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Abstract

A non-perturbative treatment of hydrostatic equilibrium is presented. We
find that the widely used third order Zharkov-Trubitsyn theory is not adequate
to model the interiors of Jupiter and Saturn. We use the method to generate
abstract objective interior models of the Jovian planets, with no input other
than the observational data. The abstract objective models are in surprisingly
good agreement with the physical models.

1 Introduction

Hydrostatic balance governs the basic shape of all planets. The physics is simple —
in equilibrium the local pressure force must balance the gravitational and centrifugal
forces. Material properties must be supplied to relate the density to the pressure.

The classical approach to the solution of the problem of hydrostatic balance is
through perturbation theory. The perturbative treatments use various schemes to
reduce the non-linear functional problem to a small set of coupled differential or
integro-differential equations. The perturbation parameter is the ratio of the cen-
trifugal acceleration to the gravitational acceleration at the surface at the equator.
The classical perturbation theories find successive approximations to the level surfaces
(surfaces of constant density and pressure) as functions of radius. Zharkov and Tru-
bitsyn (1978) review modern extensions of the classical perturbation theories. Other
approaches have been developed which are not based on level curves (e.g. Ostriker
and Mark, 1968, Hubbard, Slattery, and DeVito, 1975). All recent models of the inte-
riors of the Jovian planets have used the third order theory of Zharkov and Trubitsyn
(1978) to solve the problem of hydrostatic balance (Podolak and Reynolds, 1987, Gud-
kova, et al., 1988, Hubbard and Marley, 1989, Chabrier, et al., 1992, Marley, et al.,
1995, Hubbard, et al. 1995). We show below that the third-order Zharkov-Trubitsyn
theory is not adequate to model the interiors of Jupiter and Saturn.

Computational resources are great enough today that many problems can be ap-
proached more simply and directly than was possible in earlier eras. In this compu-
tational era, we can focus attention on the basic physical processes, and use carefully
crafted numerical methods to reliably determine the consequences of these physical



processes. The goals of this paper are twofold. First, it is to state completely and
explicitly the problem of hydrostatic structure. Second, it is to present a straight-
forward computational solution to the simple problem of hydrostatic balance. The
method of solution is inspired by the physical problem. Physically, the planet ad-
justs until surfaces of constant potential coincide with surfaces of constant density
and pressure. Thus it is natural to organize the numerical solution around the level
curves, and the numerical solution is found by letting the planet adjust itself. The
method presented here is not perturbative in the usual sense, but of course represen-
tations by infinite series must be truncated, so there is an effective order. However,
the method presented has no fundamental limitation. If more accuracy is needed the
series can simply be extended.

In the presentation, we first state the problem precisely. Next we discuss possible
representations of the solution. We then discuss methods of finding a solution, and
construct a numerical implementation of the method. We test the method on a
problem which can be solved by completely other means. Finally, we apply the
method to a physical problem of interest — the determination of the interior structure
of the Jovian planets.

2 Equations of Hydrostatic Balance

The basic equation of hydrostatic equilibrium is
Vp = pg, (1)

where p is the pressure, p is the density, and ¢ is the local acceleration, the gradient
of the total potential,
g=—-VU. (2)
The potential is the sum of the gravitational potential and the centrifugal potential.
The gravitational potential is
g |

Us(7) = -G / pAr ),| & (3)
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and the centrifugal potential is
1
Ur(F) = —§QZTi (4)

where r is the distance from the rotation axis.

We shall assume the pressure p(p) is a function of density only (i.e. the interior
is barotropic). Here we restrict attention to isolated rotating planets for which there
are no significant external contributions to the potential. In this case, we expect the
planet to be axisymmetric and possess north/south symmetry.

Through the equation of state p(p) and the equation of hydrostatic equilibrium
the density is directly related to the potential. For any radial line where the pressure



gradient and local acceleration are purely radial, such as a line in the equator plane
or through the pole, the equation of hydrostatic equilibrium is a scalar differential

equation
dp dUu

ar — Par (5)

The assumption that pressure is a function of density guarantees that surfaces

of constant density correspond to surfaces of constant pressure, and the equation of

hydrostatic balance then guarantees that surfaces of constant density and pressure

are also surfaces of constant potential. We expect that all of these quantities vary

monotonically from the center of the body to the surface of the body, and thus any

of them can be expressed as a function of any of the others. The scalar equation of

hydrostatic equilibrium can be formally integrated using density as the independent
variable

[ L 4y = U (po) — U (). (6)

where py refers to the density at some reference point such as the surface. That is,
integration of the equation of state directly relates the density to the potential.

The problem is this: the density distribution gives rise to the potential, and the
potential is related through the equation of state to the density. We seek a self
consistent solution.

3 Level Surfaces

Surfaces of constant density, constant potential, and constant pressure coincide. The
level surfaces are nested and can be labelled by a single continuous parameter s. It
will be convenient to let s run from 0 at the center of the planet to 1 at the surface.
We relate s to the radius of the level curve through

r(s,p) = Rs[1 +n(s, p)], (7)

where g is the cosine of the colatitude #, and R is a characteristic radius of the
planet. We shall refer to n as the “shape function.” There is no dependence on the
longitude because we have restricted our attention to axisymmetric planets. Further
properties of the shape function must be specified to uniquely relate the parameter s
to a particular level curve. For instance, we could specify that 7(1,0) = 0 so that R
is the equatorial radius and Rs is the radius of the level curve on the equator plane.
Alternatively, we could require that the volume enclosed by the level curve is the same
as the volume enclosed by the sphere of radius Rs. However it is defined, a detailed
representation for 7 must be chosen. Several possibilities come to mind: Chebyshev
polynomials, Fourier series, Legendre polynomials. Each are complete, so any surface
can be represented in terms of them. We postpone further specification of the shape
function and its representation; subsequent development will guide our choices.



4 Development of the Potential

Given a distribution of mass, we need to know the potential at every point in the
body. One approach is to just evaluate the appropriate integral over the mass distri-
bution each time the potential is needed. Another approach is to express the potential
in terms of moments of the mass distribution. Both approaches involve integrals of
similar complexity. The latter approach is more attractive if the potential is approx-
imated well by just a few moments, and will be evaluated at many places. We adopt
this strategy.

Suppose we are interested in the potential on the level curve labelled by s. The
potential on the level curve is the sum of the potential due to the mass inside the
level curve and the potential of the mass outside the level curve. We shall label the
region inside the level surface Region I, and the region outside the level surface but
inside the planet as Region II. We determine the potential exterior to each of these
regions as if there were no mass in the other region.

In a region in which there is no mass the potential satisfies Laplace’s equation.
The general axisymmetric solution of Laplace’s equation is

U(r,6) — _G_Mi [cl ( ) +d, (%)m] P,(cos ), (8)

where P, are the usual Legendre polynomials, and ¢; and d; are free parameters.
We have introduced scale factors so that the coefficients will be dimensionless. For
potentials with north/south symmetry the sum is restricted to even . The coefficients
can be expressed as moments over the source mass distribution.

The potential in region I due to the mass in region II is

U(r,0) = —G—Mio:c%< ) lPQZ(cosﬂ). 9)

The terms with inverse powers of r are excluded because the potential is finite at the
origin. The coefficients can be expressed as moments of the mass in region II:

1 R I+1 5
cs) = T <?> P,(cos 0) pd’r. (10)

The potential in region II due to the mass in region I takes the form
GM 00 R 20+1
Upi(r,0) = — 2% de ( ) Pa(cosf). (11)

The terms with positive powers of r are excluded because the potential is finite at
infinity. The coefficients can be expressed as moments of the mass in region I:

M/( ) Pi(cos 0) pd’r. (12)
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Note that all integrals are well defined and have finite values. Both solutions are valid
at all points of the level surface of interest, the level surface that separates the two
regions. The total potential is the sum of the two contributions.

We introduce a non-dimensional density ¢ through p = p¢, with p = M/(37R?),
the mean density for a spherical planet of mass M and radius R. We reexpress the
integrals for the dimensionless moments in terms of ¢ and the level parameter s:

o) =3 [ | [ €O g (10050 | a9

L+n)=t

and

di(s') = 3 /01 l/o C(s)sH2(1 + )+ (1 o+ 8%> ds] P(p)dp. (14)

For convenience, we also introduce a non-dimensional potential U through U =
—(GM/R)U. A non-dimensional measure of the relative strength of the centrifu-
gal force to the gravitational force is ¢ = (Q?*R)/(GM/R?) = Q*R?*/GM. If R is not
the equatorial radius R, we also refer to ¢. = Q*R3/GM.

5 Method of Solution

Given the density and shape as a function of the level curve parameter s, we can
determine the potential at any point in the body. For a self-consistent hydrostatic
solution, the potential at a level curve will be related to the density there by the
equation of state, and all points on the level curve will have the same potential. It is
natural to find this self-consistent solution by successive refinement of a trial solution.
One way to do this would be to define some measure of the extent to which a solution
is not in hydrostatic equilibrium and then gradually adjust the parameters (“hill
climb”) until a satisfactory solution is found. We pursue a different, more “physical”
approach to the solution of these non-linear equations.

We motivate the method through the consideration of tides. If we apply an exter-
nal potential to a planet, a “tide” is raised (the planet is distorted), and the density
changes (the planet is squeezed). Let’s divide the external potential at the surface
into an average part and a part with zero average. The average part modifies the
radial pressure balance; the other part distorts the body. Let AU represent the os-
cillating part of the external potential. At the surface of the planet, the height of the

tide is approximately
Ar = —h&, (15)
)
where AU is the part of the perturbing potential with zero average over the surface,
g is the surface gravitational acceleration, and h is the “displacement Love number.”
The displacement Love number is a measure of the responsiveness of the planet.

For a fluid homogeneous incompressible planet h = 5/2. For a tenuous (massless)



atmosphere above a point mass core h = 1. We could generalize the displacement
Love number to be a function of level surface h(s). This function would tell us how
responsive a level surface is to an applied potential perturbation.

We consider an iterative approach to the determination of the hydrostatic solution.
We let the numerical planet adjust itself to find the equilibrium. More specifically, we
presume we have some approximation to the solution, and we would like to improve
it. From the approximate solution we can calculate a new estimate of the potential,
and the problem is how to adjust the planet to be more self-consistent. Inspired
by the discussion of the tides, we compute the potential on each level surface. We
use the average of this potential to adjust the density on the level surface; we treat
the oscillating part of the potential on the level surface as a tidal potential which
distorts the level surface according to equation (15). We do not know h(s), so we use
a conservative value of h(s) = 1.

A constraint on the level curve and density adjustment is that the total mass of
the planet has the correct value:

M = /pd3r', (16)

which implies, by equation (12),
do(1) = 1. (17)

If the change in a level curve preserves the volume enclosed by the level curve, and
if the density does not vary strongly, then the mass enclosed by the level curve will
be approximately preserved. Thus shape changes in the level curves will approxi-
mately decouple from changes in density on the level curve. This suggests that we
parameterize the level curve shapes in such a way that volume is preserved, at least
approximately, as the shape parameters change. This is accomplished, to first order
in the coefficients, if we use a spherical harmonic expansion to represent the shape. In
the axisymmetric case considered here, we use an expansion in Legendre polynomials.

So we choose
o0

n(s, 1) = 3 auls) Pilp) (18)
>0

as our representation of the shape of the level curves for fixed s. North/south sym-
metry restricts [ to be even. Note that with this choice s is approximately the radius
of the sphere with volume equal to the volume enclosed by the level curve. (For ana-
lytical development we might have wanted to define s to have precisely this property,
as Lyapunov does, but for us that would introduce extra non-linear constraints. See
Zharkov and Trubitsyn, 1978.) Of course, we will have to truncate the expansion
for practical calculations. The representation of the coefficient functions a;(s) and
the density function ((s) is still unspecified. At this point we choose Chebyshev

polynomials, because they are easy to use and have nice approximation properties.
Once the mass moments are computed, we can use them to compute the potential
anywhere on a level surface. We then expand the angular dependence of the potential



variation in terms of Legendre polynomials:
AU (s, p) = > AU(s) i), (19)
1=0
where the disturbing potential coefficients are (even [ only)

AVi(s) = (1+1) [ (U (s, 1), (20)

where U (r, 1) is expressed in terms of the moments, and r(s, 1) has the chosen repre-
sentation. The AU; for [ > 0 are used to compute the adjustment to the level curve
shapes through the the tidal distortion formula; AU, is used to adjust the density
of level curve s. The radial functions are represented by Chebyshev interpolations,
so the calculation is carried out for each of the Chebyshev interpolation points in s.
The whole process is repeated until adequate convergence is achieved.

Here are some details of the implementation. We evaluate integrals using a ra-
tional extrapolation of the second Euler-Maclaurin formula, with interval divisions of
2, 3,4, 6,8, and 12. If the estimated relative error is unsatisfactory, the interval is
divided into two equal parts and the process is applied recursively to the parts. Typi-
cally we require 107! relative accuracy of the quadratures, but the accuracy achieved
is usually much better than this. This method is accurate and efficient, and works
even when the integrand has singularities. Legendre polynomials are evaluated by
forward recurrence; sums of Legendre polynomials are evaluated using the Clenshaw
recurrence formula. Sums of Chebyshev polynomials are similarly evaluated with the
Clenshaw recurrence. We found that for an n = 1 polytrope (see below) that the iter-
ation is stable with h(s) = 1, but unstable if we use a more aggressive h(s) = 5/2. We
did not try to determine an optimal h. Every few iterations we extrapolated the iter-
ative solutions, using the Aitken-Steffenson method (see Danby, 1988). The method
is applied point-wise to each of the radial functions at the Chebyshev interpolation
points. Sometimes this dramatically improves the convergence.

6 Polytropes

A nice test case is a rotating planet with a polytropic equation of state. For a
polytrope the pressure is related to the density by

p=Cp, (21)

where v = 1+ 1/n, with polytropic index n, and C' is a constant. It happens that
n = 1 is not a bad first approximation to the effective equation of state for the
interior of Jupiter. A non-rotating polytrope with n = 1 can be solved analytically.
A rotating polytrope with index n = 1 can be solved by other means, so we can check
our answers by computing both solutions.



The potential is, according to equation (6),

_ — T (-1 -t
U(p) = Ulpo) = 07_1(p ") (22)
A convenient choice for the reference point is the surface. For a polytrope the surface
density is zero: py = 0. For n =1 we have

U(p) — Uy =—-2Cp (23)

We use this to adjust the density to be consistent with the potential.

Solutions for n = 1 have been found for a number of rotation parameters q. We
present one in detail. In Figure 1 we show the radial functions for the “converged” so-
lution for ¢ = 0.15. In this solution we used 15 point Chebyshev interpolation for the
radial functions, and terms up to [ = 10 in the shape functions. Also shown are the
differences between successive iterations. Note that these differences are quite small.
We presume these small differences indicate that the solution has converged. The
wiggles in the shape functions at small s for [ = 8 and 10 are probably artifacts, but
the cause is not obvious. As we shall see the solution is more than sufficient. The de-
duced value of the equatorial radius is R, = (1+n(1,0))R = 1.04432988740583R. The
effective perturbation parameter at this radius is ¢. = ¢(R./R)* = 0.17084582900350.
The derived gravitational moments are shown in the Table 1. We shall estimate the
errors in this solution by finding an independent solution. The table also lists derived
quantities for the other solutions, which are described below.

Table 1

order 10 order 12 Bessel
R./R 1.0443298874 1.0443300982  1.0443301060
e 0.1708458290  0.1708459325  0.1708459363
Jo 0.0245154407  0.0245154308  0.0245154305
Jy —.0016441385 —.0016441371 —.0016441371
Je 0.0001649217 0.0001649213  0.0001649213
Jg —.0000207333 —.0000207320 —.0000207319
J1o 0.0000030149  0.0000030107  0.0000030104
Jio —.0000004764 —.0000004838 —.0000004829

7 Alternate Solution

A rotating polytrope with n = 1 can be solved independently by another method.
The gravitational potential Uy interior to the body satisfies Poisson’s equation

ViUq = 4nGp. (24)



The rotational potential Ug satisfies
ViUR = —20%. (25)
Thus the total potential satisfies
VAU = dnGp — 20°. (26)
For an n = 1 polytrope, using equation (23), this becomes

2rG 0?
Vip+=——p=". 27
P P=G (27)
We again introduce a non-dimensional density ¢ through p = p(. Here ( is a
function of r and 6. We will not be finding or using level curves, but we will make

use of a surface function:
rs(n) = R(L+n(p)). (28)

We shall represent 7 in terms of Legendre polynomials

) =S aP(p) (29)

>0

These definitions parallel those for the more general level surface approach, but here
the coefficients are not functions of s. We can represent C' with a non-dimensional
parameter « through

1
o?

2
C=—-"GR. (30)
m

Scaling the spatial derivatives by R?, we derive a non-dimensional version of equa-
tion (27)
Vi + o1’ = a27r2%. (31)
Let 2%
¢=¢-3, (32)
then (' satisfies the Helmholtz equation
Vi + 7% = 0. (33)
The general axisymmetric solution of the Helmholtz equation is
) = 3 hilanr) R, (39)

where b; are constants to be determined, j; are the usual spherical Bessel functions,
P, are the Legendre polynomials. The non-dimensional density is

Clr ) = 5+ 2 bidemr) P (39)
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The surface is determined by ¢(1+ n(u), u) = 0.

The problem is reduced to finding the set of coefficients b;, and «, for which the
solution is self-consistent. We can do this by adjusting the b, until the surface is an
equipotential. Our method for doing this is very similar to the method of solution
for the other formulation. We compute the potential on the surface of the planet
and let the planet adjust to this potential. In detail, the first step is to solve for a
representation of the surface given some set of b,. We use a method like Newton’s
method but approximate the derivative of the density with respect to the radius by byg.
We use an intermediate representation of the surface as a Chebyshev interpolation, so
we solve for the surface at the Chebyshev interpolation points. We then compute the
potential at the surface. We do this as before by computing the mass moments, but
here we only need the surface moments d;. The details of the quadrature are of course
completely different. Here the variables of integration are r and p, and the boundary
is the computed surface. In our representation the first dimensionless moment must
be dy = 1 in order for the total mass to be M. We adjust by (which is responsible
for most of the mass) so that this will better satisfied: b = by/dy. We then compute
the projections of the surface potential onto the Legendre polynomials. We would
like to let the surface adjust to AU, using the tidal distortion formula (15). We can
do this approximately by expanding the equation for the surface ¢(1 + n(u), ) = 0
to first order in 7 and using the orthogonality of the Legendre polynomials to solve
for the adjustment to b;. We find Ab; = Aﬁlbo/jl(cwr). The value of « is determined
by the requirement that the representation of the surface as Legendre polynomials
has constant term 1, that is, ap = 0. We solve for « iteratively as we compute the
Legendre polynomial expansion of the surface. The whole process is repeated until
adequate convergence is obtained. Here convergence is judged by the magnitudes of
N

We have solved for ¢ = 0.15 again in order to compare the two solutions. Here we
take terms up to [ = 14, and use 20 point Chebyshev interpolation. The relative error
of the integration quadratures was set to 1071, Convergence was declared when all
|AT;| < 107, For reference the solution coefficients are: by = 3.2639471725844178,
b, = —0.8766150340908836, by = 0.1066132351677717, bg = —0.0178053455205318,
bs = 0.0061392876641078, by = —0.0062290924191637, byo = —0.4092594755440963,
by = —51.9771710398529760. All other quantities are computable from these. De-
rived values for R., ¢., and the gravitational moments are given in Table 1. Compar-
ing this solution to the solution determined by the more general level curve method,
we find the relative error in the equatorial radius is about AR,/R, ~ 2 x 1077,
with naturally a similar relative error in g.. The relative errors in the moments are
Ady)Jy =4 x 1077 AJy/Jy ~ 8 x 1077, Ads/Js =~ 2 x 1078, AJy/Jy ~ 6 x 1075,
Adyy/Jw ~ 1x 1073 AJyy/Jis = 1 x 1072, Evidently, the solutions are adequate for
the forseeable future.

The main error probably results from using only terms up to [ = 10 in the general
solution. We can check this by adding the [ = 12 terms. We have extended the general
solution for ¢ = 0.15, adding one term in [. Figure 2 shows the radial functions and the
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convergence errors. This time we used 15 point Chebyshev interpolation. The derived
values of R., ¢., and the gravitational moments are listed in Table 1. Comparing this
solution to the Bessel solution, we find now AR./R, ~ 8 X 1072, The relative errors
in the moments are AJy/Jo &~ 1 x 1078, AJy/Jy =~ 2 x 1078, AJs/Js =~ 6 x 107,
Adg/Js ~2x107% AJyg/Jig =~ 1 x 1074, AJip/J1p = 2 x 1073, Typically, extending
the solution to [ = 12 has reduced the errors in the derived quantities by one order
of magnitude (more than a factor of ¢). Note also that the reduction of the order of
the Chebyshev interpolation did not matter.

8 Comparison to Zharkov-Trubitsyn

Hubbard has kindly provided some solutions using the third order Zharkov-Trubitsyn
theory for comparison (Hubbard, 1995). We have compared two particular cases.
The first has a ¢ = 0.15896457, near that of Saturn. The Zharkov-Trubitsyn third
order theory gives J, = 0.023108786, J, = —0.0014480848, and Js = 0.00012562161.
Using the bessel method, we find for ¢ = 0.1589645368308, J, = 0.0231048438421,
Jy = —0.0014589207833, and Jg = 0.0001376974334. Thus the errors in the Zharkov-
Trubitsyn values are approximately |AJy/Jo| ~ 2 x 1074, |[AJy/Js] ~ 1%, and
|AJs/Js| = 9%. The observational uncertainty in Saturn’s Jg is about 4% (see below).
Thus the Zharkov-Trubitsyn theory is not adequate to model the interior of Saturn to
observational accuracy. The large truncation error for Saturn’s Jg using the Zharkov-
Trubitsyn third order theory was previously noted by Hubbard and Marley (1989).
Indeed, their remark inspired the development of our more accurate method. The
second test case has ¢ = 0.088570676, for which the Zharkov-Trubitsyn moments are:
Jo, = 0.013905306, J; = —0.00052419360, and Js = 0.000028100375. The bessel solu-
tions, for ¢ = 0.0885706790713, are J, = 0.0139000788574, .J, = —0.0005251005663,
Js = 0.0000295470915. The errors in the Zharkov-Trubitsyn values are thus ap-
proximately |AJy/Jo| &~ 4 x 1074 |AJy/Jy| =~ 0.002, and |AJs/Js| =~ 5%. The
observational uncertainty in Jupiter’s J, is a part in 14,000 (see below). Thus the
Zharkov-Trubitsyn third order theory is not adequate to model Jupiter either.

9 Chebytropic Equations of State

The observables which provide the strongest constraints are the gravitational har-
monics, and not many of these are known with great precision. The composition
of the deep interior of the Jovian planets is unknown, and guesses based on surface
composition or cosmogonic arguments are naturally uncertain. Thus interior mod-
els are poorly constrained physically. Even if the composition were known precisely,
knowledge of the equation of state of complicated mixtures at high pressures and
temperatures has its limitations. So typically a range of interior models are guessed
that have a number of free parameters, and these parameters are determined by fit-
ting the observational data. Adjustable parameters include: the mass and size of the
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“rocky” core, helium mass fraction (which may vary in the planet due to varying sol-
ubilities), mass fraction of the non-hydrogen-helium component, perhaps specifically
“ice” and “rock” fractions, parameters which express uncertainties in the equation of
state, particularly in the metallic-molecular transition region, the temperature along
the presumed adiabat, amount of differential rotation on cylinders or perhaps more
general differential rotation, etc. One might wonder if the observational data are
sufficient to address so many physical uncertainties in the models.

What happens if we throw out the uncertain interior physics entirely? Suppose
instead we parametrize the effective equation of state abstractly, in such a way that
we can add as many parameters as are well determined by the data, and no more.
What will we get? Conventional wisdom is that the data do not provide sufficient
constraints. We shall see.

In particular, we let the relation between density as a function of potential differ-
ences be represented as a polynomial. We use a parametrization of this polynomial
as a sum of Chebyshev polynomials. In terms of non-dimensional potential U and
non-dimensional density ¢, we choose

o0
((AD) = Y- GT2AT — 1) (30)
i=0

where T;(x) are the Chebyshev polynomials. The non-dimensional potential difference
ranges roughly from 0 to 1; the shift and rescaling take the argument to roughly
the range -1 to 1, which is the usual Chebyshev argument interval. We impose
two restrictions on the expansion. First, we require that ((0) be the scaled surface
density. Second, we require that ¢ (AU ) be monotonic. This means that the density
only increases as we go deeper into the planet. This is physically reasonable, but
unfortunately does rule out interesting exotic planets with pure styrofoam cores. This
assumption is required to maintain the interchangability of radius, pressure, density,
and potential as independent variables that we have consistently assumed. Other than
these constraints we let the data determine the rest. The order of the polynomial
relating density to potential is extended until the observational data can be fit. Note
that for an n = 1 polytrope, the density is linearly proportional to the potential
difference, so an n = 1 polytrope is a member of the class of equations of state we are
considering. From the determined polynomial ((AU) we can compute the effective
equation of state P(p). We do this using the scalar equation of hydrostatic balance.
Note that even though density is taken to be a polynomial function of potential, the
pressure is not, in general, a polynomial function of density. We call our models
“chebytropic” models, for obvious reasons.

10 Chebytropic Interiors of the Jovian Planets

We have found chebytropic interiors for Jupiter, Saturn, Uranus, and Neptune. The
observational data which constrain these models consist of the mass, radius, grav-
itational harmonics. The observational data are presented in Table 2. Except for
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Saturn, the data are the collection from Yoder (1994). For Saturn, values from Bosh
(1994) are presented. The table also lists the observed flattening f = (R, — R,)/R.,
where R, and R, are the equatorial and polar radii.

Table 2
Planet R, Jy x 10%  Jy x 105 Jg x 10% ¢, x 10° f
Jupiter  71,492(4)  14,697(1) —584(5) 31(20) 89,195(15)  0.06487(15)
Saturn  60,268(4)  16,335(6) —898(9) 125(5) 154,815(31) 0.09796(18)
Uranus  25,559(4)  3,513(1) —31.9(5) 777 29,535(48)  0.02293(8)
Neptune 24,766(15) 3,539(10) —36(10) 777 26,085(57)  0.01710(140)

We use the downhill simplex method to adjust the chebytropic constants so as
to minimize the sum of the squared differences between the model moments and
the observed gravitational moments. For all the Jovian planets we take the surface
density to be zero. The results are summarized in Table 3. The parameters for these
chebytropic models are listed in the appendix. The number of digits presented is
arbitrary and intentionally excessive.

Table 3

Planet Jo x 10 Jy x 10°  Jg x 10° ¢, x 105 C/MR? f
Jupiter  14,697.00 —581.69 33.95 89,196  0.2640 0.06489
Saturn  16,338.45 —897.56 78.33 154,819  0.2211 0.09644
Uranus  3,512.47  —32.49 0.46 29,535  0.2267 0.01983
Neptune  3,539.05  —33.04 0.46 26,085  0.2389 0.01819

For Jupiter we found we could fit the observational data with a cubic chebytrope.
Presented in Figure 3 is a log-log plot of P(p) for Jupiter. Plotted with the chebytropic
model is a recent model from Hubbard (1995). The most striking aspect of the
comparison is how well the abstract chebytrope does, particularly above a pressure of
about a kilobar. Keep in mind that the chebytropic model was constructed without
reference to any other model and without any input from high-pressure physics. There
is no core in the chebytropic model (though there is a nod in that direction), and there
is no hint of the discontinuity at the metallic phase transition (but the chebytrope
goes smack thorough the middle). Neither is surprising because we have constrained
the equation of state to be smooth. More disconcerting is that the chebytropic model
does not agree with the physical model near the surface. At pressures less than a
kilobar the pressure in the chebytropic model behaves approximately as P = Cp?.
For a solar mixture of hydrogen and helium, the expected adiabatic law is P = Cp*°.
Apparently, the chebytropic model is inconsistent with the physics here, but on the
other hand the gravitational moments are insensitive to the mass here. So the failure
is not surprising. If we chop off the planet at a kilobar (which occurs at about
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s = 0.995) then .J; and Jg are still within the observational error bounds. Interestly,
significant contributions to .J; continue to about the 150bar level (about s = 0.998).
So the most sensitive indicator of density in the 150-1000bar range is J,, not the
higher moments. It is interesting that a core is not strongly indicated, or required to
fit the observational data.

For Saturn, we were not able to fit all the observational data. However, we were
able to find a fit for the data excluding Js. Even in this case, we found we had to
extend the chebytrope to sixth order in order to find a fit. (This is rather surprising,
because we are only fitting three dimensionless observables: J,, Jy, and ¢..) Presented
in Figure 4 is a log-log plot of P(p) for Saturn. Plotted with the chebytropic model is
a recent model from Hubbard (1995). As for Jupiter, the deep interior is surprisingly
well reproduced, but near the surface we have the same sort of discrepancy with the
physics as we had with Jupiter. For Saturn, the nod in the direction of the core is
stronger than it was for Jupiter.

For Uranus, the chebytrope was extended to a quintic before the observational data
were fit. Presented in Figure 5 is a log-log plot of P(p) for Uranus. The chebytropic
model lies within the range of allowable physical models (see Podolak, Hubbard, and
Stevenson, 1995). The most curious feature of the chebytropic fit is the anti-core:
the slope of the logP versus logp line increases near the center of the planet. Indeed,
lower order fits can be made for Uranus, but for them the density actually decreases
near the core.

For Neptune, the chebytrope was also extended to a quintic before the observa-
tional data were fit. Presented in Figure 6 is a log-log plot of P(p) for Neptune. The
chebytropic model lies within the range of allowable physical models (see Podolak,
Hubbard, and Stevenson, 1995).

In addition to the gravitational moments of the models, Table 3 lists the model
flattening. Comparing the model values of the hydrostatic flattening to the observed
flattening, we see that for Jupiter the model hydrostatic flattening is the same as the
observed flattening within observational uncertainty. This is also true for Neptune,
but the observational errors are large. The quoted observed value for Neptune is
smaller than the hydrostatic value by about 6%. For Saturn and Uranus there is
apparently a significant difference between the hydrostatic flattening and the observed
flattening. For Saturn the hydrostatic flattening is too small by about 1%. For
Uranus, the hydrostatic flattening is too small by a much larger percentage: about
14%.

Table 3 also lists the dimensionless polar moment of inertia C'/(M R?), which is a
key parameter in estimating the rate at which the spin axis of the planet precesses. For
physical models of Jupiter and Saturn, Hubbard (1995) estimates the polar moments
to be 0.264 and 0.220, respectively. These are in good agreement with the chebytropic
values.
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11 Conclusions

The principal contribution of this paper is a new method for the solution of hydrostatic
balance which for all practical purposes has unlimited accuracy.

We find that the widely used Zharkov-Trubitsyn third order theory of hydrostatic
balance is inadequate to generate quantitatively correct models of Jupiter and Saturn.

We have made interior models of the Jovian planets with an abstract polynomial
equation of state. The minimal objective models agree surprisingly well with the
parametrized physical models. Perhaps the agreement is indicative of actual model
independent knowledge of the internal structure of the jovian planets.
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14 Appendix: Chebytrope Parameters for the Jovian Plan-
ets

This table lists the parameters of the best fit chebytropic models of the Jovian planets.
Note that (p is determined from the other (; by the requirement that the density at
the surface is zero.

Jupiter Saturn Uranus Neptune
g 0.083246497685 0.139072479439  0.028943907223  0.025606667820
(1 1.721229703723  2.081821959780  1.744632103786  1.723928752104
(o 0.037400213201  0.383533477488 —.097198653912 —.045331478444
(3 0.041258708992  0.104098145430 —.171938318090 —.052087981809

Ca 0 —.008892248292 0.050782411054 0.044640882430
Cs 0 —.011514183459 0.006482457479 —.033275955543
Co 0 000322077922 0 0
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Figure 1: Radial functions for ¢ = 0.15. The common logarithm of each function
is plotted. The solid line is the non-dimensional density ((s). The dashed lines are
the shape functions a;(s), for [ = 2,...,10. Also shown are the differences between
radial functions for two successive iterations. The dotted line is for the density, and

the dot-dashed lines are for the shape functions.
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Figure 2: Radial functions for ¢ = 0.15, extended to [ = 12. The common logarithm
of the function is plotted. The solid line is the non-dimensional density ((s). The

dashed lines are the shape functions a;(s), for [ = 2,...,12. Also shown are the
differences between radial functions for two successive iterations. The dotted line is

for the density, and the dot-dashed lines are for the shape functions.
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Figure 3: Pressure (in megabars) versus density (in g/cm?) for Jupiter. The dashed
line is for the chebytropic model. The solid line is a recent model from Hubbard

(1995).
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Figure 4: Pressure (in megabars) versus density (in g/cm?) for Saturn. The dashed
line is for the chebytropic model. The solid line is a recent model from Hubbard

(1995).
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Figure 5: Pressure (in megabars) versus density (in g/cm?) for Uranus. The dashed
line is for the chebytropic model. The solid line is a recent model from Hubbard

(1995).
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Figure 6: Pressure (in megabars) versus density (in g/cm?) for Neptune. The dashed
line is for the chebytropic model. The solid line is a recent model frmo Hubbard

(1995).
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