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A plot of spin rate versus orientation when Hyperion is at the pericenter of its orbit (surface of 
section) reveals a large chaotic zone surrounding the synchronous spin-orbit state of Hyperion, if 
the satellite is assumed to be rotating about a principal axis which is normal to its orbit plane. This 
means that Hyperion's rotation in this zone exhibits large, essentially random variations on a short 
time scale. The chaotic zone is so large that it surrounds the 1/2 and 2 states, and libration in the 3/2 
state is not possible. Stability analysis shows that for libration in the synchronous and 1/2 states, 
the orientation of the spin axis normal to the orbit plane is unstable, whereas rotation in the 2 state 
is attitude stable. Rotation in the chaotic zone is also attitude unstable. A small deviation of the 
principal axis from the orbit normal leads to motion through all angles in both the chaotic zone and 
the attitude unstable libration regions. Measures of the exponential rate of separation of nearby 
trajectories in phase space (Lyapunov characteristic exponents) for these three-dimensional mo- 
tions indicate the the tumbling is chaotic and not just a regular motion through large angles. As tidal 
dissipation drives Hyperion's spin toward a nearly synchronous value, Hyperion necessarily enters 
the large chaotic zone. At this point Hyperion becomes attitude unstable and begins to tumble. 
Capture from the chaotic state into the synchronous or 1/2 state is impossible since they are also 
attitude unstable. The 3/2 state does not exist. Capture into the stable 2 state is possible, but 
improbable. It is expected that Hyperion will be found tumbling chaotically. 

I. INTRODUCTION 

The rotation histories of the natural satel- 
lites have been summarized by Peale 
(1977). Most of the natural satellites fall 
into one of the two well-defined categories: 
those which have evolved significantly due 
to tidal interactions and those which have 
essentially retained their primordial spins. 
The exceptions are Hyperion and Iapetus, 
for which the time scales to despin to spin 
rates which are synchronous with their re- 
spective orbital mean motions are esti- 
mated to be on the order of one billion 
years. However, it has been known for 
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some time that Iapetus rotates synchro- 
nously (Widorn, 1950). Since the time scale 
for the despinning of Hyperion is somewhat 
less than that for Iapetus, it is likely that 
Hyperion has significantly evolved as well. 

As a satellite tidally despins, it may be 
captured in a variety of spin-orbit states 
where the spin rate is commensurate with 
the orbital mean motion. Mercury, how- 
ever, is the only body in the solar system 
which is known to have a nonsynchronous 
yet commensurate spin rate (see Goldreich 
and Peale, 1966). Among the tidally 
evolved natural satellites, where the spin 
rates are known the satellites are all in syn- 
chronous rotation, and in those cases 
where the spin rate is not known the proba- 
bility of capture in a nonsynchronous state 
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is small. Most of the tidally evolved satel- 
lites are expected to be synchronously ro- 
tating. Hyperion is the only remaining pos- 
sibility for an exotic spin-orbit state (see, 
e.g., Peale, 1978). We shall see that it may 
indeed be exotic. 

In their original paper on spin-orbit cou- 
pling, Goldreich and Peale (1966) derive a 
pendulum-like equation for each spin-orbit 
state by rewriting the equations of motion 
in terms of an appropriate resonance vari- 
able and eliminating the nonresonant, high- 
frequency contributions through averaging. 
The strength of each resonance depends on 
the orbital eccentricity and the principal 
moments of inertia through (B - A) /C.  As 
long as (B - A ) /C  ~ 1, averaging is a good 
approximation and the resulting spin states 
are orderly. However,  the figure of Hyper- 
ion has been determined from Voyager 2 
images (Smith et al., 1982; T. C. Duxbury, 
1983, personal communication) and (B - 
A) /C  -~ 0.26. This is significantly larger than 
the hydrostatic value assumed in Peale 
(1978), and averaging is no longer an appro- 
priate approximation. In fact, the reso- 
nance overlap criterion (Chirikov, 1979) 
predicts the presence of a large zone of cha- 
otic rotation. 

In this paper, we reexamine the problem 
of spin-orbit coupling for those cases 
where averaging is not applicable, with spe- 
cial emphasis on parameters appropriate 
for Hyperion. In the next section, the prob- 
lem is recalled and the qualitative features 
of the nonlinear spin-orbit problem are dis- 
cussed. One mechanism for the onset of 
chaos, the overlap of first-order reso- 
nances, is briefly reviewed and the reso- 
nance overlap criterion is used to predict 
the critical value of (B - A) /C  above which 
there is large-scale chaotic behavior. In 
Section III, the spin-orbit phase space is 
numerically explored using the surface of 
section method. The existence of the large, 
chaotic zone is verified, and the critical 
value for the onset of chaos is compared to 
the prediction of the resonance overlap cri- 
terion. In Section II and III it is assumed 

that the spin axis is normal to the orbit 
plane. In Section IV the stability of this ori- 
entation is examined for the spin-orbit 
states, where it is shown that for principal 
moments appropriate for Hyperion the syn- 
chronous and 1/2 spin-orbit states are atti- 
tude unstable! In Section V rotation in the 
chaotic zone is also shown to be attitude 
unstable. The resulting three-dimensional 
tumbling motions are considered in Section 
VI, and shown to be fully chaotic. Conse- 
quences of these results for the tidal evolu- 
tion of Hyperion are discussed in Section 
VII and it is concluded that Hyperion will 
probably be found to be chaotically tum- 
bling. A summary follows in Section VIII. 

II. SPIN-ORBIT COUPLING REVISITED 

Consider a satellite whose spin axis is 
normal to its orbit plane. The satellite is 
assumed to be a triaxial ellipsoid with prin- 
cipal moments of inertia A < B < C, and C 
is the moment about the spin axis. The orbit 
is assumed to be a fixed ellipse with semi- 
major axis a, eccentricity e, true anomaly f,  
instantaneous radius r, and longitude of pe- 
riapse o3, which is taken as the origin of 
longitudes. The orientation of the satellite's 
long axis is specified by O and thus 0 - f 
measures the orientation of the satellite's 
long axis relative to the planet-satellite cen- 
ter line. This notation is the same as that of 
Goldreich and Peale (1966). Without exter- 
nal tidal torques, the equation of motion for 
O (Danby, 1962; Goldreich and Peale, 1966) 
is 

~ o  + o,o ~ 
dt 2 ~ sin 2(0 - 30 = 0, (1) 

where to20 = 3(B - A) /C  and units have been 
chosen so that the orbital period of the sat- 
ellite is 27r and its semimajor axis is one. 
Thus the dimensionless time t is equal to 
the mean longitude. Since the functions r 
and f a r e  2~r periodic in the time, the second 
term in Eq. (1) may be expanded in a 
Fourier-like Poisson series giving 
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dt 2 + -~ ~ H -~, e sin(20 - rot) = O. 
rn = - ~  

The coefficients H(m/2,e) are proportional 
to e 21(m/2)-ll and are tabulated by Cayley 
(1859) and Goldreich and Peale (1966). 
When e is small, H(m/2,e) ~-  -½e, 1, ½e for 
m/2 = ½, 1, ~, respectively. The half-integer 
m/2 will be denoted by the symbol p. 

Resonances occur whenever one of the 
arguments of the sine functions is nearly 
stationary, i.e., whenever I(dO/dt) - Pl ~ ½. 
In such cases it is often useful to rewrite the 
equation of motion in terms of the slowly 
varying resonance variable yp = 0 - pt,  

d2yp + 0~2 
dt 2 -~ H(p ,e )  sin 2yp 

£0 2 

e) sin(27p - nt) + "-2 ,~o H (p + 5 '  = 0 .  

(2) 

ff  oJ0 is small enough the terms in the sum 
will oscillate rapidly compared to the much 
slower variation of yp determined by the 
first two terms and consequently will give 
little net contribution to the motion. As a 
first approximation for small w0, then, these 
high-frequency terms may be removed by 
holding yp fixed and averaging Eq. (2) over 
an orbital period. The resulting equation is 

dZT~ oj 2 
+ ~-  H(p , e )  sin 2yp = 0 dt 2 x .  

and is equivalent to that for a pendulum. 
The first integral of this equation is 

1 (dr.)2 ,oi 
Ip = ~ \ dt / - ~ H(p ' e )  c°S 2yp; 

yp librates for I~, < Ip s and circulates for lp > 
ips, where the separating value Ip s = (~o2/4) 
]H(p,e)]. For  Ip < 1~, s and H(p,e)  > O, 7p 
librates about zero; while for Ip < Ip s and 
H(p,e)  < O, yp librates about ~-/2. In both 
cases the frequency of small-amplitude os- 
cillations is O~oV]H(p,e) I. For Ip = Ip s, yp 
follows the infinite period separatrix which  
is asymptotic forward and backward in time 
to the unstable equilibrium. The half-width 

of the resonance is characterized by the 
maximum value of dyJd t  on the separatrix. 
When Ye librates Idyp/dt[ is always less than 
this value which is equal to O~o~/]H(p,e)[. 

Averaging is most useful for studying the 
motion near a resonance when the reso- 
nance half-widths are much smaller than 
their separation. In this case, most solu- 
tions of the actual equation of motion differ 
from those of the averaged equations b y  
only small regular oscillations resulting 
from the nonresonant,  high-frequency 
terms. An important exception occurs for 
motion near the infinite-period separatrix 
which is broadened by the high-frequency 
terms into a narrow chaotic band (Chirikov, 
1979). While the band is present for all val- 
ues of  too it is extremely narrow for small 
w0. Chirikov has given an estimate of the 
half-width of  this chaotic separatrix, which 
is expressed in terms of the chaotic varia- 
tions of the integral Ip, viz., 

I p  - -  l p  s = 4 7 r e h 3 e ( _ l r x ) / 2  ' 
we = lpS 

where e is the ratio of the coefficient of the 
nearest perturbing high-frequency term to 
the coefficient of the perturbed term, and h 
= l~/oJ is the ratio of the frequency differ- 
ence between the resonant term and the 
nearest nonresonant term (f~) to the fre- 
quency of  small-amplitude librations (oJ). 
For the synchronous spin-orbit state per= 
turbed by the p = ~ term, e = H(~,e)/H(l,e) 
= (7e)/2 and h = 1/oJ0. Thus 

11 - Ii s 147re e_(~/2,o0)" (3) 
wl - I~ ~ - oJ~- 

For Mercury, for instance, where co0 = 
0.017 (for (B - A)/C = 10 -4) and e = 0.206, 
the width of the chaotic region associated 
with the synchronous s ta te  is wl = 1.4 × 
10-34, and a similar estimate for the width of 
the p = 3/2 chaotic band gives w3/2 = 5.4 × 
10-43! Averaging is certainly a good approx-  
imation for Mercury. On the o the r  hand, 
the width of  the chaotic layer depends ex- 
ponentially on o~0, and as too increases the 
size of the chaotic separatrix increases dra- 
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matically. Now most of the natural satel- 
lites are expected, on the basis of hydro- 
static equilibrium, to have values of o~0 
larger than that expected for Mercury, in 
several cases approaching unity (Peale, 
1977). At such large a)0 chaotic separatrices 
are a major feature in the phase space. In 
studying the rotations of the natural satel- 
lites caution must be exercised when using 
the averaging method. 

The widths of the libration regions also 
grow as too increases. At some point their 
widths, as calculated above using the aver- 
aging method, are so large that the reso- 
nances begin to overlap. Analyzed sepa- 
rately, libration would be expected in each 
of two neighboring resonances. However, 
simultaneous libration in two spin-orbit 
states is impossible. The result is wide- 
spread chaotic behavior. An estimate of the 
too at which this happens is provided by the 
Chirikov resonance overlap criterion. This 
criterion states that when the sum of two 
unperturbed half-widths equals the separa- 
tion of resonance centers, large-scale chaos 
ensues. In the spin-orbit problem the two 
resonances with the largest widths are the p 
= 1 and p = 3/2 states. For these two states 
the resonance overlap criterion becomes 

1 
co0ROM'IH(I,e)] + O~oR°X/IH(3/2,e)] = 

o r  

1 
°~0RO = 2 + k / ~ e "  (4) 

For e = 0.1, the mean eccentricity of Hype- 
rion, the critical value of too above which 
large-scale chaotic behavior is expected is 
o0 R° = 0.31. This is well below the actual 
value of Hyperion's COo which has been de- 
termined from Voyager 2 images to be o~0 = 
0.89 ___ 0.22 (T. C. Duxbury, 1983, personal 
communication). It is expected then that 
for Hyperion there is a large chaotic zone 
surrounding (at least) the p = 1 and p = 3/2 
states, and possibly more. 

These predictions are verified in the next 

section, where the spin-orbit phase space 
is investigated numerically using the sur- 
face of section method. 

III. THE SPIN-ORBIT PHASE SPACE 

Most Hamiltonian systems display both 
regular and irregular trajectories. The 
phase space is divided; there are regions in 
which trajectories behave chaotically and 
regions where trajectories are quasiperiodic 
(Hrnon and Heiles, 1964). The simplest and 
most intuitive method of determining 
whether a trajectory is chaotic or quasipe- 
riodic is the surface of section method. The 
spin-orbit problem, as defined in the last 
section, is 27r periodic in the dimensionless 
time. A surface of section is obtained by 
looking at the system stroboscopically with 
period 2rr. A natural choice for the section 
is to plot d~9/dt versus t9 at every periapse 
passage. The successive points define 
smooth curves for quasiperiodic trajecto- 
ries; for chaotic trajectories the points ap- 
pear to fill an area on the section in an ap- 
parently random manner. It is a remarkable 
property of Hamiltonian systems that these 
two types of behavior are usually readily 
distinguishable and that they are generally 
both present on any surface of section. 

Because of the symmetry of a triaxial el- 
lipsoid, the orientation denoted by v a is 
equivalent to that denoted by O + rr. Conse- 
quently, O may be restricted to the interval 
from 0 to rr. The spin-orbit states found in 
the previous section by the averaging 
method are states where a resonance vari- 
able yp = O - p t  librates. For each of these 
states dO/dt has an average value precisely 
equal to p, and O rotates through all values. 
If attention is restricted, however, to the 
times of periapse passage, i.e., t = 27rn, 
then each yp taken modulo ~- is simply O. A 
libration in yp becomes a libration in O on 
the surface of section. For quasiperiodic li- 
bration successive points trace a simple 
curve on the section near dO/dt  = p which 
covers only a fraction of the possible inter- 
val from 0 to 7r. For nonresonant quasipe- 
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FIG. 1. Surface of section for tOo = 0.2 and e = 0.1. 
dO/dt versus 0 at successive periapse passages for ten 
separate trajectories: three illustrating quasiperiodic 
libration, three illustrating the surrounding chaotic lay- 
ers and four illustrating that quasiperiodic rotation 
separates the chaotic zones. 

riodic trajectories,  all Tp rotate, and succes- 
sive points on the surface of section will 
trace a simple curve which covers  all values 
of  O. For  small tOo, resonant  states are sepa- 
rated from nonresonant  states by a narrow 
chaotic zone, for which successive points 
fill a very narrow area on the surface of 
section. The surface of  section displayed in 
Fig. 1 illustrates these various possibilities 
for tOo = 0.2 and e = 0.1. Equation (1) was 
numerically integrated for ten separate tra- 
jectories and dO/dt was plotted versus 0 at 
every  periapse passage. Three  trajectories 
illustrate quasiperiodic libration in the p = 
1 (synchronous),  p = 1/2, and p = 3/2 
states. Three trajectories illustrate the cha- 
otic separatrices surrounding each of these 
resonant  states, and four trajectories show 
that each of these chaotic zones is sepa- 
rated from the others by impenetrable non- 
resonant  quasiperiodic rotation trajecto- 
ries. Five hundred successive points are 
plotted for each quasiperiodic trajectory,  
and 1000 points for each chaotic trajectory. 

As tOo is increased both the resonance 
widths and the widths of  the chaotic separa- 
trices grow. The resonance overlap crite- 
rion predicts that the chaotic zones will be- 
gin to merge when tOo > tO0 R°, where tO0 R° is 

given by Eq. (I). For  Hyperion,  e = 0.1, 
and to0 R° = 0.31. Numerically,  we find that 
the p = 1 and p = 3/2 chaotic zones merge 
between tOo = 0.25 and tOo = 0.28. The pre- 
diction of  the resonance overlap criterion is 
in excellent agreement  with the numerical 
results, especially considering that tOo var- 
ies over  two orders of magnitude for the 
natural satellites. 

As tOo is further  increased the simplicity 
of the picture developed for small tOo disap- 
pears. The now large chaotic zone sur- 
rounds more and more resonances,  and the 
sizes of  the principal quasiperiodic islands 
decrease.  Figure 2 illustrates the main fea- 
tures of  the surface of  section for e = 0.1 
and tOo = 0.89, values appropriate for Hype-  
rion. The chaotic sea is very  large, sur- 
rounding all states from p = 1/2 to p = 2. 
Notice the change in scale from Fig. 1. The 
tiny remnant  of  the p = 1/2 island is in the 
lower center  of  the chaotic sea; the p = 3/2 
island has disappeared altogether. The sec- 
ond-order  p = 9/4 island in the top center of  
the chaotic zone is now one of the major 
features of the section. A total of  17 trajec- 
tories of  Eq. (1) were used to generate this 
figure: eight quasiperiodic librators, illus- 
trating the p = 1/2, 1, 2, 9/4, 5/2, 3, and 7/2 
states, five nonresonant  quasiperiodic rota- 
tors, and four chaotic trajectories (one for 

dO 2 
d t  

, , , , , 1 ~ .  ":"  , ' , - , .~  . . . . . . .  . . , . , . 4 -  ~ ' " " " "  

o 7r/a 7r 
0 

FIc.  2. Surface of section for tOo = 0.89 and e = 0.1. 
Hyperion 's  spin-orbit  phase space is dominated by a 
chaotic zone which is so large that even the p = 1/2 
and p = 2 states are surrounded by it. 
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Fro. 3. Major island centers versus to 0. Each island 
may be identified by the value of dO/dt at too = 0, 
except for the second synchronous branch which ap- 
pears in the upper right quadrant. A broad line indi- 
cates that the island is surrounded by the large chaotic 
zone. These resonance curves summarize the surfaces 
of section by showing which states may be reached by 
traveling in the chaotic sea for any particular too. The 
dotted lines show the usual linear approximation for 
the forced librations in the synchronous state, while 
the dashed lines show a much superior nonlinear ap- 
proximation. 

each chaotic zone). Two thousand points 
are plotted in the large chaotic sea. 

While the average value of dO/dt is pre- 
cisely p for a quasiperiodic librator in state 
p, on the surface of section the island cen- 
ters are displaced from these values. This 
displacement results from a forced libration 
with the same period as the orbital period 
and amplitude (in the variations of 0 and 
dO~dO equal to the displacement. This phe- 
nomenon is familiar from the forced libra- 
tion of Phobos (Duxbury, 1977; Peale, 
1977). A convenient way to summarize the 
results of the surfaces of section for various 
tOo is to plot the location of  all the major 
island centers. The resonance centers oc- 
cur at 0 = 0 or O = 7r/2, so it is sufficient to 
plot only dO/dt versus tOo. This plot is pre- 
sented in Fig. 3 for an orbital eccentricity of 
0.1. Curves with different symmetry may 
cross. For  example, the p = 1 and p = 1/2 
curves cross, yet the islands are always dis- 
tinct since their centers occur at different 

values of 0. Whenever the island was sur- 
rounded by the large chaotic sea, the line 
has been broadened .The  resonance curves 
in Fig. 3 thus give a clear picture of which 
states may be visited by traveling in the 
chaotic sea for any particular too. It is inter- 
esting to note that for too within the range 
1.27 < tOo < 1.36 two different synchronous 
islands are simultaneously present. 

For  the large tOo and e appropriate for Hy- 
perion the forced librations are not well ap- 
proximated by the linear theory that was 
used for Phobos. However,  good approxi- 
mations are obtained from the nonlinear 
method of  Bogoliubov and Mitropolsky 
(1961). If  we define tOp = vq - p f a n d  Eq. (1) 
is rewritten with the true anomaly as the 
independent yariab!e, the equation of mo- 
tion for tOp becomes 

d% 
(1 + e cos f )  ~ - 2e s i n f ( p  + d f /  

tOg 
+ ~- sin 2(top + (p - 1)f) = 0. (5) 

The island centers  are fixed points on the 
surface of  section, thus top(f) is 2¢r periodic. 
This suggests that tOp bewri t ten  as a Fourier 

series, tOp(f) = tOp0 + ~] tOpk sin kf. tOpo as- 
k=l 

sumes a value of 0 or 7r/2 depending on 
whether libration is about O equal to 0 or 
7r/2, respectively, and only sine terms are 
included since the equation of motion is in- 
variant under a simultaneous change in sign 
of tOp and f.  A first approximation to the 
solution is obtained b y  retaining only the 
first term (k = 1) in this Fourier series. Sub- 
stituting this into Eq.,(5),  multiplying by 
sin(f) and integrating from 0 to 27r yields an 
implicit equation for the amplitude tOp' 

tO2[ J3_zp(2tOp' ) A- (-1)2pJ2p_l(2tOp')] = 

(2tOp I + 4ep)(-1)~2% °)/~ 
where the Ji are the usual Bessel functions. 
The dashed line in Fig. 3 shows the solution 
to this equation for p = 1, where 

( 1 +  e) 2 dO dtop) df  (p + top,) ( f  --e~/2 
d---7 = p +  df  /--~ = 
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on the surface of  section (at periapse). Evi- 
dently, even one term in this Fourier  series 
is a much bet ter  representat ion of  the full 
solution than the usual linear solution (see 
Peale, 1977) which is drawn as a dotted line 
in Fig. 3. Though they are not drawn in Fig. 
3 the nonlinear approximations f o r p  = 1/2 
and p = 3/2 are also quite good. 

Up to now it has been assumed that the 
spin axis is perpendicular  to the orbit plane. 
However ,  Fig. 2 bears little resemblance to 
the picture of  spin-orbi t  coupling devel- 
oped for small tOo. In the next  section this 
question of  attitude stability is reevaluated 
in this now strongly nonlinear regime. 

' IV. ATTITUDE STABILITY OF ROTATION AT 
THE ISLAND CENTERS 

J Consider now -the fully three-dimensional 
motion of  a triaxial ellipsoid in a fixed ellip- 
tical orbit, which is specified as before.  Let  
a, b, and c denote  a right-handed set of  axes 
fixed in the satellite, formed by the princi- 
pal axes of  inertia with moments  A < B < 
C, respectively.  In this case Euler ' s  equa- 
tions are (Danby, 1962) 

A dtOa 3 
d t  - tObtOc(B - C)  = - -fi f l y (B  ~- C) ,  

d t o b  3 
B -d-i- - toctoa(C - -  A )  = - --fi y a ( C  - A ) ,  

(6) 

dtoc 3 
C - - d -  t - - t o a t o b ( A  - -  B )  = - -fi  o t f l ( A  - B ) ,  

where toa, tob, and to~ are the rotational an- 
gular veloci t ies  about the-three axes a, b, 

and ¢, respectively,  and ~, t ,  and ~/are the 
direction cosines of  the planet to  satellite 
radius vector  on the same three axes. 

To solve these equations, a set of  gener- 
alized coordinates to specify the orientation 
of  the satellite must be chosen .  The Euler  
angles (as specified in Goldstein, 1965) are 
not suitable f o r  this pu rpose  because the 
resulting equations have a coordinate sin- 
gularity when the spin axis is normal to the 
orbit plane,  which is just  the situation under  

study. A more convenient  set of  angles has 
therefore been chosen and is specified rela- 
tive to an inertial coordinate system x y z  

which is defined at periapse. The x axis is 
chosen to be parallel to the planet to satel- 
lite radius vec tor ,  the y axis parallel to the 
orbital velocity,  and the z axis normal to the 
orbit plane so as to complete a right-handed 
coordinate system. Three  successive rota- 
tions are performed to bring the a b c  axes to 
their actual orientation from an orientation 
coincident with the x y z  set of  axes. First, 
the a b c  axes are rotated about the c axis by 
an angle O. This is followed by a rotation 
about the a axis by an angle ~p. The third 
rotation is about the b axis by an angle tO. 
The first two rotations are the same as the 
Euler  rotations, but their names have been 
interchanged. In terms of  these angles the 
three angular velocities are 

dO ds0 
toa = - d--t- cos ~o sin tO + ~ -  cos tO, 

d O  dtO 
COb = ~ sin ~o + d---t-' 

dO d~  
toc = -~- cos ~ cos tO + ~ sin tO, 

and the three direction cosines are 

c~ = cos tO cos(O - f )  

- sin tO sin ¢ sin(O - f ) ,  

/3 = - cos ~ sin(O - f ) ,  

y = sin tO cos(O - f )  

+ cos tO sin ~o sin(O - f ) .  

The equations of  motion for O, ~,, and tO are 
then derived in a straightforward manner.  
For  reference,  the three canonically conju- 
gate momenta  are 

Po = -Atoacos ~p sin tO + Btobsin ~o 

+ Ctoccos ~p cos tO, 

p ,  = Ato~cos tO + Ctocsin tO, 

p~ = Btob. 

When 9, tO; P~,: and p ,  are set equal  to 
zero, they remain equal to zero. In this 
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equilibrium situation the spin axis is normal 
to the orbit plane and O is identical to the O 
used in the two previous sections. At the 
island centers O(t) is periodic and the stabil- 
ity of this configuration may be determined 
by the method of Floquet multipliers (see, 
e.g., Poincarr, 1892; Cesari, 1963; Kane, 
1965). A trajectory near this periodic trajec- 
tory is specified by O' = O + 80, 9' = 9 + 

t 
89,  to' = tO + 8to, p~ = Po + Spa, p~, = p~ + 
8p~, and p;  = p ,  + 8p,. The equations of 
motion for the variations 80, 8~o, 8to, etc. 
are then linearized in the variations, giving 
six first-order linear differential equations 
with periodic coefficients. Integration of 
these equations over one period for six lin- 
early independent initial variations (80 = 1, 
89 = 8to = 8po = 8p~ = 8p, = 0; 80 = 0, 89 
= 1, 8to = 8po = 8p¢ = 8p, = 0; etc.) defines 
a linear transformation which maps an arbi- 
trary set of initial variations to their values 
one period later. The evolution of the varia- 
tions over several periods is obtained by 
repeated application of this linear transfor- 
mation. The eigenvalues of this linear 
transformation are called the Floquet multi- 
pliers, and determine the stability of the 
original periodic solution. Namely, if any of 
the Floquet multipliers have a modulus 
greater than one, then repeated application 
of the linear transformation will lead to ex- 
ponential growth of the variations and the 
periodic solution is unstable; while (linear) 
stability is indicated if all the multipliers 
have modulus equal to one. Because of the 
Hamiltonian nature of this problem, every 
multiplier may be associated with another 
multiplier for which the product of the two 
moduli is equal to one (Poincarr, 1892). 
Thus instability is indicated by any multi- 
plier with modulus not equal to one. 

Two simplifications of this procedure 
were employed. Rather than explicitly lin- 
earize the equations of motion about the 
periodic reference trajectory, the variations 
were determined by directly integrating a 
nearby trajectory. The initial phase-space 
separation was taken to be 10-7;  the results 
are insensitive to this initial separation as 
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FIG. 4. Attitude stability diagram for the synchro- 
nous island center. A circle indicates stability, a plus 
sign indicates instability with one unstable direction 
and an asterisk indicates instability with two unstable 
directions. For most principal moments within the er- 
ror ellipsoid of Hyperion the synchronous island is 
attitude unstable ! 

long as it is small enough. The characteris- 
tic equation is a sixth-order polynomial 
equation, which is cumbersome to solve. 
Fortunately, it may be explicitly factored 
into the product of a quadratic equation, 
which determines the stability of the O mo- 
tion with the spin axis normal to the orbit 
plane, and a quartic equation which deter- 
mines the attitude stability. Of course, the 
O motion is always stable for the island cen- 
ters. 

Figure 4 displays the results of a number 
of calculations of the Floquet multipliers 
for the centers of the synchronous islands, 
with e = 0.1, for various principal mo- 
ments. Because Eqs. (6) are linear in the 
moments, it is sufficient to specify only the 
two principal moment ratios, A / C  and B/C. 
A grid of these ratios was studied, with a 
basic grid step of 0.025 for both ratios. The 
dashed lines are lines of constant tOo. Since 
the lower synchronous island disappears 
for tOo > 1.36, this region has been hatched. 
Also, for to0 near 0.5, the synchronous is- 
land bifurcates into a period doubled pair of 
islands, neither of which is centered at O = 
0. Consequently, for too = 0.55 it was the 
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Fio. 5. Attitude stability diagram for the p = 1/2 
island center. For principal moments within the error 
ellipsoid of Hyperion the p = 1/2 island is also mainly 
attitude unstable. The symbols are the same as those 
in Fig. 4. 

attitude stability of this island pair which 
was studied. Whenever the Floquet analy- 
sis indicated stability a small circle is plot- 
ted. Instability is denoted by a plus sign if 
one pair of multipliers had moduli not equal 
to one, and by an asterisk if two pairs of 
multipliers had moduli not equal to one. 
The resulting regions of stability and insta- 
bility are complicated, and it is expected 
that even more structure would be found if 
the grid size were reduced (Kane, 1965). 
The error ellipsoid for the actual figure of 
Hyperion, as determined by Duxbury, is 
also shown. The surprising result is that for 
most values of the principal moments 
within this ellipsoid, rotation at the synchro- 
nous island center is attitude unstable! Fig- 
ures 5 and 6 show the results of similar cal- 
culations for the p = 1/2 and p = 2 island 
centers, respectively. Again, for most val- 
ues of oJ0 within the error ellipsoid, rotation 
at the p = 1/2 island center is attitude unsta- 
ble. On the other hand, except for a few 
isolated points, the p = 2 state is attitude 
stable. These isolated points of instability 
are associated with narrow lines of internal 
resonance, where the fundamental frequen- 
cies of small-amplitude oscillations are 
commensurate either among themselves or 
with the orbital frequency. The diagram for 

the p = 9/4 state is similar to that for the p 
= 2 state, and mainly indicates stability. 
The p = 3/2 state is likewise mainly stable, 
but exists only for ~0 < 0.56. 

To summarize, for principal moments 
within the error ellipsoid for Hyperion the 
synchronous (p = 1) and p = 1/2 states are 
mainly attitude unstable, while the p = 2 
and p = 9/4 states are stable. Except for 
certain moments of inertia near the edge of 
the error ellipsoid in Fig. 4, Hyperion has 
no stable synchronous state. 

The method of Floquet multipliers is not 
suitable to determine the attitude stability 
of rotation in the chaotic zones since the 
reference trajectory is no longer periodic. 
For this purpose the Lyapunov characteris- 
tic exponents are introduced in the next 
section. 

V. ATTITUDE STABILITY OF ROTATION IN 
THE CHAOTIC ZONE 

The repeated application of a linear oper- 
ator leads to exponential growth if one or 
more of its eigenvalues has modulus greater 
than one, and to oscillatory behavior if all 
the eigenvalues have moduli equal to one. 
The Floquet multipliers introduced in the 
last section are thus indicators of exponen- 
tial deviation from the periodic trajectory. 
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FIG. 6. Attitude stability diagram for the p = 2 island 
center. This state is predominantly attitude stable. The 
symbols are the same as those in Fig. 4. 
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They may be calculated from a characteris- 
tic equation determined from a numerical 
integration over one orbit period because 
the reference trajectory is periodic and the 
variations are being subjected to the same 
" fo rces"  over and over again. When there 
is no underlying periodicity, the Floquet 
method is not useful. Rather, a measure 
of exponential separation is provided by 
the Lyapunov characteristic exponents 
(LCEs). The Lyapunov characteristic ex- 
ponents play a dual role in this paper. In 
this section, they are defined and used to 
determine the attitude stability of the large 
chaotic zone, while in the next section they 
are used as indicators of chaotic behavior. 
(See Wisdom (1983) for more discussion of 
these exponents.) 

The LCEs measure the average rate of 
exponential separation of trajectories near 
some reference trajectory. They are defined 
a s  

X = lira y(t) = lim ln[d(t)/d(to)] 
t ~  t--,~ t - to ' (7) 

where 

d(t) = 
"~/8192 + 8(02 + 8to 2 + 8po 2 + 8p¢ 2 + 8ptk 2, 

5 
the usual Euclidean distance between the 
reference trajectory and some neighboring 
trajectory. The variations 80, 8¢, 8tO, etc. 
satisfy the same six linear first-order differ- 
ential equations as in the last section. The 
difference is that now the reference trajec- 
tory need no longer be periodic. In general, 
as the direction of the initial displacement 
vector is varied, h may take at most N val- 
ues, where N is the dimension of the sys- 
tem. In Hamiltonian systems, the hi are ad- 
ditionally constrained to come in pairs: for 
every hi > 0 there is a hj < 0, such that hi + 
X] = 0. Thus in the spin-orbit  problem only 
three LCEs  are independent; it is sufficient 
to only study those which are positive or 
zero. (For a review of  the mathematical 
results regarding LCEs see Benettin et al. 
(1980a)). 

In this section we are concerned with at- 
titude stability. In all cases the reference 
trajectory has its spin axis normal to the 
orbit plane. An attitude instability is indi- 
cated if the spin axes of neighboring trajec- 
tories exponentially separate from the equi- 
librium orientation. If  the reference 
trajectory is quasiperiodic then one pair of 
LCEs must be zero, and instability is indi- 
cated if any other LCE is nonzero. On the 
other hand, if the reference trajectory is 
chaotic, one LCE must be positive (see 
Section VI), and attitude instability is indi- 
cated if two or more LCEs are positive. In 
cases where the reference trajectory is peri- 
odic there is a correspondence between the 
Floquet multipliers, ai, and the LCEs,  h~, 
viz., for every i there is a j such that X] = 
(lnlail)/T, where T is the period of the refer- 
ence trajectory. For every Floquet multi- 
plier with modulus greater than one, there 
is a Lyapunov exponent greater than zero. 

The calculation of  the largest LCE is not 
difficult, but to determine the attitude sta- 
bility of the large chaotic zone it is neces- 
sary to determine at least the two largest 
LCEs,  as one exponent must be positive to 
reflect the fact that the reference trajectory 
is chaotic. Because several different rates 
of exponential growth are simultaneously 
present, the numerical determination of 
more than the largest LCE is not a trivial 
task: The algorithm used here is that de- 
vised b y  Benettin et al. (1980b). 

The infinite limit in Eq. (7) is of course 
not reached in actual calculations. If)~ = 0, 
then d(t) oscillates or grows linearly and 
y(t) approaches zero as ln(t)/t. If, however, 
h 4 : 0  then y(t) approaches this nonzero 
limit. These two cases are easily distin- 
guished on a plot of log y(t) versus log t, 
where the ln(t)/t behavior appears roughly 
as a line with slope - L This is illustrated in 
Fig. 7 where calculations are presented of 
the three largest LCEs  for the synchronous 
island center with moments appropriate for 
Hyperion (A/C = 0.5956 and B/C = 0.8595). 
Two LCEs  are approaching a (positive) 
nonzero limit and one has the behavior ex- 
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FiG. 7. Lyapunov characteristic exponents for the 
synchronous island center with moments appropriate 
for Hyperion. Two exponents are positive and the 
third has the behavior expected of a zero exponent. 

pected of a zero exponent. This verifies the 
result of the Floquet analysis that with 
these moments rotation in the synchronous 
island is attitude unstable. As a further 
check, the attitude stability of all the syn- 
chronous island centers previously deter- 
mined by the Floquet method were redeter- 
mined with the LCEs. In all cases the two 
methods agreed, both qualitatively and 
quantitatively. 

Finally, the stability diagram for the large 
chaotic zone is shown in Fig. 8. For all val- 
ues of A/C and B/C which were studied, 
reference trajectories in the large chaotic 
zone with axes perpendicular to the orbit 
plane have three positive LCEs. This indi- 
cates attitude instability; small displace- 
ments of the spin axis from the orbit normal 
grow exponentially for all trajectories in the 
large chaotic sea! 

The LCEs also provide a time scale for 
the divergence of the spin axis from the or- 
bit normal. Since neighboring trajectories 
separate from the reference trajectory as 
e xt, the e-folding time for exponential diver- 
gence is 1/h. For quasiperiodic (or periodic) 
reference trajectories the appropriate X to 
use is the largest LCE; for chaotic refer- 
ence trajectories the second-largest LCE is 
appropriate since at least one of the first 
two is associated with attitude instability. 
For values of the principal moments near 
those of Hyperion these k's are both near 

0.1. The e-folding time is thus of order 10 or 
only two orbital periods! These attitude in- 
stabilities are very strong. 

VI. CHAOTIC TUMBLING 

Almost all trajectories initially near a 
chaotic reference trajectory separate from 
it exponentially on the average, while al- 
most all trajectories initially near a quasipe- 
riodic reference trajectory separate from it 
roughly linearly. Chaotic behavior can thus 
be detected by examining the behavior of 
neighboring trajectories. The rate of expo- 
nential divergence of nearby trajectories is 
quantified by the Lyapunov characteristic 
exponents which were introduced in the 
last section. A nonzero LCE indicates that 
the reference trajectory is chaotic. If all of 
the LCEs are zero then the reference tra- 
jectory is quasiperiodic. More generally, 
every pair of zero exponents indicates the 
existence of an "integral" of the motion. 
The trajectory is "integrable" if all LCEs 
are zero. 

In the previous two sections several 
cases of attitude instability were found. 
However, the methods used are only indi- 
cators of linear instability since the equa- 
tions of motion for the variations were lin- 
earized. It is possible that when the 
orientation of the spin axis normal to the 
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FIG. 9. Three Lyapunov characteristic exponents  
for two trajectories whose  axes were initially slightly 
displaced from the orbit normal. The resulting tum- 
bling motion is fully chaotic; there are no zero expo- 
nents.  The LCEs for the two trajectories are approach- 
ing similar values. 

orbit plane is unstable, the spin axis never- 
theless remains near that orientation or pe- 
riodically returns to it. This turns out not to 
be the case. Wherever the linear analyses 
indicated instability a trajectory slightly 
displaced from the equilibrium orientation 
was numerically integrated. In every case, 
the spin axis subsequently went through 
large variations and the c body axis went 
more than 90 ° from its original orientation 
perpendicular to the orbit plane. Still, these 
large excursions could be of a periodic or 
quasiperiodic nature. 

A calculation of  the LCEs for one of  
these trajectories which originates near the 
equilibrium has been made to answer this 
question. The algorithm of Benettin et al. 
(1980b) was again used to avoid the numeri- 
cal difficulties in calculating several LCEs.  
However,  an additional difficulty was en- 
countered, namely, the equations of motion 
as described in Section IV become singular 
when ~o = zr/2. At this point the 0 rotation 
and the to rotation become parallel. Since 
all of the angles go through large variations 
this singularity is frequently encountered. 
To navigate past this coordinate singular- 
ity, a change of coordinates was made to 
the usual Euler angles, which are singular 
at ~oE = 0. (The first two Euler rotations are 
the same as those used here, but the third is 
a rotation about the c axis by the angle t0e. 

When ~PE = 0, the Oe and the toe rotations 
are parallel.) Figure 9 shows the results for 
two trajectories with initial conditions ~ = 
0.1, to = 0.01, d~o/dt = O, dto/dt = 0, and dO~ 
dt = 1. One of them began with 0 - ~r/2 and 
the other at 0 = ~r/2 + 1/2. The principal 
moments are A / C  = 0.5956 and B/C = 
0.8595, values appropriate for Hyperion. 
The initial conditions are such that the O 
motion by itself would be chaotic, i.e., the 
trajectory with the axis of rotation fixed 
perpendicular to the orbit plane would lie in 
the large chaotic zone. The three LCEs for 
the two trajectories are approaching 
roughly the same limits. The results show 
clearly that the tumbling motion is fully 
chaotic; none of the LCEs is zero. 

VII. TIDAL EVOLUTION 

We have seen many qualitatively new 
features in the rotational behavior of satel- 
lites with large oJ0 in eccentric orbits. New 
features also appear in their tidal evolution. 
In general, tidal dissipation tends to drive 
the spin rate of  a satellite to a value near 
synchronous (e.g., Peale and Gold, 1965). 
In this process the satellite has most likely 
passed through several stable spin-orbit 
states where libration of its spin angular ve- 
locity about a nonsynchronous value could 
be stabilized against further tidal evolution 
by the gravitational torque on the perma- 
nent asymmetry of the satellite's mass dis- 
tribution. Whether or not the satellite will 
be captured as it encounters one of  these 
spin-orbit states depends on the spin angu- 
lar velocity as the resonance variable yp en- 
ters its first libration. If  the spin rate is be- 
low a critical value capture results, and 
otherwise the satellite passes through the 
resonance. In most situations there is not 
enough information to determine if this 
condition is satisfied and capture probabili- 
ties may be calculated by introducing a suit- 
able probability distribution over the initial 
angular velocity. For instance, the capture 
probability may be defined as the ratio of 
range of the first integral Ip which leads to 
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capture to the total range of Ip allowing a 
first libration (Goldreich and Peale, 1966). 

This standard picture of the capture pro- 
cess implicitly assumes that the behavior 
near the separatrix is regular and thus well 
described by the averaged equations of mo- 
tion. In general, though, the motion near a 
separatrix in a nonlinear dynamical system 
is not regular but chaotic. The calculation 
of capture probabilities is a well-developed 
art (see Henrard, 1982; Borderies and 
Goldreich, 1984), but the effect of the cha- 
otic separatrix has never been mentioned. 
Of course, when COo is very small the cha- 
otic separatrix is microscopically small, 
and even a very small tidal torque can 
sweep the system across the chaotic zone 
so quickly that it has essentially no effect. 
On the other hand, for larger oJ0 where the 
chaotic zones are sizable, the simple cap- 
ture process described above is qualita- 
tively incorrect. While still fundamentally 
deterministic, the capture process now in- 
volves the randomness inherent in determi- 
nistic chaos. Probabilities still arise from 
unknown initial conditions, but now the 
outcome is an extremely sensitive, essen- 
tially unpredictable function of these initial 
conditions. The capture process is more 
properly viewed as a random process. 

Following Goldreich and Peale (1966), let 
AE denote the change in the integral Ip over 
one cycle of the resonance variable yp due 
to the tidal torque. When AE is much 
smaller than the width of the chaotic se- 
paratrix 2wplp the chaotic character of the 
separatrix may be expected to have a signifi- 
cant effect on the capture process. For the 
p = 3/2 state of a nearly spherical body this 
condition is 

15k2R 3 ( 2 ]3/2 1 e ICi e , 
8 < 0'O 

where k2 is the Love number, 1/Q is the 
specific dissipation function, R is the ratio 
of the radius of the body to the orbit semi- 
major axis, and/z is the satellite to planet 
mass ratio. With parameters appropriate 

for Mercury this inequality is satisfied for 
all oJ0 > 0.075. This critical o~0 is only a little 
more than four times Mercury's actual ~o0 
as assumed in Goldreich and Peale (1966)! 
The chaotic separatrix should not be 
blithely ignored. 

If o0 is much larger a trajectory may 
spend a considerable amount of time in a 
chaotic zone before escaping or being cap- 
tured. Motion in a chaotic zone depends 
extremely sensitively on the initial condi- 
tions. Capture will occur if, by chance, the 
trajectory spends enough time near the bor- 
der of the libration zone for the tidal dissi- 
pation to take it out of the chaotic region; 
escape occurs if, by chance, the trajectory 
spends enough time near the border of reg- 
ular circulation for the tidal dissipation to 
move it into the regular region. For a value 
of o0 as large as that of Hyperion, the pic- 
ture is even more complicated since many 
islands are accessible to a traveler in the 
large chaotic sea. Once a trajectory has en- 
tered the large chaotic zone, it may repeat- 
edly visit each of the accessible states be- 
fore finally being captured by one of them. 
In numerical experiments, this odyssey fre- 
quently takes a very long time, as com- 
pared to capture without a chaotic zone 
where capture or escape is decided perma- 
nently on a single pass through a reso- 
nance. These experiments were performed 
with principal moments appropriate for Hy- 
perion, the spin axis normal to the orbit 
plane and a tidal torque given by 

C d(O - j~ 
T - r 6 d t  

which is appropriate when the tidal phase 
lag is simply proportional to the frequency 
(Goldreich and Peale, 1966). The constant 
C was chosen for computational conven- 
ience to be of order 10 -3 . Capture in each 
accessible state appears to be possible, 
though the synchronous state was the most 
common endpoint. 

Normally, tidal dissipation not only 
drives the spin rate toward a value near 
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synchronous, but also drives the spin axis 
to an orientation normal to the orbit plane. 
Thus, in Goldreich and Peale (1966), for in- 
stance, this orientation for the spin axis is 
simply assumed. The discussion of tidal 
evolution is now complicated by the rather 
surprising results of Sections IV, V, and VI 
where it was found that in many cases the 
orientation of the spin axis perpendicular to 
the orbit plane is unstable. In particular, the 
large chaotic zone is attitude unstable (Sec- 
tion V). So as soon as the large chaotic 
zone is entered the spin axis leaves its pre- 
ferred orientation and begins to tumble cha- 
otically through all orientations (Section 
VI). Capture into one of the attitude-stable 
islands is still a possibility. However, for 
Hyperion, the only attitude-stable end- 
points which are accessible, once the large 
chaotic sea has been entered, are the p = 2 
and p = 9/4 states. The synchronous and p 
= 1/2 states are attitude unstable for most 
values of the principal moments within the 
error ellipsoid of Hyperion and the p = 3/2 
state does not exist for oJ0 above 0.56 (Sec- 
tion IV). Occasionally, the tumbling satel- 
lite may come near one of the attitude-sta- 
ble islands with its spin axis perpendicular 
to the orbit plane. If it lingers long enough it 
may be captured. However, the chaotic 
zone is strongly chaotic (X ~ 0. I) and the 
tidal dissipation is very weak (the time 
scale for the despinning of Hyperion is of 
the order of the age of the Solar System). It 
may take a very long time for this tumbling 
satellite to enter an orientation favorable 
for capture to occur. Judging from the long 
times required in the numerical experi- 
ments for capture to occur even when the 
spin axis was fixed in the required direction 
it seems to us unlikely that Hyperion has 
been captured. We expect that Hyperion 
will be found to be tumbling chaotically. 

Preliminary observations of a 13-day pe- 
riod (Thomas et aL, 1984; Goguen, 1983) 
support this conclusion that capture has not 
occurred. We should point out that the tra- 
ditional method of determining periods 
from light variations involves observations 

which are separated by times longer than 
the period of variation and the period is de- 
termined by folding these observations 
back on each other with an assumed period 
which is varied until the scatter of points 
about a smooth curve is minimized. This 
method will not yield meaningful results if 
the period of the observed object varies 
markedly on a time scale which is short 
compared to the time spanning the observa- 
tions. Hence the determination of a chaotic 
light curve requires many magnitude obser- 
vations per orbit period carried out over 
several orbit periods. 

V I I I .  S U M M A R Y  

Hyperion's highly aspherical mass distri- 
bution and its large, forced orbital eccen- 
tricity renders inapplicable the usual theory 
of spin orbit coupling which relies on the 
averaging method, In fact, for much smaller 
(B - A)/C the resonance overlap criterion 
predicts the presence of a large chaotic 
zone in the spin-orbit phase space, and nu- 
merical exploration using the surface of 
section method has verified its presence. 
For Hyperion, this chaotic zone is so large 
that it engulfs all states from the p = 1/2 
state to the p = 2 state. The p = 3/2 state 
has disappeared altogether, and the second- 
order p = 9/4 island is a prominent feature 
on the surface of section. 

Hyperion could stably librate in the syn- 
chronous spin-orbit state if the spin axis 
were able to remain normal to the orbit 
plane. However, for most values of the 
principal moments within the error ellipsoid 
for Hyperion, Floquet stability analysis in- 
dicates that rotation within the synchro- 
nous island is attitude unstable. A small ini- 
tial displacement of the spin axis from the 
orbit normal grows exponentially and the 
axis appears to pass through all orienta- 
tions. Likewise, the p = 1/2 state is attitude 
unstable for most principal moments near 
those estimated for Hyperion. The only at- 
titude-stable islands in the large chaotic sea 
are the p = 2 and p = 9/4 states. 
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The orientation of the spin axis perpen- 
dicular to the orbit plane is likewise unsta- 
ble for trajectories in the large chaotic 
zone. This is indicated by the Lyapunov 
characteristic exponents which measure 
the rate of exponential separation of neigh- 
boring trajectories. Small displacements of 
the spin axis from the orbit normal lead to 
large displacements. Lyapunov character- 
istic exponents for the resulting tumbling 
motion indicate that it is fully chaotic; there 
are no zero exponents. 

Over the age of the solar system, tidal 
dissipation can drive Hyperion's spin to a 
near synchronous value. The probability of 
the spin being captured into any of the 
spin-orbit states with p > 2 is negligibly 
small, and Hyperion will have necessarily 
entered the large chaotic zone. At this 
point, Hyperion's spin axis becomes atti- 
tude unstable, and Hyperion begins to tum- 
ble chaotically with large, essentially ran- 
dom variations in spin rate and orientation. 
Tidal dissipation may lead to capture if Hy- 
perion's spin comes close enough to one of 
the attitude-stable islands with its spin axis 
perpendicular to the orbit plane. However, 
judging from the long times required in nu- 
merical experiments for capture to occur 
even when the spin axis was fixed in the 
required orientation and the fact that the 
tidal dissipation is very weak (the time 
scale for the despinning of Hyperion is on 
the order of  one billion years), it seems to 
us unlikely that capture has occurred. We 
expect that Hyperion will be found to be 
tumbling chaotically as more extensive ob- 
servations conclusively define its rotation 
state. If this chaotic tumbling is confirmed, 
Hyperion will be the first example of cha- 
otic behavior among the permanent mem- 
bers of the solar system. 
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