
Non-perturbative Hydrostati
 EquilibriumJ. WisdomAugust 5, 1996Abstra
tA non-perturbative treatment of hydrostati
 equilibrium is presented. We�nd that the widely used third order Zharkov-Trubitsyn theory is not adequateto model the interiors of Jupiter and Saturn. We use the method to generateabstra
t obje
tive interior models of the Jovian planets, with no input otherthan the observational data. The abstra
t obje
tive models are in surprisinglygood agreement with the physi
al models.1 Introdu
tionHydrostati
 balan
e governs the basi
 shape of all planets. The physi
s is simple |in equilibrium the lo
al pressure for
e must balan
e the gravitational and 
entrifugalfor
es. Material properties must be supplied to relate the density to the pressure.The 
lassi
al approa
h to the solution of the problem of hydrostati
 balan
e isthrough perturbation theory. The perturbative treatments use various s
hemes toredu
e the non-linear fun
tional problem to a small set of 
oupled di�erential orintegro-di�erential equations. The perturbation parameter is the ratio of the 
en-trifugal a

eleration to the gravitational a

eleration at the surfa
e at the equator.The 
lassi
al perturbation theories �nd su

essive approximations to the level surfa
es(surfa
es of 
onstant density and pressure) as fun
tions of radius. Zharkov and Tru-bitsyn (1978) review modern extensions of the 
lassi
al perturbation theories. Otherapproa
hes have been developed whi
h are not based on level 
urves (e.g. Ostrikerand Mark, 1968, Hubbard, Slattery, and DeVito, 1975). All re
ent models of the inte-riors of the Jovian planets have used the third order theory of Zharkov and Trubitsyn(1978) to solve the problem of hydrostati
 balan
e (Podolak and Reynolds, 1987, Gud-kova, et al., 1988, Hubbard and Marley, 1989, Chabrier, et al., 1992, Marley, et al.,1995, Hubbard, et al. 1995). We show below that the third-order Zharkov-Trubitsyntheory is not adequate to model the interiors of Jupiter and Saturn.Computational resour
es are great enough today that many problems 
an be ap-proa
hed more simply and dire
tly than was possible in earlier eras. In this 
ompu-tational era, we 
an fo
us attention on the basi
 physi
al pro
esses, and use 
arefully
rafted numeri
al methods to reliably determine the 
onsequen
es of these physi
al1



pro
esses. The goals of this paper are twofold. First, it is to state 
ompletely andexpli
itly the problem of hydrostati
 stru
ture. Se
ond, it is to present a straight-forward 
omputational solution to the simple problem of hydrostati
 balan
e. Themethod of solution is inspired by the physi
al problem. Physi
ally, the planet ad-justs until surfa
es of 
onstant potential 
oin
ide with surfa
es of 
onstant densityand pressure. Thus it is natural to organize the numeri
al solution around the level
urves, and the numeri
al solution is found by letting the planet adjust itself. Themethod presented here is not perturbative in the usual sense, but of 
ourse represen-tations by in�nite series must be trun
ated, so there is an e�e
tive order. However,the method presented has no fundamental limitation. If more a

ura
y is needed theseries 
an simply be extended.In the presentation, we �rst state the problem pre
isely. Next we dis
uss possiblerepresentations of the solution. We then dis
uss methods of �nding a solution, and
onstru
t a numeri
al implementation of the method. We test the method on aproblem whi
h 
an be solved by 
ompletely other means. Finally, we apply themethod to a physi
al problem of interest { the determination of the interior stru
tureof the Jovian planets.2 Equations of Hydrostati
 Balan
eThe basi
 equation of hydrostati
 equilibrium is~rp = �~g; (1)where p is the pressure, � is the density, and ~g is the lo
al a

eleration, the gradientof the total potential, ~g = �~rU: (2)The potential is the sum of the gravitational potential and the 
entrifugal potential.The gravitational potential isUG(~r) = �G Z �(~r 0)j~r � ~r 0jd3r0 (3)and the 
entrifugal potential is UR(~r) = �12
2r2? (4)where r? is the distan
e from the rotation axis.We shall assume the pressure p(�) is a fun
tion of density only (i.e. the interioris barotropi
). Here we restri
t attention to isolated rotating planets for whi
h thereare no signi�
ant external 
ontributions to the potential. In this 
ase, we expe
t theplanet to be axisymmetri
 and possess north/south symmetry.Through the equation of state p(�) and the equation of hydrostati
 equilibriumthe density is dire
tly related to the potential. For any radial line where the pressure2



gradient and lo
al a

eleration are purely radial, su
h as a line in the equator planeor through the pole, the equation of hydrostati
 equilibrium is a s
alar di�erentialequation dpdr = ��dUdr : (5)The assumption that pressure is a fun
tion of density guarantees that surfa
esof 
onstant density 
orrespond to surfa
es of 
onstant pressure, and the equation ofhydrostati
 balan
e then guarantees that surfa
es of 
onstant density and pressureare also surfa
es of 
onstant potential. We expe
t that all of these quantities varymonotoni
ally from the 
enter of the body to the surfa
e of the body, and thus anyof them 
an be expressed as a fun
tion of any of the others. The s
alar equation ofhydrostati
 equilibrium 
an be formally integrated using density as the independentvariable Z ��0 1� dpd�d� = U(�0)� U(�); (6)where �0 refers to the density at some referen
e point su
h as the surfa
e. That is,integration of the equation of state dire
tly relates the density to the potential.The problem is this: the density distribution gives rise to the potential, and thepotential is related through the equation of state to the density. We seek a self
onsistent solution.3 Level Surfa
esSurfa
es of 
onstant density, 
onstant potential, and 
onstant pressure 
oin
ide. Thelevel surfa
es are nested and 
an be labelled by a single 
ontinuous parameter s. Itwill be 
onvenient to let s run from 0 at the 
enter of the planet to 1 at the surfa
e.We relate s to the radius of the level 
urve throughr(s; �) = Rs[1 + �(s; �)℄; (7)where � is the 
osine of the 
olatitude �, and R is a 
hara
teristi
 radius of theplanet. We shall refer to � as the \shape fun
tion." There is no dependen
e on thelongitude be
ause we have restri
ted our attention to axisymmetri
 planets. Furtherproperties of the shape fun
tion must be spe
i�ed to uniquely relate the parameter sto a parti
ular level 
urve. For instan
e, we 
ould spe
ify that �(1; 0) = 0 so that Ris the equatorial radius and Rs is the radius of the level 
urve on the equator plane.Alternatively, we 
ould require that the volume en
losed by the level 
urve is the sameas the volume en
losed by the sphere of radius Rs. However it is de�ned, a detailedrepresentation for � must be 
hosen. Several possibilities 
ome to mind: Chebyshevpolynomials, Fourier series, Legendre polynomials. Ea
h are 
omplete, so any surfa
e
an be represented in terms of them. We postpone further spe
i�
ation of the shapefun
tion and its representation; subsequent development will guide our 
hoi
es.3



4 Development of the PotentialGiven a distribution of mass, we need to know the potential at every point in thebody. One approa
h is to just evaluate the appropriate integral over the mass distri-bution ea
h time the potential is needed. Another approa
h is to express the potentialin terms of moments of the mass distribution. Both approa
hes involve integrals ofsimilar 
omplexity. The latter approa
h is more attra
tive if the potential is approx-imated well by just a few moments, and will be evaluated at many pla
es. We adoptthis strategy.Suppose we are interested in the potential on the level 
urve labelled by s. Thepotential on the level 
urve is the sum of the potential due to the mass inside thelevel 
urve and the potential of the mass outside the level 
urve. We shall label theregion inside the level surfa
e Region I, and the region outside the level surfa
e butinside the planet as Region II. We determine the potential exterior to ea
h of theseregions as if there were no mass in the other region.In a region in whi
h there is no mass the potential satis�es Lapla
e's equation.The general axisymmetri
 solution of Lapla
e's equation isU(r; �) = �GMR 1Xl=0 "
l � rR�l + dl �Rr �l+1#Pl(
os �); (8)where Pl are the usual Legendre polynomials, and 
l and dl are free parameters.We have introdu
ed s
ale fa
tors so that the 
oeÆ
ients will be dimensionless. Forpotentials with north/south symmetry the sum is restri
ted to even l. The 
oeÆ
ients
an be expressed as moments over the sour
e mass distribution.The potential in region I due to the mass in region II isUI(r; �) = �GMR 1Xl=0 
2l � rR�2l P2l(
os �): (9)The terms with inverse powers of r are ex
luded be
ause the potential is �nite at theorigin. The 
oeÆ
ients 
an be expressed as moments of the mass in region II:
l(s) = 1M ZII �Rr �l+1 Pl(
os �)�d3r: (10)The potential in region II due to the mass in region I takes the formUII(r; �) = �GMR 1Xl=0 d2l �Rr �2l+1 P2l(
os �): (11)The terms with positive powers of r are ex
luded be
ause the potential is �nite atin�nity. The 
oeÆ
ients 
an be expressed as moments of the mass in region I:dl(s) = 1M ZI � rR�l Pl(
os �)�d3r: (12)4



Note that all integrals are well de�ned and have �nite values. Both solutions are validat all points of the level surfa
e of interest, the level surfa
e that separates the tworegions. The total potential is the sum of the two 
ontributions.We introdu
e a non-dimensional density � through � = ���, with �� = M=(43�R3),the mean density for a spheri
al planet of mass M and radius R. We reexpress theintegrals for the dimensionless moments in terms of � and the level parameter s:
l(s0) = 3 Z 10 "Z 1s0 �(s) 1sl�1(1 + �)l�1  1 + � + s���s! ds#Pl(�)d� (13)and dl(s0) = 3 Z 10 "Z s00 �(s)sl+2(1 + �)l+2  1 + � + s���s! ds#Pl(�)d�: (14)For 
onvenien
e, we also introdu
e a non-dimensional potential eU through U =�(GM=R) eU . A non-dimensional measure of the relative strength of the 
entrifu-gal for
e to the gravitational for
e is q = (
2R)=(GM=R2) = 
2R3=GM . If R is notthe equatorial radius Re we also refer to qe = 
2R3e=GM .5 Method of SolutionGiven the density and shape as a fun
tion of the level 
urve parameter s, we 
andetermine the potential at any point in the body. For a self-
onsistent hydrostati
solution, the potential at a level 
urve will be related to the density there by theequation of state, and all points on the level 
urve will have the same potential. It isnatural to �nd this self-
onsistent solution by su

essive re�nement of a trial solution.One way to do this would be to de�ne some measure of the extent to whi
h a solutionis not in hydrostati
 equilibrium and then gradually adjust the parameters (\hill
limb") until a satisfa
tory solution is found. We pursue a di�erent, more \physi
al"approa
h to the solution of these non-linear equations.We motivate the method through the 
onsideration of tides. If we apply an exter-nal potential to a planet, a \tide" is raised (the planet is distorted), and the density
hanges (the planet is squeezed). Let's divide the external potential at the surfa
einto an average part and a part with zero average. The average part modi�es theradial pressure balan
e; the other part distorts the body. Let �U represent the os-
illating part of the external potential. At the surfa
e of the planet, the height of thetide is approximately �r = �h�Ug ; (15)where �U is the part of the perturbing potential with zero average over the surfa
e,g is the surfa
e gravitational a

eleration, and h is the \displa
ement Love number."The displa
ement Love number is a measure of the responsiveness of the planet.For a 
uid homogeneous in
ompressible planet h = 5=2. For a tenuous (massless)5



atmosphere above a point mass 
ore h = 1. We 
ould generalize the displa
ementLove number to be a fun
tion of level surfa
e h(s). This fun
tion would tell us howresponsive a level surfa
e is to an applied potential perturbation.We 
onsider an iterative approa
h to the determination of the hydrostati
 solution.We let the numeri
al planet adjust itself to �nd the equilibrium. More spe
i�
ally, wepresume we have some approximation to the solution, and we would like to improveit. From the approximate solution we 
an 
al
ulate a new estimate of the potential,and the problem is how to adjust the planet to be more self-
onsistent. Inspiredby the dis
ussion of the tides, we 
ompute the potential on ea
h level surfa
e. Weuse the average of this potential to adjust the density on the level surfa
e; we treatthe os
illating part of the potential on the level surfa
e as a tidal potential whi
hdistorts the level surfa
e a

ording to equation (15). We do not know h(s), so we usea 
onservative value of h(s) = 1.A 
onstraint on the level 
urve and density adjustment is that the total mass ofthe planet has the 
orre
t value: M = Z �d3r0; (16)whi
h implies, by equation (12), d0(1) = 1: (17)If the 
hange in a level 
urve preserves the volume en
losed by the level 
urve, andif the density does not vary strongly, then the mass en
losed by the level 
urve willbe approximately preserved. Thus shape 
hanges in the level 
urves will approxi-mately de
ouple from 
hanges in density on the level 
urve. This suggests that weparameterize the level 
urve shapes in su
h a way that volume is preserved, at leastapproximately, as the shape parameters 
hange. This is a

omplished, to �rst orderin the 
oeÆ
ients, if we use a spheri
al harmoni
 expansion to represent the shape. Inthe axisymmetri
 
ase 
onsidered here, we use an expansion in Legendre polynomials.So we 
hoose �(s; �) = 1Xl>0 al(s)Pl(�) (18)as our representation of the shape of the level 
urves for �xed s. North/south sym-metry restri
ts l to be even. Note that with this 
hoi
e s is approximately the radiusof the sphere with volume equal to the volume en
losed by the level 
urve. (For ana-lyti
al development we might have wanted to de�ne s to have pre
isely this property,as Lyapunov does, but for us that would introdu
e extra non-linear 
onstraints. SeeZharkov and Trubitsyn, 1978.) Of 
ourse, we will have to trun
ate the expansionfor pra
ti
al 
al
ulations. The representation of the 
oeÆ
ient fun
tions al(s) andthe density fun
tion �(s) is still unspe
i�ed. At this point we 
hoose Chebyshevpolynomials, be
ause they are easy to use and have ni
e approximation properties.On
e the mass moments are 
omputed, we 
an use them to 
ompute the potentialanywhere on a level surfa
e. We then expand the angular dependen
e of the potential6



variation in terms of Legendre polynomials:�U(s; �) = 1Xl=0�Ul(s)Pl(�); (19)where the disturbing potential 
oeÆ
ients are (even l only)�Ul(s) = (2l + 1) Z 10 Pl(�)U(r(s; �); �)d�; (20)where U(r; �) is expressed in terms of the moments, and r(s; �) has the 
hosen repre-sentation. The �Ul for l > 0 are used to 
ompute the adjustment to the level 
urveshapes through the the tidal distortion formula; �U0 is used to adjust the densityof level 
urve s. The radial fun
tions are represented by Chebyshev interpolations,so the 
al
ulation is 
arried out for ea
h of the Chebyshev interpolation points in s.The whole pro
ess is repeated until adequate 
onvergen
e is a
hieved.Here are some details of the implementation. We evaluate integrals using a ra-tional extrapolation of the se
ond Euler-Ma
laurin formula, with interval divisions of2, 3, 4, 6, 8, and 12. If the estimated relative error is unsatisfa
tory, the interval isdivided into two equal parts and the pro
ess is applied re
ursively to the parts. Typi-
ally we require 10�11 relative a

ura
y of the quadratures, but the a

ura
y a
hievedis usually mu
h better than this. This method is a

urate and eÆ
ient, and workseven when the integrand has singularities. Legendre polynomials are evaluated byforward re
urren
e; sums of Legendre polynomials are evaluated using the Clenshawre
urren
e formula. Sums of Chebyshev polynomials are similarly evaluated with theClenshaw re
urren
e. We found that for an n = 1 polytrope (see below) that the iter-ation is stable with h(s) = 1, but unstable if we use a more aggressive h(s) = 5=2. Wedid not try to determine an optimal h. Every few iterations we extrapolated the iter-ative solutions, using the Aitken-Ste�enson method (see Danby, 1988). The methodis applied point-wise to ea
h of the radial fun
tions at the Chebyshev interpolationpoints. Sometimes this dramati
ally improves the 
onvergen
e.6 PolytropesA ni
e test 
ase is a rotating planet with a polytropi
 equation of state. For apolytrope the pressure is related to the density byp = C�
; (21)where 
 = 1 + 1=n, with polytropi
 index n, and C is a 
onstant. It happens thatn = 1 is not a bad �rst approximation to the e�e
tive equation of state for theinterior of Jupiter. A non-rotating polytrope with n = 1 
an be solved analyti
ally.A rotating polytrope with index n = 1 
an be solved by other means, so we 
an 
he
kour answers by 
omputing both solutions.7



The potential is, a

ording to equation (6),U(�)� U(�0) = �C 

 � 1 ��
�1 � �
�10 � : (22)A 
onvenient 
hoi
e for the referen
e point is the surfa
e. For a polytrope the surfa
edensity is zero: �0 = 0. For n = 1 we haveU(�)� U0 = �2C� (23)We use this to adjust the density to be 
onsistent with the potential.Solutions for n = 1 have been found for a number of rotation parameters q. Wepresent one in detail. In Figure 1 we show the radial fun
tions for the \
onverged" so-lution for q = 0:15. In this solution we used 15 point Chebyshev interpolation for theradial fun
tions, and terms up to l = 10 in the shape fun
tions. Also shown are thedi�eren
es between su

essive iterations. Note that these di�eren
es are quite small.We presume these small di�eren
es indi
ate that the solution has 
onverged. Thewiggles in the shape fun
tions at small s for l = 8 and 10 are probably artifa
ts, butthe 
ause is not obvious. As we shall see the solution is more than suÆ
ient. The de-du
ed value of the equatorial radius is Re = (1+�(1; 0))R = 1:04432988740583R. Thee�e
tive perturbation parameter at this radius is qe = q(Re=R)3 = 0:17084582900350.The derived gravitational moments are shown in the Table 1. We shall estimate theerrors in this solution by �nding an independent solution. The table also lists derivedquantities for the other solutions, whi
h are des
ribed below.Table 1 order 10 order 12 BesselRe=R 1:0443298874 1:0443300982 1:0443301060qe 0:1708458290 0:1708459325 0:1708459363J2 0:0245154407 0:0245154308 0:0245154305J4 �:0016441385 �:0016441371 �:0016441371J6 0:0001649217 0:0001649213 0:0001649213J8 �:0000207333 �:0000207320 �:0000207319J10 0:0000030149 0:0000030107 0:0000030104J12 �:0000004764 �:0000004838 �:00000048297 Alternate SolutionA rotating polytrope with n = 1 
an be solved independently by another method.The gravitational potential UG interior to the body satis�es Poisson's equationr2UG = 4�G�: (24)8



The rotational potential UR satis�esr2UR = �2
2: (25)Thus the total potential satis�esr2U = 4�G�� 2
2: (26)For an n = 1 polytrope, using equation (23), this be
omesr2� + 2�GC � = 
2C : (27)We again introdu
e a non-dimensional density � through � = ���. Here � is afun
tion of r and �. We will not be �nding or using level 
urves, but we will makeuse of a surfa
e fun
tion: rs(�) = R(1 + �(�)): (28)We shall represent � in terms of Legendre polynomials�(�) = 1Xl>0 alPl(�) (29)These de�nitions parallel those for the more general level surfa
e approa
h, but herethe 
oeÆ
ients are not fun
tions of s. We 
an represent C with a non-dimensionalparameter � through C = 1�2 2�GR2: (30)S
aling the spatial derivatives by R2, we derive a non-dimensional version of equa-tion (27) r2� + �2�2� = �2�22q3 : (31)Let � 0 = � � 2q3 ; (32)then � 0 satis�es the Helmholtz equationr2� 0 + �2�2� 0 = 0: (33)The general axisymmetri
 solution of the Helmholtz equation is� 0(r; �) = 1Xl=0 bljl(��r)Pl(�); (34)where bl are 
onstants to be determined, jl are the usual spheri
al Bessel fun
tions,Pl are the Legendre polynomials. The non-dimensional density is�(r; �) = 2q3 + 1Xl=0 bljl(��r)Pl(�): (35)9



The surfa
e is determined by �(1 + �(�); �) = 0.The problem is redu
ed to �nding the set of 
oeÆ
ients bl, and �, for whi
h thesolution is self-
onsistent. We 
an do this by adjusting the bl until the surfa
e is anequipotential. Our method for doing this is very similar to the method of solutionfor the other formulation. We 
ompute the potential on the surfa
e of the planetand let the planet adjust to this potential. In detail, the �rst step is to solve for arepresentation of the surfa
e given some set of bl. We use a method like Newton'smethod but approximate the derivative of the density with respe
t to the radius by b0.We use an intermediate representation of the surfa
e as a Chebyshev interpolation, sowe solve for the surfa
e at the Chebyshev interpolation points. We then 
ompute thepotential at the surfa
e. We do this as before by 
omputing the mass moments, buthere we only need the surfa
e moments dl. The details of the quadrature are of 
ourse
ompletely di�erent. Here the variables of integration are r and �, and the boundaryis the 
omputed surfa
e. In our representation the �rst dimensionless moment mustbe d0 = 1 in order for the total mass to be M . We adjust b0 (whi
h is responsiblefor most of the mass) so that this will better satis�ed: b00 = b0=d0. We then 
omputethe proje
tions of the surfa
e potential onto the Legendre polynomials. We wouldlike to let the surfa
e adjust to �Ul using the tidal distortion formula (15). We 
ando this approximately by expanding the equation for the surfa
e �(1 + �(�); �) = 0to �rst order in � and using the orthogonality of the Legendre polynomials to solvefor the adjustment to bl. We �nd �bl � � eUlb0=jl(��). The value of � is determinedby the requirement that the representation of the surfa
e as Legendre polynomialshas 
onstant term 1, that is, a0 = 0. We solve for � iteratively as we 
ompute theLegendre polynomial expansion of the surfa
e. The whole pro
ess is repeated untiladequate 
onvergen
e is obtained. Here 
onvergen
e is judged by the magnitudes of� eUl.We have solved for q = 0:15 again in order to 
ompare the two solutions. Here wetake terms up to l = 14, and use 20 point Chebyshev interpolation. The relative errorof the integration quadratures was set to 10�10. Convergen
e was de
lared when allj� eUlj < 10�14. For referen
e the solution 
oeÆ
ients are: b0 = 3:2639471725844178,b2 = �0:8766150340908836, b4 = 0:1066132351677717, b6 = �0:0178053455205318,b8 = 0:0061392876641078, b10 = �0:0062290924191637, b12 = �0:4092594755440963,b14 = �51:9771710398529760. All other quantities are 
omputable from these. De-rived values for Re, qe, and the gravitational moments are given in Table 1. Compar-ing this solution to the solution determined by the more general level 
urve method,we �nd the relative error in the equatorial radius is about �Re=Re � 2 � 10�7,with naturally a similar relative error in qe. The relative errors in the moments are�J2=J2 � 4 � 10�7, �J4=J4 � 8 � 10�7, �J6=J6 � 2 � 10�6, �J8=J8 � 6 � 10�5,�J10=J10 � 1� 10�3, �J12=J12 � 1� 10�2. Evidently, the solutions are adequate forthe forseeable future.The main error probably results from using only terms up to l = 10 in the generalsolution. We 
an 
he
k this by adding the l = 12 terms. We have extended the generalsolution for q = 0:15, adding one term in l. Figure 2 shows the radial fun
tions and the10




onvergen
e errors. This time we used 15 point Chebyshev interpolation. The derivedvalues of Re, qe, and the gravitational moments are listed in Table 1. Comparing thissolution to the Bessel solution, we �nd now �Re=Re � 8� 10�9. The relative errorsin the moments are �J2=J2 � 1 � 10�8, �J4=J4 � 2 � 10�8, �J6=J6 � 6 � 10�9,�J8=J8 � 2� 10�6, �J10=J10 � 1� 10�4, �J12=J12 � 2� 10�3. Typi
ally, extendingthe solution to l = 12 has redu
ed the errors in the derived quantities by one orderof magnitude (more than a fa
tor of q). Note also that the redu
tion of the order ofthe Chebyshev interpolation did not matter.8 Comparison to Zharkov-TrubitsynHubbard has kindly provided some solutions using the third order Zharkov-Trubitsyntheory for 
omparison (Hubbard, 1995). We have 
ompared two parti
ular 
ases.The �rst has a q = 0:15896457, near that of Saturn. The Zharkov-Trubitsyn thirdorder theory gives J2 = 0:023108786, J4 = �0:0014480848, and J6 = 0:00012562161.Using the bessel method, we �nd for q = 0:1589645368308, J2 = 0:0231048438421,J4 = �0:0014589207833, and J6 = 0:0001376974334. Thus the errors in the Zharkov-Trubitsyn values are approximately j�J2=J2j � 2 � 10�4, j�J4=J4j � 1%, andj�J6=J6j � 9%. The observational un
ertainty in Saturn's J6 is about 4% (see below).Thus the Zharkov-Trubitsyn theory is not adequate to model the interior of Saturn toobservational a

ura
y. The large trun
ation error for Saturn's J6 using the Zharkov-Trubitsyn third order theory was previously noted by Hubbard and Marley (1989).Indeed, their remark inspired the development of our more a

urate method. These
ond test 
ase has q = 0:088570676, for whi
h the Zharkov-Trubitsyn moments are:J2 = 0:013905306, J4 = �0:00052419360, and J6 = 0:000028100375. The bessel solu-tions, for q = 0:0885706790713, are J2 = 0:0139000788574, J4 = �0:0005251005663,J6 = 0:0000295470915. The errors in the Zharkov-Trubitsyn values are thus ap-proximately j�J2=J2j � 4 � 10�4, j�J4=J4j � 0:002, and j�J6=J6j � 5%. Theobservational un
ertainty in Jupiter's J2 is a part in 14; 000 (see below). Thus theZharkov-Trubitsyn third order theory is not adequate to model Jupiter either.9 Chebytropi
 Equations of StateThe observables whi
h provide the strongest 
onstraints are the gravitational har-moni
s, and not many of these are known with great pre
ision. The 
ompositionof the deep interior of the Jovian planets is unknown, and guesses based on surfa
e
omposition or 
osmogoni
 arguments are naturally un
ertain. Thus interior mod-els are poorly 
onstrained physi
ally. Even if the 
omposition were known pre
isely,knowledge of the equation of state of 
ompli
ated mixtures at high pressures andtemperatures has its limitations. So typi
ally a range of interior models are guessedthat have a number of free parameters, and these parameters are determined by �t-ting the observational data. Adjustable parameters in
lude: the mass and size of the11



\ro
ky" 
ore, helium mass fra
tion (whi
h may vary in the planet due to varying sol-ubilities), mass fra
tion of the non-hydrogen-helium 
omponent, perhaps spe
i�
ally\i
e" and \ro
k" fra
tions, parameters whi
h express un
ertainties in the equation ofstate, parti
ularly in the metalli
-mole
ular transition region, the temperature alongthe presumed adiabat, amount of di�erential rotation on 
ylinders or perhaps moregeneral di�erential rotation, et
. One might wonder if the observational data aresuÆ
ient to address so many physi
al un
ertainties in the models.What happens if we throw out the un
ertain interior physi
s entirely? Supposeinstead we parametrize the e�e
tive equation of state abstra
tly, in su
h a way thatwe 
an add as many parameters as are well determined by the data, and no more.What will we get? Conventional wisdom is that the data do not provide suÆ
ient
onstraints. We shall see.In parti
ular, we let the relation between density as a fun
tion of potential di�er-en
es be represented as a polynomial. We use a parametrization of this polynomialas a sum of Chebyshev polynomials. In terms of non-dimensional potential eU andnon-dimensional density �, we 
hoose�(� eU) = 1Xi=0 �iTi(2� eU � 1) (36)where Ti(x) are the Chebyshev polynomials. The non-dimensional potential di�eren
eranges roughly from 0 to 1; the shift and res
aling take the argument to roughlythe range -1 to 1, whi
h is the usual Chebyshev argument interval. We imposetwo restri
tions on the expansion. First, we require that �(0) be the s
aled surfa
edensity. Se
ond, we require that �(� eU) be monotoni
. This means that the densityonly in
reases as we go deeper into the planet. This is physi
ally reasonable, butunfortunately does rule out interesting exoti
 planets with pure styrofoam 
ores. Thisassumption is required to maintain the inter
hangability of radius, pressure, density,and potential as independent variables that we have 
onsistently assumed. Other thanthese 
onstraints we let the data determine the rest. The order of the polynomialrelating density to potential is extended until the observational data 
an be �t. Notethat for an n = 1 polytrope, the density is linearly proportional to the potentialdi�eren
e, so an n = 1 polytrope is a member of the 
lass of equations of state we are
onsidering. From the determined polynomial �(� eU) we 
an 
ompute the e�e
tiveequation of state P (�). We do this using the s
alar equation of hydrostati
 balan
e.Note that even though density is taken to be a polynomial fun
tion of potential, thepressure is not, in general, a polynomial fun
tion of density. We 
all our models\
hebytropi
" models, for obvious reasons.10 Chebytropi
 Interiors of the Jovian PlanetsWe have found 
hebytropi
 interiors for Jupiter, Saturn, Uranus, and Neptune. Theobservational data whi
h 
onstrain these models 
onsist of the mass, radius, grav-itational harmoni
s. The observational data are presented in Table 2. Ex
ept for12



Saturn, the data are the 
olle
tion from Yoder (1994). For Saturn, values from Bosh(1994) are presented. The table also lists the observed 
attening f = (Re � Rp)=Re,where Re and Rp are the equatorial and polar radii.Table 2P lanet Re J2 � 106 J4 � 106 J6 � 106 qe � 106 fJupiter 71; 492(4) 14; 697(1) �584(5) 31(20) 89; 195(15) 0:06487(15)Saturn 60; 268(4) 16; 335(6) �898(9) 125(5) 154; 815(31) 0:09796(18)Uranus 25; 559(4) 3; 513(1) �31:9(5) ??? 29; 535(48) 0:02293(8)Neptune 24; 766(15) 3; 539(10) �36(10) ??? 26; 085(57) 0:01710(140)We use the downhill simplex method to adjust the 
hebytropi
 
onstants so asto minimize the sum of the squared di�eren
es between the model moments andthe observed gravitational moments. For all the Jovian planets we take the surfa
edensity to be zero. The results are summarized in Table 3. The parameters for these
hebytropi
 models are listed in the appendix. The number of digits presented isarbitrary and intentionally ex
essive.Table 3P lanet J2 � 106 J4 � 106 J6 � 106 qe � 106 C=MR2e fJupiter 14; 697:00 �581:69 33:95 89; 196 0:2640 0:06489Saturn 16; 338:45 �897:56 78:33 154; 819 0:2211 0:09644Uranus 3; 512:47 �32:49 0:46 29; 535 0:2267 0:01983Neptune 3; 539:05 �33:04 0:46 26; 085 0:2389 0:01819For Jupiter we found we 
ould �t the observational data with a 
ubi
 
hebytrope.Presented in Figure 3 is a log-log plot of P (�) for Jupiter. Plotted with the 
hebytropi
model is a re
ent model from Hubbard (1995). The most striking aspe
t of the
omparison is how well the abstra
t 
hebytrope does, parti
ularly above a pressure ofabout a kilobar. Keep in mind that the 
hebytropi
 model was 
onstru
ted withoutreferen
e to any other model and without any input from high-pressure physi
s. Thereis no 
ore in the 
hebytropi
 model (though there is a nod in that dire
tion), and thereis no hint of the dis
ontinuity at the metalli
 phase transition (but the 
hebytropegoes sma
k thorough the middle). Neither is surprising be
ause we have 
onstrainedthe equation of state to be smooth. More dis
on
erting is that the 
hebytropi
 modeldoes not agree with the physi
al model near the surfa
e. At pressures less than akilobar the pressure in the 
hebytropi
 model behaves approximately as P = C�2.For a solar mixture of hydrogen and helium, the expe
ted adiabati
 law is P = C�1:45.Apparently, the 
hebytropi
 model is in
onsistent with the physi
s here, but on theother hand the gravitational moments are insensitive to the mass here. So the failureis not surprising. If we 
hop o� the planet at a kilobar (whi
h o

urs at about13



s = 0:995) then J4 and J6 are still within the observational error bounds. Interestly,signi�
ant 
ontributions to J2 
ontinue to about the 150bar level (about s = 0:998).So the most sensitive indi
ator of density in the 150-1000bar range is J2, not thehigher moments. It is interesting that a 
ore is not strongly indi
ated, or required to�t the observational data.For Saturn, we were not able to �t all the observational data. However, we wereable to �nd a �t for the data ex
luding J6. Even in this 
ase, we found we had toextend the 
hebytrope to sixth order in order to �nd a �t. (This is rather surprising,be
ause we are only �tting three dimensionless observables: J2, J4, and qe.) Presentedin Figure 4 is a log-log plot of P (�) for Saturn. Plotted with the 
hebytropi
 model isa re
ent model from Hubbard (1995). As for Jupiter, the deep interior is surprisinglywell reprodu
ed, but near the surfa
e we have the same sort of dis
repan
y with thephysi
s as we had with Jupiter. For Saturn, the nod in the dire
tion of the 
ore isstronger than it was for Jupiter.For Uranus, the 
hebytrope was extended to a quinti
 before the observational datawere �t. Presented in Figure 5 is a log-log plot of P (�) for Uranus. The 
hebytropi
model lies within the range of allowable physi
al models (see Podolak, Hubbard, andStevenson, 1995). The most 
urious feature of the 
hebytropi
 �t is the anti-
ore:the slope of the logP versus log� line in
reases near the 
enter of the planet. Indeed,lower order �ts 
an be made for Uranus, but for them the density a
tually de
reasesnear the 
ore.For Neptune, the 
hebytrope was also extended to a quinti
 before the observa-tional data were �t. Presented in Figure 6 is a log-log plot of P (�) for Neptune. The
hebytropi
 model lies within the range of allowable physi
al models (see Podolak,Hubbard, and Stevenson, 1995).In addition to the gravitational moments of the models, Table 3 lists the model
attening. Comparing the model values of the hydrostati
 
attening to the observed
attening, we see that for Jupiter the model hydrostati
 
attening is the same as theobserved 
attening within observational un
ertainty. This is also true for Neptune,but the observational errors are large. The quoted observed value for Neptune issmaller than the hydrostati
 value by about 6%. For Saturn and Uranus there isapparently a signi�
ant di�eren
e between the hydrostati
 
attening and the observed
attening. For Saturn the hydrostati
 
attening is too small by about 1%. ForUranus, the hydrostati
 
attening is too small by a mu
h larger per
entage: about14%.Table 3 also lists the dimensionless polar moment of inertia C=(MR2e), whi
h is akey parameter in estimating the rate at whi
h the spin axis of the planet pre
esses. Forphysi
al models of Jupiter and Saturn, Hubbard (1995) estimates the polar momentsto be 0.264 and 0.220, respe
tively. These are in good agreement with the 
hebytropi
values.
14



11 Con
lusionsThe prin
ipal 
ontribution of this paper is a new method for the solution of hydrostati
balan
e whi
h for all pra
ti
al purposes has unlimited a

ura
y.We �nd that the widely used Zharkov-Trubitsyn third order theory of hydrostati
balan
e is inadequate to generate quantitatively 
orre
t models of Jupiter and Saturn.We have made interior models of the Jovian planets with an abstra
t polynomialequation of state. The minimal obje
tive models agree surprisingly well with theparametrized physi
al models. Perhaps the agreement is indi
ative of a
tual modelindependent knowledge of the internal stru
ture of the jovian planets.12 A
knowledgementsWe thank Bill Hubbard for extensive assistan
e in the 
omparison of our methodand models to alternate methods and models, and also for many helpful dis
ussions.We also thank Heidi Hammel, Phil Ni
holson, Dave Stevenson, Chu
k Yoder, andMaria Zuber for helpful dis
ussions. We gratefully a
knowledge support by the NASAPlanetary Geology and Geophysi
s program under grant NAGW-706.13 Referen
esBosh, A. (1994), MIT PhD Thesis.Chabrier, G. Simon, D., Hubbard, W.B., Lunine, J. (1992), \The Mole
ular-Metalli
Transition of Hydrogen and the Stru
ture of Jupiter and Saturn" Ap. J. 391,817-826.Guillot, T., Gautier, D., Chabrier, G., and Mosser, B. (1994), \Are the Giant PlanetsFully Conve
tive" I
arus 112, 337-353.Guillot, T., Chabrier, G., Morel, P., and Gautier, D. (1994), \Nonadiabati
 Modelsof Jupiter and Saturn" I
arus 112, 354-367.Hubbard, W.B. (1984), Planetary Interiors, (Van Nostrand Reinhold, New York),p. 94.Hubbard, W.B. (1995), personal 
ommuni
ation.Hubbard, W.B., and Marley, M.S. (1989), \Optimized Jupiter, Saturn, and UranusInterior Models" I
arus 78, 102-118.Marley, M.S., Gomez, P. and Podolak, M. (1995), preprint.Ostriker, J.P., and Mark, J.W-K. (1968), \Rapidly Rotating Stars. I. The SelfConsistent Field Method" Ap. J. 151, 1075-1087.15



Yoder, C.F. (1994), \Astrometri
 and Geodeti
 Properties of Earth and the So-lar System" in Global Earth Physi
s: A Handbook of Physi
al Constants, T.Ahrens, ed. (AGU, Washington, D.C.).Zharkov, V.N., and Trubitsyn, V.P. (1978) Physi
s of Planetary Interiors, (Pa
hart,Tu
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Figure 1: Radial fun
tions for q = 0:15. The 
ommon logarithm of ea
h fun
tionis plotted. The solid line is the non-dimensional density �(s). The dashed lines arethe shape fun
tions al(s), for l = 2; : : : ; 10. Also shown are the di�eren
es betweenradial fun
tions for two su

essive iterations. The dotted line is for the density, andthe dot-dashed lines are for the shape fun
tions.17
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Figure 2: Radial fun
tions for q = 0:15, extended to l = 12. The 
ommon logarithmof the fun
tion is plotted. The solid line is the non-dimensional density �(s). Thedashed lines are the shape fun
tions al(s), for l = 2; : : : ; 12. Also shown are thedi�eren
es between radial fun
tions for two su

essive iterations. The dotted line isfor the density, and the dot-dashed lines are for the shape fun
tions.18
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Figure 3: Pressure (in megabars) versus density (in g/
m3) for Jupiter. The dashedline is for the 
hebytropi
 model. The solid line is a re
ent model from Hubbard(1995).
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Figure 4: Pressure (in megabars) versus density (in g/
m3) for Saturn. The dashedline is for the 
hebytropi
 model. The solid line is a re
ent model from Hubbard(1995).
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Figure 5: Pressure (in megabars) versus density (in g/
m3) for Uranus. The dashedline is for the 
hebytropi
 model. The solid line is a re
ent model from Hubbard(1995).
21



�2:5 �1:5 �0:5 0:5 1:5�4
�2
0
2

log10�

log10P

Figure 6: Pressure (in megabars) versus density (in g/
m3) for Neptune. The dashedline is for the 
hebytropi
 model. The solid line is a re
ent model frmo Hubbard(1995).
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