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a b s t r a c t

Coupled thermal–orbital histories of early lunar evolution are considered in a simple model. We consider
a plagioclase lid, overlying a magma ocean, overlying a solid mantle. Tidal dissipation occurs in the pla-
gioclase lid and heat transport is by conduction and melt migration. We find that large orbital eccentric-
ities can be obtained in this model. We discuss possible consequences of this phase of large eccentricities
for the shape of the Moon and geochronology of lunar samples. We find that the orbit can pass through
the shape solution of Garrick-Bethell et al. (Garrick-Bethell, I., Wisdom, J., Zuber, M. [2006]. Science 313,
652), but we argue that the shape cannot be maintained against elastic deformation as the orbit contin-
ues to evolve.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Garrick-Bethell et al. (2006) argued that the shape of the Moon
could be explained if the Moon froze in its shape while its orbit was
eccentric and the rotation state was either synchronous or in the
3:2 commensurate state (as is Mercury). For synchronous rotation
the implied orbit is a ¼ 22:9RE; e ¼ 0:49, and for the 3:2 spin–orbit
state the orbit is a ¼ 24:8RE; e ¼ 0:17, where a is the semimajor
axis of the lunar orbit and e is the orbital eccentricity. There are
two questions to be addressed by this hypothesis: can evolutionary
scenarios be generated such that the lunar orbit passes through the
shape solutions, and can the shape of the Moon be frozen in at this
epoch?

Past studies of the evolution of the lunar orbit have largely ig-
nored the evolution of the eccentricity, and focused instead on
the evolution of the orbital inclination (e.g. Goldreich, 1966;
Touma and Wisdom, 1994). One exception is Touma and Wisdom
(1998), in which the evolution of the lunar orbit through the evec-
tion and eviction resonances was studied. Large eccentricities were
obtained, but at an earlier epoch (and smaller semimajor axis) in
the evolution of the lunar orbit than suggested by the shape solu-
tions. In this paper we explore an evolutionary scenario that
reaches moderately large eccentricities during the epoch indicated
by the shape results. A key element of our scenario is that the orbi-
tal evolution is coupled to the thermal evolution; in this model
large eccentricities can be obtained during the shape epoch and
still decay sufficiently to connect to the current configuration of
the lunar orbit.
ll rights reserved.
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We present a coupled thermal model for the evolution of the lu-
nar orbit. We expect that in a lid decoupled from the mantle by a
magma ocean tidal heating will be enhanced in the lid (Peale
et al., 1979) and dominate that in the mantle. Here we assume dis-
sipation occurs entirely in the lid and that heat transport in the lid
is by conduction and melt migration. The model is limited, and
there are many unknown parameters. Our goal is not to explore
evolutions for all possible parameters, but to show that a high
eccentricity orbital phase passing through the shape solution and
consistent with today’s orbit can be obtained.

In the next section we review aspects of lunar geochronology.
Then we recall the Mignard evolutionary equations, correcting a
number of typographical errors. This is followed by a presentation
of the dissipative lid thermal model, a discussion of the elastic sta-
bility of the shape, and our conclusions. In an Appendix A we pres-
ent in detail the two-layer model for tidal dissipation developed by
Peale and Cassen (1978) in their classic study of tidal dissipation in
the Moon, correcting a number of typographical errors and making
the results explicit.
2. Geochronology constraints

At the beginning of magma ocean solidification the iron- and
magnesium-rich phases crystallizing from the cooling magma sink
to the bottom of the magma ocean. When approximately 80% of
the lunar magma ocean has solidified, plagioclase will begin to
crystallize and float; plagioclase will continue to be added to this
flotation crust until the last dregs of the magma ocean solidify
(Snyder et al., 1992). The ages of the plagioclase in the anorthosite
flotation crust, therefore, could span the range from about 80%
solidification to the age when the last plagioclase cools below its
closure temperature. Here we stress that though geochronological
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anorthosite ages have often been interpreted as recording the time
of magma ocean solidification, the two are actually decoupled.
Anorthosite begins to form long before the magma ocean is solid-
ified, greatly prolongs the remaining solidification process, and
may record ages younger than the time of magma ocean solidifica-
tion if cooled slowly or reheated later.

The short half-life of the tungsten–hafnium (W–Hf) decay sys-
tem allows dating of the time of separation of the metallic core
of a planet from its silicate mantle. Recent work by Touboul et al.
(2007) indicates that both the Moon and Earth differentiated pri-
marily after the W–Hf system was extinct, that is, at 60 �10/
+90 Myr or more after solidification of the first Solar System mate-
rials. Earlier measurements using the same system lead Yin et al.
(2002) to conclude that the giant Moon-forming impact occurred
at 29 Myr after Solar System formation.

Using 4.567 Gyr as the formation time of the oldest Solar Sys-
tem materials (Connelly et al., 2008) and both the W–Hf dates de-
scribed here, the earliest age that the Earth and Moon likely
differentiated is between 4.538 and 4.507 Gyr. This age for the
putative Moon-forming giant impact marks the beginning of the
geochemically-determined timeline of formation and cooling of
the Moon.

The oldest surface materials on the Moon are assumed to be the
anorthositic highlands, formed by flotation in the lunar magma
ocean (Wood et al., 1970; Smith et al., 1970). Though there have
been a number of geochronological ages determined using the
Sm–Nd system, it has inherent difficulties that are improved upon
by using the more precise U–Pb system. Nemchin et al. (2009) da-
ted a single zircon crystal from a lunar crustal breccia and obtained
an age of 4.417 ± 0.06 Gyr. This zircon was likely the product of
crystallization of a small pocket of melt, and implies that this por-
tion of the crust recorded an age of 90–121 Myr after lunar
formation.

Planets with a magma surface should cool extremely quickly
(Abe, 1993, 1997; Elkins-Tanton, 2008). A plagioclase flotation
crust will slow the cooling of the planet significantly in comparison
to the cooling of a magma ocean with a liquid surface. Calculations
based on techniques from Elkins-Tanton (2008) indicate that the
lunar magma ocean may have solidified to 80% in less than 104

years, and perhaps as little as 103 years. After this near-instanta-
neous interval plagioclase will begin to form and float. Once suffi-
cient anorthosite has floated to cover the surface of the Moon,
cooling will slow substantially; conductive heat loss through the
anorthosite lid is the rate-limiting step in cooling.

The anorthosite will record the age at which it cooled past its
closure temperature. When the minerals making up the lid are
heated, they are prone to losing their radiogenic daughter products
through increased diffusion. The closure temperature below which
radiogenic ages are preserved through lack of diffusion depends
upon mineral type, mineral composition, cooling rate, and absolute
temperature. Zircon would lose its original lead composition when
subjected to moderate thermal events, on the order of 1000 �C, for
even short periods. A 0.1 mm zircon that is heated to 1000 �C for
20,000 years will lose its lead and be geochronologically reset
(Cherniak and Watson, 2003). Therefore, no matter when the anor-
thosite originally formed, if it remains hot or is again heated, the
age will record that event. The mineral geochronology is effectively
measuring the time of cooling of the tidally heated lid, and not its
time of formation.
3. The orbital and rotational model

Mignard (1979–1981) has derived approximate averaged equa-
tions governing the evolution of the lunar eccentricity and inclina-
tion. The equations of motion are averaged over the orbital period
and the period of precession of the lunar orbit. Solar perturbations
are included. We use these here, but we allow the relative amount
of dissipation in the Moon to that in the Earth (the Mignard A
parameter) to change with the thermal state of the Moon.

The Mignard evolutionary equations are:
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; G is Newton’s constant, X ¼ a=RE, with RE the radius

of the Earth, a is the semimajor axis of the lunar orbit, e the orbital
eccentricity, n is the orbital mean motion, i is the orbital inclination
to the ecliptic, I is obliquity, x is rotation rate, m is the mass of the
Moon, M is the mass of the Earth, l ¼ ð1=mþ 1=MÞ�1 is the reduced
mass, and unless otherwise stated primed variables refer to the
Moon and unprimed variables refer to the Earth. We also define
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is a measure of the relative amount of dissipation in the Moon to the
dissipation in the Earth, where k2 is the potential Love number, Q is
the tidal dissipation factor, and R is the radius of the Moon,
1738 km. The moment of inertia ratio for the Earth is
a ¼ CE= MR2

E

� �
. We take a ¼ 0:33.

The Mignard model is limited. The doubly averaged equations
cannot follow the precession of the lunar orbit. Furthermore, they
use only a single tidal model (the constant Dt Mignard model). The
current Moon laser ranging results indicate that the frequency
dependence of tidal dissipation might be better described by a
more complicated model (Efroimsky and Williams, 2009). How-
ever, the physical state of the Earth and Moon in the situation un-
der consideration is so different than at present it is not clear that
the same frequency dependence would apply. We assume here
that Q is temperature dependent, but ignore possible frequency
dependence. A more complicated model does not seem warranted.

The obliquity of the Moon varies substantially as the orbit
evolves (Ward, 1975; Wisdom, 2006); in particular large obliqui-
ties are obtained during the ‘‘Cassini transition” at around
a ¼ 33RE, and the rate of tidal dissipation depends on the obliquity
(Peale and Cassen, 1978; Wisdom, 2008). However, Peale and
Cassen (1978) showed that the tidal heating due to the high obliq-
uities during the Cassini transition did not substantially affect the
thermal evolution of the Moon. Here, we are focusing on an earlier
epoch during which the obliquity is likely to be close to zero. We
take the lunar obliquity I0 ¼ 0 throughout the evolution.

In our simplified model we assume that the Mignard A parameter
varies primarily due to variation in the k2=Q of the Moon. This as-
sumes that the change in dissipation in the Moon dominates that
in the Earth. The reason for this is that the Moon has a lid, which
makes the magma ocean last longer than that of the Earth. We define

A ¼ CAðk02=Q 0Þ ð18Þ

where CA ¼ A0=ðk02=Q 0Þ0, where A0 and ðk02=Q 0Þ0 are the initial values
of these parameters.

The current value of the A parameter is about 0.3 (Williams
et al., 2001), but the value of A early in the evolution of the
Earth–Moon system is very uncertain. The Q of the Earth is cur-
rently dominated by the Earth’s oceans; the Earth’s solid body Q
is estimated to be 280 (Ray et al., 2001). But the Q of the early
Earth, which may have had a magma ocean, may be very differ-
ent—perhaps ranging from 1 to 300. The k2 of the early Earth might
be more like the fluid Love number of the Earth (0.97) than its cur-
rent value (0.299). The Q of the Moon has similar uncertainties—
perhaps also ranging from 1 to 300. The k2 of the Moon is presently
dominated by rigidity (0.025); the k2 of an early Moon might be
closer to the fluid value of 3/2 for a homogeneous fluid body. Tak-
ing account of these uncertainties, the A parameter appropriate for
the early Earth–Moon system might range from roughly
0:01 < A < 1000. We will focus on an initial A parameter of about
1.0, roughly in the middle of this range. For larger values of A0 the
eccentricity plummets to values that are not easy to reconcile with
the current eccentricity; for smaller values of A0 the eccentricity
does not get low enough.

The initial rotation state of the Moon is not known. Here we
consider only the possibilities that the Moon’s rotation was ini-
tially synchronous or initially nonsynchronous and asymptotic
(Peale and Gold, 1965; Hut, 1981). We did not explore an initial
3:2 rotation state, because we think the synchronous solution is
more plausible. For the 3:2 solution one must satisfactorily explain
how the Moon was captured into the resonance and then explain
how it escaped. For a constant Dt (Mignard) tidal model, the
expression for the asymptotic rotation rate is (Levrard et al., 2007)

x0

n
¼ NðeÞ

XðeÞ
2x

1þ x2 ð19Þ
where x ¼ cos I0, for the obliquity of the Moon I0; NðeÞ ¼ f1ðeÞ=b12,
and XðeÞ ¼ f2ðeÞ=b9. If the Moon’s initial rotation was nonsynchro-
nous and asymptotic, then when the Moon’s rotation rate is close
enough to synchronous the rotation rate becomes locked to syn-
chronous. Here we assume that locking occurs if

x0

n
� 1

				 				 < 5
8
� ð20Þ

where � ¼ ð3ðB� AÞ=CÞ1=2 is the out-of-roundness parameter, and
A < B < C are the principal moments of inertia of the Moon. We
do not know the value of �when capture might have occurred; here
we take the critical ð5=8Þ� to be 0.01. The evolution is not sensitive
to this choice, because once the eccentricity begins to decrease, it
decreases rapidly to small values.

The initial eccentricity of the Moon is also unknown. We pre-
sume here that the Moon formed from a giant impact with the
Earth, and that the Moon formed roughly in the equatorial plane
of the Earth with only moderate eccentricity. The Moon-forming
n-body simulations of Kokubo et al. (2000) found that the eccen-
tricity of the initial lunar orbit ranged from 0.00 to 0.15. We think
that these results should not be taken too literally since the phys-
ical state of the Moon-forming disk is not likely to be well repre-
sented by a collection of cold point particles. Instead it is likely
that the Moon-forming disk was largely molten (Thompson and
Stevenson, 1988), and that the Moon formed from cooler material
being lost from the outer edge of the disk. But the formation of the
Moon in this scenario has not been studied, so there are no other
hints as to the initial eccentricity of the lunar orbit. Another pro-
cess may play a role in setting the initial orbital eccentricity: pas-
sage through the evection resonance. Even if the dance of the lunar
orbit through the evection and eviction resonances as described in
Touma and Wisdom (1998) does not occur (perhaps because the
rate of tidal evolution is too large for capture to occur) it is likely
that the eccentricity will suffer a non-adiabatic change on passing
through the strong evection resonance. Touma and Wisdom (1998)
found non-adiabatic eccentricities from 0.00 to 0.08 in this case.
We assume e ¼ 0:05 at X ¼ a=RE ¼ 6, initially. We assume the ini-
tial inclination at this point is 10�, the initial rotation period of the
Earth is 5 h, and the initial obliquity of the Earth is 10� (Touma and
Wisdom, 1994).

4. The dissipative lid model

The model Moon consists of a plagioclase lid with initial thick-
ness 10 km, above a magma ocean with initial thickness 200 km,
above a solid interior. We assume that the magma ocean is con-
vecting and the adiabatic temperature profile is characterized by
a constant temperature Tf (the temperature at the top of the mag-
ma ocean). We take the initial value Tf ¼ 1573 K. Tidal heating oc-
curs solely in the lid and the temperature profile of the lid is
modeled. The temperature at the surface of the lid is fixed at the
equilibrium temperature, assumed to be 280 K. The temperature
at the base of the lid is fixed to match the temperature of the mag-
ma ocean, Tf . We assume an initial thermal profile that is linear be-
tween these two values. The temperature profile in the lid evolves
according to Fourier’s law of heat conduction. As the temperatures
in the interior of the lid evolve to above the solidus of plagioclase,
heat is advected to the layers above by rising plagioclase liquid.
The solidus of plagioclase is assumed to be Tp ¼ 1823 K (Deer
et al., 1996).

The thermal evolution in the lid is described by

@T
@t
¼ 2j

r
@T
@r
þ @

@r
j
@T
@r

� �
þ H

qlCp
þ @T
@t

				
melt

ð21Þ

where r is the radius and t is the time, H is the local volumetric tidal
heating rate, j ¼ k=ðqlCpÞ is the thermal diffusivity, Cp is the specific
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heat capacity, and k is the thermal conductivity. The density in
the lid ql is 2730 kg=m3. We use Cp ¼ 1256 J kg�1 K�1 and j ¼
10�6 m2 s�1. This equation is just Fourier’s law written in spherical
coordinates, with the approximation that the heating and tempera-
ture are spherically symmetric (do not depend on angles).

The tidal heating rate in a homogeneous satellite at arbitrary
eccentricity and obliquity was determined by Wisdom (2008).
There it was shown that the tidal heating at large eccentricity
can be dramatically larger than the conventional ðe2Þ formula
gives. That calculation assumes a specific tidal model, where the ti-
dal bulge is delayed by a constant time lag (the Mignard model).
For other tidal models presumably the form of the dissipation is
somewhat different, but considering other uncertainties this form
should be adequate. The heating rate is

dE
dt

				
Tidal

¼ 21
2

k2

Q
GM2R5n

a6 fðe; I0Þ ð22Þ

where k2 and Q are the satellite’s potential Love number and tidal
dissipation factors, respectively, M is the mass of the Earth, R is
the radius of the (homogeneous) Moon, n is the orbital mean mo-
tion, a is the semimajor axis of the orbit, e is the orbital eccentricity,
I0 is the obliquity of the satellite to the orbit, and

fðe; I0Þ ¼ 2
7

f0ðeÞ
b15 �
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7
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7
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where b ¼ ð1� e2Þ1=2.
We use the two-layer model from Peale and Cassen (1978) de-

scribed and corrected in Appendix A to estimate the tidal heating
as a function of radius in the lid. The local heating rate, averaged
over angles, is given by:
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where the surface acceleration on the Moon is g ¼ 1:62 m s�2 and,
where lL is the rigidity of the lid, which we assume constant. We
use 6:5� 109 N m�2. This is a factor of 10 smaller than that used
by Peale and Cassen (1978) based on seismic velocities in today’s
cold Moon; we use a lower rigidity because of the high tempera-
tures in the lid during the early epoch. To some extent the choice
of rigidity is arbitrary and offset by the uncertainty in the values
of the tidal Qs of the early Earth and Moon. The temperature depen-
dence of the rigidity of the plagioclase lid is ignored and the a0i and
k2 functions are given in Appendix A.

The lid is varying in thickness dl and we parameterize depth in
the lid using y which varies from 0 (at the surface) to 1 (at the
base). Let Tðt; rÞ ¼ T 0ðt; yÞ, with r ¼ R� dly, where R is the radius
of the Moon, then the heat equation becomes
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We introduce a discretization of the lid by dividing it into N
spherical shells of thickness Dr ¼ dlDy. Let Ti be the temperature
in the ith shell corresponding to yi ¼ iDy, where i runs from 0 at
the surface to N at the base of the lid. Then Eq. (25) becomes
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y _dl

dl
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The melt migration term is handled separately.
As layers of the lid reach their melting temperature, portions of
these layers begin to melt as heat continues to be added. The
amount of melt mass depends on the latent heat of melting,
L ¼ 5� 105 J=kg. These melted portions rise to the surface, due to
their positive buoyancy, bringing heat and mass with them. We
model the ascent of this melt using a leaky dike model, where
the melt loses a fraction of its heat and mass to each layer that it
rises through. We varied the leak fraction from 0 to 1. The qualita-
tive behavior is insensitive to this parameter; for the runs reported
here we use 0.02 (for N ¼ 100). Any heat remaining when the melt
reaches the surface is assumed to be instantaneously radiated
away. The remaining mass is deposited at the surface and the lay-
ers are redefined to account for the new mass distribution. As the
melt is removed from a layer and redeposited in other layers or at
the surface, the layers are redefined so that they remain equal in
mass to the original layers. The temperature of the redefined layer
is the mass-weighted average of the temperatures of the original
layers that were incorporated into each layer.

The thermal evolution of the magma ocean is described by two
equations. First,

4pðR� dlÞ2k
dT
dr

				
base

þ _Er ¼ �4pðR� dlÞ2k
1
dl

dT
dy

				
base

þ _Er

¼ Cpqf ð _Vf Tf þ _Tf Vf Þ ð27Þ

where the left-hand side is heat conducted out of the magma ocean
into the lid plus radiogenic heating _Er , and the right-hand side is the
change in heat content as a result of changing the volume Vf by
both melting/freezing and changing the temperature in the magma
ocean. We take qf ¼ 3000 kg m�3. We compute the radiogenic heat-
ing by extrapolating the chondritic abundances of 235U, 238U, 40K,
and 232Th back to the time of formation of the Moon. We then mul-
tiply by the heat production per mass, the density, and the volume
of the magma ocean and sum over the four isotopes. The half-lives,
current abundances, and specific heat productions are given by
Turcotte and Schubert (2002).

Second,

_Tf

Tsol
f ¼ �

_Vl

Vfi
¼ �4pðR� dlÞ2

_dl

V fi
ð28Þ

which describes the fractional crystallization of the magma ocean.
Here Vf is the volume of the magma ocean and Vl is the volume
of the lid. We are assuming fractional solidification is linear be-
tween the magma ocean solidus and liquidus. Here, Tsol ¼ Tfi � Ts

is the difference between the initial temperature in the magma
ocean and the solidus, and Vfi is the initial volume of the magma
ocean. Each fractional increment in temperature change between
those values, DTf =Tsol, results in a similar fractional change in the
solid to liquid ratio of the magma ocean DVf =Vfi. The factor f is
the proportion of plagioclase in the solidified portion of the melt;
this is added to the base of the lid. We assume f ¼ 0:2 (Snyder
et al., 1992; Warren, 1986). As the magma ocean crystallizes, f gives
the fraction of material that joins the lid and 1� f gives the fraction
that joins the solid interior at the base of the magma ocean.

The solidus of the fractionally solidifying magma ocean, Ts, is
parameterized to fit the bulk lunar mantle solidus of Longhi
(2003). As crystallization proceeds and solidification moves to
shallower depths, the solidus moves to lower temperatures than
the Longhi (2003) results as the remaining liquid composition
evolves. This evolution is expressed in the final term of the solidus
expression, calibrated to match temperatures calculated from the
MELTS program (Ghiorso and Sack, 1995). We use

Ts ¼ 2134� 0:1724�� 1:3714� 10�4�2 � 4:4
0:2Vf =Vfi þ 0:01

ð29Þ



Fig. 1. The eccentricity of the lunar orbit plotted versus the semimajor axis of the
orbit, for the dissipative lid model. For reference, the dot shows the orbit that gives
the solution to the shape problem for synchronous rotation.

Fig. 2. The tidal heating rate in the lid plotted versus time (solid line, see left axis).
The radiogenic heating rate in the magma ocean is shown as a dotted line. The
dashed line shows the orbital eccentricity versus time (see right axis).
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where Ts is the solidus in Kelvin and � is the radius of the base of the
lid in kilometer.

The change in magma ocean depth df can be related to the
change in lid thickness using _Vl ¼ �f _Vf :

_df ¼
ð1� 1=f ÞðR� dlÞ2 � ðR� dl � df Þ2

ðR� dl � df Þ2
_dl ¼ A1

_dl: ð30Þ

Then we can relate the rate of change in magma ocean volume
_Vf to the rate of change of the lid thickness _dl. The volume of the
magma ocean is

Vf ¼
4
3
pðR� dlÞ3 �

4
3
pðR� dl � df Þ3 ð31Þ

and so

_Vf ¼ �4pðR� dlÞ2 _dl þ 4pðR� dl � df Þ2ð _dl þ _df Þ ¼ A2
_dl þ A3

_df ð32Þ

Solving the above equations, we find that

_dl ¼
�4pðR� dlÞ2j1

dl

dT
dy

			
base
þ _Er

�4pð1=f ÞðVf =VfiÞðR� dlÞ2Tsol þ Tf ðA2 þ A1A3Þ
ð33Þ

and

_Tf ¼ �
Tsol

f
4pðR� dlÞ2

Vfi

_dl ð34Þ

Upon discretization, Eq. (33) becomes

_dl ¼
�4pðR� dlÞ2jðTN�1 � TN�2Þ=ðDydlÞ þ _Er

�4pð1=f ÞðVf =VfiÞðR� dlÞ2Tsol þ Tf ðA2 þ A1A3Þ
ð35Þ

We choose an effective 1=Q of the lid by averaging the 1=Q of
the individual layers, as given in terms of the temperature of each
layer by the Ojakangas–Stevenson formula,

1
Q
ðTiÞ ¼

1
Q max

þ 1
Q min

� 1
Q max

� �
Ti

Tp

� �n

ð36Þ

We set Q max ¼ 100, and let Qmin vary with the run. Experimen-
tally, the parameter n ranges from 20 to 30 (Ojakangas and
Stevenson, 1986); we use 25. We integrate Eqs. (26) and (35) as
well as the equations for _df and _Tf using the Bulirsch–Stoer algo-
rithm, which has automatic step-size control. We carry out melt
migration every 1 year. In our simulations we usually set the
number of layers N ¼ 100, but varied this parameter (and the
corresponding leak fraction) to check that our results were insen-
sitive to it.

Fig. 1 shows the eccentricity of the lunar orbit versus the semi-
major axis for a run in which A0 ¼ 1:0, the Earth’s phase lag
Dt ¼ 123 min (with k2 ¼ 0:97), and the lunar Q min ¼ 0:35. These
parameters were chosen to give a peak eccentricity near that re-
quired by the shape solution. There is considerable flexibility in
the peak eccentricity; generally, increasing the dissipation in the
Earth (larger Dt) gives a larger emax, but this must be compensated
by a smaller Qmin to match the current eccentricity of the lunar orbit.
A more complete model would allow the Earth’s k2 and Q to vary
with time, and would probably give different constraints on Q min

for the Moon. Thus the very low value of Qmin should not be taken
too seriously. We reduced Dt to 2.6 min (with k2 ¼ 0:299) when
the orbit reached 30RE to approximate the changes in these param-
eters, and so that the evolution to 60RE would take about 4.6 Gyr.

Fig. 2 shows the tidal heating in the lid and compares it to the
radiogenic heating in the magma ocean. Tidal heating peaks when
the eccentricity is at a maximum and remains higher than the
radiogenic heating rate until the eccentricity becomes small.

Fig. 3 shows the evolution of the depth of the lid and the depth of
the magma ocean as a function of time. In this model, the magma
ocean solidifies at 272 Myr. The lid reaches a final thickness of
46 km. Radiogenic heating prolongs the magma ocean by about
55 Myr.
Fig. 4 shows the temperature at four layers in the lid versus the
logarithm of the time for this same run. The temperature at 10 km
depth decreases below the closure temperature of 1000 �C for zir-
cons (Cherniak and Watson, 2003) at a time of about 9.1 Myr, at
15 km depth at a time of 32.5 Myr, at 20 km depth at a time of
63.2 Myr, at 25 km depth at a time of 100.2 Myr, and at 30 km
depth at a time of 142.0 Myr. Our model cannot follow the temper-
atures in the lid once the magma ocean solidifies, so the graphs of
the temperatures are terminated at this point. As discussed above,
the closure time needs to be 90–121 Myr after lunar formation to



Fig. 3. The depth of the magma ocean df (solid) and the depth of the lid dl (dotted),
plotted versus the logarithm of the time, for the dissipative lid model. In this model
the magma ocean disappears after about 217 Myr, and the lid reaches its full depth
of about 46.3 km.

6 J. Meyer et al. / Icarus 208 (2010) 1–10
match the zircon dates. Our model suggests that the dated zircon
originates from a depth of approximately 25 km.

Fig. 5 shows the temperature at four layers in the lid versus the
logarithm of the time for a run in which the eccentricity and conse-
quently the tidal heating has been set to zero. The thermal evolution
is decoupled from the orbital evolution. We see that tidal heating af-
fects the temperature of the shallowest layer, but not at depth. Thus
even without tidal heating the dated zircon must originate at a depth
of approximately 25. So the geochronology is consistent with our
Fig. 4. The temperature at four layers in the lid plotted versus the logarithm of the
time, for the dissipative lid model. The eccentricity behavior is as shown in Fig. 1.
The depths of each layer are 5 km, 10 km, 15 km, 20 km, 25 km, and 30 km. The
temperature increases with depth. The horizontal line indicates the approximate
closure temperature of zircon.
model if we focus on closure times at depth instead of solidification
times of surface materials. Therefore, the age of the lunar breccias is
not evidence for a high eccentricity phase of the lunar orbit.

5. Elastic stability of the shape solution

We have found that a high eccentricity phase of lunar evolution
can carry the Moon through the synchronous shape solution. But in
our model, and likely any model, the temperatures in the lid are
close to a peak during this phase. So for the shape to record this
high eccentricity phase, in our model we must rely on the rapid
freezing of the melt as it reaches the surface of the Moon. As a large
percentage of the lid is processed as melt during the high eccen-
tricity phase, this may give a way of recording the shape even
though tidal heating is also near a peak. Several questions arise,
though, concerning the subsequent stability of the shape of this
frozen lid. As the orbit continues to evolve to lower eccentricity
and larger semimajor axis, the gravitational and centrifugal poten-
tials change and so the lid must develop stress in order to maintain
its shape. Is this stress below the breaking stress? Is the lid strong
enough so that it can maintain its shape rather than elastically de-
form to subsequent hydrostatic shapes? We consider these ques-
tions in this section.

We follow the method described in Goldreich and Mitchell
(2009), Matsuyama and Nimmo (2008), and Vening Meinesz
(1947). First, recall (Garrick-Bethell et al., 2006) that the average ti-
dal and centrifugal potential at orbital eccentricity e and semima-
jor axis a gives rise to a triaxial distortion of the surface of the
Moon with the distortions along the principal axes of

Dra ¼ hcR
3
4

X�3;2;2ðeÞ þ
5

12

� �
ð37Þ

Drb ¼ �hcR
3
4

X�3;2;2ðeÞ �
5

12

� �
ð38Þ

Drc ¼ �hcR
1
2

X�3;0;0ðeÞ þ
1
3

� �
ð39Þ
Fig. 5. The temperature at four layers in the lid plotted versus the logarithm of the
time, for the dissipative lid model. Here the eccentricity and consequently the tidal
heating are set to zero. The depths of each layer are 5 km, 10 km, 15 km, 20 km,
25 km, and 30 km. The temperature increases with depth. The horizontal line
indicates the approximate closure temperature of zircon.
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where R is the radius of the Moon, h � 5=2 is the fluid displacement
Love number, Xi;j;k are Hansen functions (Plummer, 1960), and

c ¼ R
a

� �3 mEarth

mMoon
ð40Þ

We assume the â axis points to the Earth (the Moon rotates
synchronously), the ĉ axis is perpendicular to the orbit, and
the intermediate b̂ axis completes a right-hand basis set
ðâ; b̂; ĉÞ. In terms of these principal displacements we calculate
the displacement d of the surface of the rigid lid in terms of
the colatitude h measured from the ĉ axis, and the angle c mea-
sured from the â axis. (The spherical coordinates are completed
by a longitude / measured from the meridian through the â
axis.) We find

d ¼ R aðcos2 h� 1=3Þ þ bðcos2 c� 1=3Þ
� 


ð41Þ

with

cos c ¼ sin h cos / ð42Þ

and where

aR ¼ Drc � Drb ð43Þ
bR ¼ Dra � Drb ð44Þ

In terms of these, we can express the surface stresses:

rhh ¼Al Da ð3 cos2 hþ 1Þ þ Db ð3 cos2 / ð3� cos2 hÞ � 5Þ
� 


ð45Þ
r// ¼Al Da ð9 cos2 h� 5Þ

�
þDb ð3 cos2 / ð1� 3 cos2 hÞ þ 1Þ



ð46Þ

rh/ ¼Al Db ð3 cos h sin / cos /Þ½ � ð47Þ

where

A ¼ 2
3

1þ m
5þ m

� �
ð48Þ

and where l is the rigidity, and m is Poisson’s ratio, which we take
to be 1/4. In these expressions we have written the stress in terms
of Da and Db which are the differences between a and b at a gi-
ven orbit ða; eÞ minus the values of these parameters at the partic-
ular orbit given by the shape solution. We assume the stresses are
zero at the shape solution. Other components of the stress are
zero.

For a rigidity of 5� 1010 N m�2, the stresses are approximately
1 kbar. This is approximately the breaking stress for the lunar lith-
osphere (Solomon, 1986). Thus the lithosphere may break, losing
its shape. However, the rigidity is likely to be smaller than given
because the temperatures are high. So we may be able to avoid
breaking.

The Moon could also elastically respond to these stresses by
changing its shape. Now we consider whether this is energetically
favorable. Once the Moon’s orbit has returned to a low eccentricity,
the equilibrium shape will be different. If the Moon does not elas-
tically change its shape to match the equilibrium shape, gravita-
tional potential energy will be stored in the frozen-in shape. If
the Moon’s shape does change, elastic energy will be stored via
the additional stresses in the lithosphere. Since the Moon will tend
to the lowest energy configuration, we can judge which of these
two outcomes will occur by comparing the stored gravitational en-
ergy to the stored elastic energy.

The elastic energy density is given by

E ¼ 1
2

X
ij

rijuij ¼
1
2

rhhuhh þ rhhu//


 �
þ rh/uh/ ð49Þ
where the strains are given by

uhh ¼
rhh � mr//

2lð1þ mÞ ð50Þ

u// ¼
r// � mrhh

2lð1þ mÞ ð51Þ

uh/ ¼
rh/

2l
ð52Þ

We integrate over the volume of the lid to find the total elastic
energy

Ee ¼
2pdlR

2l
1þ m

A2 ðDaÞ2 8
5
mþ 8

� �
� DaDb

8
5
mþ 8

� ��
þðDbÞ2 19

40
mþ 55

8

� ��
ð53Þ

Next we compute the gravitational energy. The energy is

Eg ¼
Z

V
UTqr2 sin hdr dhd/; ð54Þ

where V is the volume of the Moon, and the average tidal potential
is

UTðr; h;/Þ ¼ n2r2 eUTðh;/Þ ð55Þ

We findeUTðh;/Þ ¼ B2ðeÞP2ðcos hÞ þ B2;2ðeÞP2;2ðcos hÞ cos 2/; ð56Þ

where P2ðxÞ ¼ ð3=2Þx2 � 1=2 and P2;2ðxÞ ¼ 3ð1� x2Þ and

B2ðeÞ ¼
1
2
þ 1

3
X�3;0;0ðeÞ ð57Þ

B2;2ðeÞ ¼ �
3
2

X�3;2;2ðeÞ ð58Þ

The Hansen coefficients are

X�3;2;2ðeÞ ¼ 1� 5
2

e2 þ 13
16

e4 � 35
288

e6 þ � � � ð59Þ

X�3;0;0ðeÞ ¼ ð1� e2Þ�3=2 ð60Þ

To compute the volume integral we make a change of variables
from r to s

r ¼ sðRþ dðh;/ÞÞ ð61Þ

to get

Eg ¼ n2q
Z 1

0
ds
Z p

0
dh
Z 2p

0
d/ eUTðh;/Þs4ðRþ dðh;/ÞÞ5 sin h
h i

ð62Þ

¼ n2qR4
Z p

0
dh
Z 2p

0
d/ dðh;/ÞeUTðh;/Þ sin h
h i

ð63Þ

where we have made a small d=R approximation, and used the fact
that the angular integral of eUT is zero. Next using

dðh;/Þ ¼ �h
UTðR; h;/Þ

gMoon
¼ �hn2R2

gMoon

eUTðh;/Þ ð64Þ

then

Eg ¼ �
n4qhR6

gMoon

Z p

0
dh
Z 2p

0
d/ ðeUTðh;/ÞÞ2 sin h
h i

ð65Þ

¼ �hcmMoonn2R2 3
4p

2
5
ðB2ðeÞÞ2 þ

24
5
ðB2;2ðeÞÞ2

� �
ð66Þ

We compute the difference in the elastic energy from the stress-
free shape solution a ¼ 22:9RE; e ¼ 0:49, to the elastic energy at
a ¼ 22:9Re; e ¼ 0:0, and similarly for the gravitational energies.
Using l ¼ 5� 1010 Pa; n ¼ 1:35� 10�5 s�1 (for a � 20Re), h ¼ 5=2;
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dl ¼ 104 m; mMoon ¼ 7:35� 1022 kg; c ¼ 1:4� 10�4, we find that
the elastic energy stored in going to zero eccentricity is
9:2� 1019 J. The difference of the gravitational energy between
these two orbital configurations is 1:7� 1021 J. The ratio of the
change in elastic energy to the change in the gravitational energy
is about 0.053. This implies that the shape will deform elastically
and lose memory of the shape solution. This elastic change in shape
would be essentially instantaneous compared to the timescales of
the evolution we are considering. The stresses that develop would
then relax on a viscous timescale, which is very uncertain.

6. Conclusions

We have developed a simplified model for studying the coupled
thermal–orbital evolution of the early Moon. The model assumes
tidal heating occurs only in the lid and gives a temperature profile
of the lid as a function of time. We assume that the variations of
the k2 and Q of the Moon dominate those of the Earth. Future work
should include tidal dissipation and heat transfer in both the man-
tle and the lid, and model the variation in Earth’s k2 and Q.

The eccentricity of the lunar orbit can reach high values in this
model. For small dissipation in the Moon (small Mignard A param-
eter), an initial eccentricity tends to grow. As the eccentricity
grows to large values the tidal heating increases dramatically
(Wisdom, 2008). This heats the Moon and causes the Q of the Moon
to change due to its strong temperature dependence. With a small
Q (large A parameter) the Moon’s eccentricity begins to decay.

Parameters can be chosen that cause the orbit to pass close to
the values of semimajor axis and eccentricity required by the syn-
chronous shape solution of Garrick-Bethell et al. (2006). The
parameters we had to choose are somewhat extreme, particularly
the Dt of the Earth. Holding other parameters constant, the value
of the peak eccentricity is larger for larger dissipation in the Earth
(larger Dt). To reach the eccentricity of Garrick-Bethell et al. (2006)
we had to use a Dt of 123 min (for k2 ¼ 0:97). On the other hand, it
is not known how dissipative the early Earth would have been.

Perhaps a more severe problem is that the orbit matches the
shape solution at a time when tidal heating of the plagioclase lid
is at its peak. Garrick-Bethell et al. (2006) demonstrated that this
shape does indeed match the current shape of the Moon, but
whether it could have been preserved after formation at that
eccentricity, while the heating rate is large, remains the question.

During the period capable of creating the crustal shape ob-
served on the Moon today, portions of the lunar crust were being
melted through tidal dissipative heating, erupted to the surface,
and quenched. We find that 89% of the lid is processed as melt in
our model. The melt material that is placed on the surface solidifies
and cools quickly, and may record the shape of the moon during
the time of melt production. The peak of melt production is after
the peak eccentricity, so it may be that the recorded shape will re-
flect a lower eccentricity than the peak. The rigidity of this surface
and near-surface crust would be significant.

At the time of melt production, the lid is still underlain by a
magma ocean which allows for elastic deformation of the lid. To
determine whether the shape would be preserved until the pres-
ent, we can make a simple energetics argument. If the Moon kept
the shape that it froze in at the peak of eccentricity, when the orbit
drops to low eccentricity, gravitational potential energy will be
stored in the now non-equilibrium shape. If instead the Moon elas-
tically deforms to match the new equilibrium shape, there will be
elastic energy stored due to the stresses in the lid. By comparing
the elastic and gravitational energies, we determined that the
Moon will elastically deform and lose the shape it developed at
the peak. So we conclude that if a magma ocean is still present
at the high eccentricity phase during which the shape is frozen
in (as in our model) then the shape could not be maintained as
the orbit evolved to lower eccentricity. If we try to circumvent this
conclusion by increasing the rigidity, then we have shown that the
lithosphere would break, again losing its shape.

Though the shape cannot be explained by a high eccentricity
phase of the evolution of the lunar orbit, a high eccentricity phase
is not excluded. The coupled thermal–orbital model presented here
can give high eccentricities which subsequently damp to values
low enough to reach the present eccentricity (whether or not some
component of the lunar eccentricity is due to passage through the
Jovian evection resonance).

At the peak of tidal heating the crust is melted internally and
molten anorthosite erupted onto the lunar surface. These materials
will cool quickly, so the closure age is roughly the same as the age
of crystallization, which is less than 1 Myr after lunar formation.
This short time lag is insufficient to explain the young ages mea-
sured in lunar rocks.

At depth in the crust materials will have their geochronological
ages reset by heating over a far longer time period than the period
of active melting. The crust is heated to temperatures below melt-
ing but above the zircon closure temperature of 1000 �C (Cherniak
and Watson, 2003). If the lunar breccias originate at a range of
depths, they will experience varying delays in cooling that could
explain the range of ages measured. For the sample dated by
Nemchin et al. (2009), we find that an origin at about 25 km depth
is consistent with the measured age.

The lunar crust is highly brecciated from impacts, and rocks
used for age determination may have originated at depth and been
excavated by impacts. Wieczorek and Phillips (1999) estimates
that the original excavation depths of the major basins range from
15 to 50 km, making the scenario of mid-crustal origin for these
rocks plausible. The zircon dated by Nemchin et al. (2009) is from
a melt breccia, sample 72215, and its depth of origin is unknown.
However, Garrick-Bethell et al. (2009) demonstrated that sample
76535 was excavated from a depth of about 45 km without being
brecciated or melted. This is further evidence that the dated zircon
could have originated at large depth.

We find that an early high eccentricity phase of the lunar orbit
is a robust feature of our model. Though the high eccentricity orbit
passes through the synchronous shape solution, we conclude that
it is unlikely that the Moon’s shape during this epoch could persist
to the present. Lunar geochronology of crustal breccias can be ex-
plained if they originate at depth.
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Appendix A. Tidal heating in a two-layer model

In a classic paper Peale and Cassen (1978) calculated the rate
and distribution of tidal dissipation in the Moon. They also calcu-
lated the rate of tidal heating in a two-layer model, consisting of
an inviscid molten interior overlain by a rigid lid. The result was
used in another classic paper, Peale et al. (1979), in which it was
predicted that there would be volcanoes on Io. We set out to use
the two layer model, but found that there were a number of typo-
graphical errors, and that a considerable amount of work was re-
quired to recover explicit expressions for the local energy
dissipation. So the result of our labor is presented here.

The two-layer model consists of an inviscid fluid interior over-
lain by a rigid lid. The lid has rigidity l, density q, and surface grav-
ity g. The radius of the satellite is R, G is Newton’s constant, a is the
semimajor axis of the orbit, e is orbital eccentricity, and n is orbital



Fig. 6. Recalculation of Fig. 1 from Peale et al. (1979). This shows the ratio of the
total dissipation in the two-layer model to the total dissipation in a homogeneous
body ðg ¼ 0Þ plotted versus g, the fractional thickness of the interior.
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mean motion. The radius of the interior divided by the radius of the
satellite is g.

Let

Aða; bÞ ¼ ðað1þ gþ g2Þ þ bðg3 þ g4ÞÞ=E ð67Þ

Bðc;dÞ ¼ ðcð1þ gþ g2 þ g3 þ g4Þ þ dðg5 þ g6ÞÞ=E ð68Þ
Cðe; f Þ ¼ ðeðg3 þ g4Þ þ f ðg5 þ g6 þ g7 þ g8 þ g9ÞÞ=E ð69Þ

Dðg; hÞ ¼ ðgðg5 þ g6Þ þ hðg7 þ g8 þ g9ÞÞ=E ð70Þ

where E ¼ 252ð1þ gþ g2Þ þ 672ðg3 þ g4Þ. Then, define

a0 ¼ Að�108;�288Þr2
1 þ Bð96;180Þ

þ Cð�320;�152Þr�3
1 þ Dð384;114Þr�5

1 ð71Þ
a1 ¼ Að�30;�80Þr2

1 þ Bð48;90Þ þ Cð0;0Þr�3
1 þ Dð32;19=2Þr�5

1 ð72Þ
a2 ¼ Að�36;�96Þr2

1 þ Bð96;180Þ
þ Cð160;76Þr�3

1 þ Dð�96;�57=2Þr�5
1 ð73Þ

a3 ¼ Að�48;�128Þr2
1 þ Bð48;90Þ

þ Cð80;38Þr�3
1 þ Dð�128;�38Þr�5

1 ð74Þ

Note that Að�108;�288Þ ¼ �3=7, Að�30;�80Þ ¼ �5=42,
Að�36;�96Þ ¼ �1=7, and Að�48;�128Þ ¼ �4=21. We find that
the coefficient of r�3

1 in a3 is a factor of 2 smaller than is given in
Peale and Cassen (1978). Otherwise, these expressions reproduce
the numbers given in the appendix of Peale and Cassen (1978).

Also, let

GðxÞ ¼ Fð19;64;64;24Þ þ xFð�228;672;�672;228Þ ð75Þ

where x ¼ l=ðqgRÞ, for rigidity l, density q, surface gravity g, and
radius R, and where

Fða; b; c;dÞ ¼ aðg7 þ g8 þ g9Þ þ bðg5 þ g6Þ þ cðg3 þ g4Þ
þ dð1þ gþ g2Þ ð76Þ

then define

k02ðxÞ ¼ E=GðxÞ ð77Þ

For l ¼ 6:5� 1011; q ¼ 3:34; g ¼ 162, and R ¼ 1:738� 108 (all
in cgs), we find k02 ¼ 0:2649, for g ¼ 1=2, and k02 ¼ 2:027, for
g ¼ 0:95, which are in satisfactory agreement with the appendix
in Peale and Cassen (1978).

Algebraically, the choice of E is arbitrary, since the strain de-
pends on the product of k02 and the ai and this product is indepen-
dent of E. Given the notation k02 one might have expected it to
reduce to the Love number k2 for a homogeneous body when
g ¼ 0, but this is not the case. For g ¼ 0; k02ðxÞ ¼ ð21=2Þ=
ð1þ ð19=2ÞxÞ ¼ 7k2. So the reason for the choice of the factor E is
a mystery; it looks like it should have had 1/7 the value it was gi-
ven. Hence, we will choose E0 ¼ E=7. Define A0 ¼ 7A; B0 ¼ 7B;C0

¼ 7C, and D0 ¼ 7D, then a0i ¼ 7ai. And then we can set k2ðxÞ ¼
k02ðxÞ=7. This k2ðxÞ has the expected value ð3=2Þ=ð1þ ð19=2ÞxÞ for
g ¼ 0. And the coefficients in Eqs. (10)–(15) in Peale and Cassen
(1978) can be recognized as a0i for g ¼ 0.

The strains are:

err ¼
k2R
g

X
m;p;q

a00ðr1Þ
V2mpq

r2

� �
ð78Þ

ehh ¼
k2R
g

X
m;p;q

a01ðr1Þ
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V2mpq
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e// ¼
k2R
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ð83Þ

This corrects a typo in Eq. (82) in Peale and Cassen (1978).
Given the strains, we can compute the local rate of energy dis-

sipation per unit mass and, by integration, the total rate of energy
dissipation. The local rate of energy dissipation is, from Peale and
Cassen (1978), Eq. (17),

H ¼
X

ij

2leij _e�ij ð84Þ

where the dot indicates time derivative and the � indicates that the
phase of each term is given a phase lag of 1=Q2mpq. Keeping only the
potential terms ðlmpqÞ ¼ ð2;0;1;1Þ, (2,0,1,�1), (2,2,0,1), and
(2,2,0,�1), which are the most important terms for synchronous
rotation in an eccentric non-inclined orbit, we find that the integral
of the local dissipation over angles gives

dEr

dt
¼ 2p2lG2M2e2k2

2R2n

a6Qg2 �126ða01Þ
2 þ 252

5
a01a

0
2 �

42
5
ða02Þ

2
�

�21
5
ða00Þ

2 � 252
5
ða03Þ

2
�

ð85Þ

In this case all the phase lags have the same frequency, so we
assume they have the same magnitude.

For g ¼ 0 this becomes

dEr

dt

				
g¼0
¼ 2p2lG2M2e2k2

2R2n

a6Qg2 224þ�392r2
1 þ

1813
10

r4
1

� �
ð86Þ

where r1 ¼ r=R. Multiplying by r2 and integrating from 0 to R, gives
the total rate of energy dissipation

dE
dt

				
g¼0
¼ 2p2lG2M2e2k2

2R5n

a6Qg2

133
6

ð87Þ
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Using g ¼ Gm=R2, where m ¼ ð4=3ÞpqR3, and replacing one fac-
tor of k2 by ð3=2Þ=ð1þ ð19=2ÞxÞ, which for large x ¼ l=ð2qgRÞ
becomes

k2 �
3qgR
19l

ð88Þ

we obtain

dE
dt

				
g¼0
¼ 21

2
GM2e2R5n

a6

k2

Q
ð89Þ

This is the usual expression for tidal heating (Peale and Cassen,
1978, see also Peale, 2003; Wisdom, 2008). Note that we had to
make a large l approximation to get it.

More generally, the angle integrated rate of tidal dissipation is
given by Eq. (85). The radial integral can be done analytically,
but the expression is complicated, so will not be displayed. Fig. 6
shows the total tidal heating in the two-layer model as a function
of g, for Io parameters (R ¼ 1:821� 108; q ¼ 3:53; g ¼ 179:71;
l ¼ 6:5� 1011, in cgs). This recalculates Fig. 6 from Peale et al.
(1979). The agreement is not perfect, but they do not give the as-
sumed values of their parameters, and there was a factor of 2 error
(typographical error?) in one of their coefficients.
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