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ABSTRACT

Symplectic correctors are developed for n-body maps (symplectic integrators)

in canonical heliocentric coordinates. Several correctors are explicitly presented.

Subject headings: dynamics—celestial mechanics—gravitation—methods: analytical,

numerical
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1. Introduction

Symplectic correctors, introduced by Wisdom et al. (1996), can dramatically reduce
the error of n-body integrations that use the n-body mapping method of Wisdom and
Holman (1991). In that method the Hamiltonian for the n-body problem is written in
terms of Jacobi coordinates and split into two parts: the Keplerian part, which describes the
interaction of each planet with the central mass, and the interaction part, which describes
the gravitational interaction among the planets. In the mapping method, the evolution
of the full Hamiltonian is approximated by interleaving the evolution under the direct
and Keplerian Hamiltonians. Mappings can also be developed for the n-body problem in
canonical heliocentric coordinates (Wisdom 1992; Touma and Wisdom 1994). Indeed, the
planetary orbit part of our numerical integrations that showed that the obliquity of Mars
evolves chaotically (Touma and Wisdom 1993) were carried out in canonical heliocentric
coordinates. In canonical heliocentric coordinates the Hamiltonian for the n-body problem
is split into three parts: a Keplerian part, an interaction part, and an indirect part.
Unfortunately, with a general splitting into three parts, the symplectic correctors derived in
Wisdom et al. (1996) are not applicable. But with special splittings, the original symplectic

correctors can be used for maps developed in canonical heliocentric coordinates.

I first review the basic idea of the symplectic correctors. I then develop the n-body
Hamiltonian and the symplectic correctors in canonical heliocentric coordinates. Correctors
of several different orders are presented explicitly. The use of the correctors is illustrated in

100 Myr year integrations of the outer planets.
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2. Background on Symplectic Correctors

The idea of the symplectic correctors is best understood, and was originally understood,
in terms of the delta function formulation of the symplectic mapping method, also known

as symplectic integration.

Assume that the Hamiltonian for a problem can be split into two solvable (or efficiently
computable) Hamiltonians:

H=H,+ Hp. (1)
For the corrector to work H, >> Hpg, but to make a map this is not necessary.

To make a mapping for this problem, high frequency terms are added to the
Hamiltonian so that Hpg is effectively multiplied by a periodic sequence of Dirac delta

functions:

HMap:HA+27T527T(Qt—7T)HB, (2)

where do, is a periodic sequence of delta functions spaced by 27 in its argument. With
argument Q¢ — 7 the period of the map, the integration step, is 27/, and the delta function

kick occurs midway through the integration step. This map is second-order in the step.

The rationale that leads to this integrator is that the high-frequency terms that are
added to the Hamiltonian to turn it into the mapping Hamiltonian are unimportant for the

long term evolution because their effects tend to average out.

However, the high frequency terms generate short term oscillatory effects in the
evolution. In Wisdom et al. (1996), it was shown how these short term periodic effects
could be removed by canonical perturbation theory. A similar trick was used earlier in our
papers (Tittemore and Wisdom 1987, 1989, 1990) on the tidal evolution of the Uranian
satellites. The result is a canonical transformation from ”"mapping coordinates” to "real

coordinates” and vice versa. The resulting symplectic correctors dramatically reduce the
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error in integrations carried out with thess mappings (symplectic integrators).

Wisdom et al. (1996) also showed how to implement the correctors in terms of Lie
series. So the correctors can be computed by interleaving the the same components as are
used to carry out the integrations. The idea of the correctors was based on delta functions
and averaging, but some poor souls can only think in terms of Lie series. I used the delta
function formulation of symplectic mappings with non-trivial splittings (non 7" plus V)
for ten years before Lie series were used with comparable non-trivial splittings to make

symplectic integrators.

Explicit formulae for a number of correctors of various orders are presented in the

appendix.

3. N-Planet Hamiltonians

In the n-body problem, the corrector idea applies to problems with a dominant central

mass. The Hamiltonian for the n-planet problem is

H= QZ'L -y UL, (3)
im0 <M gy T

where ¢ = 0 for the central mass, m; are the masses of the bodies, p; = m;v;, for velocity v;,

G is the gravitational constant, and 7;; is the distance between bodies ¢ and j.

An elegant description of the Jacobi coordinates (including the hierarchical Jacobi
coordinates) is given in Sussman and Wisdom (2001). I will not repeat that here. In the
familiar Jacobi coordinates, each Jacobi coordinate z, for 0 < i < n refers to the center of
mass of bodies with smaller indices, and one of the new coordinates is the center of mass of
the whole system. (In the hierarchical Jacobi coordinates the coordinate tree can be more

complicated.) Let p! be the conjugate momenta.
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An important property of the Jacobi coordinates is that the kinetic energy remains

diagonal in the momenta

. 2p?‘:i(p2)/2+ﬁ’ )
—2m; = 2m;  2M

where m/ are the Jacobi masses, P is the total momentum of the system, and M is the total
mass. The potential energy does not depend on the center of mass, so the center of mass
degree of freedom is ignorable. The Hamiltonian for the n-body problem can be written in

the form

H=Hg+ Hy, (5>

where Hp is the sum of n Keplerian Hamiltonians

the factor u; depends on the particular splitting chosen, and

_ (i Gmomi\ 5~ Gmimy
= (4 )~y G )

. T Tij
i ! 0<i<j Y

The first term is an “indirect” term, which depends on the coordinates, and the sum is
the gravitational potential of the planets with one another. Symplectic maps can be made
from these components by interleaving the evolution governed by these two Hamiltonians
(Wisdom and Holman 1991). We used these symplectic maps to verify that the motion of
Pluto is chaotic (Wisdom and Holman 1991), and in our 100 million year integrations of
the whole solar system that confirmed that the solar system evolves chaotically (Sussman

and Wisdom 1992).

Canonical heliocentric coordinates are canonical extensions of the collection of

heliocentric coordinates for the planets, plus the center of mass of the system. Thus

r! = x; — x0, (8)
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for 1 < i < n, plus the center of mass X. The conjugate momenta p!, and the total

momentum P, satisfy

pi =]+ 5P (9)
with
i m
po== 1i+5.P (10)

where M is the total mass. In canonical heliocentric coordinates the kinetic energy is not

diagonal in the momenta. Instead,

n n 1/

2
2 2 2 n
pz’ (pz) P 1 1/
P am 11
om, ; om; T2 T 2my ;p’ (11)

i=0
This can also be written

. p? :i(p;,y 4+ Z p//p/_/ (12)
2m2- i1 2#2 2M mo v ’

i=0 1<i<j

with the reduced masses 1/u; = 1/m; + 1/my.

In canonical heliocentric coordinates the n-planet Hamiltonian can be written in the
form

H=Hyg+ Hc+ Hyp, (13)

a Keplerian Hamiltonian, a quadratic “cross” term in the momenta, and an interaction
Hamiltonian. The center of mass component is ignored. For kinetic energy (12), the Kepler

Hamiltonian is a sum of terms for each planet

(p7)*  Gmom;

Hi = 14
K 2,“@ 7,;/ ) ( )
with momentum cross terms
(Z pi’p;’> , (15)
1<i<y
and interaction terms
" Gmym;
Hy=-> ——2 (16)

/r’. .
0<i<j v
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This was the splitting used by Touma and Wisdom (1993) in our discovery of the chaotic
evolution of the obliquity of Mars. An advantage of this splitting is that Kepler’s period
law is satisfied for the individual planets: n?a® = G(mg + m;), for mean motion n and

semimajor axis a.

For kinetic energy (11) the Kepler Hamiltonian is
(p7)?  Gmom;

Hi = , (17)

2m2- T

with momentum cross terms

Ho= 5 <Zp;') . (18)

i=1

The interaction Hamiltonian is the same as before. A disadvantage of this splitting is that
Kepler’s period law is not exactly satisfied, but it has other advantages. This is the splitting
used in Duncan, Levison, and Lee (1998) and Chambers (1999).

A second order map can be made using either splitting. Let IC(At) be the evolution
under the Keplerian Hamiltonian for a time At. Let C(At) be the evolution under the
cross momentum Hamiltonian for a time At. And let Z(At) be the evolution under the
interaction Hamiltonian for a time At. Then one evolution step of a second order symplectic

mapping for this problem is
E(AL) = KC(At/2) o C(At/2) o Z(At) o C(At/2) o K(AL/2). (19)
But with a map generated in this form the existing correctors do not apply.
Notice that the Poisson bracket of He, Eq. (15), and H;, Eq. (16) is nonzero, but
that the Poisson bracket of He, Eq. (18), and H;, Eq. (16) is zero. This has important
consequences for the applicability of the existing correctors. For the latter splitting, the

evolution under Hs commutes with the evolution under H;. This allows the unambiguous

definition of the evolution under both

B(At) = T(At) o C(At) = C(At) o T(At). (20)
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The evolution operator for a second order mapping becomes
E(AL) = K(At/2) o B(At) o K(At/2), (21)

which is the form assumed in Wisdom et al. (1996), so the original correctors apply to maps

in canonical heliocentric coordinates with this particular splitting!

4. TIllustration

As an illustration of the various correctors in canonical heliocentric coordinates, the
outer planets were integrated for 100 Myr years. The second splitting, with cross term
Eq. (18), was used. The relative energy error for the uncorrected integration is shown in

Fig. (1). It is a few times 1075.

Fig. (2) shows the relative energy error in the same integration after application of the
third order (two stage) corrector listed in the appendix. The error is now of order 107"

The Chambers corrector solution works better than this corrector by a factor of about 2-3.

Fig. (3) shows the relative energy error in the same integration after application of the
seventh order (six stage) corrector listed in the appendix. The error is now of order 1075.

Application of the 17" order corrector gives just slightly better results.

Fig. (4) shows the relative energy error in a 100 Myr integration using the original
Wisdom-Holman mapping in the usual Jacobi coordinates after application of the 17%
order corrector. The error is now of order 107°. Evidently, for high accuracy long-term

integrations Jacobi coordinates are preferred.
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5. Summary

Symplectic correctors that were developed for n-body maps in Jacobi coordinates
(Wisdom et al. 1996; Wisdom and Holman 1991) may also be used for n-body maps
in canonical heliocentric coordinates, for a particular splitting. In integrations of the
outer planets, the seventh order corrector works better than the third order (two-stage)
corrector, and not much worse than the 17 order corrector. Integrations of the outer
planets performed in Jacobi coordinates using the original Wisdom-Holman map are better
corrected, by nearly an order of magnitude. So for high accuracy integrations Jacobi

coordinates are preferred.

6. Appendix: Corrector Formulae and Constants

Assume a Hamiltonian of the form:
H=H4+ Hg, (22)

where Hy >> Hp. Let A(At) be the evolution under H4 for a time of At. Let B(At) be

the evolution under Hp for a time of At. A second order map for this Hamiltonian is

E(AL) = A(At)2) o B(AL) 0 A(AL/2). (23)

The correctors are defined in terms of some auxillary quantities. Let
X (aAt,bAt) = A(aAt) o B(bAt) o A(—aAt). (24)

Then let
Z(aAt, bAt) = X (aAt, bAt) o X(—aAt, —bAL) (25)

The n-stage corrector is

C(At) = Z(a1At, b1 At) o Z(asAt, byAt) o -+ - 0 Z(a,At, b, At). (26)
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The inverse corrector is
C Y (At) = Z(a,At, —b,At) o - - - 0 Z(ayAt, —byAt) o Z(a1 At, —b At).
In terms of these the corrected evolution is

E'(nAt) = CHAt) o E(At) o --- 0 E(At) o C(AL).

The corrector coefficients presented in Wisdom et al. (1996) are (corrected)

45815578591785473
ag = la ; by = 245192989617576006 ~ 1.86855173401341435
et by OSTTSIONNT o s
ag =3 ; bg = 2222223332325836 ~ 0.65103258629866413
—27170077124018711
as; =4a 5 by = 11%)2291%%%28%8226%177600 8 ~ —.2423990335184139603
ay =50 ; by= 15396734041925 ~ 0.0665296867440247873
ag =6a ; by = 2_6?:378?());22;611122235 ~ —0.01277077524666728503
ay=Ta ; by = 172561838708647997624648443090O/6 ~ 0.00153482983183614573
@ =8x ; b = 782??2?22??223?33005 ~ —0.0000870409194723272173

(28)

(29)

with a; = —ay7_;, and b; = —by7_;, for 8 < i < 16, and a = 1/7/40 and § = 1/(48«). This

corrector has an error term of 17th order.

A third order (two stage) corrector is given by the coefficients:

A fifth order (four stage) corrector is given by the coefficients:

b}
agzla ) 62:6/6

—1
a; = 2o ; blzfﬂa
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with a; = —as5_;, and b, = —b5_i, for 2 <1 < 4.

A seventh order (six stage) corrector is given by the coefficients:

53521
ag=la 5 by = 7oa000
g 22651
G2 =20 5 2= 1740
12361
m=3a ;b= (32)

with a; = —Qa7_;, and b, = —b7_i, for 3 <1 <6.

An eleventh order (ten stage) corrector is given by the coefficients:

3394141
e
a, =20 ; by = Wﬂ
T
ay =4a ; by = %ﬁ
ay =ba ; b = mﬁ, (33)

with a; = —Qa11—4, and b; = _bll—z’7 for 5 <7 < 10.

Instead of the mapping step, Eq.(23), one can also make a second order map with the
step
E(At) = B(At/2) o A(At) o B(At/2). (34)

Chambers (1999) has found a third order corrector solution for this alternate map:

_ 3 P - —1
ay = 107 ) 1 — 79 Y
1 1
=y 5 b= — 35
a2 57 ) 2 2477 ( )

where v = V10.
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Note that if all one is interested in is monitoring the energy of an integration, then any
of the above correctors can be used. If, for instance, the alternate map, Eq. (34), is used to
perform the integration, then before applying any of the first set of correctors one should
apply A(At/2)B(At/2) to bring the alternate map output up to the corresponding output

of the original map, Eq. (23).
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Fig. 1.— The relative energy error of the outer planets using the map, Eq. (23), in canonical

heliocentric coordinates, without a corrector.
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Fig. 2.— The relative energy error of the outer planets using the map, Eq. (23), in canonical
heliocentric coordinates, with a third order (two stage) corrector. The offset from zero is

just due to the initial phase of the evolution.
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Fig. 3.— The relative energy error of the outer planets using the map, Eq. (23), in canonical
heliocentric coordinates, with a seventh order (six stage) corrector. The corrected error is

almost as good, for this problem, as with the 17" order corrector.
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Fig. 4.— The relative energy error of the outer planets using the Wisdom-Holman map in

the usual Jacobi coordinates with a 17" order corrector.



