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ABSTRACT

Symplectic correctors are developed for n-body maps (symplectic integrators)

in canonical heliocentric coordinates. Several correctors are explicitly presented.

Subject headings: dynamics—celestial mechanics—gravitation—methods: analytical,

numerical
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1. Introduction

Symplectic correctors, introduced by Wisdom et al. (1996), can dramatically reduce

the error of n-body integrations that use the n-body mapping method of Wisdom and

Holman (1991). In that method the Hamiltonian for the n-body problem is written in

terms of Jacobi coordinates and split into two parts: the Keplerian part, which describes the

interaction of each planet with the central mass, and the interaction part, which describes

the gravitational interaction among the planets. In the mapping method, the evolution

of the full Hamiltonian is approximated by interleaving the evolution under the direct

and Keplerian Hamiltonians. Mappings can also be developed for the n-body problem in

canonical heliocentric coordinates (Wisdom 1992; Touma and Wisdom 1994). Indeed, the

planetary orbit part of our numerical integrations that showed that the obliquity of Mars

evolves chaotically (Touma and Wisdom 1993) were carried out in canonical heliocentric

coordinates. In canonical heliocentric coordinates the Hamiltonian for the n-body problem

is split into three parts: a Keplerian part, an interaction part, and an indirect part.

Unfortunately, with a general splitting into three parts, the symplectic correctors derived in

Wisdom et al. (1996) are not applicable. But with special splittings, the original symplectic

correctors can be used for maps developed in canonical heliocentric coordinates.

I first review the basic idea of the symplectic correctors. I then develop the n-body

Hamiltonian and the symplectic correctors in canonical heliocentric coordinates. Correctors

of several different orders are presented explicitly. The use of the correctors is illustrated in

100 Myr year integrations of the outer planets.
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2. Background on Symplectic Correctors

The idea of the symplectic correctors is best understood, and was originally understood,

in terms of the delta function formulation of the symplectic mapping method, also known

as symplectic integration.

Assume that the Hamiltonian for a problem can be split into two solvable (or efficiently

computable) Hamiltonians:

H = HA + HB. (1)

For the corrector to work HA >> HB, but to make a map this is not necessary.

To make a mapping for this problem, high frequency terms are added to the

Hamiltonian so that HB is effectively multiplied by a periodic sequence of Dirac delta

functions:

HMap = HA + 2πδ2π(Ωt − π)HB, (2)

where δ2π is a periodic sequence of delta functions spaced by 2π in its argument. With

argument Ωt−π the period of the map, the integration step, is 2π/Ω, and the delta function

kick occurs midway through the integration step. This map is second-order in the step.

The rationale that leads to this integrator is that the high-frequency terms that are

added to the Hamiltonian to turn it into the mapping Hamiltonian are unimportant for the

long term evolution because their effects tend to average out.

However, the high frequency terms generate short term oscillatory effects in the

evolution. In Wisdom et al. (1996), it was shown how these short term periodic effects

could be removed by canonical perturbation theory. A similar trick was used earlier in our

papers (Tittemore and Wisdom 1987, 1989, 1990) on the tidal evolution of the Uranian

satellites. The result is a canonical transformation from ”mapping coordinates” to ”real

coordinates” and vice versa. The resulting symplectic correctors dramatically reduce the
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error in integrations carried out with thess mappings (symplectic integrators).

Wisdom et al. (1996) also showed how to implement the correctors in terms of Lie

series. So the correctors can be computed by interleaving the the same components as are

used to carry out the integrations. The idea of the correctors was based on delta functions

and averaging, but some poor souls can only think in terms of Lie series. I used the delta

function formulation of symplectic mappings with non-trivial splittings (non T plus V )

for ten years before Lie series were used with comparable non-trivial splittings to make

symplectic integrators.

Explicit formulae for a number of correctors of various orders are presented in the

appendix.

3. N-Planet Hamiltonians

In the n-body problem, the corrector idea applies to problems with a dominant central

mass. The Hamiltonian for the n-planet problem is

H =
n
∑

i=0

p2
i

2mi

−
n
∑

0≤i<j

Gmimj

rij

, (3)

where i = 0 for the central mass, mi are the masses of the bodies, pi = mivi, for velocity vi,

G is the gravitational constant, and rij is the distance between bodies i and j.

An elegant description of the Jacobi coordinates (including the hierarchical Jacobi

coordinates) is given in Sussman and Wisdom (2001). I will not repeat that here. In the

familiar Jacobi coordinates, each Jacobi coordinate x′
i for 0 < i ≤ n refers to the center of

mass of bodies with smaller indices, and one of the new coordinates is the center of mass of

the whole system. (In the hierarchical Jacobi coordinates the coordinate tree can be more

complicated.) Let p′i be the conjugate momenta.
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An important property of the Jacobi coordinates is that the kinetic energy remains

diagonal in the momenta
n
∑

i=0

p2
i

2mi

=
n
∑

i=1

(p′i)
2

2m′
i

+
P 2

2M
, (4)

where m′
i are the Jacobi masses, P is the total momentum of the system, and M is the total

mass. The potential energy does not depend on the center of mass, so the center of mass

degree of freedom is ignorable. The Hamiltonian for the n-body problem can be written in

the form

H = HK + HI, (5)

where HK is the sum of n Keplerian Hamiltonians

H i
K =

(p′i)
2

2m′
i

− µ′
i

r′i
, (6)

the factor µ′
i depends on the particular splitting chosen, and

HI =

(

µ′
i

r′i
− Gm0mi

ri

)

−
n
∑

0<i<j

Gmimj

rij

. (7)

The first term is an “indirect” term, which depends on the coordinates, and the sum is

the gravitational potential of the planets with one another. Symplectic maps can be made

from these components by interleaving the evolution governed by these two Hamiltonians

(Wisdom and Holman 1991). We used these symplectic maps to verify that the motion of

Pluto is chaotic (Wisdom and Holman 1991), and in our 100 million year integrations of

the whole solar system that confirmed that the solar system evolves chaotically (Sussman

and Wisdom 1992).

Canonical heliocentric coordinates are canonical extensions of the collection of

heliocentric coordinates for the planets, plus the center of mass of the system. Thus

x′′
i = xi − x0, (8)
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for 1 ≤ i ≤ n, plus the center of mass X. The conjugate momenta p′′
i , and the total

momentum P , satisfy

pi = p′′i +
mi

M
P, (9)

with

p0 = −
n
∑

i=1

p′′i +
m0

M
P, (10)

where M is the total mass. In canonical heliocentric coordinates the kinetic energy is not

diagonal in the momenta. Instead,

n
∑

i=0

p2
i

2mi

=
n
∑

i=1

(p′′i )
2

2mi

+
P 2

2M
+

1

2m0

(

n
∑

i=1

p′′i

)2

. (11)

This can also be written

n
∑

i=0

p2
i

2mi

=

n
∑

i=1

(p′′i )
2

2µi

+
P 2

2M
+

1

m0

(

n
∑

1≤i<j

p′′i p
′′
j

)

, (12)

with the reduced masses 1/µi = 1/mi + 1/m0.

In canonical heliocentric coordinates the n-planet Hamiltonian can be written in the

form

H = HK + HC + HI, (13)

a Keplerian Hamiltonian, a quadratic “cross” term in the momenta, and an interaction

Hamiltonian. The center of mass component is ignored. For kinetic energy (12), the Kepler

Hamiltonian is a sum of terms for each planet

H i
K =

(p′′i )
2

2µi

− Gm0mi

r′′i
, (14)

with momentum cross terms

HC =
1

m0

(

n
∑

1≤i<j

p′′i p
′′
j

)

, (15)

and interaction terms

HI = −
n
∑

0<i<j

Gmimj

rij

. (16)
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This was the splitting used by Touma and Wisdom (1993) in our discovery of the chaotic

evolution of the obliquity of Mars. An advantage of this splitting is that Kepler’s period

law is satisfied for the individual planets: n2a3 = G(m0 + mi), for mean motion n and

semimajor axis a.

For kinetic energy (11) the Kepler Hamiltonian is

H i
K =

(p′′i )
2

2mi

− Gm0mi

ri

, (17)

with momentum cross terms

HC =
1

2m0

(

n
∑

i=1

p′′i

)2

. (18)

The interaction Hamiltonian is the same as before. A disadvantage of this splitting is that

Kepler’s period law is not exactly satisfied, but it has other advantages. This is the splitting

used in Duncan, Levison, and Lee (1998) and Chambers (1999).

A second order map can be made using either splitting. Let K(∆t) be the evolution

under the Keplerian Hamiltonian for a time ∆t. Let C(∆t) be the evolution under the

cross momentum Hamiltonian for a time ∆t. And let I(∆t) be the evolution under the

interaction Hamiltonian for a time ∆t. Then one evolution step of a second order symplectic

mapping for this problem is

E(∆t) = K(∆t/2) ◦ C(∆t/2) ◦ I(∆t) ◦ C(∆t/2) ◦ K(∆t/2). (19)

But with a map generated in this form the existing correctors do not apply.

Notice that the Poisson bracket of HC , Eq. (15), and HI , Eq. (16) is nonzero, but

that the Poisson bracket of HC , Eq. (18), and HI , Eq. (16) is zero. This has important

consequences for the applicability of the existing correctors. For the latter splitting, the

evolution under HC commutes with the evolution under HI . This allows the unambiguous

definition of the evolution under both

B(∆t) = I(∆t) ◦ C(∆t) = C(∆t) ◦ I(∆t). (20)
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The evolution operator for a second order mapping becomes

E(∆t) = K(∆t/2) ◦ B(∆t) ◦ K(∆t/2), (21)

which is the form assumed in Wisdom et al. (1996), so the original correctors apply to maps

in canonical heliocentric coordinates with this particular splitting!

4. Illustration

As an illustration of the various correctors in canonical heliocentric coordinates, the

outer planets were integrated for 100 Myr years. The second splitting, with cross term

Eq. (18), was used. The relative energy error for the uncorrected integration is shown in

Fig. (1). It is a few times 10−6.

Fig. (2) shows the relative energy error in the same integration after application of the

third order (two stage) corrector listed in the appendix. The error is now of order 10−7.

The Chambers corrector solution works better than this corrector by a factor of about 2-3.

Fig. (3) shows the relative energy error in the same integration after application of the

seventh order (six stage) corrector listed in the appendix. The error is now of order 10−8.

Application of the 17th order corrector gives just slightly better results.

Fig. (4) shows the relative energy error in a 100 Myr integration using the original

Wisdom-Holman mapping in the usual Jacobi coordinates after application of the 17th

order corrector. The error is now of order 10−9. Evidently, for high accuracy long-term

integrations Jacobi coordinates are preferred.
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5. Summary

Symplectic correctors that were developed for n-body maps in Jacobi coordinates

(Wisdom et al. 1996; Wisdom and Holman 1991) may also be used for n-body maps

in canonical heliocentric coordinates, for a particular splitting. In integrations of the

outer planets, the seventh order corrector works better than the third order (two-stage)

corrector, and not much worse than the 17th order corrector. Integrations of the outer

planets performed in Jacobi coordinates using the original Wisdom-Holman map are better

corrected, by nearly an order of magnitude. So for high accuracy integrations Jacobi

coordinates are preferred.

6. Appendix: Corrector Formulae and Constants

Assume a Hamiltonian of the form:

H = HA + HB, (22)

where HA >> HB. Let A(∆t) be the evolution under HA for a time of ∆t. Let B(∆t) be

the evolution under HB for a time of ∆t. A second order map for this Hamiltonian is

E(∆t) = A(∆t/2) ◦ B(∆t) ◦ A(∆t/2). (23)

The correctors are defined in terms of some auxillary quantities. Let

X (a∆t, b∆t) = A(a∆t) ◦ B(b∆t) ◦ A(−a∆t). (24)

Then let

Z(a∆t, b∆t) = X (a∆t, b∆t) ◦ X (−a∆t,−b∆t) (25)

The n-stage corrector is

C(∆t) = Z(a1∆t, b1∆t) ◦ Z(a2∆t, b2∆t) ◦ · · · ◦ Z(an∆t, bn∆t). (26)
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The inverse corrector is

C−1(∆t) = Z(an∆t,−bn∆t) ◦ · · · ◦ Z(a2∆t,−b2∆t) ◦ Z(a1∆t,−b1∆t). (27)

In terms of these the corrected evolution is

E ′(n∆t) = C−1(∆t) ◦ E(∆t) ◦ · · · ◦ E(∆t) ◦ C(∆t). (28)

The corrector coefficients presented in Wisdom et al. (1996) are (corrected)

a8 = 1α ; b8 =
45815578591785473

24519298961757600
β ≈ 1.8685517340134143β

a7 = 2α ; b7 =
−104807478104929387

80063017017984000
β ≈ −1.3090623112714728β

a6 = 3α ; b6 =
422297952838709

648658702692000
β ≈ 0.6510325862986641β

a5 = 4α ; b5 =
−27170077124018711

112088223825177600
β ≈ −.24239903351841396β

a4 = 5α ; b4 =
102433989269

1539673404192
β ≈ 0.06652968674402478β

a3 = 6α ; b3 =
−33737961615779

2641809989145600
β ≈ −0.012770775246667285β

a2 = 7α ; b2 =
26880679644439

17513784972684000
β ≈ 0.0015348298318361457β

a1 = 8α ; b1 =
682938344463443

7846175667762432000
β ≈ −0.00008704091947232721β (29)

with ai = −a17−i, and bi = −b17−i, for 8 < i ≤ 16, and α =
√

7/40 and β = 1/(48α). This

corrector has an error term of 17th order.

A third order (two stage) corrector is given by the coefficients:

a2 = 1α ; b2 =
1

2
β

a1 = −1α ; b1 =
−1

2
β, (30)

A fifth order (four stage) corrector is given by the coefficients:

a2 = 1α ; b2 =
5

6
β

a1 = 2α ; b1 =
−1

6
β, (31)
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with ai = −a5−i, and bi = −b5−i, for 2 < i ≤ 4.

A seventh order (six stage) corrector is given by the coefficients:

a3 = 1α ; b3 =
53521

49392
β

a2 = 2α ; b2 =
−22651

61740
β

a1 = 3α ; b1 =
12361

246960
β, (32)

with ai = −a7−i, and bi = −b7−i, for 3 < i ≤ 6.

An eleventh order (ten stage) corrector is given by the coefficients:

a5 = 1α ; b5 =
3394141

2328480
β

a4 = 2α ; b4 =
−14556229

19015920
β

a3 = 3α ; b3 =
895249

3622080
β

a2 = 4α ; b2 =
−329447

6985440
β

a1 = 5α ; b1 =
2798927

684573120
β, (33)

with ai = −a11−i, and bi = −b11−i, for 5 < i ≤ 10.

Instead of the mapping step, Eq.(23), one can also make a second order map with the

step

E(∆t) = B(∆t/2) ◦ A(∆t) ◦ B(∆t/2). (34)

Chambers (1999) has found a third order corrector solution for this alternate map:

a1 =
3

10
γ ; b1 =

−1

72
γ

a2 =
1

5
γ ; b2 =

1

24
γ, (35)

where γ =
√

10.
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Note that if all one is interested in is monitoring the energy of an integration, then any

of the above correctors can be used. If, for instance, the alternate map, Eq. (34), is used to

perform the integration, then before applying any of the first set of correctors one should

apply A(∆t/2)B(∆t/2) to bring the alternate map output up to the corresponding output

of the original map, Eq. (23).
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∆E/E

t[years]
0 100,000,000

−5 × 10−6

0.0

5 × 10−6

Fig. 1.— The relative energy error of the outer planets using the map, Eq. (23), in canonical

heliocentric coordinates, without a corrector.
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∆E/E

t[years]
0 100,000,000

−2 × 10−7

0.0

2 × 10−7

Fig. 2.— The relative energy error of the outer planets using the map, Eq. (23), in canonical

heliocentric coordinates, with a third order (two stage) corrector. The offset from zero is

just due to the initial phase of the evolution.
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∆E/E

t[years]
0 100,000,000

−2 × 10−8

0.0

2 × 10−8

Fig. 3.— The relative energy error of the outer planets using the map, Eq. (23), in canonical

heliocentric coordinates, with a seventh order (six stage) corrector. The corrected error is

almost as good, for this problem, as with the 17th order corrector.
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∆E/E

t[years]
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−5 × 10−9
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5 × 10−9

Fig. 4.— The relative energy error of the outer planets using the Wisdom-Holman map in

the usual Jacobi coordinates with a 17th order corrector.


