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Abstract:

The heating in Enceladus in an equilibrium resonant configuration with other Saturnian

satellites can be estimated independently of the physical properties of Enceladus. We find

that equilibrium tidal heating cannot account for the heat that is observed to be coming

from Enceladus. Equilibrium heating in possible past resonances likewise cannot explain

prior resurfacing events.
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1. Introduction

Enceladus is a puzzle. Cassini observed active plumes emanating from Enceladus (Porco

et al. 2006). The plumes consist almost entirely of water vapor, with entrained water ice

particles of typical size 1µm. Models of the plumes suggest the existence of liquid water as

close as 7m to the surface (Porco et al. 2006). An alternate model has the water originate

in a clathrate reservoir (Kieffer et al. 2006). Both models require substantial energy input

to drive the plumes. The plumes originate in the features dubbed the “tiger stripes,” in the

south polar terrain. The heat emanating from the south polar terrain has been estimated to

be 5.8 ± 1.9GW (Spencer et al. 2006). So some heating mechanism provides about 6GW of

energy to the system. The estimated rate of radiogenic heating is 0.32GW, and the estimated

current rate of tidal heating resulting from the small orbital eccentricity of Enceladus is about

0.12GW, for an assumed k2 of 0.0018 and a Q of 20 (Porco et al. 2006). So these sources of

heating are inadequate.

Squyres et al. (1983) remark that even if the current rate of tidal heating was sufficient

to maintain Enceladus in an active state, much greater heating would be required to initiate

the process. They suggest that heating of order 25GW is necessary to initiate melting, and

propose that this might have been obtained by a much larger orbital eccentricity.

Any mechanism for supplying the required energy must pass the “Mimas test” (Squyres

et al. 1983). Mimas has an ancient surface, but is closer to Saturn than Enceladus and has

a larger orbital eccentricity. Any mechanism that is proposed to heat Enceladus must not

substantially heat Mimas. Using the conventional tidal heating formula (Peale and Cassen

1978; Peale 2003), the estimated tidal heating in Mimas is about 30 times the heating in

Enceladus, if the rigidity of the two bodies is the same. Thus conventional tidal heating in

the current orbital configuration does not pass the test.

One mechanism for heating Enceladus that passes the Mimas test is the secondary

spin-orbit libration model (Wisdom 2004). Fits to the shape of Enceladus from Voyager

images indicated that the frequency of small amplitude oscillations about the Saturn-pointing

orientation of Enceladus was about 1/3 of the orbital frequency. In the phase-space of the

spin-orbit problem near the damped synchronous state the stable equilibrium bifurcates into

a period-tripled state. If Enceladus were trapped in this bifurcated state, then there could
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be several orders of magnitude greater heating than that given by the conventional tidal

heating formula. What was special about Enceladus compared to Mimas was its shape.

New fits of the shape to Cassini images of Enceladus showed that Enceladus was not near

the 3:1 secondary resonance, but, remarkably, was near the 4:1 secondary resonance (Porco

et al. 2006). A similar analysis shows that if caught in this secondary resonance, the system

could again be subject to several orders of magnitude additional heating. Unfortunately, the

predicted libration was not seen. An upper limit placed on the magnitude of the libration was

1.5 degrees, which in turn places an upper limit on the heating from the secondary resonance

mechanism of 0.18GW (Porco et al. 2006). So if the limits of the libration amplitude are

reliable, then the secondary resonance spin-orbit mechanism is ruled out for the present

system. It may still be possible that the system was locked in this resonance in the past.

Note that the large heating that would result from libration in the secondary resonance would

damp the orbital eccentricity, and at sufficiently small eccentricity the secondary resonance

becomes unstable. Thus the secondary resonance mechanism could at most produce an

episode of heating.

Lissauer et al. (1984) suggested that Enceladus might have recently been involved in a 2:1

mean motion resonance with Janus. Janus is evolving outwards due to torques from Saturn’s

rings. At present, Janus is just 1000km outside the resonance. Only a few tens of millions

of years ago Janus was at the resonance. If Janus encountered the resonance when the

eccentricity of Enceladus was low, the probability of capture into the e-Enceladus resonance

would be high. They found that if Janus and Enceladus were trapped in the resonance and

were in an equilibrium configuration then Enceladus would be subject to 4.5GW of heating,

which is comparable to the observed heating. But the model has numerous limitations

(Peale 2003). The value of the mass of Janus has been revised downwards, and this leads

to smaller tidal heating (see below). The angular momentum in the A-ring is limited, so

the resonance could only have persisted for a limited time in the past. More importantly,

Enceladus shows evidence of multiple resurfacing episodes. The resonance with Janus could

at most explain the most recent activity. In addition, the model has to appeal to an impact

to get the system out of the resonance. The alternative escape mechanism suggested is that

the Janus resonance became unstable when the Enceladus-Dione resonance was reached. But

this seems unlikely, as Enceladus and Dione are not deeply in the resonance and Dione has

little effect on the orbital evolution of Enceladus at present (Sinclair 1983). There may also
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be a problem damping down the implied equilibrium eccentricity of Enceladus to the present

low value of 0.0047 in the short time (tens of millions of years) since the resonance was

purportedly disrupted. Actually, the simplest scenario for the encounter of Janus with the

2:1 e-Enceladus Janus-Enceladus resonance is that Janus just passed through the resonance

with little effect on the orbit of Enceladus. In this scenario Janus encounters Enceladus at

its current eccentricity, but at this eccentricity the system has a low probability of being

captured by the resonance. We find that the capture probability at the current eccentricity

of Enceladus is only 0.7%.

There are other possibilities for resonance configurations involving Enceladus in the past

(see fig. 1). Perhaps tidal heating in these resonances was responsible for past resurfacing

events. These resonances include the 3:2 Mimas-Enceladus and the 3:4 Enceladus-Tethys

resonances. If the Q of Saturn is sufficiently low numerous other resonances could have been

encountered. Evolution through these has not been studied in detail, but we can estimate

the equilibrium tidal heating expected while trapped in the resonances (see below).

Ross and Schubert (1989) investigated tidal heating in Enceladus using multilayered

viscoelastic models of the satellite. They find that equilibrium heating in a homogeneous

Maxwell model at the current eccentricity can be as large as 920GW. The heating is propor-

tional to the Love number of the satellite and in the viscoelastic models the dynamic Love

number can be orders of magnitude larger than the elastic Love number. They also inves-

tigate heating in a two layer model consisting of a conductive elastic lithosphere overlying

a Maxwell interior and a three layer model with a liquid water-ammonia layer between the

lithosphere and the Maxwell core. These models are tuned to give a heating rate of about

4GW, similar to that found by Lissauer et al. (1984) in their Janus model. These models

require a low conductivity insulating layer. Thus, it appears to be possible for tidal heating

to provide enough input energy to account for the observed energy output from Enceladus.

The Mimas test is not addressed by these models; it seems likely that if similar viscoelastic

models were applied to Mimas then there would also be large tidal heating in Mimas, con-

tradicting its cold inactive state. Nevertheless, viscoelastic enhancement of the Love number

has been presented as a simple solution to the problem of heating Enceladus (Spencer et al.

2006; Stevenson 2006).

In this paper we calculate the equilibrium rates of tidal heating in Enceladus indepen-
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dent of the physical properties of Enceladus, based on conservation of energy and angular

momentum. We find that tidal heating in Enceladus is much less than the observed radiated

heat.

2. Heating from Torques

One mechanism of heating is tidal dissipation in a synchronously rotating satellite. As

a system evolves deeper into an eccentricity-type resonance, the eccentricity grows. As the

eccentricity of a satellite grows the rate of energy dissipation in the satellite grows, with

the square of the orbital eccentricity. Dissipation of energy in a satellite tends to damp the

eccentricity. As tidal torques push the system deeper into resonance, the eccentricity grows,

until the rate of growth is balanced by the rate of decay, due to the internal dissipation.

At equilibrium, the eccentricity no longer changes and there is a steady state rate at which

angular momentum is transferred to the outer satellite. The rate of angular momentum

transfer is related to the rate of heating in the satellites. The equilibrium rate of heating can

be calculated using conservation of energy and angular momentum (Lissauer et al. 1984).

The angular momentum L and energy E of a satellite of mass m in an Keplerian orbit

of semimajor axis a about a primary of mass M are

L = m
√

GMa(1 − e2) (1)

E = −GMm/(2a). (2)

The rate of change of the Keplerian energy can be related to the applied torque. The

energy can be written in terms of the angular momentum and eccentricity: E = Ẽ(L, e).

Let n =
√

GM/a3; we have

∂Ẽ

∂L
=

n√
1 − e2

≈ n, (3)

ignoring corrections of order e2. The rate of change in angular momentum is the torque

dL

dt
= T. (4)

Ignoring the change in energy due to the change in eccentricity, the rate of change in orbital
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energy from an applied satellite torque is

dE

dt
=

∂Ẽ

∂L

dL

dt
=

nT√
1 − e2

≈ nT, (5)

again ignoring corrections of order e2.

Assume there are two satellites, and that there is some resonant interaction between

the satellites so that angular momentum can be transferred between them.

For the sake of qualitative reasoning, let us ignore contributions to energy changes due to

orbital eccentricities. Consider a small impulsive torque that causes a change in the angular

momentum of the system ∆L. For simplicity assume that the torque is applied only to the

inner satellite. The energy change due to this angular momentum change is approximately

∆E = n0∆L. This is the energy input to the satellite system. Now let’s take into account the

exchange of angular momentum between the satellites. The change in angular momentum

∆L is now distributed in some way between the two satellites ∆L = ∆L0 +∆L1. The change

in energy of the orbits is then ∆E = n0∆L0 + n1∆L1. Because n1 < n0, this energy change

is less than the energy gained by the satellites. The remaining energy goes into heating the

satellites.

The energy input to the system is the sum of the energy inputs for the individual

satellites. This presumes there is no cross tidal interaction between the satellites. So the

total rate at which energy is transferred to the satellites from the rotation of the planet is

n0T0 + n1T1, ignoring corrections of order e2. This energy changes the orbits and heats at

least one of the satellites.

So we can write

n0T0 + n1T1 =
d

dt
(E0 + E1) + H, (6)

where Ei are the Keplerian energies of the satellites, and H is the rate of heating. We have

ignored the gravitational interaction energy of the satellites. If most of the heating is in one

satellite, we can take H to be the heating rate of that satellite.

As an eccentricity-type resonance is approached one of the satellite eccentricities grows.

Near a j : (j − 1) mean motion resonance, the eccentricity depends on a parameter δ =

jn1 + (1 − j)n0 that measures how close the system is to resonance. The condition of
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resonance equilibrium is that the rate of change of δ is zero. This implies

j
dn1

dt
= (j − 1)

dn0

dt
. (7)

Close to resonance the parameter δ is small, so jn1 ≈ (j−1)n0. Dividing these, we find that

1

n0

dn0

dt
≈

1

n1

dn1

dt
, (8)

which in turn implies
1

a0

da0

dt
≈

1

a1

da1

dt
. (9)

Following Lissauer et al. (1984), let us assume that T0 >> T1. Conservation of the

angular momentum of the system requires

d

dt
(L0 + L1) = T0 + T1 ≈ T0. (10)

Using eq. (1) at small e, we find

1

2

L0

a0

da0

dt
+

1

2

L1

a1

da1

dt
= T0. (11)

Using the equilibrium condition, eq. (9), we find

T0 =
1

2a0

da0

dt
(L0 + L1). (12)

Using eq. (6), assuming n0T0 >> n1T1, the rate of change in energy of the system is equal

to

n0T0 =
d

dt
(E0 + E1) + H. (13)

Using this equation, eq. (12), and the equilibrium condition again, we derive

H = n0T0 −
T0

L0 + L1

(

GMm0

a0

+
GMm1

a1

)

. (14)

Again ignoring corrections of order e2, we derive

H = n0T0

(

1 −
1 + m1a0/(m0a1)

1 + (m1/m0)
√

a1/a0

)

. (15)

Lissauer et al. (1984) generalize this formula to three satellites in equilibrium.
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For the torque on each satellite we use the formula

T =
3

2

Gm2R5

Sk2S

a6QS

, (16)

where k2S and QS are the potential Love number and Q of Saturn, m is the mass of the

satellite, RS is the radius of Saturn, and a is the orbit semimajor axis (Schubert et al. 1986).

For k2S we use the value 0.341 (Gavrilov and Zharkov 1977). The minimum QS for Saturn

may be determined by the condition that Mimas be outside the synchronous orbit at the

beginning of the solar system—this gives about QS ≥ 18, 000. A maximum can be placed

on QS if we adopt the tidal origin of the Mimas-Tethys resonance. The age of the Mimas-

Tethys resonance for a QS of 18,000 is 2 × 108 yrs (Sinclair 1983). Placing the origin of the

Mimas-Tethys resonance at the beginning of the solar system limits the QS of Saturn to be

less than 4 × 105.

The principal resonances that exist now or might have been operative in the recent

past that involve Enceladus are: 2:1 Enceladus-Dione, 3:2 Mimas-Enceladus, 3:4 Enceladus-

Tethys, and the 2:1 Janus-Enceladus resonances. For each of these we can calculate the

equilibrium tidal heating given the torque on the inner body. This torque is tidal for all but

Janus, for which it is a ring torque. Applying the equilibrium heating rate formula to each of

these resonances we find, for QS = 18, 000: 2.4GW for the 2:1 Enceladus-Dione resonance,

0.71GW for the 3:2 Mimas-Enceladus resonance, 1.2GW for the 4:3 Enceladus-Tethys reso-

nance, and 0.81GW for the 2:1 Janus-Enceladus resonance. For the Janus-Enceladus reso-

nance Lissauer et al. (1984) found 4.5GW, but they used the larger mass of Janus determined

through Voyager observations. Peale (2003) found 0.95GW using the pre-Cassini mass of

Janus, 2.0 × 1018kg, determined by Yoder et al. (1989). Keep in mind that Enceladus and

Dione may not be in an equilibrium configuration (see below). Also, the assumption that

one torque dominates is invalid.

If the torque to the innermost satellite does not dominate then the formula needs to be

generalized. Beginning with eq. (6), we use the resonance condition, eq. (9), to get

H =
n0T0

√

1 − e2

0

+
n1T1

√

1 − e2

1

−
T0 + T1

L0 + L1

(

GMm0

a0

+
GMm1

a1

)

. (17)

The formula readily generalizes to an equilibrium of three satellites, by adding an additional

term to each of the sums. And this formula reduces to that of Lissauer et al. (1984) at small

eccentricity if T1 is set to zero.
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Using this formula we recalculate the equilibrium heating rates for each of the resonances

given above, assuming QS = 18, 000. We find: 1.1GW for the 2:1 Enceladus-Dione resonance,

0.48GW for the 3:2 Mimas-Enceladus resonance, and 0.75GW for the 2:1 Janus-Enceladus

resonance. The implied heating of the Enceladus-Tethys resonance is negative; this resonance

has no equilibrium as the orbits are diverging. Adding the torque on the outer satellite has

reduced the heating for all resonances.

For the Enceladus-Dione and Mimas-Enceladus resonances these are upper limits to the

heating rates because we have used the lower bound of 18, 000 for the Q of Saturn. For

larger QS, the torques and heating rates will be proportionally lower (see fig. 3).

The nonsolar radiated power from Enceladus is estimated to be 5.8 ± 1.9GW (Spencer

et al. 2006). This is larger than all the equilibrium heating rates.

3. Equilibrium Eccentricity

The equilibrium heating rate corresponds to an equilibrium eccentricity of Enceladus.

We can derive the equilibrium eccentricity by requiring that the equilibrium heating rate be

equal to the heating rate in a synchronously rotating satellite in an eccentric orbit (Peale

and Cassen 1978; Peale 2003):

H =
21

2

k2E

QE

GM2

SR5

En

a6
e2, (18)

where k2E and QE are the potential Love number and Q of Enceladus, and e is the eccen-

tricity. Using eq. (16) and eq. (17), we find

e2 =
1

7D

{

1 −
1 + m1a0/(m0a1)

1 + (m1/m0)
√

a1/a0

+

(

m1

m0

)

2
(

a0

a1

)

6
[

n1

n0

−
1 + m1a0/(m0a1)

1 + (m1/m0)
√

a1/a0

]}

,

(19)

where D is a measure of the relative strength of tides in Enceladus versus tides in Saturn:

D =
k2E

QE

QS

k2S

(

MS

mE

)

2
(

RE

RS

)

5

. (20)

Thus the equilibrium value of the eccentricity depends on the unknown k2E/QE of Enceladus

and the unknown QS. Note that if the torque on the outer body is negligible then the term
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with square brackets in eq. (19) can be ignored, but for the satellites considered here this is

not the case.

We can illustrate the approach to equilibrium and confirm the equilibrium value of the

eccentricity by performing numerical integrations of the evolution of the system. Our model

is an averaged resonance model that includes terms in the disturbing function up to order

e2, with dissipative terms that affect both the semimajor axes and eccentricities. We have

applied this model to study the evolution into the eE-type 3:2 resonance between Mimas

and Enceladus. For this resonance, Eq. (19) becomes e2 ≈ (59.5D)−1. For k2 = 0.0018,

QE = 100, and QS = 18, 000, the equilibrium eccentricity is calculated to be 0.022. The

simulated evolution is shown in Fig. 2. We see the eccentricity of Enceladus approach the

predicted value.

For Enceladus and Dione in the current eE-type 2:1 resonance, the equilibrium eccen-

tricity is e2 ≈ (30.69D)−1. The value of D depends upon the unknown k2 and Q of the

satellite. Conventionally, Kelvin’s formula (Love 1944) ,

k2 =
3/2

1 + 19µ

2ρgR

, (21)

has been used to estimate Love numbers of small satellites, where µ is the rigidity, ρ the

density, g the surface acceleration, and R the radius. For Enceladus, taking µ = 4×109Nm−2,

we find k2 = 0.0018. With an assumed QE of Enceladus of 20, the equilibrium eccentricity of

Enceladus is 0.014. This is above the current eccentricity of 0.0047; so in this approximation,

Enceladus is not in equilibrium and is still evolving deeper into resonance. Note that if the

eccentricity is below the equilibrium eccentricity, and if the heat flow is steady, then the

heating rate is lower than the equilibrium heating rate.

However, Ross and Schubert (1989) have shown that the dynamic Love number can be

much larger than this conventional estimate. If the dynamic Love number is large enough

then, in principle, Enceladus could be at a tidal equilibrium today. If Enceladus is at the

equilibrium, then the estimates of the last section apply, and the heating in Enceladus is

1.1GW for a QS = 18, 000. If QS is larger than this then the heating is proportionally

smaller. Thus even with an enhanced dynamic k2 the equilibrium heating rate is lower than

the observed heat flux.
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For which parameter values is the current Enceladus-Dione system at equilibrium?

Given the current eccentricity of 0.0047, and a value for QS, we can determine the re-

quired value of k2E/QE for equilibrium. This is the solid curve shown in fig. 3. Above this

curve, the current eccentricity is above the equilibrium value and below this curve it is below

the equilibrium value. The horizontal line shows the k2E/QE for Kelvin’s estimate of the

Love number (calculated above) and for QE = 20. We see that for this value the current

system is at an equilibrium for QS = 159, 000. The equilibrium heating rate for the 2:1

Enceladus-Dione resonance as a function of QS is also shown in fig. 3.

Keep the “Mimas test” in mind. If k2E is significantly enhanced over the Kelvin value

because of the viscoelastic properties of ice, then one might expect this also to be the case

for Mimas.

4. Conclusion

The rate of heating of Enceladus in an equilibrium resonant configuration with other

Saturnian satellites can be estimated independently of the physical properties of Enceladus.

Our results update the values obtained for the equilibrium tidal heating found by Lissauer

et al. (1984) and Peale (2003). We find that equilibrium tidal heating cannot account for

the heat that is observed to be coming from Enceladus, and current heating rates are even

less for conventional estimates of k2E. Even allowing a dynamic k2E much larger than

the conventional k2E , as can occur for viscoelastic models (Ross and Schubert 1989), the

equilibrium tidal heating is less than the heat observed to be coming from Enceladus.

One resolution is that the tidal equilibrium is unstable and that the system oscillates

about equilibrium. Yoder (1981) suggested that Enceladus might oscillate about equilibrium

if the Q of Enceladus is stress dependent. An alternate suggestion was made by Ojakangas

and Stevenson (1986), who emphasized the possible temperature dependence of Q. In these

models Enceladus would now be releasing heat stored during a recent high eccentricity

phase. There may be other mechanisms to produce episodic behavior. For instance, perhaps

Enceladus could just store the tidal heat as the system evolves monotonically and release

it episodically. These mechanisms may be consistent with the episodic character of the

resurfacing events as suggested by spacecraft images. But it is curious that one has to
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appeal to nonequilibrium tidal oscillations or episodic activity to heat both Io and Enceladus

(Ojakangas and Stevenson 1986). If the fraction of time spent in an active state is, say, of

order 20%, for each satellite, then the probability that both are found in an active state

today is only 4%.

Other low-order resonance configurations are possible for the Saturnian satellites in the

past. These include the 3:2 Mimas-Enceladus and the 3:4 Enceladus-Tethys resonances. The

latter resonance has no equilibrium because the orbits are diverging, and the former has an

equilibrium heating of only 0.48GW. So equilibrium heating at past resonances is no more

successful at explaining past resurfacing events than equilibrium heating is at explaining the

present activity.

Enceladus remains a puzzle.
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5. Figure Captions

Figure 1: The approximate locations of the first-order resonances among the Saturnian

satellites are shown for QS = 18, 000. The shift of position of the resonances due to Saturn’s

oblateness has been ignored. Also shown are the tidally evolved orbits as a function of time.

The dotted line shows the synchronous radius. The minimum QS is determined by placing

Mimas at the synchronous radius at the beginning of the solar system. The current 2:1 and

4:2 resonances between Enceladus-Dione and Mimas-Tethys are not shown.

Figure 2: The eccentricity of Enceladus approaches an equilibrium value as the system

evolves into the e-Enceladus 3:2 Mimas-Enceladus resonance.

Figure 3: The solid line shows the k2E/QE for which the current configuration of Enceladus

(with eccentricity 0.0047) and Dione is a tidal equilibrium for the given value of QS. The

dotted line shows the value of k2E/QE using Kelvin’s formula for the Love number, using a

rigidity of 4 × 109N/m2, and a Q of 20. The dashed line gives the equilibrium heating rate

H in Enceladus as a function of QS.
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