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ABSTRACT

For Enceladus the frequency of small-amplitude oscillations about the synchronous rotation state is approx-
imately one-third the orbital frequency. Near this commensurability a period-three bifurcation occurs; on a
surface of section a period-three chain of secondary islands appears near the synchronous island center. Forced
libration in this resonance may be large and would imply large tidal heating. This paper explores the possibility
that Enceladus is or once was locked in this period-three librational resonance, and that the observed resurfacing
of Enceladus is a consequence.
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1. INTRODUCTION

Enceladus, now there’s a puzzle. A substantial portion of
the imaged surface of Enceladus is covered by smooth plains
that are nearly crater-free. From the crater density, these plains
are estimated to be less than a billion years old, perhaps less
than 100 million years old. Thus, much of the surface of
Enceladus has been resurfaced. There may be two distinct
smooth plains regions, one of which is lightly cratered. So,
Enceladus may have been resurfaced more than once. The
only viable source of energy for this activity on Enceladus is
tidal heating, but the estimated rate of tidal heating is not only
too small to initiate melting in Enceladus but probably too
small even to maintain a molten layer produced at some
earlier epoch (for which one would still need to identify an
adequate heat source for the initial formation). There are many
discussions of the problem (Squyres et al. 1983; Schubert
et al. 1986; Morrison et al. 1986; Squyres & Croft 1986;
Peale 2003). A successful explanation must pass the ‘‘Mimas
test’’: Squyres et al. (1983) pointed out that Mimas is com-
parable in size to Enceladus, has a larger orbital eccentricity,
and is closer to Saturn, so tidal heating in Mimas should
be substantially larger (about a factor of 25) than heating
in Enceladus, yet Mimas does not show evidence of tidal
heating.

Squyres et al. (1983) suggested that Enceladus may have
more ammonia than Mimas. Not only does adding ammonia
lower the melting temperature (and so lower the heating re-
quired for resurfacing), but an ammonia-water solution with
greater than 20% mole fraction of ammonia (perhaps achieved
as ice freezes out) is less dense than ice and so might spew out
onto the surface, perhaps even creating the E ring. But am-
monia has not been detected on the surface.

Lissauer et al. (1984) proposed that Enceladus was recently
locked in an orbital resonance with Janus, which was disrupted
in the last 10 million years by an impact or when Enceladus
became locked in the current Enceladus-Dione resonance. If
locked in this resonance with Janus, Enceladus would have had
a larger forced eccentricity and thus been subject to larger tidal
heating. But in their model the eccentricity only reaches values
near 0.01, compared with the present 0.0045, so the rate of tidal
heating is only enhanced by a factor of about 5. Thus, their

scenario does not pass the Mimas test. There are also numerous
questionable aspects of the dynamics.
Ross & Schubert (1989) found that estimates of tidal

heating with a viscoelastic Maxwell rheology can be sub-
stantially larger than for Darwin models with a bulk effective
tidal Q. They considered both homogeneous ice models and
models with a liquid ammonia-water decoupling layer. They
argue that their models give sufficient heating to explain the
observed activity on Enceladus. Ross & Schubert do not
discuss why their models do not also predict substantial tidal
heating of Mimas. If a homogeneous ice model predicts sub-
stantial tidal heating of Enceladus, should not this also be the
case for Mimas?
The dichotomy between Enceladus and Mimas suggests that

some additional heating mechanism is operating on Enceladus
and that this heating mechanism results from some charac-
teristic that Enceladus possesses that other satellites do not
share. One characteristic that is unique to Enceladus is that
the frequency of small-amplitude oscillations about syn-
chronous rotation is nearly commensurate with its orbital
frequency: specifically, the frequency of small-amplitude os-
cillations for Enceladus is approximately one-third its orbital
frequency.
In their analysis of Voyager images of Enceladus, Dermott

& Thomas (1994) found that the shape of Enceladus was well
represented by a triaxial ellipsoid with principal radii a ¼
256:3 � 0:3 km, b ¼ 247:3 � 0:3 km, and c ¼ 244:6�
0:3 km. They interpret this figure in terms of hydrostatic
models and deduce that Enceladus has a density below 1.12 g
cm�3, with a preferred value near 1.00 g cm�3. The ratio of
moments of inertia determines the spin-orbit libration fre-
quency. Assuming uniform density, the implied (B� A)=C is
0:03573 � 0:0017. More to the point, the implied ratio of
the librational frequency to the orbital frequency is � ¼
½3(B� A)=C�1=2 ¼ 0:3274 � 0:0077. The error is purely for-
mal; the real error is probably larger.
This near commensurability has very interesting dynamical

consequences. For � near 1
3
there is period-three bifurcation in

the spin-orbit phase space. On a surface of section, a chain of
three secondary islands appears near the center of the syn-
chronous island. Now, if Enceladus is locked in this period-
three island, then there is a forced libration of the figure of
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Enceladus relative to Saturn. Depending on the system
parameters, the rate of tidal heating due to this forced sec-
ondary resonance libration can be enhanced by a factor of 100
to 1000 over the rate of tidal heating without secondary res-
onance libration.

A number of natural satellites are significantly out of round,
with � larger than 1

3
. For instance, Dermott & Thomas (1988)

measured the elliptical radii for Mimas. From these, � for
Mimas is estimated to be near 0.44. Such satellites also dis-
play secondary resonances on their surfaces of section, but
because � is not near a low-order commensurability, these
secondary islands are not near the synchronous island center
and so are unlikely to play any role in the dynamics of these
satellites.

This paper examines the dynamics of the 3 :1 secondary
spin-orbit resonance, computes the consequent rate of tidal
heating, and discusses mechanisms that might have placed
Enceladus into this unique dynamical state.

2. SPIN-ORBIT DYNAMICS

The Hamiltonian governing the rotational dynamics of an
out-of-round satellite in a fixed elliptical orbit with the spin
axis perpendicular to the orbit plane is

H(t; �; p) ¼ p2

2C
� �2n2C

4

�

a

r(t)

�3

cos 2½�� f (t)� ð1Þ

(Wisdom et al. 1984; Wisdom 1987; Sussman & Wisdom
2001), where

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3(B� A)=C
p

: ð2Þ

The moments of inertia are A < B < C, n is the orbital fre-
quency, � measures the orientation of the axis of minimum
moment from the line to pericenter, p is the angular momen-
tum conjugate to �, a is the semimajor axis of the orbit, r is the
planet-to-satellite distance, and f is the true anomaly (the angle
from the pericenter to the satellite).

For nonzero eccentricity, the spin-orbit problem exhibits the
full suite of phenomena generally found in nonlinear Hamil-
tonian systems, such as nonlinear resonances and chaos. For
small eccentricity, the phase space is dominated by the syn-
chronous resonance in which the angle � ¼ �� nt oscillates
about 0 or �. There is a chaotic zone surrounding the syn-
chronous resonance. Other primary resonances are present, the
two largest are the 3 :2 and 1:2, in which the body rotates three
or one times, respectively, for every two orbits. Mercury is in
the 3 :2 resonance. A surface of section is generated by plot-
ting the rate of change of the orientation (�̇) versus the ori-
entation (�) at each pericenter for a number of orbits for a
representative set of initial conditions. A typical surface of
section for parameters appropriate for Enceladus is shown in
Figure 1. The distinctive feature of the surface of section for
Enceladus is the period-three chain of islands near each of the
synchronous island centers.

3. SPIN-ORBIT SECONDARY RESONANCES

Here we develop an approximate model for the 3 :1 sec-
ondary resonances for synchronous rotation in the spin-orbit
problem. We use standard techniques of Hamiltonian pertur-
bation theory (Sussman & Wisdom 2001).

For a fixed orbit the planet-to-satellite distance and the true
anomaly are periodic. Expanding these as Fourier series, the
spin-orbit Hamiltonian is

H(t; �; p) ¼ p2

2C
� �2n2C

4

X

k

Hk(e) cos (2�� knt) ð3Þ

with coefficients H2(e) ¼ 1� 5e2=2, H3(e) ¼ 7e=2, and
H1(e) ¼ �e=2, to second order in e.
We consider the terms that depend on the eccentricity as a

perturbation and write

H ¼ H0 þ H1; ð4Þ

where

H0(t; �; p) ¼
p2

2C
� �2n2C

4
cos (2�� 2nt); ð5Þ

H1(t; �; p) ¼ � �2n2C

4

�

7e

2
cos (2�� 3nt)� e

2
cos (2�� nt)

�

;

ð6Þ

keeping only the terms linear in e.
The Hamiltonian H0 is solvable. First make a canonical

transformation to a rotating frame � ¼ �� nt, with conjugate
momentum � ¼ p� nC. The new Hamiltonian is

H 0
0(t; �;�) ¼

�
2

2C
� �2n2C

4
cos 2�: ð7Þ

This is time-independent and has a single degree of freedom,
and so the solution is reducible to quadratures. The solutions

Fig. 1.—A surface of section for � ¼ 0:34 and e ¼ 0:0045. The dominant
feature is the synchronous island. The 3 :2 and 1:2 resonances are above and
below the synchronous island, respectively. The synchronous island is sur-
rounded by a small chaotic zone. Near each of the synchronous equilibria
there is a chain of three islands, in which the libration about synchronous
rotation is in a 3 :1 resonance with the orbital motion.
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can be expressed in terms of elliptic functions. The pertur-
bation is also transformed:

H 0
1(t; �;�) ¼ � �2n2C

4

�

7e

2
cos (2�� nt)� e

2
cos (2�þ nt)

�

:

ð8Þ

With the goal of approximating the secondary resonances
between the frequency of oscillation and the orbital frequency,
we next make the transformation to action-angle coordinates
for the Hamiltonian (eq. [7]) in the oscillation region. The
action J is the area on the phase plane (�, �), divided by 2�.
The conjugate angle  evolves linearly in time. The trans-
formed Hamiltonian depends only on the action:

H 00
0 (t;  ; J ) ¼

1

4
�2n2C �1þ J̃ � 1

16
J̃ 2 � 1

256
J̃ 3 þ � � �

� �

¼ � 1

4
�2n2C þ �nJ � 1

4C
J 2 � 1

16�nC2
J 3 þ � � � ;

ð9Þ

where J̃ ¼ (4=�)(J=nC ). Note that for small J the frequency,
the coefficient of the linear term in J, is just �n, as expected.
The relation between the action-angle coordinates ( , J ) and
� is

2� ¼ 2 J̃ þ 1

4
J̃ 2 þ 27

512
J̃ 3 þ � � �

� �1=2

sin  

þ 1

192

�

(2 J̃ )3 1þ 9

16
J̃ þ � � �

� ��1=2

sin 3 þ � � � : ð10Þ

Compare these expressions with those for a harmonic (small
�) approximation to the Hamiltonian in equation (7):

H 0
0(t; �;�) �

�
2

2C
þ �2n2C�2

2
: ð11Þ

The canonical transformation to action-angle coordinates is

� ¼ (2J=� )1=2 sin  ; � ¼ (2J� )1=2 cos  ; ð12Þ

where � ¼ �nC. The transformed Hamiltonian is

H 0
0(t; �;�) � �nJ ; ð13Þ

which again gives �n for the frequency of small-amplitude
oscillations. Notice that in this approximation the expression
for the angle � agrees with the first term of the full expression,
equation (10).

Next we write the perturbation in terms of the full action-
angle coordinates. For small � it is appropriate to write the �
dependence of H 0

1 as a series,

H 0
1(t; �;�) ¼ �1

4
�2n2C(3eC2 cos nt þ 4eS2 sin nt) ð14Þ

with

C2 ¼ cos 2� ¼ 1 � 1
2
(2�)2 þ � � �

S2 ¼ sin 2� ¼ 2�� 1
6
(2�)3 þ � � � : ð15Þ

The expression for 2� is of the form

2� ¼ F1 sin  þ F3 sin 3 þ � � � ; ð16Þ

where

F1 ¼
ffiffiffiffiffiffi

2 J̃
p

þ 1

16
(

ffiffiffiffiffiffi

2 J̃
p

)3 þ � � � ;

F3 ¼
1

192
(

ffiffiffiffiffiffi

2 J̃
p

)3 þ � � � : ð17Þ

Making these substitutions in equation (14), writing the result
as a Poisson series in  and nt, and then picking out the terms
with argument 3 � nt, which are slow near the 3 :1 secondary
resonance, the resonant part of the perturbation is

H 00
3:1(t;  ; J )

¼ � 1

4
�2n2Ce

1

12
F3
1 þ 2F3 þ � � �

� �

cos (3 � nt)

¼ � 1

4
�2n2Ce

3

32
(

ffiffiffiffiffiffi

2 J̃
p

)3 cos (3 � nt): ð18Þ

We have kept only the leading term. Without the F3 contri-
bution, the coefficient is 1/12 rather than 3/32.
Keeping terms up to J 2 and dropping the constant term, the

full 3 :1 secondary resonance Hamiltonian is

H3:1(t;  ; J ) ¼ �nJ � 1

4C
J 2 � e

3

16

�

n�

C

�1=2

; (
ffiffiffiffiffiffi

2J
p

)3 cos (3 � nt): ð19Þ

Finally, we make a canonical transformation to the resonance
variable  0 ¼  � nt=3, with conjugate momentum J 0 ¼ J .
The resonance Hamiltonian is

H 0
3:1(t;  

0; J 0) ¼ n2C½�Ĵ � 1
4
Ĵ 2 � �(

ffiffiffiffiffiffi

2 Ĵ
p

)3 cos 3 0�; ð20Þ

where Ĵ ¼ J 0=(nC ), � ¼ �� 1
3
, and � ¼ (3=16)e

ffiffi

�
p

. Apart from
the factor n2C, the resonance Hamiltonian is written in terms of
dimensionless quantities, Ĵ is the dimensionless action, � is a
parameter that determines how close the system is to resonance,
and � measures the strength of the resonance. The resonance
trajectories are contours of this time-independent, one-degree-
of-freedom Hamiltonian. Trajectories of the resonance model
are compared with the surface of section in Figure 2.
As � is varied, there are special points where the phase

portrait changes qualitatively. We can find these by solving
for the equilibrium points. The equilibrium points have a
threefold symmetry, with one set along the axis for which
sin  0 ¼ 0. In the variables x¼ (2 Ĵ )1=2cos 0, y ¼ (2 Ĵ )1=2 sin 0,
the equilibria for y ¼ 0 satisfy the equation

0 ¼ (x2=4þ 3�x� � ) x: ð21Þ

So, the origin is always an equilibrium and the other equilibria
are solutions of a quadratic equation. For 9�2 þ � > 0, there
are two nonzero solutions. In terms of � this bifurcation point is

�1 ¼
1=3

1þ (9=16)2e2
: ð22Þ

The second special point is where one of the nonzero roots
passes through zero. This occurs for � ¼ 0, or �2 ¼ 1

3
. In the

phase plane the bifurcation pattern is as follows: For � < �1
there is a single equilibrium point. As � is increased to �1, a
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cusp appears at a finite distance away from the origin, from
which a stable and unstable point emerge for larger �. The cusp
appears at x1 ¼ �3�=2, y1 ¼ 0. The equilibrium farther from
the origin is stable. As � is increased to zero, the unstable
point goes through zero. As � (and �) is increased further, the
stable and unstable equilibria move away from the origin. The
action of the stable equilibrium is

ffiffiffiffiffiffi

2 Ĵ
p

¼ 6� þ 2(9�2 þ � )1=2: ð23Þ

For parameters relevant to Enceladus, the dependence on �
is weak, and to a good approximation, at the stable equilib-
rium (2 Ĵ )1=2 ¼ 2

ffiffiffi

�
p

. The corresponding amplitude of libra-
tion can be determined using equation (10). The amplitude is
approximately

S ¼ 1
2
(2 J̃ þ 1

4
J̃ 2)1=2: ð24Þ

Figure 3 compares the perturbative estimate of the amplitude
of libration at the stable fixed point with the actual amplitude
of libration (determined numerically). The agreement is good,

particularly near the point of bifurcation. The truncated esti-
mate is better than the more complete estimate.

4. TIDAL HEATING

Time-dependent tidal distortion of a body leads to internal
heating. For a synchronously rotating body in an eccentric
orbit, the rate of energy dissipation is

dE

dt
¼ 21

2

ks f

Qs

Gm2
pnR

5
se

2

a6
ð25Þ

(Peale & Cassen 1978; Peale et al. 1979; Peale 1999), where
ks is the satellite potential Love number, Qs is the satellite
effective tidal Q, f > 1 is an enhancement factor to account
for a partially molten interior, G is the gravitational constant, a
is the orbit semimajor axis, mp is the mass of the host planet,
n is the orbital mean motion (and rotation rate), which is
approximately (Gmp /a

3)1/2, Rs is the satellite radius, and e is
the orbital eccentricity. The derivation of this formula assumes
that the body is incompressible, the rotation is uniform and
synchronous, and the body is small enough that the dis-
placement Love number hs is 5ks /3. We may view this dissi-
pation as arising from two distinct sources of time dependence
in the tide: time variation in the distance to the tide-raising
planet, and the optical libration (the relative rocking motion of
a uniformly rotating satellite relative to the planet that results
from the nonuniform motion in the elliptic orbit). Here this
formula is rederived and generalized to include obliquity,
forced libration, and forced secondary libration.

Let UT be the tide-raising potential. The satellite may be
thought of as consisting of a myriad of small constituent mass
elements. The force on each mass element is the negative
gradient of the potential energy, where the potential energy is
the tidal potential multiplied by the mass of the constituent.
The rate at which work is done on each constituent is the
scalar product of this force with the velocity of the constituent.
Integrating over the volume of the satellite gives the rate at
which work is done on the satellite:

dE

dt
¼ �

Z

body

�v = 999999999UT dV ; ð26Þ

Fig. 2.—Top, surface of section for � ¼ 0:336 and e ¼ 0:0045, showing the
3 :1 secondary islands; bottom, plot showing trajectories of the perturbative
resonance Hamiltonian, on the surface of section. The agreement of the per-
turbative model with the surface of section is good.

Fig. 3.—Amplitude of secondary libration (in radians) at the stable 3 :1
fixed point in the full spin-orbit problem (solid curve), compared with the
estimated amplitude using perturbation theory. The dashed curve uses both
terms in eq. (24); the dotted curve uses just the first.
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where � is the density and dV is the volume element. To a
good approximation the satellite may be assumed to be
incompressible, 999999999 = v ¼ 0 (Peale & Cassen 1978). The chain
rule gives

999999999 = (UTv) ¼ v = 999999999UT þ UT 999999999 = v; ð27Þ

so with the assumption of incompressibility, the rate of energy
dissipation is

dE

dt
¼ �

Z

body

�999999999 = (UTv)dV : ð28Þ

If we ignore any variation of density in the body, Gauss’s
theorem allows us to write the rate of energy dissipation as a
surface integral,

dE

dt
¼ ��

Z

surface

UTv = n dS; ð29Þ

where n is the normal to the surface and dS is the surface area
element. Now, v = n is the rate at which the height of the
surface changes. The height of the tide at any point on the
surface is approximately

�r ¼ �hsU
0
T=g; ð30Þ

where hs is the displacement Love number for the satellite, g is
the local acceleration of gravity, and the prime on UT indicates
that the tidal potential is given a phase delay because the
dissipative tidal response lags the forcing. So,

dE

dt
¼ � �hs

g

Z

surface

UT

d

dt
(U 0

T )dS: ð31Þ

The tide-raising gravity gradient potential is

UT ¼ � GmpR
2

r3
P2(cos � ); ð32Þ

where P2 is the second Legendre polynomial, � is the angle at
the center of the satellite between the planet-to-satellite line
and the point in the satellite where the potential is being
evaluated, R is the distance from the satellite center to the
evaluation point, and r is the planet-to-satellite distance.

Consider motion in a fixed elliptical orbit, with small ec-
centricity e. Choosing rectangular coordinates with the x-axis
aligned with the orbit pericenter and the orbit in the (x, y)-
plane, the orbital position is

o ¼ (r cos f ; r sin f ; 0) ð33Þ

with true anomaly f. For small eccentricity,

r�1 ¼ a�1(1þ e cos nt);

cos f ¼ cos nt þ e(cos 2nt � 1);

sin f ¼ sin nt þ e sin 2nt; ð34Þ

all to first order in e. These expressions are easily generalized
to higher order in eccentricity. In terms of the planetocentric
longitude k and colatitude �, the rectangular components of

a surface element in the unrotated satellite (or at the initial
time) are

s0 ¼ (R sin � cos k;R sin � sin k;R cos �): ð35Þ

Assuming uniform synchronous rotation about the z-axis
(perpendicular to the orbit plane), the rectangular components
of this element at time t are

s ¼ Rz(nt)s0

¼ (R sin � cos (kþ nt);R sin � sin (kþ nt);R cos �); ð36Þ

where Rz(�) is an active rotation about the z-axis by the angle
�. The scalar product of the surface element with the orbital
position gives o = s ¼ rR cos � . This completes the expression
for the tidal potential as a function of time and location on the
surface. The delayed tidal potential U 0

T is found by replacing
nt by nt þ� in the expression for UT.
The average rate of energy dissipation is found by carrying

out the surface integral, equation (31), and averaging over an
orbital period. These integrals are straightforward and will not
be shown. The result is

dE

dt
¼ � 21

2

3hs

5

Gm2
pR

5
sne

2

a6
sin�: ð37Þ

The contribution due to the optical libration can be separated
from that due to radial variation. Of the factor 21/2, 9/2 can
be attributed to the radial variation, and 12/2 to the optical
libration. The optical libration is more important by a factor
of 4/3.
For small homogeneous spherical elastic bodies, the Love

numbers are approximately given by

hs ¼
5=2

1þ 19	=(2�gR)
� 5�gR

19	
ð38Þ

(Thompson 1863; Love 1944) and ks ¼ 3
5
hs, where 	 is

the rigidity. The latter approximation is for the case where the
rigidity is large (compared with �gR). This formula and the
relationship between ks and hs are not valid for inhomoge-
neous bodies, such as planetary bodies for which the density
varies with radius. Estimates of k2 and h2 for the Moon
from lunar laser ranging (Williams et al. 2003) are k2 ¼
0:0257 � 0:0025 and h2 ¼ 0:029 � 0:013. These are nomi-
nally inconsistent with the 5 : 3 ratio expected for a small
homogeneous body, but barely consistent given the large
estimated error in h2. Nevertheless, assuming ks ¼ 3hs=5,
replacing sin� by �1/Qs, and adding the enhancement factor
f, we have derived equation (25). Using the approximation
to equation (38) for large rigidity, the rate of tidal heating
becomes

dE

dt
¼ 42

19

��2R7n5e2

	Q
; ð39Þ

in agreement with the corrected expression in Peale (2003).
Next we assume the rotation is locked to the center of a

threefold secondary resonance. To lowest order in the libration
amplitude S, the location of the surface element is now
(generalizing eq. [36])

s
0 ¼ Rz(nt � S sin (nt=3)) s0 : ð40Þ
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For small S, we may expand

s
0 ¼ sþ SR(sin � sin (kþ nt) sin (nt=3);

� sin � cos (kþ nt) sin (nt=3); 0): ð41Þ

The rest of the calculation proceeds as before. We assume the
tidal response is delayed by replacing nt by nt þ�. In this
case, the averaging is over three orbital periods, to complete a
secondary cycle, instead of one.

For completeness we include two other sources of tidal
dissipation: the forced libration and satellite obliquity. To add
the forced libration, we take

s
0 ¼ Rz(nt � F sin nt � S sin (nt=3))s0: ð42Þ

The amplitude of the forced libration is approximately

F ¼ 2e�2

1� �2
ð43Þ

(Wisdom et al. 1984). And then, with obliquity I the expres-
sion for the surface element is

s
0 ¼ Rz(�)Rx(I)Rz(nt � F sin nt � S sin (nt=3))s0; ð44Þ

where � is the ascending node of the equator relative to the
pericenter.

The generalization of equation (25) is found to be

dE

dt
¼
�

9

2
e2 þ 3

2
(2eþ F)2 þ 1

2
S2 þ 3

2
(sin I)2

�

;
3hs

5

1

Qs

f Gm2
pnR

5
s

a6
: ð45Þ

The first term is due to the radial variation of the tidal am-
plitude. The second term combines the optical and forced
libration. The amplitude of the optical libration is approxi-
mately 2e; F is the amplitude of the forced libration. The sum
of the optical and radial terms gives equation (25). The third
term is due to the forced secondary libration, presuming the
system is in the secondary resonance. The amplitude of the
forced secondary libration is approximately

S ¼ 2

�

�� 1=3

�

�1=2

: ð46Þ

The 3 :1 secondary resonance is only present for � > 1
3
. The

last term in equation (45) gives the heating due to satellite
obliquity.

The energy dissipated in Enceladus as a function of the
out-of-roundness parameter � is shown in Figure 4. For this
plot we assume a rigidity appropriate for ice of 4 ; 1011 dyn
cm�2, Q ¼ 20, a density of � ¼ 1:12 g cm�3, R ¼ 249:35 km,
and e ¼ 0:0045, and we neglect the forced libration and any
obliquity.

5. PLACEMENT INTO SECONDARY RESONANCE

We see that the tidal heating in Enceladus can be enhanced
by 2 to 3 orders of magnitude, depending on physical pa-
rameters, over previous estimates if the rotation is in the 3 :1
secondary resonance. Here we discuss some possibilities for
placing Enceladus in the secondary resonance.

The shape of Enceladus is approximately hydrostatic
(Dermott & Thomas 1994). If a hydrostatic shape is main-
tained as Enceladus tidally evolves away from Saturn, then
there will be a corresponding change in � . So tidal evolution,
with hydrostatic shape, can drive the system across the sec-
ondary resonance. Unfortunately, normal tidal evolution is
away from the planet, and so the shape would evolve from
more out of round to less out of round (larger � to smaller).
This is the wrong direction for capture into the secondary
resonance to occur.

Peale & Lee (2002) have recently examined scenarios for
the capture of the Galilean satellite system into the Laplace
resonance that involve contracting orbits. The starting point
for their deliberations is the Canup & Ward (2002) model for
the formation of the Galilean satellites. In this model the
Galilean satellites form slowly at large radii from material
streaming through the Lagrange points and spiraling onto
Jupiter. The inward migration assumed by Peale & Lee results
from interaction of the satellites with this same material. A
similar scenario for Enceladus would provide the inward
evolution that is required for Enceladus to be captured into
the secondary resonance, if the inward evolution were slow
enough that the shape of Enceladus remained approximately
hydrostatic. Capture into the secondary resonance would have
to have occurred after the orbital resonance with Dione was
established, because the strength of the secondary resonance
depends on the orbital eccentricity. In this scenario, Enceladus
would have been in the secondary resonance for most of the
age of the solar system. Why then would the resurfacing of
Enceladus be episodic? Though there is considerable uncer-
tainty, with recent estimates of cratering rates on the Saturnian
satellites it is estimated that there is a nonnegligible prob-
ability that Enceladus has suffered a disruptive impact (Lis-
sauer et al. 1988; Zahnle et al. 2003). Could Enceladus have
avoided smaller impacts that might have knocked the system
out of the secondary resonance?

The fact that the shape of Enceladus is nearly hydrostatic is
interesting. Weisskopf (1985) argued that there is a charac-
teristic radius, on the order of 300 km for a rocky body, below
which the body should be significantly out of round, and above
which the body should be nearly spherical. The argument uses

Fig. 4.—Rate of energy dissipation (ergs s�1) in Enceladus in the 3 :1
synchronous secondary resonance. The curves mark the dissipation using the
amplitude determined numerically (solid curve) and using the approximate
perturbative expression (dashed curve). The dotted horizontal line indicates
the dissipation in Enceladus without the secondary resonance. The bars at the
bottom indicate the range of � formally allowed by the triaxial ellipsoid fit to
the Voyager images. The inner range is 1 
 ; the outer is 2 
.
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an order-of-magnitude estimate of the energy of plastic de-
formation. The result is roughly consistent with an observed
transition to irregular shape below a radius of about 200 km
among the natural satellites (Thomas et al. 1986). However, an
order-of-magnitude estimate for the timescale for relaxation of
an ellipsoidal distortion is � ¼ 6�=(�gR), where � is the vis-
cosity, � is the density, g is the surface gravity, and R is the
radius (Schubert et al. 2001). The viscosity depends very
strongly on temperature T: using the expression for viscosity
given by Schubert et al. (1986), the relaxation timescale varies
from 1018 yr for T ¼ 100 K to 106 yr for T ¼ 200 K. Because
Enceladus is small, it is expected to be cold (T < 100 K) for
most of its history (Ellsworth & Schubert 1983). The observed
hydrostatic shape must have been achieved during formation,
when the required temperature could have been reached by
accretional heating, or during some later special heating epi-
sode, such as tidal heating during resonance encounter. The
scenarios that involve gradual hydrostatic shape change with
tidal evolution appear unlikely.

Could an impact have knocked Enceladus into the sec-
ondary resonance? Consider the case � ¼ 0:336 illustrated in
Figure 2. The angular velocity difference between the center
of the synchronous island and the secondary resonance is
about 5%. The orbital velocity of Enceladus is about 12.6 km
s�1; a parabolic impactor (with respect to the planet) has a
velocity at the orbit of Enceladus of about 17.9 km s�1. In the
model of Zahnle et al. (2003), the typical impact velocity on
Enceladus from ecliptic comets is 24 km s�1. But if the orbits
are aligned the impact velocity could be as little as 5.3 km s�1.
For an ideal (but unrealistic) grazing collision that imparts all
its momentum to the rotation, these impact velocities imply an
impactor (with density 1 g cm�3) with radius in the range 6 km
(for 24 km s�1 impact velocity) to 11 km (for 5 km s�1 impact
velocity). For a typical 45

�
incidence angle these impactor

radii are increased to 7 and 12 km, respectively. These impacts
would produce large craters, with diameters on the order of
225 and 175 km, respectively, using the crater scaling of
Zahnle et al. (2003). To give an adequate kick at smaller ve-
locity requires a larger impactor, but as the energy scales with
the square of the velocity, the larger slower impactor can leave
a smaller crater. These craters would have to be in an unim-
aged region of Enceladus or erased by the resurfacing (and not
in one of the old, heavily cratered regions). Actually, if there
are large craters on Enceladus they are more likely to be found
on the unimaged leading hemisphere, as the leading hemi-
sphere is typically more heavily cratered by heliocentric
comets than is the trailing hemisphere (L. Dones 2003, private
communication). Using the estimated ecliptic comet cratering
rates on Enceladus from Zahnle et al., Enceladus has probably
only suffered a few impacts in this size range. It would be
fortuitous for one of these few impactors to have hit Enceladus
in just the right way to knock it into the secondary resonance.
Of course, there is considerable uncertainty in the estimate of
cratering populations and rates. We mention that if the im-
pactor changes the angular momentum of Enceladus too
much, then there is a possibility that the system is captured
into the secondary resonance as the libration amplitude damps.
However, no definitive estimate of the capture probability can
be made, because it depends strongly on the tidal model.

Another possibility is that Enceladus could have suffered a
number of impacts from planetocentric debris. Zahnle et al.
argue that most of the impacts on Mimas are from planeto-
centric debris ejected from the impact that created Herschel.
There are about 70 craters on Mimas with diameter larger than

20 km; they estimate that 30–100 craters in this size range
would form on Mimas from Herschel ejecta. Perhaps a dis-
ruption event of some former satellite near Enceladus placed
numerous multikilometer-sized objects in Enceladus-crossing
orbits. The timescale for Enceladus to despin to synchronous
rotation is about 60,000 yr, for Q ¼ 100 (Peale 1977). As long
as significant debris is swept up on shorter timescales, the spin
rate and obliquity of Enceladus would evolve stochastically
(Dones & Thomas 1993). The secondary resonance might
then be reached by a multiple-impact process. The heavily
cratered regions of Enceladus might be due to the large
number of impacts of smaller debris, as is argued to be the
case for Mimas. Though detailed modeling might allow a
stronger case to be made for the plausibility of this scenario,
there are so many possibilities and physical uncertainties that
such modeling would be of questionable value. An advantage
of this scenario is that Enceladus need not have or once have
had a large crater.
An advantage of the impact scenarios is that they might

allow for multiple resurfacings. Indeed, the rate of tidal dis-
sipation in the secondary resonance depends primarily on the
out-of-roundness parameter �, and only weakly on the orbital
eccentricity. An interesting possibility is that after Enceladus
is placed in the secondary resonance by an impact or multiple
impacts, the eccentricity decays because of the large tidal
dissipation. This would cause Enceladus to temporarily retreat
from the Enceladus-Dione resonance. Once the eccentricity
had decayed sufficiently, the secondary resonance, whose
strength depends on the eccentricity, might become unstable.
Enceladus would then tidally evolve outward into the Dione
resonance, reestablishing its eccentricity and, so, effectively
resetting the trap until another impact again takes the system
into secondary resonance.
There are other possibilities. We have only considered the

simplest dynamical model here. More complete models might
exhibit a richer dynamical structure. For instance, if additional
perturbations broadened the 3 :1 secondary resonance separa-
trix into a chaotic zone, it might be possible to evolve into this
chaotic zone or the vicinity of the secondary resonance
without appealing to impacts or reverse tidal evolution. And if
the structure is rich enough, there might be multiple intervals
of chaotic evolution, as we observed in our studies of the tidal
evolution of the orbits of the Uranian satellites (Tittemore &
Wisdom 1988, 1989, 1990). But these possibilities must await
further study.
Consider the following scenario: Perhaps at some point

Enceladus developed a figure that was more axisymmetric
than hydrostatic, perhaps as the result of an impact or non-
synchronous reaccretion after a disruption event. Tidal evo-
lution (perhaps assisted by a resonance lock with Janus,
perhaps just due to Saturn tides) then established the orbital
resonance lock with Dione. The resulting forced eccentricity
might then provide tidal heating to raise the internal temper-
ature of Enceladus to the point at which the relaxation time for
the figure of Enceladus is short compared with the age of the
solar system (only a few million years if 200 K is reached). As
the figure relaxed to the observed near-hydrostatic ellipsoidal
shape, the system could pass through the secondary resonance
in the correct direction for capture to occur. As the resonance
with Dione has already been established, the eccentricity is
forced, so the secondary resonance is strong. So Enceladus
would naturally evolve into the secondary resonance.
Is Enceladus currently in the secondary spin-orbit reso-

nance? The presence of the E ring, with its short lifetime,
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suggests that it might be. The Dermott & Thomas (1994)
analysis of the Voyager data presumed exact synchronous
rotation. Perhaps a less restrictive reanalysis of the Voyager
data could place limits on the amplitude of the forced sec-
ondary libration, but new data from Cassini should answer
this question. Even if Enceladus is not currently in the sec-
ondary resonance, the observed features might still be
explained if Enceladus was recently in the resonance.

6. CONCLUSION

Enceladus is a puzzle. It shows evidence of recent resur-
facing, yet the standard estimates of tidal heating, the only
viable source of heating, are too small to account for the ob-
served activity. Mimas does not show evidence of internal
heating, yet the corresponding estimates of tidal heating in
Mimas are 25 times larger than for Enceladus. So something
must be special about Enceladus. One of the main goals of this
paper is to point out that there is something special about
Enceladus: the moments of inertia of Enceladus happen to
have the right values so that the frequency of small-amplitude
libration in the synchronous resonance is approximately one-
third the orbital frequency. As a consequence there is a period-
three bifurcation, and a chain of three secondary islands

appears on the surface of section. We have developed a per-
turbative model for this secondary resonance. We have cal-
culated the rate of tidal dissipation presuming Enceladus is
locked in this secondary resonance and find that it can be 2
to 3 orders of magnitude larger than given by the usual tidal
heating mechanism for a body in synchronous rotation. We
have discussed a number of possibilities for placing Enceladus
in this secondary resonance. Many of these possibilities re-
quire further study. Perhaps the most appealing involves the
relaxation of an initially more axisymmetric Enceladus toward
a hydrostatic shape and consequent capture into the secondary
resonance. The fact that this resonance is unique to Enceladus,
that significant enhancement of tidal heating would result, and
that Enceladus appears to have some significant previously
unexplained additional source of heating suggests that this
secondary resonance is part of the explanation of the mystery
of Enceladus.
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