Symplectic Correctors for Canonical Heliocentric N-Body Maps

J. Wisdom
Massachusetts Institute of Technology, Cambridge, MA 02139
wisdom@poincare.mit.edu

Received \qquad ; accepted \qquad

Abstract

Symplectic correctors are developed for n-body maps (symplectic integrators) in canonical heliocentric coordinates. Several correctors are explicitly presented.

Subject headings: dynamics-celestial mechanics-gravitation-methods: analytical, numerical

1. Introduction

Symplectic correctors, introduced by Wisdom et al. (1996), can dramatically reduce the error of n-body integrations that use the n-body mapping method of Wisdom and Holman (1991). In that method the Hamiltonian for the n-body problem is written in terms of Jacobi coordinates and split into two parts: the Keplerian part, which describes the interaction of each planet with the central mass, and the interaction part, which describes the gravitational interaction among the planets. In the mapping method, the evolution of the full Hamiltonian is approximated by interleaving the evolution under the direct and Keplerian Hamiltonians. Mappings can also be developed for the n-body problem in canonical heliocentric coordinates (Wisdom 1992; Touma and Wisdom 1994). Indeed, the planetary orbit part of our numerical integrations that showed that the obliquity of Mars evolves chaotically (Touma and Wisdom 1993) were carried out in canonical heliocentric coordinates. In canonical heliocentric coordinates the Hamiltonian for the n-body problem is split into three parts: a Keplerian part, an interaction part, and an indirect part. Unfortunately, with a general splitting into three parts, the symplectic correctors derived in Wisdom et al. (1996) are not applicable. But with special splittings, the original symplectic correctors can be used for maps developed in canonical heliocentric coordinates.

I first review the basic idea of the symplectic correctors. I then develop the n-body Hamiltonian and the symplectic correctors in canonical heliocentric coordinates. Correctors of several different orders are presented explicitly. The use of the correctors is illustrated in 100 Myr year integrations of the outer planets.

2. Background on Symplectic Correctors

The idea of the symplectic correctors is best understood, and was originally understood, in terms of the delta function formulation of the symplectic mapping method, also known as symplectic integration.

Assume that the Hamiltonian for a problem can be split into two solvable (or efficiently computable) Hamiltonians:

$$
\begin{equation*}
H=H_{A}+H_{B} . \tag{1}
\end{equation*}
$$

For the corrector to work $H_{A} \gg H_{B}$, but to make a map this is not necessary.

To make a mapping for this problem, high frequency terms are added to the Hamiltonian so that H_{B} is effectively multiplied by a periodic sequence of Dirac delta functions:

$$
\begin{equation*}
H_{M a p}=H_{A}+2 \pi \delta_{2 \pi}(\Omega t-\pi) H_{B}, \tag{2}
\end{equation*}
$$

where $\delta_{2 \pi}$ is a periodic sequence of delta functions spaced by 2π in its argument. With argument $\Omega t-\pi$ the period of the map, the integration step, is $2 \pi / \Omega$, and the delta function kick occurs midway through the integration step. This map is second-order in the step.

The rationale that leads to this integrator is that the high-frequency terms that are added to the Hamiltonian to turn it into the mapping Hamiltonian are unimportant for the long term evolution because their effects tend to average out.

However, the high frequency terms generate short term oscillatory effects in the evolution. In Wisdom et al. (1996), it was shown how these short term periodic effects could be removed by canonical perturbation theory. A similar trick was used earlier in our papers (Tittemore and Wisdom 1987, 1989, 1990) on the tidal evolution of the Uranian satellites. The result is a canonical transformation from "mapping coordinates" to "real coordinates" and vice versa. The resulting symplectic correctors dramatically reduce the
error in integrations carried out with thess mappings (symplectic integrators).
Wisdom et al. (1996) also showed how to implement the correctors in terms of Lie series. So the correctors can be computed by interleaving the the same components as are used to carry out the integrations. The idea of the correctors was based on delta functions and averaging, but some poor souls can only think in terms of Lie series. I used the delta function formulation of symplectic mappings with non-trivial splittings (non T plus V) for ten years before Lie series were used with comparable non-trivial splittings to make symplectic integrators.

Explicit formulae for a number of correctors of various orders are presented in the appendix.

3. N-Planet Hamiltonians

In the n-body problem, the corrector idea applies to problems with a dominant central mass. The Hamiltonian for the n-planet problem is

$$
\begin{equation*}
H=\sum_{i=0}^{n} \frac{p_{i}^{2}}{2 m_{i}}-\sum_{0 \leq i<j}^{n} \frac{G m_{i} m_{j}}{r_{i j}} \tag{3}
\end{equation*}
$$

where $i=0$ for the central mass, m_{i} are the masses of the bodies, $p_{i}=m_{i} v_{i}$, for velocity v_{i}, G is the gravitational constant, and $r_{i j}$ is the distance between bodies i and j.

An elegant description of the Jacobi coordinates (including the hierarchical Jacobi coordinates) is given in Sussman and Wisdom (2001). I will not repeat that here. In the familiar Jacobi coordinates, each Jacobi coordinate x_{i}^{\prime} for $0<i \leq n$ refers to the center of mass of bodies with smaller indices, and one of the new coordinates is the center of mass of the whole system. (In the hierarchical Jacobi coordinates the coordinate tree can be more complicated.) Let p_{i}^{\prime} be the conjugate momenta.

An important property of the Jacobi coordinates is that the kinetic energy remains diagonal in the momenta

$$
\begin{equation*}
\sum_{i=0}^{n} \frac{p_{i}^{2}}{2 m_{i}}=\sum_{i=1}^{n} \frac{\left(p_{i}^{\prime}\right)^{2}}{2 m_{i}^{\prime}}+\frac{P^{2}}{2 M}, \tag{4}
\end{equation*}
$$

where m_{i}^{\prime} are the Jacobi masses, P is the total momentum of the system, and M is the total mass. The potential energy does not depend on the center of mass, so the center of mass degree of freedom is ignorable. The Hamiltonian for the n-body problem can be written in the form

$$
\begin{equation*}
H=H_{K}+H_{I}, \tag{5}
\end{equation*}
$$

where H_{K} is the sum of n Keplerian Hamiltonians

$$
\begin{equation*}
H_{K}^{i}=\frac{\left(p_{i}^{\prime}\right)^{2}}{2 m_{i}^{\prime}}-\frac{\mu_{i}^{\prime}}{r_{i}^{\prime}}, \tag{6}
\end{equation*}
$$

the factor μ_{i}^{\prime} depends on the particular splitting chosen, and

$$
\begin{equation*}
H_{I}=\left(\frac{\mu_{i}^{\prime}}{r_{i}^{\prime}}-\frac{G m_{0} m_{i}}{r_{i}}\right)-\sum_{0<i<j}^{n} \frac{G m_{i} m_{j}}{r_{i j}} \tag{7}
\end{equation*}
$$

The first term is an "indirect" term, which depends on the coordinates, and the sum is the gravitational potential of the planets with one another. Symplectic maps can be made from these components by interleaving the evolution governed by these two Hamiltonians (Wisdom and Holman 1991). We used these symplectic maps to verify that the motion of Pluto is chaotic (Wisdom and Holman 1991), and in our 100 million year integrations of the whole solar system that confirmed that the solar system evolves chaotically (Sussman and Wisdom 1992).

Canonical heliocentric coordinates are canonical extensions of the collection of heliocentric coordinates for the planets, plus the center of mass of the system. Thus

$$
\begin{equation*}
x_{i}^{\prime \prime}=x_{i}-x_{0}, \tag{8}
\end{equation*}
$$

for $1 \leq i \leq n$, plus the center of mass X. The conjugate momenta $p_{i}^{\prime \prime}$, and the total momentum P, satisfy

$$
\begin{equation*}
p_{i}=p_{i}^{\prime \prime}+\frac{m_{i}}{M} P \tag{9}
\end{equation*}
$$

with

$$
\begin{equation*}
p_{0}=-\sum_{i=1}^{n} p_{i}^{\prime \prime}+\frac{m_{0}}{M} P \tag{10}
\end{equation*}
$$

where M is the total mass. In canonical heliocentric coordinates the kinetic energy is not diagonal in the momenta. Instead,

$$
\begin{equation*}
\sum_{i=0}^{n} \frac{p_{i}^{2}}{2 m_{i}}=\sum_{i=1}^{n} \frac{\left(p_{i}^{\prime \prime}\right)^{2}}{2 m_{i}}+\frac{P^{2}}{2 M}+\frac{1}{2 m_{0}}\left(\sum_{i=1}^{n} p_{i}^{\prime \prime}\right)^{2} \tag{11}
\end{equation*}
$$

This can also be written

$$
\begin{equation*}
\sum_{i=0}^{n} \frac{p_{i}^{2}}{2 m_{i}}=\sum_{i=1}^{n} \frac{\left(p_{i}^{\prime \prime}\right)^{2}}{2 \mu_{i}}+\frac{P^{2}}{2 M}+\frac{1}{m_{0}}\left(\sum_{1 \leq i<j}^{n} p_{i}^{\prime \prime} p_{j}^{\prime \prime}\right) \tag{12}
\end{equation*}
$$

with the reduced masses $1 / \mu_{i}=1 / m_{i}+1 / m_{0}$.
In canonical heliocentric coordinates the n-planet Hamiltonian can be written in the form

$$
\begin{equation*}
H=H_{K}+H_{C}+H_{I} \tag{13}
\end{equation*}
$$

a Keplerian Hamiltonian, a quadratic "cross" term in the momenta, and an interaction Hamiltonian. The center of mass component is ignored. For kinetic energy (12), the Kepler Hamiltonian is a sum of terms for each planet

$$
\begin{equation*}
H_{K}^{i}=\frac{\left(p_{i}^{\prime \prime}\right)^{2}}{2 \mu_{i}}-\frac{G m_{0} m_{i}}{r_{i}^{\prime \prime}} \tag{14}
\end{equation*}
$$

with momentum cross terms

$$
\begin{equation*}
H_{C}=\frac{1}{m_{0}}\left(\sum_{1 \leq i<j}^{n} p_{i}^{\prime \prime} p_{j}^{\prime \prime}\right) \tag{15}
\end{equation*}
$$

and interaction terms

$$
\begin{equation*}
H_{I}=-\sum_{0<i<j}^{n} \frac{G m_{i} m_{j}}{r_{i j}} \tag{16}
\end{equation*}
$$

This was the splitting used by Touma and Wisdom (1993) in our discovery of the chaotic evolution of the obliquity of Mars. An advantage of this splitting is that Kepler's period law is satisfied for the individual planets: $n^{2} a^{3}=G\left(m_{0}+m_{i}\right)$, for mean motion n and semimajor axis a.

For kinetic energy (11) the Kepler Hamiltonian is

$$
\begin{equation*}
H_{K}^{i}=\frac{\left(p_{i}^{\prime \prime}\right)^{2}}{2 m_{i}}-\frac{G m_{0} m_{i}}{r_{i}} \tag{17}
\end{equation*}
$$

with momentum cross terms

$$
\begin{equation*}
H_{C}=\frac{1}{2 m_{0}}\left(\sum_{i=1}^{n} p_{i}^{\prime \prime}\right)^{2} \tag{18}
\end{equation*}
$$

The interaction Hamiltonian is the same as before. A disadvantage of this splitting is that Kepler's period law is not exactly satisfied, but it has other advantages. This is the splitting used in Duncan, Levison, and Lee (1998) and Chambers (1999).

A second order map can be made using either splitting. Let $\mathcal{K}(\Delta t)$ be the evolution under the Keplerian Hamiltonian for a time Δt. Let $\mathcal{C}(\Delta t)$ be the evolution under the cross momentum Hamiltonian for a time Δt. And let $\mathcal{I}(\Delta t)$ be the evolution under the interaction Hamiltonian for a time Δt. Then one evolution step of a second order symplectic mapping for this problem is

$$
\begin{equation*}
\mathcal{E}(\Delta t)=\mathcal{K}(\Delta t / 2) \circ \mathcal{C}(\Delta t / 2) \circ \mathcal{I}(\Delta t) \circ \mathcal{C}(\Delta t / 2) \circ \mathcal{K}(\Delta t / 2) \tag{19}
\end{equation*}
$$

But with a map generated in this form the existing correctors do not apply.

Notice that the Poisson bracket of H_{C}, Eq. (15), and H_{I}, Eq. (16) is nonzero, but that the Poisson bracket of H_{C}, Eq. (18), and H_{I}, Eq. (16) is zero. This has important consequences for the applicability of the existing correctors. For the latter splitting, the evolution under H_{C} commutes with the evolution under H_{I}. This allows the unambiguous definition of the evolution under both

$$
\begin{equation*}
\mathcal{B}(\Delta t)=\mathcal{I}(\Delta t) \circ \mathcal{C}(\Delta t)=\mathcal{C}(\Delta t) \circ \mathcal{I}(\Delta t) \tag{20}
\end{equation*}
$$

The evolution operator for a second order mapping becomes

$$
\begin{equation*}
\mathcal{E}(\Delta t)=\mathcal{K}(\Delta t / 2) \circ \mathcal{B}(\Delta t) \circ \mathcal{K}(\Delta t / 2) \tag{21}
\end{equation*}
$$

which is the form assumed in Wisdom et al. (1996), so the original correctors apply to maps in canonical heliocentric coordinates with this particular splitting!

4. Illustration

As an illustration of the various correctors in canonical heliocentric coordinates, the outer planets were integrated for 100 Myr years. The second splitting, with cross term Eq. (18), was used. The relative energy error for the uncorrected integration is shown in Fig. (1). It is a few times 10^{-6}.

Fig. (2) shows the relative energy error in the same integration after application of the third order (two stage) corrector listed in the appendix. The error is now of order 10^{-7}. The Chambers corrector solution works better than this corrector by a factor of about 2-3.

Fig. (3) shows the relative energy error in the same integration after application of the seventh order (six stage) corrector listed in the appendix. The error is now of order 10^{-8}. Application of the $17^{\text {th }}$ order corrector gives just slightly better results.

Fig. (4) shows the relative energy error in a 100 Myr integration using the original Wisdom-Holman mapping in the usual Jacobi coordinates after application of the $17^{\text {th }}$ order corrector. The error is now of order 10^{-9}. Evidently, for high accuracy long-term integrations Jacobi coordinates are preferred.

5. Summary

Symplectic correctors that were developed for n-body maps in Jacobi coordinates (Wisdom et al. 1996; Wisdom and Holman 1991) may also be used for n-body maps in canonical heliocentric coordinates, for a particular splitting. In integrations of the outer planets, the seventh order corrector works better than the third order (two-stage) corrector, and not much worse than the $17^{\text {th }}$ order corrector. Integrations of the outer planets performed in Jacobi coordinates using the original Wisdom-Holman map are better corrected, by nearly an order of magnitude. So for high accuracy integrations Jacobi coordinates are preferred.

6. Appendix: Corrector Formulae and Constants

Assume a Hamiltonian of the form:

$$
\begin{equation*}
H=H_{A}+H_{B}, \tag{22}
\end{equation*}
$$

where $H_{A} \gg H_{B}$. Let $\mathcal{A}(\Delta t)$ be the evolution under H_{A} for a time of Δt. Let $\mathcal{B}(\Delta t)$ be the evolution under H_{B} for a time of Δt. A second order map for this Hamiltonian is

$$
\begin{equation*}
\mathcal{E}(\Delta t)=\mathcal{A}(\Delta t / 2) \circ \mathcal{B}(\Delta t) \circ \mathcal{A}(\Delta t / 2) \tag{23}
\end{equation*}
$$

The correctors are defined in terms of some auxillary quantities. Let

$$
\begin{equation*}
\mathcal{X}(a \Delta t, b \Delta t)=\mathcal{A}(a \Delta t) \circ \mathcal{B}(b \Delta t) \circ \mathcal{A}(-a \Delta t) \tag{24}
\end{equation*}
$$

Then let

$$
\begin{equation*}
\mathcal{Z}(a \Delta t, b \Delta t)=\mathcal{X}(a \Delta t, b \Delta t) \circ \mathcal{X}(-a \Delta t,-b \Delta t) \tag{25}
\end{equation*}
$$

The n-stage corrector is

$$
\begin{equation*}
\mathcal{C}(\Delta t)=\mathcal{Z}\left(a_{1} \Delta t, b_{1} \Delta t\right) \circ \mathcal{Z}\left(a_{2} \Delta t, b_{2} \Delta t\right) \circ \cdots \circ \mathcal{Z}\left(a_{n} \Delta t, b_{n} \Delta t\right) \tag{26}
\end{equation*}
$$

The inverse corrector is

$$
\begin{equation*}
\mathcal{C}^{-1}(\Delta t)=\mathcal{Z}\left(a_{n} \Delta t,-b_{n} \Delta t\right) \circ \cdots \circ \mathcal{Z}\left(a_{2} \Delta t,-b_{2} \Delta t\right) \circ \mathcal{Z}\left(a_{1} \Delta t,-b_{1} \Delta t\right) \tag{27}
\end{equation*}
$$

In terms of these the corrected evolution is

$$
\begin{equation*}
\mathcal{E}^{\prime}(n \Delta t)=\mathcal{C}^{-1}(\Delta t) \circ \mathcal{E}(\Delta t) \circ \cdots \circ \mathcal{E}(\Delta t) \circ \mathcal{C}(\Delta t) . \tag{28}
\end{equation*}
$$

The corrector coefficients presented in Wisdom et al. (1996) are (corrected)

$$
\begin{align*}
& a_{8}=1 \alpha \quad ; \quad b_{8}=\frac{45815578591785473}{24519298961757600} \beta \approx 1.8685517340134143 \beta \\
& a_{7}=2 \alpha ; \quad b_{7}=\frac{-104807478104929387}{80063017017984000} \beta \approx-1.3090623112714728 \beta \\
& a_{6}=3 \alpha ; \quad b_{6}=\frac{422297952838709}{648658702692000} \beta \approx 0.6510325862986641 \beta \\
& a_{5}=4 \alpha \quad ; \quad b_{5}=\frac{-27170077124018711}{112088223825177600} \beta \approx-.24239903351841396 \beta \\
& a_{4}=5 \alpha ; \quad b_{4}=\frac{102433989269}{1539673404192} \beta \approx 0.06652968674402478 \beta \\
& a_{3}=6 \alpha \quad ; \quad b_{3}=\frac{-33737961615779}{2641809989145600} \beta \approx-0.012770775246667285 \beta \\
& a_{2}=7 \alpha \quad ; \quad b_{2}=\frac{26880679644439}{17513784972684000} \beta \approx 0.0015348298318361457 \beta \\
& a_{1}=8 \alpha \quad ; \quad b_{1}=\frac{682938344463443}{7846175667762432000} \beta \approx-0.00008704091947232721 \beta \tag{29}
\end{align*}
$$

with $a_{i}=-a_{17-i}$, and $b_{i}=-b_{17-i}$, for $8<i \leq 16$, and $\alpha=\sqrt{7 / 40}$ and $\beta=1 /(48 \alpha)$. This corrector has an error term of 17th order.

A third order (two stage) corrector is given by the coefficients:

$$
\begin{gather*}
a_{2}=1 \alpha \quad ; \quad b_{2}=\frac{1}{2} \beta \\
a_{1}=-1 \alpha \quad ; \quad b_{1}=\frac{-1}{2} \beta, \tag{30}
\end{gather*}
$$

A fifth order (four stage) corrector is given by the coefficients:

$$
\begin{array}{ll}
a_{2}=1 \alpha \quad ; \quad b_{2}=\frac{5}{6} \beta \\
a_{1}=2 \alpha \quad ; \quad b_{1}=\frac{-1}{6} \beta, \tag{31}
\end{array}
$$

with $a_{i}=-a_{5-i}$, and $b_{i}=-b_{5-i}$, for $2<i \leq 4$.
A seventh order (six stage) corrector is given by the coefficients:

$$
\begin{array}{ll}
a_{3}=1 \alpha \quad ; \quad b_{3}=\frac{53521}{49392} \beta \\
a_{2}=2 \alpha \quad ; \quad b_{2}=\frac{-22651}{61740} \beta \\
a_{1}=3 \alpha \quad ; \quad b_{1}=\frac{12361}{246960} \beta, \tag{32}
\end{array}
$$

with $a_{i}=-a_{7-i}$, and $b_{i}=-b_{7-i}$, for $3<i \leq 6$.

An eleventh order (ten stage) corrector is given by the coefficients:

$$
\begin{array}{ll}
a_{5}=1 \alpha \quad ; \quad b_{5}=\frac{3394141}{2328480} \beta \\
a_{4}=2 \alpha \quad ; \quad b_{4}=\frac{-14556229}{19015920} \beta \\
a_{3}=3 \alpha \quad ; \quad b_{3}=\frac{895249}{3622080} \beta \\
a_{2}=4 \alpha \quad ; \quad b_{2}=\frac{-329447}{6985440} \beta \\
a_{1}=5 \alpha \quad ; \quad b_{1}=\frac{2798927}{684573120} \beta \tag{33}
\end{array}
$$

with $a_{i}=-a_{11-i}$, and $b_{i}=-b_{11-i}$, for $5<i \leq 10$.

Instead of the mapping step, Eq.(23), one can also make a second order map with the step

$$
\begin{equation*}
\mathcal{E}(\Delta t)=\mathcal{B}(\Delta t / 2) \circ \mathcal{A}(\Delta t) \circ \mathcal{B}(\Delta t / 2) \tag{34}
\end{equation*}
$$

Chambers (1999) has found a third order corrector solution for this alternate map:

$$
\begin{align*}
a_{1}=\frac{3}{10} \gamma & ; \quad b_{1}=\frac{-1}{72} \gamma \\
a_{2}=\frac{1}{5} \gamma & ; \quad b_{2}=\frac{1}{24} \gamma \tag{35}
\end{align*}
$$

where $\gamma=\sqrt{10}$.

Note that if all one is interested in is monitoring the energy of an integration, then any of the above correctors can be used. If, for instance, the alternate map, Eq. (34), is used to perform the integration, then before applying any of the first set of correctors one should apply $\mathcal{A}(\Delta t / 2) \mathcal{B}(\Delta t / 2)$ to bring the alternate map output up to the corresponding output of the original map, Eq. (23).

7. Acknowledgements

This research was supported in part by NASA through the Planetary Geology and Geophysics program.

REFERENCES

Chambers, J. 1999, Mon. Not. R. Astron. Soc. 304, 793.

Duncan, M., Levison, H., and Lee, M.-H. Astron. J. 116, 2067.

Sussman, G.J., and Wisdom, J. with Meinhard E. Meyer 2001, "Structure and Interpretation of Classical Mechanics," (MIT Press, 2001).

Sussman, G.J., and Wisdom, J. 1992, Science 257, 56.

Tittemore, W. and Wisdom, J. 1987, Icarus 74, 172.

Tittemore, W. and Wisdom, J. 1987, Icarus 78, 63.

Tittemore, W. and Wisdom, J. 1990, Icarus 85, 394.

Touma, J. and Wisdom, J. 1993, Science 259, 1294.

Touma, J. and Wisdom, J. 1994, Astron. J., 107, 1189.

Wisdom, J., Holman, M., and Touma, J. 1996, Fields Inst. Com. 10, 217.

Wisdom, J. 1992, proceedings of the IAU symposium on "Chaos, Resonances, and Collective Dynamical Phenomena in the Solar System" held in Angra Dos Reis, Brazil, 1991.

Wisdom, J. and Holman, M. 1991, Astron. J. 102, 1528.

Fig. 1.- The relative energy error of the outer planets using the map, Eq. (23), in canonical heliocentric coordinates, without a corrector.

Fig. 2.- The relative energy error of the outer planets using the map, Eq. (23), in canonical heliocentric coordinates, with a third order (two stage) corrector. The offset from zero is just due to the initial phase of the evolution.

Fig. 3.- The relative energy error of the outer planets using the map, Eq. (23), in canonical heliocentric coordinates, with a seventh order (six stage) corrector. The corrected error is almost as good, for this problem, as with the $17^{\text {th }}$ order corrector.

Fig. 4. - The relative energy error of the outer planets using the Wisdom-Holman map in the usual Jacobi coordinates with a $17^{\text {th }}$ order corrector.

