
Non-perturbative Hydrostati EquilibriumJ. WisdomAugust 5, 1996AbstratA non-perturbative treatment of hydrostati equilibrium is presented. We�nd that the widely used third order Zharkov-Trubitsyn theory is not adequateto model the interiors of Jupiter and Saturn. We use the method to generateabstrat objetive interior models of the Jovian planets, with no input otherthan the observational data. The abstrat objetive models are in surprisinglygood agreement with the physial models.1 IntrodutionHydrostati balane governs the basi shape of all planets. The physis is simple |in equilibrium the loal pressure fore must balane the gravitational and entrifugalfores. Material properties must be supplied to relate the density to the pressure.The lassial approah to the solution of the problem of hydrostati balane isthrough perturbation theory. The perturbative treatments use various shemes toredue the non-linear funtional problem to a small set of oupled di�erential orintegro-di�erential equations. The perturbation parameter is the ratio of the en-trifugal aeleration to the gravitational aeleration at the surfae at the equator.The lassial perturbation theories �nd suessive approximations to the level surfaes(surfaes of onstant density and pressure) as funtions of radius. Zharkov and Tru-bitsyn (1978) review modern extensions of the lassial perturbation theories. Otherapproahes have been developed whih are not based on level urves (e.g. Ostrikerand Mark, 1968, Hubbard, Slattery, and DeVito, 1975). All reent models of the inte-riors of the Jovian planets have used the third order theory of Zharkov and Trubitsyn(1978) to solve the problem of hydrostati balane (Podolak and Reynolds, 1987, Gud-kova, et al., 1988, Hubbard and Marley, 1989, Chabrier, et al., 1992, Marley, et al.,1995, Hubbard, et al. 1995). We show below that the third-order Zharkov-Trubitsyntheory is not adequate to model the interiors of Jupiter and Saturn.Computational resoures are great enough today that many problems an be ap-proahed more simply and diretly than was possible in earlier eras. In this ompu-tational era, we an fous attention on the basi physial proesses, and use arefullyrafted numerial methods to reliably determine the onsequenes of these physial1



proesses. The goals of this paper are twofold. First, it is to state ompletely andexpliitly the problem of hydrostati struture. Seond, it is to present a straight-forward omputational solution to the simple problem of hydrostati balane. Themethod of solution is inspired by the physial problem. Physially, the planet ad-justs until surfaes of onstant potential oinide with surfaes of onstant densityand pressure. Thus it is natural to organize the numerial solution around the levelurves, and the numerial solution is found by letting the planet adjust itself. Themethod presented here is not perturbative in the usual sense, but of ourse represen-tations by in�nite series must be trunated, so there is an e�etive order. However,the method presented has no fundamental limitation. If more auray is needed theseries an simply be extended.In the presentation, we �rst state the problem preisely. Next we disuss possiblerepresentations of the solution. We then disuss methods of �nding a solution, andonstrut a numerial implementation of the method. We test the method on aproblem whih an be solved by ompletely other means. Finally, we apply themethod to a physial problem of interest { the determination of the interior strutureof the Jovian planets.2 Equations of Hydrostati BalaneThe basi equation of hydrostati equilibrium is~rp = �~g; (1)where p is the pressure, � is the density, and ~g is the loal aeleration, the gradientof the total potential, ~g = �~rU: (2)The potential is the sum of the gravitational potential and the entrifugal potential.The gravitational potential isUG(~r) = �G Z �(~r 0)j~r � ~r 0jd3r0 (3)and the entrifugal potential is UR(~r) = �12
2r2? (4)where r? is the distane from the rotation axis.We shall assume the pressure p(�) is a funtion of density only (i.e. the interioris barotropi). Here we restrit attention to isolated rotating planets for whih thereare no signi�ant external ontributions to the potential. In this ase, we expet theplanet to be axisymmetri and possess north/south symmetry.Through the equation of state p(�) and the equation of hydrostati equilibriumthe density is diretly related to the potential. For any radial line where the pressure2



gradient and loal aeleration are purely radial, suh as a line in the equator planeor through the pole, the equation of hydrostati equilibrium is a salar di�erentialequation dpdr = ��dUdr : (5)The assumption that pressure is a funtion of density guarantees that surfaesof onstant density orrespond to surfaes of onstant pressure, and the equation ofhydrostati balane then guarantees that surfaes of onstant density and pressureare also surfaes of onstant potential. We expet that all of these quantities varymonotonially from the enter of the body to the surfae of the body, and thus anyof them an be expressed as a funtion of any of the others. The salar equation ofhydrostati equilibrium an be formally integrated using density as the independentvariable Z ��0 1� dpd�d� = U(�0)� U(�); (6)where �0 refers to the density at some referene point suh as the surfae. That is,integration of the equation of state diretly relates the density to the potential.The problem is this: the density distribution gives rise to the potential, and thepotential is related through the equation of state to the density. We seek a selfonsistent solution.3 Level SurfaesSurfaes of onstant density, onstant potential, and onstant pressure oinide. Thelevel surfaes are nested and an be labelled by a single ontinuous parameter s. Itwill be onvenient to let s run from 0 at the enter of the planet to 1 at the surfae.We relate s to the radius of the level urve throughr(s; �) = Rs[1 + �(s; �)℄; (7)where � is the osine of the olatitude �, and R is a harateristi radius of theplanet. We shall refer to � as the \shape funtion." There is no dependene on thelongitude beause we have restrited our attention to axisymmetri planets. Furtherproperties of the shape funtion must be spei�ed to uniquely relate the parameter sto a partiular level urve. For instane, we ould speify that �(1; 0) = 0 so that Ris the equatorial radius and Rs is the radius of the level urve on the equator plane.Alternatively, we ould require that the volume enlosed by the level urve is the sameas the volume enlosed by the sphere of radius Rs. However it is de�ned, a detailedrepresentation for � must be hosen. Several possibilities ome to mind: Chebyshevpolynomials, Fourier series, Legendre polynomials. Eah are omplete, so any surfaean be represented in terms of them. We postpone further spei�ation of the shapefuntion and its representation; subsequent development will guide our hoies.3



4 Development of the PotentialGiven a distribution of mass, we need to know the potential at every point in thebody. One approah is to just evaluate the appropriate integral over the mass distri-bution eah time the potential is needed. Another approah is to express the potentialin terms of moments of the mass distribution. Both approahes involve integrals ofsimilar omplexity. The latter approah is more attrative if the potential is approx-imated well by just a few moments, and will be evaluated at many plaes. We adoptthis strategy.Suppose we are interested in the potential on the level urve labelled by s. Thepotential on the level urve is the sum of the potential due to the mass inside thelevel urve and the potential of the mass outside the level urve. We shall label theregion inside the level surfae Region I, and the region outside the level surfae butinside the planet as Region II. We determine the potential exterior to eah of theseregions as if there were no mass in the other region.In a region in whih there is no mass the potential satis�es Laplae's equation.The general axisymmetri solution of Laplae's equation isU(r; �) = �GMR 1Xl=0 "l � rR�l + dl �Rr �l+1#Pl(os �); (8)where Pl are the usual Legendre polynomials, and l and dl are free parameters.We have introdued sale fators so that the oeÆients will be dimensionless. Forpotentials with north/south symmetry the sum is restrited to even l. The oeÆientsan be expressed as moments over the soure mass distribution.The potential in region I due to the mass in region II isUI(r; �) = �GMR 1Xl=0 2l � rR�2l P2l(os �): (9)The terms with inverse powers of r are exluded beause the potential is �nite at theorigin. The oeÆients an be expressed as moments of the mass in region II:l(s) = 1M ZII �Rr �l+1 Pl(os �)�d3r: (10)The potential in region II due to the mass in region I takes the formUII(r; �) = �GMR 1Xl=0 d2l �Rr �2l+1 P2l(os �): (11)The terms with positive powers of r are exluded beause the potential is �nite atin�nity. The oeÆients an be expressed as moments of the mass in region I:dl(s) = 1M ZI � rR�l Pl(os �)�d3r: (12)4



Note that all integrals are well de�ned and have �nite values. Both solutions are validat all points of the level surfae of interest, the level surfae that separates the tworegions. The total potential is the sum of the two ontributions.We introdue a non-dimensional density � through � = ���, with �� = M=(43�R3),the mean density for a spherial planet of mass M and radius R. We reexpress theintegrals for the dimensionless moments in terms of � and the level parameter s:l(s0) = 3 Z 10 "Z 1s0 �(s) 1sl�1(1 + �)l�1  1 + � + s���s! ds#Pl(�)d� (13)and dl(s0) = 3 Z 10 "Z s00 �(s)sl+2(1 + �)l+2  1 + � + s���s! ds#Pl(�)d�: (14)For onveniene, we also introdue a non-dimensional potential eU through U =�(GM=R) eU . A non-dimensional measure of the relative strength of the entrifu-gal fore to the gravitational fore is q = (
2R)=(GM=R2) = 
2R3=GM . If R is notthe equatorial radius Re we also refer to qe = 
2R3e=GM .5 Method of SolutionGiven the density and shape as a funtion of the level urve parameter s, we andetermine the potential at any point in the body. For a self-onsistent hydrostatisolution, the potential at a level urve will be related to the density there by theequation of state, and all points on the level urve will have the same potential. It isnatural to �nd this self-onsistent solution by suessive re�nement of a trial solution.One way to do this would be to de�ne some measure of the extent to whih a solutionis not in hydrostati equilibrium and then gradually adjust the parameters (\hilllimb") until a satisfatory solution is found. We pursue a di�erent, more \physial"approah to the solution of these non-linear equations.We motivate the method through the onsideration of tides. If we apply an exter-nal potential to a planet, a \tide" is raised (the planet is distorted), and the densityhanges (the planet is squeezed). Let's divide the external potential at the surfaeinto an average part and a part with zero average. The average part modi�es theradial pressure balane; the other part distorts the body. Let �U represent the os-illating part of the external potential. At the surfae of the planet, the height of thetide is approximately �r = �h�Ug ; (15)where �U is the part of the perturbing potential with zero average over the surfae,g is the surfae gravitational aeleration, and h is the \displaement Love number."The displaement Love number is a measure of the responsiveness of the planet.For a uid homogeneous inompressible planet h = 5=2. For a tenuous (massless)5



atmosphere above a point mass ore h = 1. We ould generalize the displaementLove number to be a funtion of level surfae h(s). This funtion would tell us howresponsive a level surfae is to an applied potential perturbation.We onsider an iterative approah to the determination of the hydrostati solution.We let the numerial planet adjust itself to �nd the equilibrium. More spei�ally, wepresume we have some approximation to the solution, and we would like to improveit. From the approximate solution we an alulate a new estimate of the potential,and the problem is how to adjust the planet to be more self-onsistent. Inspiredby the disussion of the tides, we ompute the potential on eah level surfae. Weuse the average of this potential to adjust the density on the level surfae; we treatthe osillating part of the potential on the level surfae as a tidal potential whihdistorts the level surfae aording to equation (15). We do not know h(s), so we usea onservative value of h(s) = 1.A onstraint on the level urve and density adjustment is that the total mass ofthe planet has the orret value: M = Z �d3r0; (16)whih implies, by equation (12), d0(1) = 1: (17)If the hange in a level urve preserves the volume enlosed by the level urve, andif the density does not vary strongly, then the mass enlosed by the level urve willbe approximately preserved. Thus shape hanges in the level urves will approxi-mately deouple from hanges in density on the level urve. This suggests that weparameterize the level urve shapes in suh a way that volume is preserved, at leastapproximately, as the shape parameters hange. This is aomplished, to �rst orderin the oeÆients, if we use a spherial harmoni expansion to represent the shape. Inthe axisymmetri ase onsidered here, we use an expansion in Legendre polynomials.So we hoose �(s; �) = 1Xl>0 al(s)Pl(�) (18)as our representation of the shape of the level urves for �xed s. North/south sym-metry restrits l to be even. Note that with this hoie s is approximately the radiusof the sphere with volume equal to the volume enlosed by the level urve. (For ana-lytial development we might have wanted to de�ne s to have preisely this property,as Lyapunov does, but for us that would introdue extra non-linear onstraints. SeeZharkov and Trubitsyn, 1978.) Of ourse, we will have to trunate the expansionfor pratial alulations. The representation of the oeÆient funtions al(s) andthe density funtion �(s) is still unspei�ed. At this point we hoose Chebyshevpolynomials, beause they are easy to use and have nie approximation properties.One the mass moments are omputed, we an use them to ompute the potentialanywhere on a level surfae. We then expand the angular dependene of the potential6



variation in terms of Legendre polynomials:�U(s; �) = 1Xl=0�Ul(s)Pl(�); (19)where the disturbing potential oeÆients are (even l only)�Ul(s) = (2l + 1) Z 10 Pl(�)U(r(s; �); �)d�; (20)where U(r; �) is expressed in terms of the moments, and r(s; �) has the hosen repre-sentation. The �Ul for l > 0 are used to ompute the adjustment to the level urveshapes through the the tidal distortion formula; �U0 is used to adjust the densityof level urve s. The radial funtions are represented by Chebyshev interpolations,so the alulation is arried out for eah of the Chebyshev interpolation points in s.The whole proess is repeated until adequate onvergene is ahieved.Here are some details of the implementation. We evaluate integrals using a ra-tional extrapolation of the seond Euler-Malaurin formula, with interval divisions of2, 3, 4, 6, 8, and 12. If the estimated relative error is unsatisfatory, the interval isdivided into two equal parts and the proess is applied reursively to the parts. Typi-ally we require 10�11 relative auray of the quadratures, but the auray ahievedis usually muh better than this. This method is aurate and eÆient, and workseven when the integrand has singularities. Legendre polynomials are evaluated byforward reurrene; sums of Legendre polynomials are evaluated using the Clenshawreurrene formula. Sums of Chebyshev polynomials are similarly evaluated with theClenshaw reurrene. We found that for an n = 1 polytrope (see below) that the iter-ation is stable with h(s) = 1, but unstable if we use a more aggressive h(s) = 5=2. Wedid not try to determine an optimal h. Every few iterations we extrapolated the iter-ative solutions, using the Aitken-Ste�enson method (see Danby, 1988). The methodis applied point-wise to eah of the radial funtions at the Chebyshev interpolationpoints. Sometimes this dramatially improves the onvergene.6 PolytropesA nie test ase is a rotating planet with a polytropi equation of state. For apolytrope the pressure is related to the density byp = C�; (21)where  = 1 + 1=n, with polytropi index n, and C is a onstant. It happens thatn = 1 is not a bad �rst approximation to the e�etive equation of state for theinterior of Jupiter. A non-rotating polytrope with n = 1 an be solved analytially.A rotating polytrope with index n = 1 an be solved by other means, so we an hekour answers by omputing both solutions.7



The potential is, aording to equation (6),U(�)� U(�0) = �C  � 1 ���1 � ��10 � : (22)A onvenient hoie for the referene point is the surfae. For a polytrope the surfaedensity is zero: �0 = 0. For n = 1 we haveU(�)� U0 = �2C� (23)We use this to adjust the density to be onsistent with the potential.Solutions for n = 1 have been found for a number of rotation parameters q. Wepresent one in detail. In Figure 1 we show the radial funtions for the \onverged" so-lution for q = 0:15. In this solution we used 15 point Chebyshev interpolation for theradial funtions, and terms up to l = 10 in the shape funtions. Also shown are thedi�erenes between suessive iterations. Note that these di�erenes are quite small.We presume these small di�erenes indiate that the solution has onverged. Thewiggles in the shape funtions at small s for l = 8 and 10 are probably artifats, butthe ause is not obvious. As we shall see the solution is more than suÆient. The de-dued value of the equatorial radius is Re = (1+�(1; 0))R = 1:04432988740583R. Thee�etive perturbation parameter at this radius is qe = q(Re=R)3 = 0:17084582900350.The derived gravitational moments are shown in the Table 1. We shall estimate theerrors in this solution by �nding an independent solution. The table also lists derivedquantities for the other solutions, whih are desribed below.Table 1 order 10 order 12 BesselRe=R 1:0443298874 1:0443300982 1:0443301060qe 0:1708458290 0:1708459325 0:1708459363J2 0:0245154407 0:0245154308 0:0245154305J4 �:0016441385 �:0016441371 �:0016441371J6 0:0001649217 0:0001649213 0:0001649213J8 �:0000207333 �:0000207320 �:0000207319J10 0:0000030149 0:0000030107 0:0000030104J12 �:0000004764 �:0000004838 �:00000048297 Alternate SolutionA rotating polytrope with n = 1 an be solved independently by another method.The gravitational potential UG interior to the body satis�es Poisson's equationr2UG = 4�G�: (24)8



The rotational potential UR satis�esr2UR = �2
2: (25)Thus the total potential satis�esr2U = 4�G�� 2
2: (26)For an n = 1 polytrope, using equation (23), this beomesr2� + 2�GC � = 
2C : (27)We again introdue a non-dimensional density � through � = ���. Here � is afuntion of r and �. We will not be �nding or using level urves, but we will makeuse of a surfae funtion: rs(�) = R(1 + �(�)): (28)We shall represent � in terms of Legendre polynomials�(�) = 1Xl>0 alPl(�) (29)These de�nitions parallel those for the more general level surfae approah, but herethe oeÆients are not funtions of s. We an represent C with a non-dimensionalparameter � through C = 1�2 2�GR2: (30)Saling the spatial derivatives by R2, we derive a non-dimensional version of equa-tion (27) r2� + �2�2� = �2�22q3 : (31)Let � 0 = � � 2q3 ; (32)then � 0 satis�es the Helmholtz equationr2� 0 + �2�2� 0 = 0: (33)The general axisymmetri solution of the Helmholtz equation is� 0(r; �) = 1Xl=0 bljl(��r)Pl(�); (34)where bl are onstants to be determined, jl are the usual spherial Bessel funtions,Pl are the Legendre polynomials. The non-dimensional density is�(r; �) = 2q3 + 1Xl=0 bljl(��r)Pl(�): (35)9



The surfae is determined by �(1 + �(�); �) = 0.The problem is redued to �nding the set of oeÆients bl, and �, for whih thesolution is self-onsistent. We an do this by adjusting the bl until the surfae is anequipotential. Our method for doing this is very similar to the method of solutionfor the other formulation. We ompute the potential on the surfae of the planetand let the planet adjust to this potential. In detail, the �rst step is to solve for arepresentation of the surfae given some set of bl. We use a method like Newton'smethod but approximate the derivative of the density with respet to the radius by b0.We use an intermediate representation of the surfae as a Chebyshev interpolation, sowe solve for the surfae at the Chebyshev interpolation points. We then ompute thepotential at the surfae. We do this as before by omputing the mass moments, buthere we only need the surfae moments dl. The details of the quadrature are of ourseompletely di�erent. Here the variables of integration are r and �, and the boundaryis the omputed surfae. In our representation the �rst dimensionless moment mustbe d0 = 1 in order for the total mass to be M . We adjust b0 (whih is responsiblefor most of the mass) so that this will better satis�ed: b00 = b0=d0. We then omputethe projetions of the surfae potential onto the Legendre polynomials. We wouldlike to let the surfae adjust to �Ul using the tidal distortion formula (15). We ando this approximately by expanding the equation for the surfae �(1 + �(�); �) = 0to �rst order in � and using the orthogonality of the Legendre polynomials to solvefor the adjustment to bl. We �nd �bl � � eUlb0=jl(��). The value of � is determinedby the requirement that the representation of the surfae as Legendre polynomialshas onstant term 1, that is, a0 = 0. We solve for � iteratively as we ompute theLegendre polynomial expansion of the surfae. The whole proess is repeated untiladequate onvergene is obtained. Here onvergene is judged by the magnitudes of� eUl.We have solved for q = 0:15 again in order to ompare the two solutions. Here wetake terms up to l = 14, and use 20 point Chebyshev interpolation. The relative errorof the integration quadratures was set to 10�10. Convergene was delared when allj� eUlj < 10�14. For referene the solution oeÆients are: b0 = 3:2639471725844178,b2 = �0:8766150340908836, b4 = 0:1066132351677717, b6 = �0:0178053455205318,b8 = 0:0061392876641078, b10 = �0:0062290924191637, b12 = �0:4092594755440963,b14 = �51:9771710398529760. All other quantities are omputable from these. De-rived values for Re, qe, and the gravitational moments are given in Table 1. Compar-ing this solution to the solution determined by the more general level urve method,we �nd the relative error in the equatorial radius is about �Re=Re � 2 � 10�7,with naturally a similar relative error in qe. The relative errors in the moments are�J2=J2 � 4 � 10�7, �J4=J4 � 8 � 10�7, �J6=J6 � 2 � 10�6, �J8=J8 � 6 � 10�5,�J10=J10 � 1� 10�3, �J12=J12 � 1� 10�2. Evidently, the solutions are adequate forthe forseeable future.The main error probably results from using only terms up to l = 10 in the generalsolution. We an hek this by adding the l = 12 terms. We have extended the generalsolution for q = 0:15, adding one term in l. Figure 2 shows the radial funtions and the10



onvergene errors. This time we used 15 point Chebyshev interpolation. The derivedvalues of Re, qe, and the gravitational moments are listed in Table 1. Comparing thissolution to the Bessel solution, we �nd now �Re=Re � 8� 10�9. The relative errorsin the moments are �J2=J2 � 1 � 10�8, �J4=J4 � 2 � 10�8, �J6=J6 � 6 � 10�9,�J8=J8 � 2� 10�6, �J10=J10 � 1� 10�4, �J12=J12 � 2� 10�3. Typially, extendingthe solution to l = 12 has redued the errors in the derived quantities by one orderof magnitude (more than a fator of q). Note also that the redution of the order ofthe Chebyshev interpolation did not matter.8 Comparison to Zharkov-TrubitsynHubbard has kindly provided some solutions using the third order Zharkov-Trubitsyntheory for omparison (Hubbard, 1995). We have ompared two partiular ases.The �rst has a q = 0:15896457, near that of Saturn. The Zharkov-Trubitsyn thirdorder theory gives J2 = 0:023108786, J4 = �0:0014480848, and J6 = 0:00012562161.Using the bessel method, we �nd for q = 0:1589645368308, J2 = 0:0231048438421,J4 = �0:0014589207833, and J6 = 0:0001376974334. Thus the errors in the Zharkov-Trubitsyn values are approximately j�J2=J2j � 2 � 10�4, j�J4=J4j � 1%, andj�J6=J6j � 9%. The observational unertainty in Saturn's J6 is about 4% (see below).Thus the Zharkov-Trubitsyn theory is not adequate to model the interior of Saturn toobservational auray. The large trunation error for Saturn's J6 using the Zharkov-Trubitsyn third order theory was previously noted by Hubbard and Marley (1989).Indeed, their remark inspired the development of our more aurate method. Theseond test ase has q = 0:088570676, for whih the Zharkov-Trubitsyn moments are:J2 = 0:013905306, J4 = �0:00052419360, and J6 = 0:000028100375. The bessel solu-tions, for q = 0:0885706790713, are J2 = 0:0139000788574, J4 = �0:0005251005663,J6 = 0:0000295470915. The errors in the Zharkov-Trubitsyn values are thus ap-proximately j�J2=J2j � 4 � 10�4, j�J4=J4j � 0:002, and j�J6=J6j � 5%. Theobservational unertainty in Jupiter's J2 is a part in 14; 000 (see below). Thus theZharkov-Trubitsyn third order theory is not adequate to model Jupiter either.9 Chebytropi Equations of StateThe observables whih provide the strongest onstraints are the gravitational har-monis, and not many of these are known with great preision. The ompositionof the deep interior of the Jovian planets is unknown, and guesses based on surfaeomposition or osmogoni arguments are naturally unertain. Thus interior mod-els are poorly onstrained physially. Even if the omposition were known preisely,knowledge of the equation of state of ompliated mixtures at high pressures andtemperatures has its limitations. So typially a range of interior models are guessedthat have a number of free parameters, and these parameters are determined by �t-ting the observational data. Adjustable parameters inlude: the mass and size of the11



\roky" ore, helium mass fration (whih may vary in the planet due to varying sol-ubilities), mass fration of the non-hydrogen-helium omponent, perhaps spei�ally\ie" and \rok" frations, parameters whih express unertainties in the equation ofstate, partiularly in the metalli-moleular transition region, the temperature alongthe presumed adiabat, amount of di�erential rotation on ylinders or perhaps moregeneral di�erential rotation, et. One might wonder if the observational data aresuÆient to address so many physial unertainties in the models.What happens if we throw out the unertain interior physis entirely? Supposeinstead we parametrize the e�etive equation of state abstratly, in suh a way thatwe an add as many parameters as are well determined by the data, and no more.What will we get? Conventional wisdom is that the data do not provide suÆientonstraints. We shall see.In partiular, we let the relation between density as a funtion of potential di�er-enes be represented as a polynomial. We use a parametrization of this polynomialas a sum of Chebyshev polynomials. In terms of non-dimensional potential eU andnon-dimensional density �, we hoose�(� eU) = 1Xi=0 �iTi(2� eU � 1) (36)where Ti(x) are the Chebyshev polynomials. The non-dimensional potential di�ereneranges roughly from 0 to 1; the shift and resaling take the argument to roughlythe range -1 to 1, whih is the usual Chebyshev argument interval. We imposetwo restritions on the expansion. First, we require that �(0) be the saled surfaedensity. Seond, we require that �(� eU) be monotoni. This means that the densityonly inreases as we go deeper into the planet. This is physially reasonable, butunfortunately does rule out interesting exoti planets with pure styrofoam ores. Thisassumption is required to maintain the interhangability of radius, pressure, density,and potential as independent variables that we have onsistently assumed. Other thanthese onstraints we let the data determine the rest. The order of the polynomialrelating density to potential is extended until the observational data an be �t. Notethat for an n = 1 polytrope, the density is linearly proportional to the potentialdi�erene, so an n = 1 polytrope is a member of the lass of equations of state we areonsidering. From the determined polynomial �(� eU) we an ompute the e�etiveequation of state P (�). We do this using the salar equation of hydrostati balane.Note that even though density is taken to be a polynomial funtion of potential, thepressure is not, in general, a polynomial funtion of density. We all our models\hebytropi" models, for obvious reasons.10 Chebytropi Interiors of the Jovian PlanetsWe have found hebytropi interiors for Jupiter, Saturn, Uranus, and Neptune. Theobservational data whih onstrain these models onsist of the mass, radius, grav-itational harmonis. The observational data are presented in Table 2. Exept for12



Saturn, the data are the olletion from Yoder (1994). For Saturn, values from Bosh(1994) are presented. The table also lists the observed attening f = (Re � Rp)=Re,where Re and Rp are the equatorial and polar radii.Table 2P lanet Re J2 � 106 J4 � 106 J6 � 106 qe � 106 fJupiter 71; 492(4) 14; 697(1) �584(5) 31(20) 89; 195(15) 0:06487(15)Saturn 60; 268(4) 16; 335(6) �898(9) 125(5) 154; 815(31) 0:09796(18)Uranus 25; 559(4) 3; 513(1) �31:9(5) ??? 29; 535(48) 0:02293(8)Neptune 24; 766(15) 3; 539(10) �36(10) ??? 26; 085(57) 0:01710(140)We use the downhill simplex method to adjust the hebytropi onstants so asto minimize the sum of the squared di�erenes between the model moments andthe observed gravitational moments. For all the Jovian planets we take the surfaedensity to be zero. The results are summarized in Table 3. The parameters for thesehebytropi models are listed in the appendix. The number of digits presented isarbitrary and intentionally exessive.Table 3P lanet J2 � 106 J4 � 106 J6 � 106 qe � 106 C=MR2e fJupiter 14; 697:00 �581:69 33:95 89; 196 0:2640 0:06489Saturn 16; 338:45 �897:56 78:33 154; 819 0:2211 0:09644Uranus 3; 512:47 �32:49 0:46 29; 535 0:2267 0:01983Neptune 3; 539:05 �33:04 0:46 26; 085 0:2389 0:01819For Jupiter we found we ould �t the observational data with a ubi hebytrope.Presented in Figure 3 is a log-log plot of P (�) for Jupiter. Plotted with the hebytropimodel is a reent model from Hubbard (1995). The most striking aspet of theomparison is how well the abstrat hebytrope does, partiularly above a pressure ofabout a kilobar. Keep in mind that the hebytropi model was onstruted withoutreferene to any other model and without any input from high-pressure physis. Thereis no ore in the hebytropi model (though there is a nod in that diretion), and thereis no hint of the disontinuity at the metalli phase transition (but the hebytropegoes smak thorough the middle). Neither is surprising beause we have onstrainedthe equation of state to be smooth. More disonerting is that the hebytropi modeldoes not agree with the physial model near the surfae. At pressures less than akilobar the pressure in the hebytropi model behaves approximately as P = C�2.For a solar mixture of hydrogen and helium, the expeted adiabati law is P = C�1:45.Apparently, the hebytropi model is inonsistent with the physis here, but on theother hand the gravitational moments are insensitive to the mass here. So the failureis not surprising. If we hop o� the planet at a kilobar (whih ours at about13



s = 0:995) then J4 and J6 are still within the observational error bounds. Interestly,signi�ant ontributions to J2 ontinue to about the 150bar level (about s = 0:998).So the most sensitive indiator of density in the 150-1000bar range is J2, not thehigher moments. It is interesting that a ore is not strongly indiated, or required to�t the observational data.For Saturn, we were not able to �t all the observational data. However, we wereable to �nd a �t for the data exluding J6. Even in this ase, we found we had toextend the hebytrope to sixth order in order to �nd a �t. (This is rather surprising,beause we are only �tting three dimensionless observables: J2, J4, and qe.) Presentedin Figure 4 is a log-log plot of P (�) for Saturn. Plotted with the hebytropi model isa reent model from Hubbard (1995). As for Jupiter, the deep interior is surprisinglywell reprodued, but near the surfae we have the same sort of disrepany with thephysis as we had with Jupiter. For Saturn, the nod in the diretion of the ore isstronger than it was for Jupiter.For Uranus, the hebytrope was extended to a quinti before the observational datawere �t. Presented in Figure 5 is a log-log plot of P (�) for Uranus. The hebytropimodel lies within the range of allowable physial models (see Podolak, Hubbard, andStevenson, 1995). The most urious feature of the hebytropi �t is the anti-ore:the slope of the logP versus log� line inreases near the enter of the planet. Indeed,lower order �ts an be made for Uranus, but for them the density atually dereasesnear the ore.For Neptune, the hebytrope was also extended to a quinti before the observa-tional data were �t. Presented in Figure 6 is a log-log plot of P (�) for Neptune. Thehebytropi model lies within the range of allowable physial models (see Podolak,Hubbard, and Stevenson, 1995).In addition to the gravitational moments of the models, Table 3 lists the modelattening. Comparing the model values of the hydrostati attening to the observedattening, we see that for Jupiter the model hydrostati attening is the same as theobserved attening within observational unertainty. This is also true for Neptune,but the observational errors are large. The quoted observed value for Neptune issmaller than the hydrostati value by about 6%. For Saturn and Uranus there isapparently a signi�ant di�erene between the hydrostati attening and the observedattening. For Saturn the hydrostati attening is too small by about 1%. ForUranus, the hydrostati attening is too small by a muh larger perentage: about14%.Table 3 also lists the dimensionless polar moment of inertia C=(MR2e), whih is akey parameter in estimating the rate at whih the spin axis of the planet preesses. Forphysial models of Jupiter and Saturn, Hubbard (1995) estimates the polar momentsto be 0.264 and 0.220, respetively. These are in good agreement with the hebytropivalues.
14
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Yoder, C.F. (1994), \Astrometri and Geodeti Properties of Earth and the So-lar System" in Global Earth Physis: A Handbook of Physial Constants, T.Ahrens, ed. (AGU, Washington, D.C.).Zharkov, V.N., and Trubitsyn, V.P. (1978) Physis of Planetary Interiors, (Pahart,Tuson).14 Appendix: Chebytrope Parameters for the Jovian Plan-etsThis table lists the parameters of the best �t hebytropi models of the Jovian planets.Note that �0 is determined from the other �i by the requirement that the density atthe surfae is zero.Jupiter Saturn Uranus Neptuneq 0:083246497685 0:139072479439 0:028943907223 0:025606667820�1 1:721229703723 2:081821959780 1:744632103786 1:723928752104�2 0:037400213201 0:383533477488 �:097198653912 �:045331478444�3 0:041258708992 0:104098145430 �:171938318090 �:052087981809�4 0 �:008892248292 0:050782411054 0:044640882430�5 0 �:011514183459 0:006482457479 �:033275955543�6 0 :000322077922 0 0
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Figure 1: Radial funtions for q = 0:15. The ommon logarithm of eah funtionis plotted. The solid line is the non-dimensional density �(s). The dashed lines arethe shape funtions al(s), for l = 2; : : : ; 10. Also shown are the di�erenes betweenradial funtions for two suessive iterations. The dotted line is for the density, andthe dot-dashed lines are for the shape funtions.17
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Figure 2: Radial funtions for q = 0:15, extended to l = 12. The ommon logarithmof the funtion is plotted. The solid line is the non-dimensional density �(s). Thedashed lines are the shape funtions al(s), for l = 2; : : : ; 12. Also shown are thedi�erenes between radial funtions for two suessive iterations. The dotted line isfor the density, and the dot-dashed lines are for the shape funtions.18
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Figure 3: Pressure (in megabars) versus density (in g/m3) for Jupiter. The dashedline is for the hebytropi model. The solid line is a reent model from Hubbard(1995).
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Figure 4: Pressure (in megabars) versus density (in g/m3) for Saturn. The dashedline is for the hebytropi model. The solid line is a reent model from Hubbard(1995).
20



�2:5 �1:5 �0:5 0:5 1:5�4
�2
0
2

log10�

log10P

Figure 5: Pressure (in megabars) versus density (in g/m3) for Uranus. The dashedline is for the hebytropi model. The solid line is a reent model from Hubbard(1995).
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Figure 6: Pressure (in megabars) versus density (in g/m3) for Neptune. The dashedline is for the hebytropi model. The solid line is a reent model frmo Hubbard(1995).
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