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Abstract

Expressions for tidal dissipation in a body in synchronous rotation at arbitrary orbital eccentricity and obliquity are derived. The rate of tidal dissipation for a
synchronously rotating body is compared to that in a body in asymptotic nonsynchronous rotation.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Time-dependent tidal distortion of a body leads to internal heating. For a
synchronously rotating body in an eccentric orbit the rate of energy dissipation
is reported to be (Peale and Cassen, 1978; Peale et al., 1979; Wisdom, 2004)

(1)
dE

dt
= 21

2

k2

Q

GM2nR5e2

a6
,

where k2 is the satellite (secondary body) potential Love number, Q is the satel-
lite effective tidal dissipation parameter, G is the gravitational constant, a is
the orbit semimajor axis, M the mass of the host planet (primary body), n the
orbital mean motion (and rotation rate), which is approximately

√
GM/a3,

R is the satellite radius, and e is the orbital eccentricity. The derivation of this
formula assumes that the body is incompressible, the rotation is uniform and
synchronous, and that the body is small enough that the displacement Love
number h2 is 5k2/3. The eccentricity has also been assumed to be small, and
only the lowest order factor in eccentricity has been kept. Wisdom (2004) gen-
eralized this expression to include the lowest order terms in obliquity, forced
synchronous libration, and spin–orbit secondary libration.

Though this expression has been adequate for most discussions of tidal
dissipation in the Solar System where the orbital eccentricities are relatively
small, there are also now situations for which it is inadequate. For instance,
Garrick-Bethell et al. (2006) argued that the shape of the Moon was best ex-
plained if the moment differences of the Moon froze in during a period in
which the Moon had large eccentricity. For synchronous rotation, the orbit
that satisfies the shape constraint has an eccentricity of 0.49. We will see
that in this case the familiar formula for tidal dissipation, Eq. (1), underesti-
mates the rate of tidal dissipation by a factor of about 30. Another possible
situation of interest is tidal dissipation in extrasolar planets. Extrasolar plan-
ets have been found to have a wide range of orbital eccentricities. For those
extrasolar planets that are gas giants, it may be unlikely that they are in syn-
chronous rotation, but rather may be expected to be in an asymptotic non-

E-mail address: wisdom@mit.edu.
0019-1035/$ – see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.icarus.2007.09.002
synchronous state as was once proposed for Mercury (Peale and Gold, 1965;
Levrard et al., 2007). Nevertheless, it may be expected that more rocky extraso-
lar planets will be discovered and that some of these may also have large orbital
eccentricities and be in synchronous rotation. Extrasolar planets may also have
large obliquity: Winn and Holman (2005) proposed that HD209458b might be
in a high obliquity Cassini state, and that the enhanced tidal dissipation at large
obliquity would inflate its radius (see also the discussion of HD209458b by
Levrard et al., 2007).1 It will be appropriate then to have a valid expression for
tidal dissipation at arbitrary eccentricity and obliquity.

Here we generalize the familiar result for tidal dissipation in a synchro-
nously rotating satellite, Eq. (1), and derive a concise formula applicable at
arbitrary eccentricity and obliquity. We compare the rate of tidal heating in syn-
chronous rotation to that in asymptotic nonsynchronous rotation (Levrard et al.,
2007).

2. Derivation for synchronous rotation

The derivation of the generalizations of the tidal heating formula that is
presented in Wisdom (2004) follows one of the derivations presented in Peale
and Cassen (1978). Here we follow the same derivation, but, as appropriate,
generalize the expressions so that they are applicable at arbitrary eccentricity
and obliquity. In this section we assume the obliquity is zero.

Following Wisdom (2004),2 let UT be the tide-raising potential. The satel-
lite may be thought of as consisting of a myriad of small constituent mass

1 In Wisdom (2004), it is clear that the expressions are only valid to second
order in eccentricity, but I forgot to state that the results were also truncated at
second order in the obliquity. Unfortunately, Winn and Holman (2005) used the
expression for tidal dissipation in synchronous rotation presented in Wisdom
(2004) at large obliquity. And Levrard et al. (2007) used the expressions in
Wisdom (2004) for the synchronous dissipation rate at both high eccentricity
and high obliquity.

2 For ease of reading, some of that derivation is repeated here (and corrected).
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elements. The force on each mass element is the negative gradient of the po-
tential energy, where the potential energy is the tidal potential multiplied by
the mass of the constituent. The rate at which work is done on each constituent
is the dot product of this force with the velocity of the constituent. Integrat-
ing over the volume of the satellite gives the rate at which work is done on the
satellite.

The rate of energy dissipation in the satellite is

(2)
dE

dt
= −

∫
Body

ρ�v · ∇UT dV,

where ρ is the density and dV is the volume element. To a good approximation
a satellite may be assumed to be incompressible ∇ · �v = 0 (Peale and Cassen,
1978). The product rule gives

(3)∇ · (UT �v) = �v · ∇UT + UT ∇ · �v,

so, with the assumption of incompressibility, the rate of energy dissipation is

(4)
dE

dt
= −

∫
Body

ρ∇ · (UT �v)dV.

If we ignore any variation of density in the body, Gauss’s theorem allows us to
write the rate of energy dissipation as a surface integral

(5)
dE

dt
= −ρ

∫
Surface

UT �v · �ndS,

where �n is the normal to the surface and dS is the surface area element. Now
�v · �n is the rate at which the height of the surface changes. The height of the tide
at any point on the surface is approximately

(6)�r = −h2U ′
T

g
,

where h2 is the displacement Love number for the satellite, g is the local ac-
celeration of gravity, and the prime on UT indicates that the tidal potential is
given a phase delay because the dissipative tidal response lags the forcing. So

(7)
dE

dt
= ρh2

g

∫
Surface

UT
d

dt
(U ′

T )dS.

The tide-raising gravity-gradient potential is

(8)UT = −GMR2

r3
P2(cosα),

where P2 is the second Legendre polynomial, α is the angle at the center of the
satellite between the planet to satellite line to the point in the satellite where
the potential is being evaluated, R is the distance from the satellite center to the
evaluation point, and r is the planet to satellite distance.

Consider motion in a fixed elliptical orbit, with eccentricity e. Choosing
rectangular coordinates with the x-axis aligned with the orbit pericenter and
the orbit in the (x, y)-plane, the orbital position is

(9)o = (r cosf, r sinf,0)

with true anomaly f . In terms of planetocentric longitude λ and colatitude θ ,
the rectangular components of a surface element in the unrotated satellite (or at
the initial time) are

(10)s0 = (R sin θ cosλ,R sin θ sinλ,R cos θ).

Assuming uniform synchronous rotation about the z-axis (perpendicular to the
orbit plane), the rectangular components of this element at time t are

(11)s = Rz(nt)s0 = (
R sin θ cos(λ + nt),R sin θ sin(λ + nt),R cos θ

)
,

where Rz(nt) is an active right-handed rotation about the z-axis by the angle
nt . The dot product of the surface element with the orbital position gives o · s =
rR cosα. This completes the expression for the tidal potential as a function of
time and location on the surface. The delayed tidal potential U ′

T
is found by
replacing nt by nt + � in the expression for UT . The tidal model used here is
the one where 1/Q is proportional to frequency. This is sometimes known as
the Mignard model (Mignard, 1980).

The average rate of energy dissipation is found by carrying out the surface
integral, Eq. (7), and averaging over an orbital period.

The surface integral may be carried out by expanding the integrand as a
Poisson series in the angular variables. Any term containing λ then integrates
to zero, the rest are multiplied by 2π . The θ integrals are simple. The details are
unilluminating and will not be shown. The calculations were carried out with
computer algebra, and checked by performing the integrals numerically. The
result is

(12)
dE

dt
= ρh2

g

G2M2R6n

a6
γ,

where

γ
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and where β = (1 − e2)1/2. The values of r ′ and f ′ are those of the radius r

and true anomaly f for a mean anomaly of nt + �.
We assume the dissipation is small and can therefore approximate

(14)γ = γ0 + dγ

d�
� + · · · ≈ γ0 + dγ

d�
sin�,

where γ0 is the value of γ for � = 0, and the derivative dγ /d� is evaluated
at � = 0. With this approximation the time average of the energy dissipation
expression can be completed analytically.

Using

(15)
df

dM = β

(
a

r

)2

and

(16)
d(a/r)

dM = − e sinf

β2

df

dM ,

where M is the mean anomaly, we find

1
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.

The time average of the energy dissipation can be found by integrating the
energy dissipation over an orbital period and dividing by the orbital period.
Note that γ0 is proportional to sinf/r7, and its time average is zero. Thus we
just need to calculate the average of dγ /d�.

The integrals involving the radius and true anomaly can be expressed ex-

actly in terms of Hansen functions X
ij
k

(Plummer, 1960; Mignard, 1980). The
time average of the energy dissipation is

(18)
dE

dt
= ρh2

g

G2M2R6n

a6

〈
dγ

d�

〉
sin�,

where 〈dγ /d�〉 is the average of dγ /d� over an orbit period:

1
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The Hansen functions satisfy the following identities (Mignard, 1980)3:

eX
−(n−1),1
0 (e) = β2X

−n,0
0 (e) − X

−(n−1),0
0 (e),

(20)X
−n,2
0 (e) = − 2β2

e(n − 1)
X

−(n+1),1
0 (e) + X

−n,0
0 (e).

Using these identities, the expression g = 4πGRρ/3, which is valid for a
satellite of uniform density, the relation k2 = 3h2/5, which is valid for small
homogeneous satellites, and the relation sin� = 1/Q, which is valid for small
1/Q, we find that the average rate of energy dissipation is

(21)
dE

dt
= 21

2

k2

Q

GM2R5n

a6
ζ(e),

where ζ(e) is an eccentricity-dependent factor

(22)ζ(e) = 20

49
β2X
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49
X
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7
βX
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7
X
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Note that this is the same form as the familiar expression for tidal dissipation,
but with the factor e2 replaced by the factor ζ(e).

Mignard (1980) notes that these particular Hansen functions have closed
form expressions in terms of the eccentricity. Thus the ζ(e) factor may be writ-
ten explicitly:

(23)ζ(e) = 2

7

f0(e)

β15
− 4

7

f1(e)

β12
+ 2

7

f2(e)

β9
,

where

f0(e) = 1 + 31

2
e2 + 255

8
e4 + 185

16
e6 + 25

64
e8,

f1(e) = 1 + 15

2
e2 + 45

8
e4 + 5

16
e6,

(24)f2(e) = 1 + 3e2 + 3

8
e4.

Recall that β = (1 − e2)1/2.
The factor ζ(e) depends only on e2 and has no constant term, so we may

write it

(25)ζ(e) = e2η(e),

where η(e) is an enhancement factor. It is the factor by which the familiar
formula for tidal dissipation is multiplied to get the correct formula for tidal
dissipation at arbitrary eccentricity (with obliquity zero).

The enhancement factor η(e) should be evaluated by the exact expressions
above, but it is interesting to display it as a power series:

(26)η(e) = 1 + 18e2 + 3329

28
e4 + 55551

112
e6 + 201669

128
e8 + · · · .

This polynomial agrees with the polynomial representation of the energy dissi-
pation rate given in Peale and Cassen (1978). The enhancement factor and this
polynomial approximation are shown in Fig. 1. For moderate to large eccen-
tricity even a high degree polynomial gives a poor approximation to the actual
dissipation rate.

3. Obliquity

In this section, we generalize the results of the previous section to include
arbitrary obliquity of the satellite with respect to the orbit. Only key points will
be presented, as the calculation is straightforward though tedious. Computer
algebra was used.

Obliquity is introduced by modifying Eq. (11):

(27)s = Rz(Λ)Rx(I )Rz(nt)s0,

where I is the obliquity, and Λ is a measure of the longitude of the node of the
equator on the orbit plane with respect to the pericenter of the orbit, and Ri is
an active right-handed rotation about the indicated axis by the indicated angle.

3 The second identity has a typographical error in Mignard (1980).
Fig. 1. The dissipation enhancement factor η(e) for synchronous rotation is
plotted as a function of eccentricity e. The enhancement factor is the factor
by which the familiar formula for tidal dissipation is multiplied to get the ac-
tual rate of tidal dissipation at arbitrary eccentricity (at zero obliquity). The
solid line shows the enhancement factor η(e); the dashed line shows the 8th de-
gree polynomial approximation. The dotted line shows the enhancement factor
ηL(e), valid for asymptotic nonsynchronous rotation.

The generalization of Eq. (17) is found to be
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The generalization of Eq. (22) is

ζ(e, I ) = 20
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Note the dependence on Λ.
Finally, the generalization of Eq. (23) is

ζ(e, I ) = 2

7
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where

(31)f3(e) = 1 − 11

6
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3
e4 + 1

6
e6.

The rate of tidal dissipation is given by Eq. (21), with ζ(e) replaced by its
generalization ζ(e, I ).4

It is interesting to note that a Λ-dependent term survives; with both obliq-
uity and eccentricity the rate of dissipation depends on the longitude of the

4 To second order in eccentricity and obliquity, this expression agrees with
corresponding terms given in Wisdom (2004).
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equator relative to the pericenter. However, if the relative precession of the
equator and the pericenter is rapid compared to timescales for changes in the
eccentricity and obliquity, then the Λ-dependent term will average to zero.

4. Tidal dissipation for asymptotic nonsynchronous rotation

Levrard et al. (2007) derived expressions for the asymptotic rate of rota-
tion and rate of tidal dissipation for a satellite (or extrasolar planet) that is not
locked in a spin–orbit resonance. The assumed tidal model is the same as the
one assumed here. The derived equilibrium rotation rate is

(32)ωeq = N(e)

Ω(e)

2x

1 + x2
n,

where

(33)N(e) = 1

β12

(
1 + 15

2
e2 + 45

8
e4 + 5

16
e6

)
= f1(e)

β12
,

(34)Ω(e) = 1

β9

(
1 + 3e2 + 3

8
e4

)
= f2(e)

β9
,

and x = cos I for obliquity I . The derived rate of tidal dissipation is

(35)
dE

dt
= 21

2
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Q
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ζL(e, x),

where ζL(e, x) is

(36)ζL(e, x) = 2
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)
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.

For zero obliquity (x = 1), we may write

(38)ζL(e,1) = e2ηL(e),

defining the nonsynchronous tidal dissipation enhancement factor ηL(e). This
is the factor by which the familiar formula for tidal dissipation is multiplied to
get the tidal dissipation in an asymptotic nonsynchronous rotation state, with
zero obliquity. It is interesting to display a power series representation of the
enhancement factor ηL(e):

(39)ηL(e) = 1 + 54

7
e2 + 1133

28
e4 + 31845

224
e6 + · · · .

Levrard et al. (2007) compared the derived rate of dissipation for the non-
synchronous case (valid at arbitrary eccentricity and obliquity) to Eq. (45) of
Wisdom (2004) (which is valid only at small eccentricity and/or small obliq-
uity; only second-order terms were kept). They found that dissipation in the
nonsynchronous case was much larger than in the synchronous case. Now that
we have an expression for the rate of tidal dissipation that is valid at arbitrary
eccentricity it is appropriate to make a new comparison of the derived rates,
using expressions that are both valid at arbitrary eccentricity. To this end, the
enhancement factor ηL(e) is also plotted in Fig. 1. Contrary to the conclusion
of Levrard et al. (2007), and somewhat surprisingly, we see that the rate of
tidal dissipation for synchronous rotation is always greater than for asymptotic
nonsynchronous rotation, at zero obliquity. As e tends to 1, both of these en-
hancement factors are proportional to β−15 and the ratio η(e)/ηL(e) tends to
195/41 or about 4.756. Numerically, we find that the dissipation rate in syn-
chronous rotation is greater than or equal to that in asymptotic rotation for any
obliquity and eccentricity. This is illustrated in Fig. 2.

5. Summary

We have derived a concise, closed form expression for the rate of tidal dissi-
pation in a synchronously rotating body for arbitrary eccentricity and obliquity.

The derivation presented here is strictly valid only for homogeneous bodies
(constant density), which are small enough that the Love numbers satisfy k2 =
Fig. 2. The tidal dissipation factor ζ(e, I ) is plotted (solid line) versus the cosine
of the obliquity I for eccentricities 0.2, 0.4, and 0.6. Dissipation increases with
increasing eccentricity. Also plotted (dashed line) is the corresponding dissipa-
tion factor ζL(e, I ) for asymptotic nonsynchronous rotation. Tidal dissipation
in synchronous rotation is greater than or equal to the dissipation in asymptotic
nonsynchronous rotation.

(3/5)h2. The familiar expression for tidal dissipation, Eq. (1), has the same
domain of applicability.

The rate of dissipation is enhanced over the familiar formula, Eq. (1), by
several orders of magnitude at high eccentricity (Fig. 1), and diverges as the
eccentricity approaches unity.

The rate of tidal dissipation in a synchronously rotating satellite is larger
than that in an asymptotic nonsynchronous rotation state, contrary to the con-
clusions of Levrard et al. (2007).
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