in the Appendix. 

II!. M A X I M U M  L Y A P U N O V  C H A R A C T E R I S T I C  
E X P O N E N T S  

In chaotic regions of phase space two ini- 
tially nearby trajectories separate roughly 
exponentially with time; in quasiperiodic 
regions neighboring trajectories separate 
roughly linearly with time (see Chirikov, 
1979). The average rate of separation may 
be defined by 

/ d ( t )  
Inl~d--~0)} 

"/2(I) -- - - ,  (4) 
I -- t0 

where d is the usual Euclidean distance be- 
tween two initially nearby trajectories in 
their phase space and the subscript 0 refers 
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to initial values. If the trajectories are cha- 
otic, then d will grow exponentially on the 
average and '/2(0 will approach some posi- 
tive constant. If the trajectories are quasi- 
periodic, then d will grow linearly on the 
average and '/2(0 will approach zero as 
In(t)/t. These two cases are most easily dis- 
tinguished on a plot of Iog('/2(t)) versus 
log(t). In practice, this is an excellent 
method to determine the character  of a tra- 
jectory,  but some refinements are helpful. 
The worst aspect of this definition is that 
after some time (depending on the charac- 
ter of the trajectories) these two trajectories 
may be far apart, and will thus not be re- 
flecting the local rate of separation. There 
are two ways to overcome this difficulty. 

Consider the set of differential equations 

d 
d--t x = f ( x ) ,  [5) 

where x represents a point in an n-dimen- 
sional space and the subscript i refers to a 
component.  Neighboring trajectories sat- 
isfy 

d 
d--tt (xi + di) = f ( x  + d),  (6) 

where d now represents a small n-dimen- 
sional displacement. When d is infinitesi- 
mally small it satisfies the differential equa- 
tion 

d d 0 f~x),  (7) 
dt d ' = ~ J O X---~ 

which is found by Taylor  expanding the 
right side of Eq. (6), keeping only the terms 
linear in d, and subtracting Eq. (5). Remem- 
ber that the right side depends on x, which 
is determined through Eq. (5). Notice that 
since Eq. (7) is now linear in d, the absolute 
length of d is irrelevant. A new displace- 
ment vector,  d ' ,  which is initially related to 
d by d '  = cd, where c is a numerical scale 
factor, will always be related to d by the 
same relation, d'( t)  = cd(t) .  The original 
vector d must be infinitesimally small so 
that the linear approximation is valid. How- 

ever, after linearization the scale factor c is 
arbitrary and may be chosen to make d '  
computationally convenient  i.e., of  order 
unity. Thc analog of Eq. (4) is 

ln(ildll/ 
`/(t) = ~l d0il / . (8) 

I - -  to  

Ildll represents the usual Euclidean length 
Of d. The character Of the trajectory is de- 
termined as before, by plotting log(',/(/)) ver- 
sus log(t). 

There is a simpler, though somewhat less 
satisfactory, way to overcome the diffi- 
culty. Since the displacement between two 
neighboring trajectories satisfies a linear 
differential equation if the displacement is 
not too large, the displacement can always 
be kept small by repeatedly restarting the 
test trajectory near the reference trajec- 
tory, as long as the displacement direction 
is left unchanged. Let rk be the ratio of the 
length of d before and after this renormali- 
zation at time tk, then 

/ 

~', Inrk 
k-, (9) 

` / I  = I t  - -  tO 

A plot of log ('//) versus log(t/) determines 
the character  of the reference trajectory. In 
some cases it is more convenient  to use this 
method. Chirikov (1979) found that the two 
methods gave very nearly the same results. 

The limit of '/(t) as t approaches infinity 
is a Lyapunov characteristic exponent 
(LCE). It has been proven that for almost 
all initial conditions this limit can take at 
most n different values (LCE's)  as the ini- 
tial displacement is varied, where n is the 
dimension of the system. In fact, except for 
a set of measure zero, all initial displace- 
ments lead to the maximum LCE. Thus this 
method of determining the character  of tra- 
jectories by plotting log('/) versus log(t) is 
usually referred to as that of the maximum 
Lyapunov characteristic exponent.  For a 
review of the mathematical results regard- 
ing LCE's ,  see Benettin et al. (1980). 
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As discussed above,  there is no theoreti- 
cal difficulty in defining the average rate of  
exponential separation of  nearby orbits, but 
there are a number of  purely numerical 
problems. The most serious is the effect of 
roundoff  error  on chaotic trajectories. Each 
time the position is specified some error  is 
made; rather than specifying the original 
trajectory, a neighboring trajectory is speci- 
fied. Now neighboring trajectories separate 
exponentially in a chaotic region of  phase 
space, so the numerically followed trajec- 
tory separates exponentially from the origi- 
nally specified trajectory. Moreover,  this 
exponential splitting happens with each 
specification of the trajectory,  not just at 
the beginning. The rate of exponential sepa- 
ration is determined by the maximum LCE. 
As an example,  suppose the maximum 
LCE has the value ~. = 10-35/year, which is 
typical for asteroids near the 3/I commen- 
surability. If the initial error  is, say, 10 -t2, 
then the error  at time t will be 10 ~2 exp(Xt). 
If the final error  is to be no more than 10 -2 

then t is limited to 

In(10 m) 
t - ~ ~ 80,000 years. 

If a numerical integration over  1 my is de- 
sired it is necessary to carry out the calcula- 
tion with over  100 significant digits! Such a 
calculation is effectively impossible, it is al- 
ready almost prohibitively expensive with 
12 significant digits. Chaotic trajectories are 
difficult to compute precisely. 

Nevertheless,  calculations of  chaotic tra- 
jectories appear frequently in the literature. 
With few exceptions (e.g., Channon and 
Lebowitz,  1980) this difficulty in numeri- 
cally following chaotic orbits is ignored, 
and calculations are simply carried out with 
some convenient precision. Of course,  the 
hope is that the computed trajectories are 
somehow related to actual trajectories. Can 
this be justified? No, not completely,  but 
some insight is gained through the theorem 
of Anosov and Bowen (see Benettin et al . ,  
1978, for a discussion). Stated simply, this 
theorem proves for a very special class of 

dynamical systems, called Anosov sys- 
tems, that it is always possible to find a true 
trajectory that lies near the computed tra- 
jec tory for all time, if the computed trajec- 
tory is computed with sufficient (though not 
perfect!) precision. The precision required 
depends on the definition of  " n e a r . "  This is 
a remarkably useful result for those who 
want to study Anosov systems numerically. 
It means not only that trajectories may be 
computed without worrying about the pre- 
cision of the computation,  but that the sta- 
tistical properties of the computed trajec- 
tory will be real. Unfortunately,  most 
Hamiltonian systems are not Anosov sys- 
tems. However ,  Benettin et al. (1978) ex- 
hibit a number of calculations which yield 
similar results for Hamiltonian and Anosov 
systems and argue that a similar theorem 
may hold for more general Hamiltonian 
systems. What is more important for this 
study, Benettin et al. (1980) found that the 
maximum LCE did not depend on the pre- 
cision of  their calculation. It appears likely 
then that as long as a certain minimum pre- 
cision is kept, maximum LCE's  may be ac- 
curately computed,  even though it is not 
possible to precisely follow a specified tra- 
jec tory for the required length of time. In 
this paper the most important question is 
simply whether  the trajectory is chaotic or 
quasiperiodic; the precise value of the max- 
imum LCE will play no role in my discus- 
sion of the origin of  the 3/1 Kirkwood gap. 

IV. THE CHARACTER OF TRAJECTORIES 

The calculation of  Lyapunov characteris- 
tic exponents by numerically integrating 
the differential equations for the restricted 
three-body problem is very time consum- 
ing. Consequently,  very few cases have 
been studied, and lbr many of these the in- 
terpretation was difficult because the inte- 
grations were limited (see Froeschl6 and 
Scholl, 1981). Mappings, on the other hand, 
are approximately 1000 times faster than 
other methods for studying asteroidal mo- 
tion near the 3/I commensurabili ty.  How- 
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FIG. 2. A total of  16 calculations of  the max imum 
Lyapunov characterist ic exponents  using the planar- 
elliptic mapping for two different trajectories, one cha- 
otic and the other  quasiperiodic,  showing that the 
results are insensitive to the initial d isplacement  vec- 
tor, d. and to the precision of  the calculation. 

ever, before the mappings can confidently 
be used to explore the phase space for cha- 
otic zones it is essential to first determine if 
the mappings accurately reflect whether the 
trajectories are chaotic or quasiperiodic 
by comparing calculations of maximum 
LCE's ,  i.e., -y(t), using the differential 
equations and using a corresponding map- 
ping. Because the mappings are so much 
faster, it is wise to use them first to get an 
idea of what to expect,  and then verify the 
behavior with the differential equations. 

To what extent does 7 depend on the 
choice of  the initial displacement'? How 
long must the integrations be to unambigu- 
ously determine whether a trajectory is 
chaotic or quasiperiodic? How precisely 
must the trajectories be calculated? All of 
these questions are answered in Fig. 2. Fig- 
ure 2 shows several calculations of  7(0, us- 
ing the planar-elliptic mapping and defini- 
tion (8), for two different trajectories, one 
chaotic and the other quasiperiodic. The 
initial conditions for the chaotic trajectory 
a r e  a/aj = 0.48, e = 0.15, I = 7r, and 03 = 0. 
The perihelion of Jupiter is taken as the ori- 
gin of longitudes. The mass of Jupiter di- 

vided by the sum of  that of  the Sun and 
Jupiter is taken to be 1/1047.355, and Jupi- 
ter 's eccentricity has the value 0.048. The 
initial mean longitude of Jupiter is zero. 
The initial conditions of the quasiperiodic 
trajectory are the same except a/a j  = 

0.4795. For each trajectory -/ is computed 
for four independent choices of  the initial 
displacement d, in both single (7 digits) and 
double precision (16 digits), a total of  16 
calculations of',/. The eight ",/'s for the cha- 
otic trajectory all appear to be approaching 
a constant value near 10-3-s; the eight 3,'s 
for the quasiperiodic trajectory all appear 
to be approaching zero with the character- 
istic ln( t ) / t  behavior. In all cases the behav- 
ior is independent of the initial displace- 
ment and of the precision of  the calculation. 
Figure 2 is intentionally complex to illus- 
trate that typically the two qualitatively dif- 
ferent types of behavior only begin to sepa- 
rate after approximately 60,000 years. 

How does this compare to the differential 
equations? In Fig. 3 are displayed calcula- 
tions of'y(t) for these same two trajectories 
using the differential equations for the pla- 
nar-elliptic restricted three-body problem. 
The constants are all set as before. The co- 
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Fl(~. 3. Calculat ions of the max imum Lyapunov 
characteristic exponent  for the same two trajectories 
as in Fig. 2, but using the unaveraged differential equa- 
tions for the planar-elliptic restricted three-body prob- 
lem, verifying that the mapping accurately reflects the 
character  of  these trajectories. 
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FIG. 4. Eccentrici ty versus  time using the un- 
averaged differential equat ions  for the planar-elliptic 
restricted three-body problem for the chaotic trajec- 
tory used in Figs. 2 and 3, showing a j u m p  in eccentric-  
ity quite similar to those  seen with the planar mapping.  
Here,  tmax is 16,000Tj or approximately  200,000 years. 

ordinates used in the integrations are those 
of Scheibner (1866), where the true longi- 
tude of  Jupiter is used as the independent 
variable. This choice is convenient  since 
the position of  Jupiter is explicitly given in 
these coordinates,  whereas for other  coor- 
dinates, such as rotating or nonrotating 
Cartesian coordinates with time as the inde- 
pendent variable, the position of Jupiter 
must be computed.  The algorithm of Bu- 
lirsch and Stoer (1966) was used to perform 
the integrations. For  the mapping calcula- 
tions presented above,  the same result was 
obtained in both single and double preci- 
sion. This indicates that the minimum pre- 
cision required to capture the correct  be- 
havior, which was discussed in the last 
section, is no greater than 7 significant dig- 
its. I therefore chose 10 -8 as the relative 
accuracy per integration step, which was 
on the order of  1 year. The mapping calcu- 
lations indicated that integrations of  less 
than 60,000 years would be of  no value in 
determining the character  of  trajectories. 
These numerical integrations cover  a time 
interval of  approximately 200,000 years. 
The mapping calculations also showed that 

the behavior was independent of the initial 
displacement. Thus one arbitrary choice is 
sufficient. The behavior shown in Fig. 3 is 
essentially identical to that shown in Fig. 2; 
both trajectories have exactly the behavior 
expected of them, and even seem to be ap- 
proaching the same values. 

An exciting by-product of  this calculation 
was that the chaotic trajectory showed a 
sudden increase in eccentricity,  remarkably 
similar to the sudden increases found with 
the planar-elliptic mapping. Figure 4 shows 
the eccentricity versus time for this trajec- 
tory as calculated by the differential equa- 
tions. Now this numerical integration was 
performed with fairly low precision to de- 
termine the character  of  the trajectory,  not 
to follow it exactly. Since the maximum 
LCE is near I0 -3--~ and only 8 digits were 
computed, validity can only be claimed for 
segments of approximately 50,000 years, 
even though it is still possible that some 
real trajectory shadows this computed tra- 
jectory over  the whole 200,000-year inter- 
val. Nevertheless,  50,000 years is long 
enough to span both the jump and the tran- 
sition from low-eccentricity behavior. To 
still further verify this behavior a 50,000- 
year segment surrounding the jump was re- 
computed with a relative accuracy of  I0 w0 
per integration step, with identical results. 
The jump appears to be a real phenomenon 
of  the differential equations, not an artifact 
of the mapping. 

Froeschl6 and Scholl (1981) calculated 
the maximum LCE for two trajectories near 
the 2/i commensurabili ty.  They found very 
little difference in the behavior of 3, for the 
chaotic orbit found by Giffen (1973) and a 
nearby quasiperiodic trajectory. Their cal- 
culation may be criticized on two points. 
First, they plot log(3,) versus time, t, rather 
than log(t). Frequently,  for chaotic trajecto- 
ries 3' first tends to zero as ln(t)/t as it does 
in the quasiperiodic case, but then levels 
out near its limit value. It is very difficult to 
distinguish this leveling out from the ln(t)/t 
behavi(~r on a plot that is linear in time. 
Second, they calculate 3' over  a time inter- 
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FIG. 5. Calculations of  the max imum I.yapunov 
characteristic exponent  for a set of  initial condit ions 
which span the 3/1 Kirkwood gap. The results using 
the differential equat ions are represented by circles 
(200,000 years); the mapping results are represented 
by crosses  (200,000 years) and plus signs (I.000,000 
years). The chaotic zones are readily apparent ,  and in 
all cases  the agreement  between the two methods  is 
excellent, indicating that the mapping accurately re- 
flects the width of the chaotic zone. 

val of  only 20,000 years. It is not known 
how long their calculations would have to 
have been to see an unambiguous differ- 
ence in behavior,  but judging from the diffi- 
culty of  interpretation their calculations 
were simply not long enough. For Giffen 's  
orbit, y appeared to be approaching a value 
near I0-3. This was smaller than Froeschl6 
and Scholl expected.  They concluded that 
Giffen's  trajectory should not be called "cr -  
godic ,"  the word commonly  used at the 
time to describe chaotic behavior,  but in- 
stead invented for it the new term 
"quas iergodic ."  However ,  a small value 
for the maximum LCE is simply an indica- 
tion that one must look at the trajectory for 
a long time to become aware of  its noninte- 
grable character.  This value is comparable  
in magnitude to the value found above,  
10 -35, for a chaotic trajectory near the 3/I 
commensurabil i ty.  In that case a clear de- 
termination of the character  of  the trajec- 
tory could only be made after 60,000 years.  

but on a t imescale of  millions of years simi- 
lar trajectories definitely appear  chaotic (cf. 
Fig. 12). This time scale is still short when 
motion over  the age of  the solar system is 
being considered. All calculations of  y in 
this paper  (except one) are carried out over  
at least 200,000 years. 

For two trajectories it has been verified 
that the mapping accurately reflects 
whether the motion is chaotic or quasipe- 
riodic. Does the planar-elliptic mapping ac- 
curately reflect the extent of  the chaotic 
zone'? To answer  this question it is again 
necessary to compare  calculations of  y us- 
ing differential equations and using the cor- 
responding mapping. As before, the map- 
ping is studied first in order  to see what 
range of initial conditions are interesting, 
and then the observed behavior  is verified 
with the differential equations. Since the 
width of the chaotic zone is of  fundamental 
importance,  I have chosen to study a set of  
initial conditions on a fine which crosses 
the commensurabi l i ty .  Namely,  a is varied 
to span the commensurabi l i ty ,  while e = 
0.15, 1 = rr, and o3 = 0. This eccentricity is 
near the mean eccentricity for asteroids 
ncar the 3/I commensurabi l i ty .  The reason 
for choosing these particular values for the 
other two coordinates will be explained in 
the next section. Figure 5 displays the 
results of  a number  of  calculations of 'y ,  us- 
ing definition (9) with an initial displacc- 
ment of length I0-7 and a renormalization 
every 100 years.  The values of  log,)('),) at t 
= 200,000 years (crosses) and t = 1,000,000 
years (plus signs) are plotted versus the ini- 
tial semimajor  axis. If a trajectory is chaotic 
3, tends to a constant ,  while for a quasipe- 
riodic trajectory it tends to zero as In(t)/t. 
Thus as long as enough time has passed,  the 
two types of  behavior  may be distinguished 
simply by the value of 'y .  At a later time 3/ 
should be roughly the same for chaotic tra- 
jectories,  but smaller for the quasiperiodic 
trajectory by approximate ly  the ratio of  the 
times. These features may be seen in Fig. 5, 
and readily distinguish the two typcs of  be- 
havior. In the chaotic zones, all values of  y 
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cluster near 10-35; in the quasiperiodic 
zones, 3' takes smaller values with the ratio 
of the two 3"s for each semimajor axis ap- 
proximately the same as the ratio of  the 
times, 1/5, as expected.  

The results of several calculations of 3' 
using the differential equations and defini- 
tion (8) are also displayed in Fig. 5 (circles). 
The initial conditions are the same as be- 
fore, but now there are only eight evenly 
spaced values of  semimajor axis: 0.4795, 
0.4800, 0.4805 . . . . .  and 0.4830. The de- 
tails of the calculations were the same as 
the previously discussed calculations using 
the differential equations. In particular, 
each integration spanned approximately 
200,000 years,  except  the one beginning 
with a = 0.4815 which spanned 160,000 
years. It is tempting to use dollar (or pound) 
signs here, rather than the circles, since 
these were by far the most time consuming 
calculations in this paper, occupying a total 
of 100 hr of VAX 11/750 time. In every case 
the mapping and the differential equations 
agree on the character  of the trajectories 
and in the magnitude of 3". Even the narrow 
quasiperiodic zone at a = 0.4805aj is repro- 
duced. The agreement with the mapping 
results is better  than might have been ex- 
pected. The false high-frequency terms in- 
troduce variations in the semimajor axis of 
the same order  as the ratio of  the mass of 
Jupiter to the mass of the Sun. Thus the 
mappings might have been expected to 
make errors in the boundaries of the cha- 
otic zone of order  0.001aj. | will just men- 
tion that several more examples of  jumps in 
eccentricity were found in these integra- 
tions. 

The planar-elliptic mapping has passed 
all tests with flying colors. In every  case 
considered, the planar-elliptic mapping and 
the differential equations for the planar-el- 
liptic restricted three-body problem give 
the same behavior for 3', both qualitatively 
and quantitatively. This clears the way for 
using the planar-elliptic mapping as a tool 
to explore the phase space near the 3/! 
commensurabil i ty for chaotic zones. 

V. THE CHAOTIC ZONE NEAR THE 3/I 
COMMENSURABILITY 

Having shown that the mappings reliably 
reflect the character  of trajectories, it is 
now possible to take advantage of their 
great speed and systematically trace out the 
chaotic zone near the 3/I commensurabil-  
ity. Immediately, though, there is a prob- 
lem. The space of  initial conditions for the 
planar-elliptic mapping is four-dimensional. 
It is impractical to at tempt to systemati- 
cally explore such a space, or to expect  to 
be able to visualize the results of such a 
systematic exploration. Fortunately,  there 
is an easier way. If it were true that all tra- 
jectories eventually cross some particular 
two-dimensional plane through the phase 
space, then a systematic study of initial 
conditions on this plane would bc equiva- 
lent to a study of the entire four-dimen- 
sional space. Does such a plane exist for 
the planar-elliptic problem, and how can it 
be found? There are two facts to be consid- 
ered. First, it is possible for I + 2o3 - 3/j to 
librate about zr. Thus,  depending on the am- 
plitude of  the libration, this resonant argu- 
ment can avoid values near zero but not 
those near zr. This gives the first condition 
for this representative plane of initial condi- 
tions: l + 2o3 - 3/j = ~'. Second, far away 
from the exact commensurabil i ty,  the mo- 
tion of  o3 is well described by the secular 
part of the Hamiltonian alone. The solution 
of this Hamiltonian is trivial (if fourth-order 
terms are ignored) and may be interpreted 
in terms of  a forced and a free eccentricity,  
viz. 

e cos(o3 - O3j) = eforced 

+ efree Cos(A(t - to)), 

e sin(o3 - O3j) = efrce sin(A(t - to)). 

The two constants e~orced and A are deter- 
mined by the equations of  motion; the con- 
stants efree and to are determined by the ini- 
tial conditions. Notice that if efr~e is smaller 
than eforced then o3 - O3j does not go through 
all values. However ,  for all initial condi- 
tions 03 - O3j goes through zero. This gives 
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Fie,. 6. The  chao t i c  zone  nea r  the 3/I c o m m e n s u r a -  

bi l i ty  us ing  the p lanar -e l l ip t ic  m a p p i n g  wi th  ej = 0.04& 
The ini t ial  cond i t i ons  were  on the r e p r e s e n t a t i v e  p lane  
and e v e n l y  spaced  by  .(R)01 in ot/aj for the six va lues  of  
the eccen t r i c i ty :  0.05. 0.10 . . . .  and  0.30. A small  
c ross  is p lo t ted  w h e n e v e r  the m a x i m u m  L C E  indi- 
ca ted  chao t i c  behav io r .  The  chao t i c  zone  is eas i ly  in- 
t e rpo la t ed  to o the r  eccen t r i c i t i e s .  

the second condition for the representative 
plane: o5 - oSj = 0. The first condition must 
hold for librating trajectories; the second 
for trajectories away from the exact reso- 
nance. The simplest guess for a representa- 
tive plane is the plane which is uniquely 
determined by taking these two conditions 
to hold everywhere.  Experimentally,  I have 
found that this is a good choice. I have 
tested several hundred initial conditions 
chosen at random in the four-dimensional 
phase space, as well as all the real num- 
bered asteroids and the PLS asteroids with 
quality 1 or 2 orbits. In every case, this 
plane is crossed, i conclude that if there are 
trajectories which do not cross it they are 
rare. The existence of this representative 
plane enormously reduces the problem of  
systematically exploring the phase space. 

Figure 6 shows the results of one system- 
atic exploration using the planar-elliptic 
mapping, with ej = 0.048. Initial conditions 
were chosen on the representative plane, / 
- 3/j = ~r and o5 = 0, where the longitude of 
the perihelion of  Jupiter is again taken as 
the origin of  longitudes. The semimajor 

axes, measured in units of Jupiter 's  semi- 
major axis, were evenly spaced by 0.0001 
from 0.47 to 0.49. The eccentricities were 
given the values 0.05, 0.1., 0.15, 0.2, 0.25, 
and 0.3. For each combination of semima- 
jor  axis and eccentricity y(t) was computed 
in double precision using definition (9) over 
a time interval of 300,000 years. The char- 
acter of  each trajectory was then deter- 
mined by plotting long~0(y(t)) versus 
Iog~0(t). Wherever  the trajectory showed a 
chaotic character,  a small cross is plotted in 
Fig. 6; nothing is plotted for a quasiperiodic 
trajectory. Figure 6 must be interpolated 
for other eccentricities. There is a sizable 
chaotic zone. 

This macroscopic chaotic zone is present 
in the elliptic-restricted problem, but in the 
circular-restricted problem only a very 
small chaotic zone near the boundary of  li- 
bration is anticipated (Chirikov, 1979). 
Now, Jupiter 's  eccentricity varies from ap- 
proximately 0.03 to 0.06. It might be ex- 
pected that the chaotic zone would be 
larger with ej = 0.06. Figure 7 shows the 
same calculation as Fig. 6, but with ej = 
0.06. The chaotic zone is not dramatically 
different. Some of the holes have been 
filled, but the overall width is actually 
somewhat smaller. °4 
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FIG. 7. The  same  as in Fig. 6 but  wi th  e, = 0.06. The 
chaot ic  zone  is more  sol id ,  but  su rp r i s ing ly  s o m e w h a t  
n a r r o w e r  
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FIG. 8. The chaotic zone on the plane / - 31j = 7r and 
= 7r which emphasizes  the width of the region of 

quasiperiodic libration. A small cross again represents  
a chaotic trajectory, but this time a small dash is plot- 
ted for a quasiperiodic trajectory which reaches eccen- 

tricities above 0.3, i.e., can cross the orbit of Mars. 
Most quasiperiodic librators can cross the orbit of 
Mars. 

To givc some idea of  how the chaotic 
zone looks on other  planes through the 
phase space, Fig. 8 shows the chaotic zone 
for initial conditions on the plane ! - 31j = rr 
and o3 = 7r. As before,  a small cross is plot- 
ted where the trajectory was chaotic.  This 
time a dash is plotted when the trajectory 
was quasiperiodic and potentially Mars 
crossing (e > 0.3), and nothing is plotted for 
a quasiperiodic trajectory which cannot 
cross the orbit of  Mars. This plane of initial 
conditions emphasizes  the width of the re- 
gion of quasiperiodic libration, but also il- 
lustrates that most  of  the trajectories 
started within the libration region on this 
plane have large enough variations in ec- 
centricity to become Mars crossers .  Only a 
small region with initial eccentricity 0.05 is 
safe; most quasiperiodic librators cross the 
orbit of  Mars. This conclusion is supported 
by the study of a random distribution of  300 
test asteroids. Despite its large apparent  
size in Fig. 8, the quasiperiodic libration 
region occupies a much smaller volume in 
phase space than the chaotic zone. Of  the 

300 test asteroids,  89 were chaotic while 
only i l  were quasiperiodic librators. None 
of the quasiperiodic librators could avoid 
Mars. 

In Wisdom (1982) I mentioned that tra- 
jectories seemed to have more freedom in 
the three-dimensional problem, i.e., the 
problem including the inclinations, com- 
pared to the planar problem. It is necessary 
to consider how the chaotic zone depends 
on the inclination, i, and the longitude of 
the node, f~. Unfortunately,  even with a 
representat ive plane this problem is again 
four dimensional.  I can only give a taste of  
what happens.  The three-dimensional  map- 
ping is presented in the Appendix.  It has 
not been compared  to numerical integra- 
tions as was the planar-elliptic mapping, 
but this mapping is a straightforward exten- 
sion of the earlier one. There is no reason to 
expect  that one should work and the other 
not work. I first studied the set of  initial 
conditions used in Fig. 5 with several differ- 
ent choices for the inclination and node. 
The mean inclination of  the asteroids is 
about 5 degrees.  1 studied inclinations of 5, 
10, and 15 degrees,  and longitudes of  the 
node equal to 0 and 90 degrees. I found the 
somewhat  curious result that when the 
node was at 90 degrees the chaotic zone 
was identical to the planar result, regard- 
less of  inclination. The results lbr i = 10 
degrees and 11 = 0 degrees are depicted in 
Fig. 9. The chaotic zone is now solid, and 
considerably wider at low eccentricities 
than in the planar problem. 

In summary,  chaotic behavior  is common 
in the planar-elliptic restricted three-body 
problem, and even more common in the 
three-dimensional problem. There is also a 
small region of quasiperiodic iibration, but 
most trajectories in this region can cross 
the orbit of  Mars. 

VI. CONSTRAINTS IMPOSED BY THE 
A V E R A G E D  H A M I L T O N I A N  

Chaotic behavior  is common,  but of  what 
consequence is it? None,  if there are other 
factors which constrain the motion to some 
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l-x(;. 9. The chaotic zone using the three-dimen- 

sional mapping. The initial conditions are the same as 
in Fig. 6 with i = 10 degrees and (~ = 0 degrees. As the 

inclination increases the chaotic zone becomes 

broader and more solid. 

small region of phase space. There are no 
known integrals in the planar-elliptic re- 
stricted three-body problem. Near the 3/I 
commensurability, however,  the averaged 
Hamiltonian provides a quasi-integral. If 
the high-frequency part of  the Hamiltonian 
is ignored and the explicit time dependence 
of the averaged Hamiltonian is removed by 
a canonical transformation, then the result- 
ing Hamiltonian is then a strict integral of 
the motion. When tthr is included this time- 
independent version of the averaged Hamil- 
tonian is no longer a strict integral, but ex- 
hibits periodic oscillations. Nevertheless.  it 
is approximately conserved,  and provides a 
constraint on the motion. For convenience,  
1 will call the time-independent version of 
the averaged Hamiltonian simply the aver- 
aged Hamiltonian. To what extent are the 
chaotic trajectories near the 3/1 commensu- 
rability confined by the averaged Hamilto- 
nian? 

Some idea of the range of motion allowed 
can be found by restricting attention to the 
representative plane. Figure 10 shows lines 
of constant averaged Hamiltonian on the 
representative plane as a function of a/aj 
and e, plotted with the chaotic zone as de- 

termined in Fig. 6. For many values of the 
averaged Hamiltonian there are two lines, 
labeled with the same number. It is ex- 
pected that every time the trajectory 
crosses this plane it must cross near the line 
on which it started or near the other line 
with the same value of the averaged Hamil- 
tonian. Now, quasiperiodic trajectories are 
not only distinguished from chaotic trajec- 
tories by the rate of separation, but also by 
the existence of a full set of integrals of 
motion. A quasiperiodic trajectory, except 
under very special circumstances,  can only 
cross a particular plane at a finite number of 
points. On the contrary,  chaotic trajecto- 
ries are confined only by the near conserva- 
tion of the averaged Hamiltonian: there are 
no extra integrals. A trajectory which is 
started in a chaotic zone is free to wander, 
as long as it always crosses the representa- 
tive plane near one of its lines of constant 
averaged Hamiltonian. The range of possi- 
ble intersections with the representative 
plane may be read directly off this plot, 
with a little interpolation of the chaotic 
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FIG. 10. Curves of  constant averaged Hamil tonian 
on the representative plane, plotted with the chaotic 
zone found in Fig. 6. Trajectories are constrained to 
cross the representat ive plane near one of the curves 
with the same value of the averaged Hamiltonian as 
the curve on which the trajectory began. Curves with 
the same value of the averaged Hamiltonian are la- 
beled with the same number. 
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Fl(;. 1 I. Intersections of two trajectories with the 
representative plane, plotted with Fig. 10. Trajectories 
started in a chaotic zone seem to reach all points 
where their curves of constant averaged Hamiltonian 
cross the chaotic zone. All chaotic trajectories can 
eventually cross the orbit of Mars. 

zone from the calculations. One simply 
looks for all places where the line of  con- 
stant averaged Hamiltonian is within the 
chaotic zone. Is it possible to reach all such 
points? In particular,  is it possible to jump 
from one curve of  constant  averaged Ham- 
iltonian to the other  curve with the same 
value of the averaged Hamiltonian? 
Whether  or not this is possible depends on 
the propert ies of  the trajectories in the full 
four-dimensional phase space. It is possible 
that a trajectory started on the lower curve 
labeled 3 would be forever  confined to low 
eccentricity,  even though the upper  curve 
labeled 3 remains in the chaotic zone at 
very large eccentrici ty.  This is an experi- 
mental question. On Fig. 11 I have replot- 
ted Fig. I0 along with the successive inter- 
sections with the representat ive plane of 
two trajectories for which curves were 
drawn. Their  initial conditions are a = 
0.4806, e = 0.1 and a = .4822, e = 0.15. 
Initially both trajectories have l = zr and o3 
= 0. Actually, it is not possible to wait for 
exact intersections of  the representat ive 
plane, and a and e were plotted whenever  l 

- 31j and o3 were both within 5 degrees of  

the representat ive plane. The results are 
not sensitive to the exact size of  this win- 
dow. First, Fig. I1 verifies that the aver- 
aged Hamiltonian is approximate ly  con- 
served for chaotic trajectories. Second, 
these two trajectories illustrate that it is in- 
deed possible to jump from one curve to the 
other, both between upper  and lower 
curves and between left and right curves.  
Several other trajectories were studied, and 
in all cases the full range possible seems to 
be explored. However ,  in some cases the 
trajectory seems to show some reluctance 
to changing curves.  For example,  the first 
of  the two trajectories just  mentioned 
spends a long time on the lower curve be- 
fore appearing on the upper  one. The exis- 
tence of two curves with the same value of 
the averaged Hamiltonian is the first clue to 
an explanation of how trajectories can 
spend large intervals of  time with low ec- 
centricity and then suddenly jump to large 
eccentricity.  

It is difficult to extrapolate  Fig. 6 to ec- 
centricities much above 0.3, but it appears  
that in the planar problem these curves of  
constant averaged Hamiltonian all eventu- 
ally leave the chaotic zone. That means that 
all chaotic trajectories have a maximum ec- 
centricity above which they cannot go. 
However ,  meditation on Fig. 11 reveals 
that this maximum eccentricity is always 
greater  than 0.3, the eccentrici ty for which 
Mars crossing becomes  possible. Thus even 
in the planar problem, all chaotic trajecto- 
ries can cross the orbit of  Mars. 

The chaotic zone is also present in the 
three-dimensional problem, and even 
seems to widen as the inclination increases. 
The averaged Hamiltonian still provides a 
constraint on the motion, but this is only 
one constraint in a six-dimensional phase 
space. The available phase space is much 
larger in the three-dimensional problem. 
This explains the apparent  f reedom of 
three-dimensional trajectories.  Figure 12 il- 
lustrates the typical behavior  of  a test aster- 
oid with a chaotic trajectory in the planar 
problem. The initial conditions are a = 
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FIG. 12. Eccentricity versus  time for a typical cha- 
otic trajectory near the 3/1 commensurabi l i ty  using the 
planar-elliptic mapping. The eccentricity seems to be 
limited to values less than 0.4. t .... is 200,000Tj or ap- 
proximately 2.4 my. 

0.4806, e = 0.098, l = 7r, and th = 0. For 
periods of  time the trajectory has low ec- 
centricity and for other periods it has high 
eccentricity,  with apparent ly random tran- 
sitions between the two modes of behavior.  

In this 2.4-my interval, the eccentricity 
seems to be limited to values less than 0.4. 
Some planar trajectories display the partic- 
ularly interesting behavior  shown in Fig. 
13. The initial conditions are a = 0.4806, e 
= 0.05, 1 = r r ,  and o3 = 0. Here the eccen- 
tricity makes only jumps  for a short time to 
high values, again at random intervals. Evi- 
dently the trajectory is so confined that the 
path to large eccentricity is very narrow. 
This phenomenon seems to be fairly rare, 
since no test asteroids in the random distri- 
bution displayed it. It also does not seem to 
occur  in the three-dimensional problcm 
where trajectories are less confined. Figure 
14 shows a typical chaotic trajectory in the 
three-dimensional problem. The initial con- 
ditions are the same as in Fig. 13 with i = 10 
degrees and fl  = 0. Notice that the eccen- 
tricity scale is different. Much higher ec- 
centricities are reached with the three-di- 
mensional mapping. (The inclination seems 
to execute a random walk, and can also 
reach large values). Of course,  when the 
eccentricity is so large the mapping is no 
longer valid since fourth-order  terms in co- 
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Fie;. 13. Eccentricity versus  time for a particularly 
interesting chaotic trajectory in the planar problem. 
This " in te rmi t ten t"  behavior seems  to be fairly rare: 
initial conditions chosen at random do not display it. It 
also does not seem to occur  in the three-dimensional  
problem, t,,~ is the same as in Fig. 12, approximately 
2.4 my. 
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FI(;. 14. Eccentricity versus  time for the same cha- 
otic trajectory as in Fig. 13, but computed  using the 
three-dimensional mapping with an initial inclination 
of 5 degrees.  Notice the eccentricity scale: much 
larger variations in eccentricity are obtained with the 
three-dimensional mapping, t ...... is the same as in Fig. 
12, approximately 2.4 my. 
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centricity were ignored in its derivation. 
Thus, it is not known exactly how large the 
eccentricity may grow in the actual three- 
dimensional problem. This is a vital ques- 
tion, for the haiflife of  an asteroid depends 
strongly on its eccentricity.  The typical life- 
time for a Mars crosser  is on the order of 
200 my (Wetherili 1975). The trajectory 
shown in Fig. 12 spends about 5% of the 
time as a Mars crosser.  Thus the lifetime 
for a typical chaotic trajectory computed in 
the planar approximation is on the order of 
the age of the solar system. On the other  
hand the typical three-dimensional trajec- 
tory shown in Fig. 14 reaches eccentricities 
large enough to be Earth crossing (e > 0.6) 
and spends considerably more time as a 
Mars crosser (roughly 50%). While the as- 
teroid is Earth crossing its halflife is consid- 
erably shorter, approximately 10 my 
(Wetherill, 1975). Thus it appears that colli- 
sions or close encounters  with the Earth or 
Mars are more than adequate to remove all 
asteroids with chaotic trajectories within 
the age of  the solar system. 

Scholl and Froeschl6 (1976) showed that 
Giffen's chaotic trajectory was confined by 
the averaged Hamiltonian to eccentricities 
less than 0.18. Except for the possibility 
that over  very long times the trajectories 
escape their confinement through Arnol 'd 
diffusion, their conclusion was that chaotic 
behavior has nothing to do with the origin 
of the Kirkwood gaps. However ,  their cal- 
culations were performed for the planar 
case. The above calculations showed that 
trajectories near the 3/I commensurabil i ty 
reach much larger eccentricities in the 
three-dimensional problem than in the pla- 
nar problem. I expect  that this will also be 
true for trajectories near the 2/I commensu- 
rability; the trajectories are confined in the 
planar problem, but probably not as con- 
fined in the three-dimensional problem. 

All chaotic trajectories near the 3/I com- 
mensurability can cross the orbit of  Mars. 
In the three-dimensional problem very 
large eccentricities are reached, probably 
large enough for the asteroids to be Earth 

crossers. The collision probabilities with 
the Earth and Mars appear adequate to re- 
move all of  the asteroids with chaotic tra- 
jectories within the age of  the solar system. 

VII. JUMPING AND STICKING PHENOMENA 

At first sight, Figs. l, 12, and 13 display 
rather peculiar behavior of the eccentricity 
as a function of  time. Do other  Hamiltonian 
dynamical systems behave this way, and 
under what circumstances are similar phe- 
nomena to be expected? One of the most 
extensively studied area preserving map- 
pings on the plane is the standard map of 
Chirikov, prescnted in Section II. It can ex- 
hibit similar phenomena.  

In Fig. 15 a number of trajectories of the 
standard map for K = 0.96 are displayed. 
This shows the familiar mixture of chaotic 
and quasiperiodic behavior. Focus atten- 
tion on the chaotic band surrounding the 
large central island. Successive iterations 
of the mapping movc through this band in a 
number of  modes. In one mode successivc 
iterations appear near the lower boundary 
of the chaotic band with the angle )9 rotat- 
ing towards negative values. In another  
mode the trajectory movcs near the upper 
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Ir~:~: - I I / / . . . - ~ - ~ i  ~ 

0 "n'/2 "~ 3~12 2~r 
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FIG. 15. I000 successive iterations of the standard 
map with K = 0.96 for each of nine different initial 
conditions, showing the now familiar divided phase 
space, originally discovered by Henon and Hei]es 
(1964). 
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FiG. 16. / versus iteration number n for the chaotic 
trajectory which surrounds the large central island in 
Fig. 15, showing the apparently random transitions be- 
tween the possible modes. This plot looks remarkably 
similar to Fig. 12. The standard map thus provides a 
model for understanding the behavior found with the 
planar-elliptic mapping. 

boundary with t~ rotating towards positive 
values. Finally, the trajectory may rotate 
around the large central island while o a os- 
cillates. As a chaotic trajectory evolves 
each of these modes is entered; the transi- 
tions between modes occurring after appar- 
ently random intervals. Figure 16 illustrates 
these apparently random transitions be- 
tween modes by plotting 1 versus iteration 
number,  n. For  convenience,  successive it- 
erations have been connected with a con- 
tinuous line. This chaotic band may be 
viewed as resulting from the broadening of 
the separatrix of  the pendulum Hamiltonian 
due to the high frequency contributions. In 
the pendulum, the two branches of  the sep- 
aratrix cross at the unstable equilibrium. 
This unstable equilibrium is still present in 
the standard map and provides the knife 
edge which separates  the modes.  Trajecto- 
ries which approach this unstable equilib- 
rium eventually fall away from it, but may 
go in two possible directions. Whether  they 
stay in the same mode or enter a new one 
can depend very sensitively on the trajec- 
tory. 

Figures 12 and 16 show similar behavior.  
It is possible that similar processes are at 
work. However ,  because of the large di- 
mensionality of  the planar-elliptic restricted 
three-body problem it is difficult to show an 
exact correspondence.  As described above,  
one essential feature in this process is the 
presence of an unstable equilibrium. If this 
process is at work in the three-body prob- 
lem, there must be an analogous unstable 
equilibrium with eccentricity near 0.1. In 
thct, there are two candidates.  One was dis- 
covered by Hill (1902) with eccentricity 
near 0.08, and another  by Sinclair (1970). 
The unstable periodic orbit found by Sin- 
clair appears  on Fig. 10 as a saddle point 
near e = 0.11. As expected,  both of  these 
orbits are fixed points of  the planar-elliptic 
mapping. (Bien (1980) found a third peri- 
odic orbit, this one stable, at very large ec- 
centricity, e = 0.79. This one is not a fixed 
point of  the planar-elliptic mapping, but this 
is not surprising since, again, tburth-ordcr  
terms in eccentricity were ignored in deriv- 
ing the mappings.)  The existence of these 
unstable equilibria with eccentricities near 
0. I support the picture that the process de- 
scribed above is operating in the restricted 
problem. In any case, the example of  the 
standard map shows that such behavior  oc- 
curs in other dynamical  systems,  even i f thc 
details of the process are different. 

Figure 1 has one other unusual feature. 
In the beginning the trajectory appears  very 
regular, almost quasiperiodic, and then 
suddenly becomes more irregular. Now, 
quasiperiodic trajectories cannot become 
chaotic trajectories; their character  is fixed. 
However ,  it is possible for a chaotic trajec- 
tory to appear  quasiperiodic tk~r some finite 
interval of  time. As a chaotic trajectory 
evolves,  it eventually comes ncar the 
boundary of the chaotic zone, and can stay 
there for a fairly long time. It can " ' s t ick"  to 
the boundary.  While near the boundary it 
behaves in a very similar manner  to the 
neighboring quasiperiodic trajectories. For 
periods of  time chaotic trajectories may 
look quasiperiodic. Just below the large 
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F1¢3. 17. The unusual  behavior  displayed in Fig. I 
has this analog in the s tandard map. Initially the trajec- 
tory is " ' s tuck"  to a chain of  islands,  making the tra.jec- 
tory appear  almost  quasiperiodic.  Eventual ly the tra- 
jectory breaks free and begins to explore the full 
chaotic zone. 

central island in Fig. 15 there is a chain of  
four smaller islands. If a trajectory is 
started very close to one of these islands, it 
can " s t i ck"  to them for a period of time 
before exploring the full chaotic zone. In 
Fig. 17, I is plotted versus number of  itera- 
tion for such a trajectory. The resemblance 
to Fig. 1 is striking. 

Of course, if the trajectory in Fig. I is 
"s t icking" to some quasiperiodic region, it 
must be near one. The chaotic zone has 
now been traced out in Fig. 6, and indeed 
the initial conditions for the trajectory in 
Fig. I (a/aj = 0.48059 and e = 0.055001) lie 
near the chaotic-quasiperiodic boundary. 
Since this behavior is associated with the 
boundary of  the chaotic zone, and not the 
chaotic zone itself, initial conditions chosen 
at random should not display this behavior. 
It was only by chance that the first trajec- 
tory I studied with the planar-elliptic map- 
ping had this behavior. Out of  the 600 ran- 
dom initial conditions studied in Wisdom 
(1982) only one showed this "s t ick ing"  be- 
havior. 

All of the unusual features found in the 
behavior of  the planar-elliptic mapping 

have analogs in the behavior of  the stan- 
dard map. It seems probable that similar 
mechanisms are at work. 

VIII. C O M P A R I S O N  WITH THE A C T U A l .  
DISTRIBUTION OF ASTEROIDS 

Figures 6 through 9 trace the character  of  
trajectories near the 3/I commensurabil i ty 
on certain planes through the phase spaces 
of the planar and three-dimensional elliptic- 
restricted three-body problem. Since the el- 
ements of the real asteroids are, naturally, 
not on these planes, a direct comparison is 
not possible. In order  to make a compari- 
son the trajectories of the real asteroids 
must be followed until they cross the appro- 
priate plane through their phase space. Fig- 
ure 18 shows the semimajor axes and ec- 
centricities of the real numbered asteroids 
(circles) and the Pa lomar-Leiden  asteroids 
with quality 1 or 2 orbits (plus signs) upon 
the first pass within two degrees of  the rep- 
resentative plane. The trajectories were fol- 
lowed with the three-dimensional mapping. 
One trajectory near the small a border of 
the chaotic zone was also followed with the 
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FIG. 18. The outer  boundaries  of  the chaotic zones 
found in Fig. 6 (planar problem) and Fig. 9 (10 degree 
inclination) are displayed with the intersections of  the 
real numbered  asteroids (circles) and the PI.S aster- 
oids with quality I or 2 orbits (plus signs) with the 
representat ive plane. These  boundaries  mark quite 
well the boundaries  of  the 3/I Kirkwood gap. 
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FIG. 19. The outer  boundaries  o t t h e  chaotic zone on 
the plane used in Fig. 8 are displayed with the intersec- 
tions of  the numbered  asteroids (circles) and the PI.S 
asteroids (plus signs). The precise agreement  between 
the boundaries of  the chaotic zone and the boundaries 
of  the Kirkwood gap is even more apparent  on this 
plane. 

differential equations. The comparison with 
the mapping result was good; the error was 
smaller than the symbols which denote the 
positions. Figure 18 also shows the outer 
boundary of the chaotic zone as determined 
in Figs. 6 and 9, i.e., for zero inclination 
(planar problem) and 10 degree inclination. 
Simple linear interpolations of the bound- 
aries have been made. The boundaries of 
the chaotic zone match the boundaries of 
the real 3/I Kirkwood gap quite well. 

Three real asteroids have been omitted 
from this plot. They are 887 Alinda, 1915 
Quetzalcoatl, and PL 4917. 887 Alinda and 
1915 Quetzalcoatl are the two 3/I librators 
and have eccentricities which are too large 
to appear on the plot. (They are both Mars 
crossers.) The PL asteroid is not plotted for 
a different reason. When followed with the 
three-dimensional mapping this asteroid 
has a chaotic trajectory. The fit to the ob- 
servational data for PL 4917 has particu- 
larly high residuals, with a formal error in 
the semimajor axis of 0.0246 AU (personal 
communication, Marsden, 1982). This error 
is not only large enough to bring the aster- 

oid into the neighboring quasiperiodic re- 
gion (+0.002 AU would have been suffi- 
cient), but it is large enough to take the 
asteroid across the Kirkwood gap to the op- 
posite quasiperiodic region ! The orbit of PI, 
4917 is too poorly known to be used in a 
study of the Kirkwood gaps. In comparing 
these errors with the figures remember  that 
the abscissa is always a/aj,  not a measured 
in astronomical units. In general, the error 
expected of the PL asteroids with quality 1 
and 2 orbits is only 0.003 AU in the semi- 
major axis (van Houten et al . ,  1970). 

Figure 19 is identical to Fig. 18, but with 
a different intersection plane, the plane 
used in Fig. 8. In this case, however,  the 
chaotic zone has only been traced out in the 
planar problem. The correspondence of the 
outer boundary of the chaotic zone and the 
boundary of the actual Kirkwood gap is 
even more dramatic on this plane. This 
plane has the disadvantage, though, thai 
the six asteroids numbered 189, 292, 619, 
799, 1722, and 2273 do not cross it. 

In Wisdom (1982) the predicted gap was 
too narrow when compared to the distribu- 
tion of the real numbered asteroids. This 
discrepancy was caused by a combination 
of two factors. First, the initial conditions 
of test asteroids were removed when their 
eccentricity went above 0.3 in a 2-my inter- 
val. Over longer times more asteroids might 
be removed. This difficulty has now been 
solved, since it is possible to predict the 
long term behavior once the character  is 
known. If a trajectory is quasiperiodic, its 
range of eccentricity variation may be de- 
termined after a fairly short interval. This 
range is fixed forever.  If a trajectory is cha- 
otic it will eventually reach large eccentrici- 
ties, though this may not happen within the 
first 2 my. Thus those test asteroids which 
were chaotic but did not become Mars 
crossing should have been removed along 
with the Mars crossers.  The second factor 
is more important and concerns the statis- 
tics. If too few objects are studied the ac- 
tual gap may appear artificially large. This 
difficulty can be overcome by studying a 



CHAOTIC BEHAVIOR AND THE 3/1 KIRKWOOD GAP 71 

i 
i 

~ 4 7 0  0 . 4 9 0  
I . I 

0 . 4 8 0  

0 / %  

FIG. 20. Time-averaged histograms of the actual as- 
teroids (dashed line) and of those test asteroids which 
were neither chaotic nor Mars crossing. The histo- 
grams are normalized to represent the same number 
of asteroids. Again. the predicted gap agrees well with 
the actual gap in the asteroid belt. 

larger sample,  namely,  the PL asteroids 
with quality 1 and 2 orbits as well as the 
numbered asteroids.  

The three-dimensional  distribution calcu- 
lation in Wisdom (1982) was repeated.  As 
before 300 test asteroids wcrc followed. 
The semimajor  axes,  eccentricit ies,  and in- 
clinations were the same as in Wisdom 
(1982): the Iongitudcs were given ncw ran- 
dom values. This time each test asteroid 
was followed for only a million years,  but 
the maximum LCE was computed  to deter- 
mine the character .  Of  the 300 test astcr- 
oids in the random distribution, 89 were 
found to have chaotic trajectories and only 
11 were quasiperiodic librators. All but five 
of  the chaotic trajectories became Mars 
crossing within 300,000 years and only one 
had not reached an eccentrici ty of  0.3 
within 1 my. All 11 quasiperiodic librators 
could cross the orbit of  Mars. Figure 20 
shows a t ime-averaged histogram of the 
semimajor  axes of  those test asteroids 
which were neither Mars crossing nor cha- 
otic (solid line). The semimajor  axes were 
sampled every  12 years over  a time interval 
of  6000 years.  The same time average of the 

real numbered asteroids with the PL aster- 
oids is also shown (dashed line). The histo- 
grams are normalized to have the same 
areas. The predicted gap is now in sat- 
isfactory agreement  with the full distri- 
bution of real asteroids. 

The removal  of  Mars crossers  and cha- 
otic trajectories is not only sufficient to ex- 
plain the width of  the 3/I Kirkwood gap, 
but explains the detailed distribution of as- 
teroids in phase space as well. 

IX. SUMMARY 

Calculations of  the maximum Lyapunov  
Characteristic Exponent  have shown that 
the mappings for asteroidal motion near the 
3/1 commensurabi l i ty  presented in Wisdom 
(1982) accurately reflect whether  trajecto- 
ries are chaotic or quasipcriodic,  as deter- 
mined by numerical integrations of  the cor- 
rcsponding differential equations.  The 
sudden large increases in eccentricity 
which were first seen with a mapping have 
now been seen in numerical integrations of 
the differential equations.  This peculiar be- 
havior is thus not an artifact of  the mapping 
technique, but a phenomenon which real 
asteroids near the 3/I commensurabi l i ty  
might exhibit. Similar phenomena  occur  in 
other dynamical  systems,  the behavior  is 
not as unusual as it seemed at first. A sys- 
tematic exploration of the character  of  tra- 
jectories has revealed three basic classes of  
trajectories: the chaotic trajectories,  the 
quasiperiodic trajectories inside the chaotic 
zone, and the quasiperiodic trajectories 
outside the resonance region defined by the 
chaotic zone. Chaotic behavior  is common,  
contrary to the conclusion of  Froeschl6 and 
Scholl (1976). In the planar-elliptic problem 
therc is a quasiintegral which constrains the 
possible motions,  but it does not prevent 
asteroids from becoming Mars crossing. In 
the three-dimensional problem trajectories 
exhibit greater  f reedom and reach very 
large eccentricities,  probably large enough 
to become Earth crossers .  Collision proba- 
bilities with the Earth and Mars appear  ade- 
quate to remove the asteroids with chaotic 
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trajectories within the age o f  the solar sys- 
tem. Most  quasiper iodic  librators have 
large enough variat ions in eccentr ic i ty  to be 
regular Mars crossers .  (Fig. 8 also shows 
that some quasiper iodic  trajectories outside 
the resonance  region can become  Mars 
crossers ,  viz. those with eccent r ic iD 
greater  than or  equal to 0.25. The secular  
variations are primarily responsible  for 
making these trajectories become  Mars 
crossing.)  In order  to be perfect ly  safe as- 
teroids must  lie in the quasiper iodic  region 
outside the chaot ic  zone.  Figures 18 and 19 
show that the outer  boundary  o f  the chaot ic  
region does ,  in fact, co r respond  precisely 
to the boundary  o f  the 3/1 Ki rkwood  gap 
within the exper imental  and theoret ical  un- 
certainties.  The agreement  is dramat ic .  Fig- 
ure 20 confirms this agreement  for the time 
averaged distribution o f  semimajor  axes.  
Confronted  with the ev idence  o f  Figs. 18- 
20 it is impossible to discount  the impor-  
tance o f  chaot ic  behavior  in the format ion 
of  the gap. No  extra  hypo theses  are needed 
beyond  the dynamics  o f  the three-dimen-  
sional elliptic-restricted th ree-body  prob- 
lem and the presence  o f  Mars to obtain the 
3/1 Ki rkwood  gap ' s  precise size and shape. 

A P P E N D I X  

The three-dimensional  mapping was not 
given explicitly in Wisdom (1982). For  com-  
pleteness and because  the mappings  used in 
this paper  have one minor  difference from 
those used before,  the mappings  are given 
here. In Wisdom (1982) the Hamil tonian 
was expanded  in 4) about  the resonant  
value 4)u and only the quadrat ic  term was 
kept. This was not a bad approximat ion .  
but since it was not necessary  it is not made 
here. 

Units are chosen  such that aj = I and / j  = 
t, the time. Thus  the period o f  Jupi ter  is 2rr. 
The mass o f  Jupi ter  divided by the mass of  
the Sun plus that o f  Jupi ter  i s / , ,  and t*~ = I 
- ~. The perihelion o f  Jupi ter  is taken as 
the origin o f  longitudes,  and inclinations are 
measured  relative to Jupi ter ' s  orbit plane. 

The mappings are expressed  in terms of  the 
variables:  

xl = (#ja)L'4[2(l -- (i -- e2)V2)] l-' cos  

e COS o~, 

Yl = -(/*1a)1'412( 1 - (1 - e2)12)] 12 sin o5 

= - e  s i n  t ~ ,  

x2 = [pqa(l - eZ)]lal2(l - cos i)] 12 cos  (~ 

i cos ~L 

.v2 = - [p ,  la(l - ee)lL'4[2(l - cos i)] v2 sin ~ 

= - i  sin ~Z, 

= ( p . l a )  1.2, 

= / - 3/j. 

Initially, the e lements  are .v/°L yi("L ~(°L and 
¢°L There are four steps in the three-di- 
mensional  mapping:  

Step 1. 

.r(~) = .r~ m' cosh(4rrCt cos so"") 

_ y(0) sinh(4rrCi cos  era), 

3'1 ~l) = 3'1 ~°~ cosh(4rrC~ cos so m~) - 

x~ '") sinh(4rrC~ cos ¢.1) _ 2rrD~ej cos ¢"L 

X2 ¢11 : 

.V2 (1! : 

4)(1! : 

~,(1~ 

Step 2. 

.~.112l = XI II) COS 771;i 

y l  (2~ := XI I 

+ 

X2 (21 = X2 ( 

y2(2) -- X2 ( 

x, ("~ cosh(4rrC2 cos ¢(") 

- y2 (°~ sinh(4rrC2 cos ¢c,).  

y2 m' cosh(4rrC2 cos  Cm) 

- x_~ ("~ sinh(4rrC2 cos ¢(m), 

4),m_ (Cl[(.vi(o,) 2 _ (.vi(O))2 l 

+ l ) t e j X l  (I) + E l e j  2 

+ C2[(x2m)) 2 - (y2m~)2])27r sin ¢" ' ,  

~o (m. 

- >w '~ sin 7r/q 

]'>I Cj  
- - -  (1 - cos zrk~). 

2k'i 

~ sin ~k~ ~ y ( ~  cos rrF~ 

F' I  ('J 
s i n  r r / " ~ ,  

1~ cos rrF2 - y2 ~l) sin 7rF2, 

~ sin r r F  2 + y2 ('~ c o s  7rE 2. 
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(I)(2) : CI )(I), 

{f2) = ~(11 

Step 

Xl (3) = 

y l  t3) = 

X213) : 

y 2  (3) = 

{l~ (3) = 

~13) : 

S t e p  

)t'l TM : 

y114) 

X2141 = 

y 2  f4) = 

(I)(4) : 

~(4) ~_. 

7r/xt 2 37r 
2(q)(') 3 2 

3. 

x~ ~2) exp(47rCi sin ~,t2)) 

+ 2rrDtej sin ~(2), 
y t  12) exp(-47rCi sin ~o(2)), 

X212) exp(47rC, sin ~d2)). 

y2 P') exp(-47rC2 sin ¢,(2,), 
~12~ _ (2Cixlt2)yl12) + D~ej3,t(3) 

+ 2C2x212)y212))27T c o s  ~t21 

¢P-). 

4. 

x/3) cos 3rrl:~ - y113) sin 37rFj 
/:'j 

2-ffl (I - cos 37rF1), 

x~ ~3) sin 3rrF~ + yt 13) COS 37rF~ 
/:'l 

+ ~ sin 3~'Ft, 

x, ~3) cos 37rb~ - y2 O) sin 3rrF2, 

x,/3~ sin 37rF, + y2 TM c o s  3"n 'F2 ,  

~13), 

3~'p.i 2 9w 
(pt3) + 2({I~(3)) 3 _ _~... 

The constants are F) = -0.2050694/x./: ') = 
0.1987054/z, F2 = 0.2050694p., C~ = 
0.8631579/x, D) = -2.656407p., E) = 
0.3629536tz, and C2 = 0.1193545tz. These 
four steps constitute one iteration of  the 
three-dimensional mapping, and give the el- 
ements in terms of  the elements one Jupiter 
period earlier. The planar-elliptic mapping 
is obtained by setting all variables with the 
subscript 2 equal to zero. 

ACKNOWLEDGMENTS 

It is a pleasure to thank Stanton J. Peale for frequent 
discussions and his support of this project. Thanks are 
also due to Brian Marsden for estimating the formal 
errors in several asteroid orbits. Most of the numerical 
calculations were performed at the Royal Greenwich 

Observatory. This was made possible through the gen- 
erosity of D. B. Taylor. Some preliminary calculations 
were carried out at the Centre d'Etudes el de Recher- 
ches G6odynamiques et Astronomiques (France) 
through the kindness of Frangois Mignard and at the 
Observatoire de Nice through Claude Froeschlc. Jorg 
Waldvogel suggested the use of Scheibnerian coordi- 
nates to accelerate the numerical integrations. J. Schu- 
bart provided references to the known periodic orbits. 
1 am grateful to Carl Murray for detecting an error in 
an earlier version of this paper. This work was sup- 
ported in part by NASA Grant NGR 05 010 062 and 
was begun while the author was supported under the 
NATO Postdoctoral Fellowship Program administered 
by the United States National Science Foundation. 

REFERENCES 

BENETTIN, G.. M. CASARTELI.I, L. GAI.GANI. A. 
GIORGl l  El,  AND J.-M. S'rREI C'YN (1978). On the re- 
liability of numerical studies of stochasticity. Nuovo 
Cimento 44, 183-195. 

BENETTIN, G., L. GAI GANI, A. GIORGII.I I. AND J.-M. 
STREI.CYN (1980a). Lyapunov characteristic expo- 
nents tbr smooth dynamical systems and for Hamil- 
tonian systems: a method for computing all of them. 
Part I: Theory. Meccanica March, 9-20. 

BF.NETTIN. G., L. GAI GANI, A. GIORGII.I.I. AND J.-M. 
STRHCYN (1980b). Lyapunov characteristic expo- 
nents for smooth dynamical systems and for Hamil- 
tonian systems; a methoJ for computing all of them. 
Part 2: Numerical application. Meccanica March. 
21-31). 

BIEN. R. 11981)). Stationary solutions in simplified res- 
onance cases of the restricted three-body problem. 
Celest. Mech. 21, 157-161. 

BULIRSCII. R., AND J. S'rOER (1966). Numerical treat- 
ment of ordinary differential equations by extrapola- 
tion methods. Numerische Math. 8, I. 

CHANNON, S. R., AND J. L. LEnOWt~Z II980). Nu- 
merical experiments in stochasticity and homoclinic 
oscillation. In Nonlinear Dynamics (R. Helleman, 
Ed.), pp. 108-118. New York Academy of Sciences, 
New York. 

CHIRIKOV,  B. V. (1979). A universal instability of 
many-dimensional oscillator systems. Phys. Rep. 
52, 263-379. 

FROESCHL~, C., AND H. SCHOLI. (1976). On the dy- 
namical topology of the Kirkwood gaps. Astron. As- 
trophys. 48, 389-393. 

FROESCHL~., C., AND H. SCIIOLL (1981). The stochas- 
ticity of peculiar orbits in the 2/I Kirkwood gap. 
Astron. Astrophys. 93, 62-66. 

GIFFEN. R. 11973). A study of commensurable motion 
in the asteroid belt. Astron. Astrophys. 23, 387-41)3. 

H,~NON, M., AND C. HEII.ES 11964). The applicability 
of the third integral of motion: some numerical ex- 
periments. Astron. J. 69, 73-79. 



74  J A C K  W I S D O M  

HH.I., G. W. (1902). Illustrations of periodic solutions 
in the problem of  three bodies. Astron. J. 22, 
117. 

KIRKWOOD, D. (1867). Meteoric Astronomy.  l.ippin- 
cott, Philadelphia. 

PoINcarl~:, H. (1902). Sur les planetes du type d 'He-  
cube. Bull. Astron. 19, 289-310. 

SCHEIBN,-:r, W. (1866). Satz aus  der s t6rungsthcorie.  
J. Reine Angew.  Math. 65, 291-301. 

ScI~olJ ,  H.. aND C. FrOESCHL~ (1974). Asteroidal 
motion at the 3/I commensurabi l i ty .  Astrott. As- 
trophys. 33, 455-458. 

Sc t~uBarr ,  J. (1964). l ,ong-period effects in nearly 
commensurab le  cases  of  the restricted three-body 

problem. In Smithsoniun Astrophys.  Obs. Spe¢'. 
Rep. No. 149. 

SINCla~n, A. T. (1970). Periodic solutions close to 
commensurabi l i t ies  in the three-body problem. 
Mon. Not.  Roy. Astrot~. So¢. 148, 325-351. 

VAN HOUTF~N, (' .  J., 1. VAN HOUII-.N-GROENI-.VI~ID, 
P. tt~:RGrT, aNr~ T. GeHrl-I s (1970). The Pa lomar -  
l,eiden survey of faint minor planets. Astron. Ax- 
trophyx. Suppl. 2, 339-448. 

WE IHI!rH L. G. W. (1975). Late heavy bombardment  
of  the moon and terrestrial planets. Proc. l, uttur Sci. 
Cot!/~ 6th, 1539-1561. 

WIst)om, J. (1982). The origin of the Kirkwood gaps: 
A mapping for astcroidal motion near the 3/I com- 
mensurabili ty.  Astron. J. 87, 577-593. 


