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ABSTRACT
We explore the nonlinear dynamics of a forced core-mantle system. We show that the free axisym-

metric motion of a uniform-vorticity Ñuid core coupled to a rigid mantle (the model) isPoincare� -Hough
integrable. We derive an approximate Hamiltonian for the core tilt mode that includes the leading non-
linear contribution. We then include gravitational perturbations in the analysis. We identify the principal
nonlinear prograde and retrograde resonances and the characteristic excitation associated with each. We
compare the nonlinear excitation with the excitation expected in the corresponding linear model. The
nonlinear model indicates that for each principal commensurability there are multiple overlapping reso-
nances, and so varying degrees of chaotic behavior are predicted. Chaotic behavior at the principal core-
mantle commensurabilities is conÐrmed with surfaces of section. We then present the results of numerical
evolutions done with a generalization of our (1994) Lie-Poisson integrator to allow for a Poincare� -

core, core-mantle friction, and tidal dissipation. We use our analytical and numerical models toHough
explore the evolution of Earth through the prograde core-mantle resonances and to explore the evolu-
tion of Venus through the retrograde resonances. Heating of the core-mantle boundary during resonance
passage is much greater for Venus than for Earth. We raise the question whether heating during core-
mantle resonance passage could be responsible for the global resurfacing of Venus.
Key words : celestial mechanics È Earth È methods : numerical È

planets and satellites : individual (Venus) È solar system: general

1. INTRODUCTION

Gravitational torques from the Sun and Moon induce
nutational and precessional motions of the solid Earth.
These motions couple to EarthÏs Ñuid core and excite Ñuid
Ñow via conservative pressure and viscous torques at the
core-mantle interface. This Ñow, if and when substantial,
could play an important role in the energy balance of the
planet. Our work is concerned with the investigation, in a
nonlinear Hamiltonian framework, of the dynamics of this
astronomically forced, coupled core-mantle system.

Toomre (1974) observed that roughly 200 million years
ago Earth must have passed through a resonance between
the precession of the core vorticity and Earth yearly nuta-
tion. A number of other authors have picked up on this and
noted the near-coincidence of such a resonance with the
Permo-Triassic extinction. Hinderer, Legros, & Amalvict
(1987) examined, in a linear model, the nature of these reso-
nances and the magnitude of the response when an account
is made of the elastic deformation of the planet and dissi-
pation. More recently, Williams (1994) reconsidered the
problem. Williams placed the main annual resonance
500È570 million years ago and prefers to link its e†ect to
other geophysical events. Gre†-Le†tz & Legros (1999)
revisited earlier calculations, including the e†ects of the
inner core, and estimated the epochs of resonance passage.
They found that the annual resonance passage occurred
about 270 million years ago and that 5 ] 1025 joules are
deposited at the base of the mantle during resonance
passage. They assert that this heat destabilizes the D@@ layer,
leading about 20 million years later to mantle plumes that
could be responsible for continental Ñood basalt volcanism

(the Siberian traps, 250 Myr ago). They correlate dates of
occurrence of other resonances with crust-forming episodes.

The surface of Venus is geologically young. The crater
age is estimated to be in the range 700È800 million years
(McKinnon et al. 1997). A widely accepted interpretation is
that Venus has undergone a global volcanic resurfacing
(Schaber et al. 1992 ; Strom, Schaber, & Dawson 1994). We
raise the question whether the global resurfacing of Venus
might be a consequence of resonant heating resulting from
passage through a core-mantle resonance. As we show
below, as a consequence of the retrograde rotation of Venus
the core-mantle resonances are much stronger for Venus
than for Earth. Perhaps the heating is sufficient to initiate a
global resurfacing of Venus, and the less intense heating of
Earth is responsible for the Siberian traps? A simple matter
of the direction of the rotation might thus account for the
dramatic di†erences in the surface and atmospheric states of
Earth and Venus.

We present here our investigations of the tidal evolution
of Earth and Venus through these core-mantle resonances.
Our work builds on our earlier investigations of the nonlin-
ear dynamics of spin-orbit coupling in the solar system.
These investigations include the extension of the symplectic
n-body mapping method of Wisdom & Holman (1991) to
handle rigid-body dynamics (Touma & Wisdom 1994a,
hereafter TW94a), the discovery of the chaotic obliquity of
Mars (Touma & Wisdom 1993), application of modern
numerical and Hamiltonian methods to a reexamination of
the tidal history of the Earth-Moon system (Touma &
Wisdom 1994b), and the discovery of a possible explanation
of the mutual inclination of the Moon (Touma & Wisdom
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1998). In this work, we build on these investigations to
examine the passage of Earth and Venus through the
various nonlinear core-mantle resonances. We investigate
the nonlinear dynamics of resonances in the astronomically
forced core-mantle system. We Ðnd that for Venus there are
signiÐcant chaotic zones near resonance ; for Earth there are
smaller chaotic zones. We study the tidal evolution through
the core-mantle resonances with both approximate reso-
nance models and full numerical simulations. The full simu-
lations uncover processes that can have a dramatic e†ect on
the amount of heat deposited during resonance passage.

2. HAMILTONIAN FORMULATION

We start by giving a Hamiltonian formulation of the
equations (Hough 1895 ; 1910 ;Poincare� -Hough Poincare�

Lamb 1945). These equations describe the motion of a rigid
mantle with a triaxial ellipsoidal cavity Ðlled with inviscid
Ñuid. The Ñuid is assumed to have uniform vorticity ; this
amounts to assuming that only the Ðrst Hough mode is
active. The Ñuid is assumed to have constant uniform
density.

The components (u, v,w) of the velocity Ðeld of the Ñuid
on the mantleÏs principal axes are

u \ (a/c)q
c
z[ (a/b)r

c
y ] qz[ ry , (1)

v\ (b/a)r
c
x [ (b/c)p

c
z] rx [ pz , (2)

w\ (c/b)p
c
y [ (c/a)q

c
x ] py [ qx , (3)

where (x, y, z) are the mantle components of the position
vector and a, b, and c are the principal elliptical radii of the
cavity. The mantle components of the angular velocity of
the mantle are (p, q, r). The parameters and specifyp

c
, q

c
, r

cthe velocity Ðeld of the Ñuid ; for a spherical cavity, these
become the angular velocity of the core relative to the
mantle. This velocity Ðeld exactly satisÐes HelmholtzÏs
equations.

The kinetic energy T of the system is obtained by integra-
tion :

2T \ Ap2] Bq2] Cr2 ]A
c
p
c
2] B

c
q
c
2] C

c
r
c
2

]2F
c
pp

c
] 2G

c
qq

c
] 2H

c
rr

c
, (4)

where A, B, and C are the principal moments of inertia of
the whole body and and are parame-A

c
, B

c
, C

c
, F

c
, G

c
, H

cters for the core. For a uniform-density Ñuid in an elliptical
cavity, we have

A
c
\ 15Mc

(b2] c2), B
c
\ 15M

c
(c2] a2) ,

C
c
\ 15Mc

(a2] b2) , (5)

F
c
\ 25Mc

bc, G
c
\ 25Mc

ac, H
c
\ 25M

c
ab , (6)

where is the mass of the core and and are theM
c

A
c
, B

c
, C

cprincipal moments of inertia of the core.
By integration, the mantle components (P,Q,R) of the

angular momentum of the whole system are

P\ Ap] F
c
p
c
\ LT

Lp
, Q\ Bq] G

c
q
c
\ LT

Lq
,

R\ Cr ] H
c
r
c
\ LT

Lr
. (7)

We deÐne

P
c
\ LT

Lp
c
\ F

c
p ] A

c
p
c
, Q

c
\ LT

Lq
c
\ G

c
q ] B

c
q
c
,

R
c
\ LT

Lr
c
\ H

c
r ] C

c
r
c

. (8)

The components have dimensions of angular(P
c
,Q

c
,R

c
)

momentum, but they are not components of the core
angular momentum. Nevertheless, we sometimes refer to
them as components of the core angular momentum for
lack of a better name. Note the inverse relations

p \ A
c
P[ F

c
P

c
a

, p
c
\ AP

c
[ F

c
P

a
, (9)

q \ B
c
Q[ G

c
Q

c
b

, q
c
\ BQ

c
[ G

c
Q

b
, (10)

r \C
c
R[ H

c
R

c
c

, r
c
\CR

c
[ H

c
R

c
, (11)

with anda \AA
c
[ F

c
2, b \ BB

c
[ G

c
2, c\CC

c
[ H

c
2.

The equations of motion arePoincare� -Hough

d
dt

P[ rQ ] qR\ T
a
,

d
dt

P
c
] r

c
Q

c
[ q

c
R

c
\ 0 , (12)

d
dt

Q[ pR] rP \ T
b
,

d
dt

Q
c
] p

c
R

c
[ r

c
P

c
\ 0 , (13)

d
dt

R[ qP] pQ\ T
c

,
d
dt

R
c
] q

c
P

c
[ p

c
Q

c
\ 0 , (14)

where are mantle components of the applied(T
a
, T

b
, T

c
)

torque on the whole body.
These equations can be put into Lie-Poisson form

1910). Let M be the vector total angular momen-(Poincare�
tum, with mantle components (P,Q,R), and be theM

cvector with mantle components Then the equa-(P
c
,Q

c
,R

c
).

tions of motion, without external torques, can be written
simply

dM
dt

\ M Â $
M

HCM ,
dM

c
dt

\ [M
c

Â $
Mc

HCM (15)

with core-mantle Hamiltonian written in terms ofHCM\T
the components (P,Q,R) and (P

c
,Q

c
,R

c
) :

HCM\ 1
2a

(A
c
P2] AP

c
2[ 2F

c
PP

c
)

] 1
2b

(B
c
Q2 ]BQ

c
2[ 2G

c
QQ

c
)

] 1
2c

(C
c
R2] CR

c
2[ 2H

c
RR

c
) . (16)

In this form, we see that the magnitude of the total angular
momentum, the magnitude of and the energy are allM

c
,

conserved.
The Lie-Poisson form inspires a Hamiltonian formula-

tion, with canonical coordinates and momenta that are
similar to the Andoyer variables (Andoyer 1923). The
canonical momenta are F, the component of the total
angular momentum on the inertial z-axis ; G, the magnitude
of the total angular momentum; L , the component of the
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total angular momentum on the Z body axis ; and S, the
component of on the Z body axis. We take the bodyM

caxes to be aligned with the ellipsoid axes ; along body axes
X, Y , and Z, the radii of the core are a, b, and c, respectively.
The conjugate coordinates are f, the angle from the inertial
x-axis to the ascending node of the plane perpendicular to
the total angular momentum vector on the x-y inertial
plane ; g, the angle between the last node and the ascending
node of the body X-Y plane on the plane perpendicular to
the total angular momentum; l, the angle between the last
node and the X body axis ; and Ðnally s, the angle between
the X body axis and the ascending node of the plane per-
pendicular to the vector on the body X-Y plane. TheM

cangles l and s are coplanar. Momentum variables are
denoted by uppercase letters, and the conjugate coordinates
are denoted by the corresponding lowercase letter. In terms
of these canonical coordinates and momenta, we have

P\ (G2[ L2)1@2 sin l , P
c
\ (N2[ S2)1@2 sin s ,

Q\ (G2[ L2)1@2 cos l , Q
c
\ [(N2[ S2)1@2 cos s ,

R\ L , R
c
\ S , (17)

where N is the conserved magnitude of It is straightfor-M
c
.

ward to verify that HamiltonÏs equations are equivalent to
the Lie-Poisson equations. The Hamiltonian is reex-HCMpressed in terms of the canonical coordinates and momenta.
We will not write the Hamiltonian explicitly, but we note
that f, g, and F do not appear, and therefore F, G, and f are
conserved quantities. These correspond to the fact that the
total angular momentum is conserved and the orientation
of the angular momentum is Ðxed in space. There are two
nontrivial degrees of freedom.

At this point we specialize to the case in which the mantle
and the core cavity are axisymmetric : A\ B, A

c
\B

c
, F

c
\

and a \ b. The Hamiltonian isG
c
, H

c
\C

c
,

HCM\ 1
2a

[A
c
(G2[ L2)] A(N2[ S2)]

] 1
2a

[2F
c
(G2[ L2)1@2(N2[ S2)1@2 cos (l] s)]

] 1
2c

[C
c
L2] CS2[ 2C

c
L S] . (18)

The coordinate angles appear in only one combination :
l] s. A canonical transformation can be made so that this
combination is one of the new variables. We then Ðnd that
L [ S is a conserved quantity. The essential dynamics is
reduced to a problem with one degree of freedom, so the
axisymmetric core-mantle problem is integrable, a result
that was known to (1910) from a LagrangianPoincare�
point of view.

Getino (1995a) has also presented a Hamiltonian formu-
lation of the axisymmetric core-mantle problem. The
approach is quite di†erent from that presented here. The
resulting Hamiltonian di†ers from that of equation (18) by
terms of order the core Ñattening. Our Hamiltonian is exact
for the model ; the approach of GetinoPoincare� -Hough
may be easier to generalize to more realistic models.

3. NONLINEAR MODES

The equations of motion derived directly from the free
core-mantle Hamiltonian (eq. [18]) are singular for small

o†sets of the spin axes of the core and mantle from the
symmetry axis. A more convenient set of coordinates is now
introduced, by a pair of canonical transformations.

The Ðrst transformation gives new momenta that are dif-
ferences of the old momenta. We choose the generating
function

F2\ F@f ] G@( f ] g) ] L@( f ] g ] l)

] (N [ S@)( f ] g ] l ] s) , (19)

giving F@\ F[ G, G@\ G[ L , L @\ L[ S, and
S@\ N [ S, with conjugate angles f @\ f, g@\ f] g,
l@\ f ] g ] l, and s@\ [( f ] g ] l ] s). The inverse rela-
tions are S \ N [ S@, L \ L@] N [ S@, G\ G@] L@] N
[ S@, F\ F@] G@] L@] N [ S@, f \ f @, g \ g@[ f @, l\
l@[ g@, and s \ [s@[ l@. Note that the new angles all have
a common inertial reference. The momentum G@ is small
(and positive) if the total angular momentum is nearly
aligned with the body symmetry axis ; the momentum S@
is small (and positive) if the core angular momentum is
nearly aligned with the symmetry axis. In terms of the
new variables, the Hamiltonian is

HCM\ 1
2a

MA
c
G@[G@ ] 2(L@ [ S@ ] N)]] AS@(2N [ S@)N

] 1
2a

(2F
c
MG@[G@] 2(L@[ S@] N)]

] S@(2N [ S@)N1@2 cos (g@ ] s@))

] 1
2c

MC
c
(L@[ S@] N)2] C(N [ S@)2

[ 2C
c
(L@ [ S@ ] N)(N [ S@)N . (20)

Note that the variable l@ is not present, so the conjugate
momentum L @\ L[ S is an integral.

Next we make the canonical transformation

x \ J2G@ cos g@ , y \ J2G@ sin g@ ,

m \ J2S@ cos s@ , g \ J2S@ sin s@ , (21)

where x and m are the momenta conjugate to the coordi-
nates y and g, respectively. The Hamiltonian is obtained by
substitution. These variables are small when the momenta
are nearly aligned with the symmetry axis, and the equa-
tions of motion in these variables are not singular there.

Next consider the ““ linearized ÏÏ problem: we keep only
the terms in the Hamiltonian that are quadratic in the vari-
ables x, y, m, and g. The equations of motion are linear in
these variables. Ignoring the leading terms that do not
depend on x, y, m, or g, this linearized Hamiltonian is

H
L
\ h1

Ax2 ] y2
2

B
] h2(xm [ yg) ] h3

Am2 ] g2
2

B
(22)

with constants

h1\ A
c

a
(L@] N), h2 \F

c
a

[(L@] N)N]1@2 ,

h3\
AA

a
]C

c
[ C
c

B
N . (23)

Note that L @] N is approximately the total angular
momentum.
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The normal modes can be found by performing a canon-
ical transformation that diagonalizes the Hamiltonian. The
generating function of the transformation is

F2\ y ] cg
JD

x1] cy] g
JD

x2 (24)

with D\ 1 [ c2, and c will be determined by the constraint
that the Hamiltonian be diagonal. The new momenta and
conjugate coordinates are and respectively. The trans-x

i
y
i
,

formation of variables is

x \x1] cx2
JD

, y \ y1[ cy2
JD

,

m \ cx1] x2
JD

, g \[cy1] y2
JD

, (25)

with similar equations for the inverse transformation. Sub-
stituting, the linearized core-mantle Hamiltonian becomes

H
L
\
Ax12] y12

2
BAh1] 2h2 c] h3 c2

D
B

](x1 x2[ y1 y2)
C(h1] h3)c] h2(1] c2)

D
D

]
Ax22] y22

2
BAh1 c2] 2h2 c] h3

D
B

, (26)

and thus the condition for the Hamiltonian to be diagonal-
ized is

(h1] h3)c] h2(1] c2)\ 0 . (27)

This is a quadratic equation for c. The roots are inverses of
each other ; we choose the root with magnitude less than 1
so that (1 [ c2)1@2 is real. With this c, the linearized Hamil-
tonian is

H
L
\ u1

Ax12] y12
2

B
] u2

Ax22] y22
2

B

\ u1 #1] u2#2 , (28)

using the canonical transformation x
i
\ (2#

i
)1@2 cos h

i
,

There are two uncoupled modes, withy
i
\ (2#

i
)1@2 sin h

i
.

frequencies

u1\ h1] 2h2 c] h3 c2
D

, u2\ h1 c2] 2h2 c] h3
D

.

(29)

The angles move uniformly with frequenciesh
i

u
i
.

We deÐne the dynamical Ñattening parameter
f\ (C[ A)/C and the core Ñattening parameter f

c
\

To Ðrst order in the Ñattening parameters, we(C
c
[ A

c
)/C

c
.

have

cB Jd( f
c
[ 1) , (30)

where Note that c is negative. The frequencies ared \ C
c
/C.

approximately

u1B u
A
1 ] f

C
C

m

B
, u2B uf

c
C
C

m
, (31)

where u is the rotational frequency and is theC
m

\C[ C
cmantle moment of inertia. The Ðrst mode is a wobble mode ;

it is analogous to the wobble of a rigid body, but with the
period in the body frame reduced by a factor TheC

m
/C.

period of the Chandler wobble is reduced by the presence of
a liquid core (see Hough 1895). (The period of the Chandler
wobble is increased by the elasticity of the mantle ; we do
not consider e†ects of elasticity here.) We refer to the second
mode as the ““ tilt ÏÏ mode ; it has a frequency that is pro-
portional to the core Ñattening.

We now interpret the tilt mode in terms of the other
variables. We assume that the amplitude of the wobble
mode is zero : so We simplify the nota-x1 \ y1\ 0, #1\ 0.
tion with and The motion in the# \#2 h \ h2. (x2, y2)-is counterclockwise circular, with radius (2#)1@2. Withplane
no wobble, the motion in both the (m, g)- and (x, y)-planes is
also circular, with radii (2S@)1@2 and (2G@)1@2, respectively. In
this case, we have G@\ (c2/D)# and S@\ (1/D)#. Recall
that D\ 1 [ c2 and to Ðrst order in thec2Bd(1[ 2f

c
),

Ñattening parameters. Thus, Let JG@\ c2S@ B d(1[ 2f
c
)S@.

denote the angle between the total angular momentum and
the symmetry axis ; then cos J \ L /G, and

sin2 J \ 1 [ L2
G2B

2G@
L@] N

, (32)

where the approximation is for small J. Using
L @] N B Cu, we Ðnd

G@ B 12Cu sin2 J . (33)

Referring to equations (25), we see that if motion in the
is counterclockwise, then the motion in the(x2, y2)-plane

(x, y)-plane is clockwise and the motion in the (m, g)-plane is
counterclockwise. Thus g@ decreases, while s@ increases, both
with the tilt-mode frequency. Recall that g@ measures the
direction of the mantle symmetry axis in inertial space. The
fact that g@ decreases means that the body symmetry axis
regresses about the total angular momentum. The angle
between the symmetry axis and the angular momentum
vector is J. Now, s@ is related to the direction of the core
angular momentum; s@ increases, but because of the minus
sign in its deÐnition, this means the angular momentum of
the core also regresses about the total angular momentum
vector. The body symmetry axis and the core angular
momentum both regress at the tilt-mode frequency. The
body symmetry axis and the core angular momentum
vector are coplanar with the total angular momentum; the
total angular momentum is between them. Let K be the
angle between the core angular momentum vector and the
body symmetry axis. Then

sin2 K \ 1 [ S2
N2B

2S@
N

, (34)

where the approximation is for small S@. So we have

S@B 12dCu sin2 K . (35)

Now so we deduceG@Bd(1 [ 2f
c
)S@,

J B d(1[ f
c
)K (36)

for small J, K, and The angular o†set of the body fromf
c
.

the angular momentum vector is smaller than the angular
o†set of the core angular momentum vector from the sym-
metry axis by about a factor of d, which is C

c
/C.
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We need the Ðrst nonlinear correction to the tilt-mode
frequency. If we represent the frequency of the tilt mode as

we Ðnd, after some algebra,u2@ (#)\ u2] k# ] É É É ,

k \ A
c
c2(c2[ 2)[ A

aD2 ] C[ C
c

cD2

]F
c
c[(c2[ 2)N [ (L@ ] N)]
aD2[(L@] N)N]1@2 . (37)

Approximating L @] N by G\ Cu and N by thisC
c
u,

becomes, to Ðrst order in the Ñattening parameters,

k \ [ f
c

dC
C1 [ 2d2] d3

(1[ d)3
D

. (38)

Note that the nonlinearity is large for both small core and
large core. Also note that the nonlinearity is not dependent
on the rotational frequency, except indirectly through the
Ñattening. Thus, an approximate nonlinear Hamiltonian
governing the tilt mode, assuming that the amplitude of the
wobble mode is zero, is

H
T
(#)\ u2# ] 12k#2 . (39)

4. PERTURBATIONS

We consider gravitational perturbations from the Sun.
Let m be the total mass of the planet with coupled core-
mantle system, R the equatorial radius of the planet, and J2the gravitational quadrupole factor. We continue to special-
ize to an axisymmetric planet. Also, let be the mass ofMSthe Sun and r be the Earth-Sun distance. The contribution
to the potential energy from the second-order moments is

V2\ GmMS
r

R2
r2 J2P2(cos hS) , (40)

where G is the gravitational constant and is the anglehSfrom the symmetry axis to the Sun.
We reexpress the perturbation in terms of the core-

mantle canonical coordinates. Let the position of the Sun be
speciÐed by distance r and true longitude j. The two angles
I and J satisfy cos J \ L /G and cos I\ F/G. The angle I is
the angle between the total angular momentum of the core-
mantle system and the inertial z-axis ; I is a measure of the
obliquity of the planet. The angle J is the angle between the
total angular momentum of the core-mantle system and the
body symmetry axis and is a measure of the amplitude of
the tilt mode (presuming the wobble mode has zero
amplitude). The symmetry axis is brought from being ini-
tially parallel to the inertial z-axis to its actual position by a
sequence of active rotations. Let be an active right-R

z
(h)

hand rotation about the inertial z-axis by the angle h and
be an active right-hand rotation about the inertialR

x
(h)

x-axis by the angle h. Then the cosine of the angle between
the unit vector to the Sun and the vector along thexü Ssymmetry axis is

cos hS\ xü S Æ R
z
( f @)R

x
(I)R

z
(g@[ f @)R

x
(J)zü . (41)

Squaring this and expanding it as a Poisson series, we have
the geometric part of the perturbation :

cos2 hS \ ;
ijq

G
ijq

(I, J) cos (if @ ] jg@[ qj) . (42)

The terms that involve both g@ and j are

G0,2,2(I, J) \ A0,2,2(I) sin2 J , (43)

G4,~2,2(I, J) \ A4,~2,2(I) sin2 J , (44)

G1,1,2(I, J) \ A1,1,2(I) sin J cos J , (45)

G3,~1,2(I, J) \ A3,~1,2(I) sin J cos J , (46)

where

A0,2,2(I) \ [18(1] cos I)2 , (47)

A4,~2,2(I) \ [18(1[ cos I)2 , (48)

A1,1,2(I) \ [12(1] cos I) sin I , (49)

A3,~1,2(I) \ ]12(1[ cos I) sin I . (50)

There is a term that involves j but not g@ :

G2,0,2(I, J) \ A2,0,2(I)
A
1 [ 3

2
sin2 J

B
(51)

with

A2,0,2(I) \ [12 sin2 I . (52)

And there are terms that involve g@ but not j :

G1,~1,0(I, J) \ A1,~1,0(I) sin J cos J ,

G2,~2,0(I, J) \ A2,~2,0(I) sin2 J (53)

with

A1,~1,0(I) \ sin I cos I , A2,~2,0(I) \ sin2 I . (54)

There are also terms that do not depend on the angles.
The orbital variables r and j move nonuniformly ; we

expand the perturbation in terms of the mean anomaly M,
longitude of perihelion -, eccentricity e, and semimajor axis
a. For any combination of angles / and true anomaly l
(j \ -] l),

Aa
r
B3

cos (/[ ql) \ ;
k

X
k
q(e) cos (/[ kM) . (55)

The coefficients are special cases of the Hansen coeffi-X
k
q(e)

cients (see Plummer 1962). The Hansen coefficients can be
written as a power series in eccentricity ; the leading terms
for q \ 2 are X32(e) \ 7e/2, X22(e) \ 1, X12(e)\ [e/2,

and TheX02(e) \ 0, X~12 (e) \ [e3/48, X~22 (e) \ [e4/24.
leading terms for q \ 0 are X00 \ 1, X10 \ X~10 \ 3e/2,

andX20 \ X~20 \ 9e2/4, X30 \ X~30 \ 53e3/16, X40 \
X~40 \ 77e4/16.

We now identify the main resonances. We label the reso-
nances by the tuple (i, j, q, k), where i, j, q, and k refer to the
indices used in the sums above. The corresponding angular
argument is if @] jg@[ kM [ q-. The resonance amplitude
involves the product The amplitude factorsG

ijq
(I, J)X

k
q(e).

are proportional to Ii and e @ k~q@ for small I and e. The
angle f @ moves slowly, with the period of the precession of
the equinox, and the motion of longitude of perihelion - is
even slower, so the principal resonances occur for low-order
commensurabilities between the tilt frequency and the
orbital frequency. Resonances occur if jg@[ kM is slow. The
angle g@ moves opposite to the direction of rotation. For
prograde rotation, g@ regresses ; for retrograde rotation, g@
moves in the same direction as the orbital motion. The
integer j has magnitude 1 or 2, so resonances occur if the
core precession rate is a half-integral multiple of the orbital
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frequency. Resonances that occur for prograde rotation (the
spin and the orbital motion have the same sense) we term
prograde resonances ; those that occur for retrograde rota-
tion we term retrograde resonances.

Most of the resonance terms depend on the angle f @, so in
principle, resonance passage can a†ect the obliquity. We
expect, though, that this e†ect is small and defer further
consideration of this possibility. Instead, we focus on the
excitation of the core-mantle tilt mode. The obliquity,
equinox, eccentricity, and perihelion are all slowly varying.
For this analysis we assume that the obliquity and eccen-
tricity are constant and the perihelion and equinox are pre-
scribed linear functions of time. We assume the motion
in the orbit is uniform: M \ nt. The wobble mode is not
resonant ; we continue to assume that it has zero ampli-
tude. With this assumption, g@\ [h and G@\ (c2/D)# B
[d/(1 [ d)]#.

The astronomical forcing of a coupled core-mantle
system has also been discussed in a Hamiltonian framework
by Getino (1995b). In that work, the system is linearized and
approximate analytic expressions for the nutations are
derived. The theory is compared with that of Kinoshita
(1977) and Kinoshita & Souchay (1990) for the rigid Earth.
Getino & (2000) discuss the forced linearFerra� ndiz
problem in the presence of dissipation. Our focus is on the
nonlinear dynamics of the resonances, with and without
dissipation.

5. PROGRADE ANNUAL RESONANCES

The prograde annual resonances are (1, [1, 0, 1), (2, [2,
0, 2), (3, [1, 2, 1), (4, [2, 2, 2), (0, 2, 2, [2), and (1, 1, 2, [1).
The strongest resonance is (1, [1, 0, 1).

For small J, the approximate prograde annual resonance
Hamiltonian is

H
R

\ u2# ] 12k#2
]v1,~1,0,1J2# cos (h [ nt ] t1,~1,0,1)
]v2,~2,0,2 2# cos (2h [ 2nt ] t2,~2,0,2)
]v3,~1,2,1J2# cos (h [ nt ] t3,~1,2,1)
]v4,~2,2,2 2# cos (2h [ 2nt ] t4,~2,2,2)
]v0,2,2,~2 2# cos (2h [ 2nt ] t0,2,2,~2)
]v1,1,2,~1J2# cos (h [ nt ] t1,1,2,~1) . (56)

The amplitudes are

v1,~1,0,1 \ i
3e
2

sin I cos I
1

JCu
S d

1 [ d
,

v2,~2,0,2 \ i
9e2
4

sin2 I
1

Cu
d

1 [ d
,

v3,~1,2,1 \ [i
e
2

sin2 I
2

sin I
1

JCu
S d

1 [ d
,

v4,~2,2,2 \ [i
1
2

sin4 I
2

1
Cu

d
1 [ d

,

v0,2,2,~2 \ i
e4
48

cos4 I
2

1
Cu

d
1 [ d

,

v1,1,2,~1 \ i
e3
48

cos2 I
2

sin I
1

JCu
S d

1 [ d
(57)

with

i \ 3
2

GmMS R2J2
a3 B

3
2

n2mR2J2 , (58)

using the approximation The slow phases aren2\ GMS/a3.
t1,~1,0,1\ f @ , t2,~2,0,2\ 2f @ ,

t3,~1,2,1\ 3f @ [ 2- , t4,~2,2,2\ 4f @[ 2- ,

t0,2,2,~2\ 2- , t1,1,2,~1\ [f @] 2- . (59)

We have used the approximation for small J

sin2 J \ 1 [ L2
G2B

2G@
L@] N

B
2G@
Cu

, (60)

as before.
Performing a (time dependent) canonical transformation

to w\ h [ nt and W \ #, the new Hamiltonian is

H
R
@ \ (u2[ n)W ] 12kW 2

]v1,~1,0,1J2W cos (w] t1,~1,0,1)
]v2,~2,0,2 2W cos (2w] t2,~2,0,2)
]v3,~1,2,1J2W cos (w] t3,~1,2,1)
]v4,~2,2,2 2W cos (2w] t4,~2,2,2)
]v0,2,2,~2 2W cos (2w] t0,2,2,~2)
]v1,1,2,~1J2W cos (w] t1,1,2,~1) . (61)

There are three Ðrst-order resonances, (1, [1, 0, 1), (3, [1,
2, 1), and (1, 1, 2, [1), and there are three second-order
resonances, (2, [2, 0, 2), (4, [2, 2, 2), and (0, 2, 2, [2).

Next we consider each resonance in turn as if it were
isolated, ignoring the slow phases. First consider the Ðrst-
order resonances. With u \ (2W )1@2 cos w and v\
(2W )1@2 sin w, a Ðrst-order resonance Hamiltonian is of the
form

H1 \ *
Au2] v2

2
B

] k
2
Au2] v2

2
B2] vu , (62)

where The Ðxed points have v\ 0 and satisfy*\u2[ n.

0 \ L
u
H1\ (u2 [ n)u ] 12ku3] v . (63)

Remember that k is negative. The amplitude v can be either
positive or negative. In the following discussion we will
assume that v is also negative ; treating the positive-v case is
straightforward. If * is negative, then there is a single Ðxed
point. If * is large and positive, then there are three Ðxed
points, two stable and one unstable. The bifurcation occurs
at

*\ (3/2) o v o2@3 o k o1@3 . (64)

At the point of bifurcation, the stable/unstable pair form at

u1\ (v/k)1@3 (65)

and there is a stable Ðxed point at

u2\ [2(v/k)1@3 . (66)

At the point of bifurcation, the separatrix reaches u \ u3\
For a tidally evolving system that encounters this3u2/2.

resonance in the direction for which capture does not occur,
at the point of bifurcation there is a transient along the
separatrix to followed by oscillations about the Ðxedu \ u3,point at with dissipation, the system settles on u \u \ u2 ;
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FIG. 1.ÈSurface of section for Earth near the prograde annual reso-
nance, using a two-resonance model with Ðxed orbit and obliquity. The
orbital eccentricity is 0.05, and the obliquity is 23¡. The splitting frequency
corresponds to an equinox precession period of 26,000 yr. The angle J is in
arcseconds.

So sets the scale of the excitation during resonanceu2. u2passage. The corresponding angle J of o†set of the sym-
metry axis from the total angular momentum is

sin J B
J2G@
JCu

\ 2
1

JCu
A d
1 [ d

B1@2Av
k
B1@3

. (67)

For small d and I, this is approximately

sin J
ijql

B 2d
A3
2

n2
u2

J2
f
c

mR2
C
B1@3

(A
ijql

)1@3 , (68)

where is the characteristic excitation for the resonanceJ
ijqland is the amplitude factor for the resonance.A

ijqlApproximate values for Earth are d \ 0.11, J2\ 0.001,
C/MR2\ 0.33, and At the annual resonance thef

c
\ 1/373.

rotation rate will be a bit larger than at present, and the
obliquity will be a bit smaller. On long timescales both J2and are proportional to u2, so the ratio remains constant.f

cThe characteristic scale of excitation of J for the (1, [1, 0, 1)
resonance is

J1,~1,0,1B 339@@
A e
0.05
B1@3A I

23¡
B1@3Au0

u
B2@3

, (69)

where is the current rate of rotation of 2n radians peru0day. The transient along the separatrix is three-halves this,
or about 508A, with the same parameter scaling. The charac-
teristic scale of excitation for the (3, [1, 2, 1) resonance is

J3,~1,2,1B 82@@
A e
0.05
B1@3A I

23¡
BAu0

u
B2@3

. (70)

The characteristic scale of excitation for the (1, 1, 2, [1)
resonance is

J1,1,2,~1B 11@@
A e
0.05
BA I

23¡
B1@3Au0

u
B2@3

. (71)

Ignoring the slow phases, the resonance Hamiltonian for
the second-order resonances has the form

H2\ *
Au2 ] v2

2
B

] k
2
Au2] v2

2
B2] v(u2 [ v2) (72)

with Recall that k is negative, and n are*\u2[ n. u2positive. The sign of v depends on the resonance ; to simplify
the discussion, we will assume that v is negative. The Ðxed
points occur on the coordinate axes. The Ðxed points for
u \ 0 satisfy

0 \ L
v
H2\ (*[ 2v)v] 12kv3 . (73)

So the Ðxed points are at v\ 0 and v2 \ [2(*[ 2v)/k. As
k \ 0, the latter root is real for *[ 2v. The Ðxed points for
v\ 0 satisfy

0 \ L
u
H2 \ (*] 2v)u ] 12ku3 , (74)

and the Ðxed points are at u \ 0 and u2 \ [2(*] 2v)/k. As
k \ 0, the latter root is real for *[ [2v. The two Ðxed
points away from the origin with u \ 0 are stable ; the two
Ðxed points away from the origin with v\ 0 are unstable ;
the origin is stable except between the two bifurcations,
where it is unstable. To give some scale to the strength of
the resonance, we note that at the second bifurcation the
stable Ðxed points have with At thisv\ v2 v22 \ [8v/k.
point the separatrix reaches The angle J of o†setv\ J2v2.of the symmetry axis from the total angular momentum of
the Ðxed point at the bifurcation is

sin J B
J2G@
JCu

\ 1

JCu
A d
1 [ d

B1@2A8v
k
B1@2

. (75)

For small d and I, this is

sin J
ijql

B (2d)3@2
A3
2

n2
u2

J2
f
c

mR2
C
B1@2

(A
ijql

)1@2 . (76)

The characteristic scale of excitation of J for the (2, [2, 0, 2)
resonance is

J2,~2,0,2B 2A.5
A e
0.05
BA I

23¡
BAu0

u
B

. (77)

The transient along the separatrix is times this, or aboutJ2
with the same parameter scaling. The characteristic3A.5,

scale of excitation of J for the (4, [2, 2, 2) resonance is

J4,~2,2,2B 2A.4
A I
23¡
B2Au0

u
B

. (78)

The characteristic scale of excitation of J for the (0, 2, 2, [2)
resonance is

J0,2,2,~2B 0A.03
A e
0.05
B2Au0

u
B

. (79)

We see that all the Ðrst-order resonances have a character-
istic excitation that is larger than that of all the second-
order resonances.

Having considered the resonances separately, we now
consider them all together. The characteristic width (in
frequency) of the largest resonance is the critical value ** of

But ** is also the libration frequency at the*\u2[ n.
point of bifurcation. The value of ** is about 1.5] 10~6
rad day~1. To check for resonance overlap, we compare this
width to the frequency separation of this largest resonance
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FIG. 2.ÈSurface of section for Venus near the retrograde annual reso-
nance, for a simple model with the two largest resonances and constant
splitting. The angle J is in arcseconds.

to the others. The splitting frequency is a multiple of the
equinox precession frequency, which is about 6.6] 10~7
rad day~1. So there is indeed resonance overlap, and we
should expect some chaotic behavior. However, the smaller
resonances are too small to generate large-scale chaos. We
can investigate this with surfaces of section for a simpliÐed
problem with only the two largest resonances, with con-
stant obliquity and Ðxed orbit. On the surface of section
(Fig. 1), near the point of bifurcation for the largest reso-
nance we Ðnd a small chaotic zone near the unstable equi-
librium, as expected.

6. OTHER PROGRADE RESONANCES

In general there are resonances when the core precession
frequency is equal to any half-integral multiple of the

FIG. 3.ÈSame as Fig. 2, but for a model with a single resonance with
periodically varying eccentricity.

orbital frequency, but the strongest prograde resonances
occur at integral multiples.

There are six resonances with The largest ofu2B 2n.
these are the two Ðrst-order resonances (3, [1, 2, 2) and
(1,[1, 0, 2). The characteristic excitation at the (3, [1,
2, 2) resonance is

J3,~1,2,2\ 282@@
A I
23¡
BAu0

u
B2@3

. (80)

The characteristic excitation at the (1, [1, 0, 2) resonance is

J1,~1,0,2\ 143@@
A I
23¡
B1@3A e

0.05
B2@3Au0

u
B2@3

. (81)

These two resonances have strong resonance overlap, so we
should expect a chaotic zone in the phase space.

There are also six resonances with The largest ofu2B 3n.
these is the Ðrst-order resonance (3, [1, 2, 3). The character-
istic excitation is

J3,~1,2,3\ 158@@
A I
23¡
BA e

0.05
B1@3Au0

u
B2@3

. (82)

7. RETROGRADE RESONANCES

We have in mind a speculative history of the rotation of
Venus. Suppose that Venus was initially spinning much
faster than it is today, but still retrograde. Today, Venus has
near-zero obliquity as a consequence of tidal friction. We
may suppose that it had nonzero obliquity in the past. As
Venus was slowed by solar tidal friction, the system would
pass through various retrograde core-mantle resonances.
We consider here only the retrograde annual resonances.

There are six retrograde annual resonances. Of the three
Ðrst-order resonances, the two largest, (1, 1, 2, 1) and (1, [1,
0,[1), are of comparable strength. The next strongest reso-
nance, (0, 2, 2, 2), is second order.

The characteristic scale of the excitation for the (1, 1, 2, 1)
resonance is

J1,1,2,1 \ 330@@
A I
23¡
B1@3A e

0.05
B1@3Au0

u
B2@3

. (83)

The characteristic scale of the excitation for the (1,[1,
0,[1) resonance is

J1,~1,0,~1\ 469@@
A I
23¡
B1@3A e

0.05
B1@3Au0

u
B2@3

. (84)

The characteristic scale of the excitation for the (0, 2, 2, 2)
resonance is

J0,2,2,2\ 92@@(u0/u)2@3 . (85)

The excitation at the other resonances is smaller.
The annual retrograde resonances are strong and close.

So we should Ðnd abundant chaos in the phase space. This
is conÐrmed by looking at surfaces of section for the simpli-
Ðed problem with only the two largest resonances, with
constant eccentricity 0.057 and obliquity 23¡, and constant
splitting frequency corresponding to a precession period for
the equator of 22,800 yr. A sample section is shown in
Figure 2. The chaotic zone for this hypothetical Venus near
the retrograde annual resonance extends from 0A to nearly
800A.
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Actually, the evolution of the system near the retrograde
annual resonance is too complicated to be captured by the
simple two-resonance model with constant eccentricity,
obliquity, and splitting. The variation of the eccentricity
also gives rise to chaotic behavior even for a single reso-
nance, through the mechanism of adiabatic chaos (Wisdom
1985 ; Touma & Wisdom 1993). The separatrix of the single
resonance with slowly varying strength pulsates, driving the
system repeatedly across the separatrix. A representative
surface of section for the retrograde annual resonance,
including only the largest resonance term, but with period-
ically varying eccentricity, is shown in Figure 3. The whole
oscillation region is engulfed by a chaotic zone, which
reaches about 900A.

8. DISSIPATION

There are two dissipative processes to consider : dissi-
pation that damps any core-mantle o†set, and dissipation
that changes the length of day.

That there will be dissipation of energy if the core is o†set
from the mantle is unquestioned. However, the dominant
mechanism for this dissipation and its magnitude are uncer-
tain. Toomre (1974) investigated viscous and magnetic
coupling. Anelasticity of the mantle is also mentioned as a
possibility. Recent VLBI results suggest that magnetic
coupling is the dominant dissipative mechanism (Mathews
et al. 1991).

Considering the uncertainty in core-mantle damping
mechanisms, we adopt a simple dissipative law with quality
factor Q. We assume that, if not subject to forcing, the
energy in the core mode damps exponentially. SpeciÐcally,
we assume

d#
dt

\ [u2
Q

# (86)

and add corresponding terms to HamiltonÏs equations. In
the geophysical literature, the core-mantle Q is sometimes
deÐned with respect to the frequency of rotation rather than
the frequency of core precession and, so, is larger than the Q
used here by a factor u/u2.For dissipation in a laminar boundary layer with vis-
cosity 0.01 cm2 s~1 and a rotation period of a day, the Q is
estimated to be 12,000 (Toomre 1974). For a turbulent
boundary layer or magnetic damping, the Q can be up
to 2 orders of magnitude smaller (Mathews et al. 1991).
Defraigne, Dehant, & Hinderer (1994) give an estimate
of 75^ 25 for the e†ective core Q of Earth.

Next we relate Q to the rate at which energy is dissipated
if the core is o†set from the mantle. The total energy of the
core-mantle system with a nonzero tilt-mode amplitude and
no wobble is

H
T

\ 1
2c

[C
c
(L@] N)2] CN2[ 2C

c
(L@ ] N)N]] u2#

\ L@2
C

m
]N2

C
c
] u2# . (87)

The last term in each expression is the energy in the tilt
mode. The other terms are those neglected in deriving the
linearized Hamiltonian ; these neglected terms are approx-
imately Cu2/2. Excitation of the tilt mode changes the
angular momentum. The angular momentum with nonzero

tilt-mode amplitude and no wobble is

G
T

\ G@ [ S@ ] L@] N

\ L ] N@] [d(1[ 2f
c
) [ 1]S@

B Cu[1[ 12d(1[ d) sin2 K] . (88)

Internal dissipation of tilt-mode energy conserves angular
momentum, so the rotation rate u@ with zero tilt-mode
amplitude satisÐes

Cu@ \ Cu[1[ 12d(1[ d) sin2 K] . (89)

The available energy is the di†erence between the system
energy with nonzero tilt-mode amplitude and the system
energy with zero tilt-mode amplitude and with the rotation
rate adjusted to conserve angular momentum:

E\ 12Cu2] u2# [ 12Cu@2
B 12(1[ d)dCu2 sin2 K . (90)

Using equation (92), the rate of energy dissipation is
approximately

dE
dt

\ 1
2

Cu2d(1[ d)
u2
Q

sin2 K (91)

for small K. In terms of J, this is approximately

dE
dt

\ 1
2

Cu2 1 [ d
d

u2
Q

sin2 J . (92)

Tidal friction from lunar and solar tides slows the rate of
rotation of Earth. This changing rate of rotation serves to
usher the system through various core-mantle resonances.
Solar tides play a similar role for Venus. All the core-mantle
resonances are encountered from the direction in which
capture does not occur.

One might expect that the rate of rotation changes so
slowly that the dynamics of resonance passage is una†ected
by the Ðnite rate of passage. It turns out, though, that this is
only marginally the case. For the nonlinear resonance to
signiÐcantly a†ect the evolution, the system must not pass
through the resonance too quickly. Roughly, the time to
pass through the resonance must be greater than the period
of libration. As before, the characteristic resonance width
(in frequency) is **, and the libration period at the point of
bifurcation is 2n/**. So the Ðrst-order annual resonance is
adiabatic if the rate of change of * is less than **/(2n/
**)\ (**)2/2n. This estimate was conÐrmed with numeri-
cal experiments.

For Earth, ** B 1.5] 10~6 rad day~1. So to be in the
adiabatic regime, the rate of change of * must be less than
about 3 ] 10~13 rad day~1 day~1. The actual rate is esti-
mated to be about an order of magnitude smaller :
4 ] 10~14 rad day~1 day~1. So, passage through the
largest annual resonance is in the adiabatic regime.
However, the weaker annual resonances, if taken by them-
selves, are not in the adiabatic regime. For Venus, the reso-
nances are stronger and the rate of tidal evolution is slower,
so evolution through the largest retrograde annual reso-
nances, taken in isolation, is in the adiabatic regime.

Evolution must be much slower than the single-
resonance adiabatic limit for a system to fully exhibit the
range of chaotic behavior that is present in the Hamiltonian
resonance models. For both Earth and Venus, the rate of
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tidal evolution is large enough that the chaotic behavior
of the Hamiltonian models is not fully exhibited in the
evolution.

9. PROGRADE RESONANCE ENCOUNTER TIMES

To determine the times at which these core-mantle reso-
nances were encountered, we must know the core preces-
sion frequency as a function of time. The core precession
frequency depends on the core Ñattening, which depends on
the rate of rotation of Earth. The rotation rate of Earth is
modiÐed by tidal friction.

Taking into account the elasticity of the mantle, the core
precession frequency is approximately

u2\ u( f
c
[ b)C/C

m
, (93)

where b is estimated to be b \ 0.00061 for Earth (Mathews
et al. 1991). This is to be compared with the core precession
frequency without elasticity (eq. [31]). The hydrostatic core
Ñattening scales with the square of the rotation rate, as does
the elastic correction. So the hydrostatic core precession
frequency scales simply as the cube of the rotation rate. The
hydrostatic core precession period is about 460 days ; the
observed core precession period is about 430 days. We
expect that the core precession frequency in the past is simi-
larly given by the hydrostatic value plus some adjustment,
say, 5%, due to nonhydrostatic Ñattening.

The annual resonance was reached when the rotation
rate was (460/365.25)1@3 faster than today, for hydrostatic
Ñattening. For this rotation rate, the day is about 22.224 hr.
Taking the observed deviation of the Ñattening from the
hydrostatic Ñattening as typical, we might expect a 5%
variation in precession frequency due to nonhydrostatic
e†ects. This gives a range of length of day from 21.761 to
22.729 hr. Similarly, at the 2 :1 resonance the rotation
period is 17.639 hr. Allowing a 5% variation in Ñattening,
we obtain a range of length of day from 17.272 to 18.040 hr.
At the 3:1 resonance, we obtain a range of length of day
from 15.088 to 15.760 hr.

The challenge is determining when the length of day of
Earth was in these intervals. The rate of tidal evolution of
the Earth-Moon system has surely not been constant, and it
must be smaller in the past to prevent the Moon from being
close to Earth too recently. Using the model of Touma &
Wisdom (1994b, 1998), which is consistent with the rate of
tidal evolution from lunar laser ranging (Dickey et al. 1994),
the annual resonance occurs about 257 million years ago,
for hydrostatic Ñattening, and between 183 and 323 million
years ago, with as much as 5% nonhydrostatic Ñattening.
Evidence from corals, bivalves, and tidal rhythmites sug-
gests that the rate of tidal evolution has not changed sub-
stantially over the last 900 million years (Lambeck 1980 ;
Sonett et al. 1996).

The suggestion has been made that passage through the
annual resonance may be related to the major extinction
and massive basalt Ñows at the Permo-Triassic boundary
(e.g., Hinderer et al. 1987 ; Gre†-Le†tz & Legros 1999). The
Permo-Triassic boundary occurs about 251.4 ^ 0.3 million
years ago (Bowring et al. 1998). Alternatively, passage
through the annual resonance has been associated with
increased thermal activity 500È570 million years ago
(Williams 1994) ; this timing is based on an alternate inter-
pretation of tidal rhythmite data. Gre†-Le†tz & Legros
(1999) associate other core-mantle resonances (2 :1 and 3:1)
with periods of crustal formation (at 1.8 and 3.0 Gyr). They

assume the rate of change of EarthÏs rotation is given by the
piecewise linear model of Ross & Schubert (1989). In the
Touma & Wisdom model, the 2 :1 resonance occurs
between 800 and 883 million years ago.

10. LINEAR EXCITATION

In this section, we derive the excitation and energy dissi-
pation if the nonlinear terms are dropped from the equa-
tions of motion. We consider only the strongest annual
resonances, which are Ðrst-order resonances.

Ignoring the nonlinear term and the slow phase, the reso-
nance Hamiltonian is

H \ u2# ] vJ2# cos (h [ nt) . (94)

Using canonical rectangular variables x \ (2#)1@2 cos h and
y \ (2#)1@2 sin h, this is

H \ u2
x2] y2

2
] v(x cos nt ] y sin nt) . (95)

HamiltonÏs equations are

dx
dt

\ [u2 y [ v sin nt ,
dy
dt

\ u2 x ] v cos nt . (96)

Adding dissipation as described above,

dx
dt

\ [ u2
2Q

x [ u2 y [ v sin nt ,

dy
dt

\ [ u2
2Q

y ] u2 x ] v cos nt . (97)

In complex form with m \ x ] iy, the equations of motion
are

dm
dt

\ [ u2
2Q

m ] iu2 m ] iv exp int . (98)

The forced solution has a core o†set angle of

sin2 J \ d
1 [ d

1
Cu

C v2
*2] (u2/2Q)2

D
. (99)

Equation (99) for the linear excitation can be combined
with equation (92) for the rate of energy dissipation to
obtain the linear energy dissipation rate,

dE
dt

\ f
c
u2

2Q
v2

*2] (u2/2Q)2 . (100)

At exact resonance (*\ 0), the peak linear excitation is

sin2 J \ d
1 [ d

1
Cu

4Q2v2
u22

. (101)

The peak rate of energy dissipation is

dE
dt

\ 2Qv2
f
c

. (102)

The linear energy dissipation rate is proportional to Q at
exact resonance.

To obtain an estimate of the total energy dissipated as the
resonance is crossed, we can assume that * varies linearly
with time with rate Approximating by n at resonance*0 . u2
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FIG. 4.ÈCore-mantle o†set angle J (in arcseconds) vs. time (in years).
The lower curve is for Q\ 2000, the middle curve is for Q\ 10,000, and
the upper curve is for Q\ 50,000.

and integrating across the resonance, the total energy dissi-
pated in crossing the resonance is

*E\ nnv2/( f
c
*0 ) . (103)

Note that the total energy dissipated as the resonance is
crossed in this linearized system is independent of Q.

FIG. 5.ÈLinear estimate of the core-mantle o†set angle J (in arcsec-
onds) vs. time (in years). The lower curve is for Q\ 2000, the middle curve
is for Q\ 10,000, and the upper curve is for Q\ 50,000. The peak for
Q\ 50,000 is about 969A.

FIG. 6.ÈPeak excitation of the core-mantle o†set (in arcseconds) vs.
log Q. The solid line is the nonlinear model ; the dashed line is the linear
model. Above about Q\ 10,000 we begin to see the nonlinear saturation
of the excitation.

For the Earth prograde annual resonance, with obliquity
23¡, and using rad day~1 day~1, we Ðnd*0 \ 4 ] 10~14

*E\ 1.7] 1026(e/0.05)2 J . (104)

Using a speciÐc heat of 1200 J kg~1 K~1 and a density of
5000 kg m~3, this energy input would raise the temperature
of a 100 km thick shell near the core-mantle boundary by
about 4 K. Gre†-Le†tz & Legros (1999) Ðnd a total energy
dissipation of 5 ] 1025 J (for an unspeciÐed eccentricity).

FIG. 7.ÈRatio of the total energy dissipation to the linear estimate of
the total energy dissipation vs. log Q. Above about Q\ 10,000, we begin to
see how the nonlinear saturation of the excitation amplitude reduces the
total energy input.
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For the Venus retrograde annual resonance, with
obliquity 23¡, and using rad day~1 day~1,*0 \ 1] 10~14
we Ðnd

*E\ 4.1] 1027(e/0.05)2 J . (105)

This is about 24 times larger than the energy dissipated in
crossing the Earth annual resonance.

11. EVOLUTION THROUGH THE PROGRADE

ANNUAL RESONANCE

The evolution of Earth through the annual resonance is
shown in Figure 4. In this evolution we include the largest
two terms in the resonance Hamiltonian (eq. [56]). We
assume that the orbit is Ðxed, with an eccentricity of 0.05 ;
we assume that the obliquity is constant at 23¡, and that the
equinox regresses uniformly with a period of 26,000 yr. We
use the current rate of change of the rotation rate of Earth.
We show the evolution for Q\ 2000, Q\ 10,000, and
Q\ 50,000.

The linear prediction for these three values of Q is shown
in Figure 5. For Q\ 2000, the linear and nonlinear models
agree. For Q\ 10,000, the peak excitations for the two
models are similar, but the peaks are slightly shifted. For
Q\ 50,000, the two models yield substantially di†erent
evolutions. The peak excitation for the linear model is
about 969A ; the peak excitation for the nonlinear model is
about 435A. Recall that the peak dissipation-free nonlinear
excitation is 508A. The peak excitation of the core-mantle
o†set as a function of Q is shown in Figure 6. The energy
dissipation as a function of Q is shown in Figure 7 ; the e†ect
of nonlinear saturation is evident.

12. LIE-POISSON ALGORITHM FOR

CORE-MANTLE COUPLING

We compare our analytic results and the results of our
approximate resonance models with full numerical integra-
tions of core-mantle Earth or Venus gravitationally coupled
to the rest of the solar system. A free core-mantle system
admits a Lie-Poisson structure, which is helpful in the con-
struction of numerical algorithms that preserve the total
angular momentum of the system. Such a structure was
used in TW94a to construct a symplectic algorithm
designed to evolve a rigid body coupled gravitationally to
the Sun and planets. The Hamiltonian of the core-mantle
system can be written in the form

H \ HCM] HKepler] Hcoupling , (106)

where deals with free core-mantle dynamics in theHCM model, the Keplerian part of thePoincare� -Hough HKeplerorbital evolution, and the gravitational inter-Hcouplingactions between the planets, as well as the spin-orbit cou-
pling. The free rotational dynamics and the Keplerian
motion commute, so once we know how to calculate the
dynamics governed by it is trivial to couple it to theHCM,
orbital motion with integrators of increasing order of accu-
racy, following the symplectic mapping algorithms of
Wisdom & Holman (1991).

As already stated, the equations of motion for a
model of a Ñuid in a rotating shell can bePoincare� -Hough

written in a Lie-Poisson form. Given any Hamiltonian func-
tion H of M and the corresponding vector Ðeld isM

c
,

dM
dt

\ M Â $
M

H,
dM

c
dt

\ [M
c
Â $

Mc
H . (107)

These equations govern the evolution of M and in theM
cmantle frame. The evolution of that frame, represented by a

special orthogonal transformation C(t), is reconstructed as
indicated in TW94a, by following an arbitrary Ðxed space
vector s in the body frame, s \ C(t)S(t) :

dS
dt

\ S Â $
M

H . (108)

Solving equation (108), we obtain S(t) \ C~1(t)C(0)S(0),
which yields C~1(t) and, thus, C(t) by transposition (see
TW94a for details).

We construct a Lie-Poisson algorithm, an algorithm that
reduces the motion to a composition of elements of the Lie
group on which the dynamics resides, by judicious splitting
of the original Hamiltonian. For a triaxial body (the
dynamics is in general not integrable), we did not succeed in
constructing algorithms that used fewer than three sub-
Hamiltonians. One such splitting involved

H
A

\ 1
2a

(A
c
P2] AP

c
2[ 2F

c
PP

c
) ,

H
B

\ 1
2b

(B
c
Q2] BQ

c
2[ 2G

c
QQ

c
) ,

H
C

\ 1
2c

(C
c
R2] CR

c
2 [ 2H

c
RR

c
) . (109)

These Hamiltonians generate rotations about the x, y, and z
mantle axes. respectively. For instance, leads toH

C
dM
dt

\ M Â X
z
m ,

dM
c

dt
\ [M

c
Â X

z
c , (110)

where andX
z
m \ (0, 0, (C

c
R [ H

c
R

c
)/c) X

z
c \ (0, 0, (CR

cThese equations preserve R and and precess[ H
c
R)/c). R

cthe vectors M and about the z mantle axis with fre-M
cquencies andw

z
m \ (C

c
R [ H

c
R

c
)/c w

z
c \ (CR

c
[ H

c
R)/c,

respectively. Integrating equation (108), we Ðnd that C(t)\
where rotates a vector about the z-axisC(0)C

z
~1(w

z
mt), C

z
(h)

by angle h. Rotations about x, y, and z are then composed
to yield symplectic algorithms of the desired order.

Our work is concerned with axisymmetric (oblate)
bodies, for which the model is integrable,Poincare� -Hough
and a splitting into two efficiently integrable sub-
Hamiltonians is sufficient to reconstruct the dynamics. The
Hamiltonian in this case reduces to

HSCM \ 1
2a

[A
c
(P2] Q2)

]A(P
c
2] Q

c
2) [ 2F

c
(PP

c
] QQ

c
)]

] 1
2c

(C
c
R2] CR

c
2[ 2H

c
RR

c
) . (111)

We decompose it into

H
A

\ [F
c

a
(PP

c
] QQ

c
] RR

c
) ,

H
B
\ 1

2a
[A

c
(P2] Q2) ] A(P

c
2] Q

c
2)]

] 1
2c
C
C

c
R2] CR

c
2[ 2

A
H

c
[ c

a
F

c

B
RR

c

D
, (112)

which, as we now demonstrate, are both integrable.
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The Hamiltonian yieldsH
A

dM
dt

\ [M Â
M

c
I

,
dM

c
dt

\ M
c
Â

M
I

(113)

with Note that these equations conserveI\ a/F
c
. M

d
\

and can be rewritten asM [ M
c

dM
dt

\ M Â
M

d
I

,
dM

c
dt

\ M
c
Â

M
d

I
. (114)

Thus, both M and precess about The solution,M
c

M
d
.

p \ [oX o , is given by theM(t)\C)(pt)M(0), X \ M
d
/I,

Euler-Rodrigues formula (see Goldstein 1980 ; TW94a).
Next we solve for S(t) :

dS
dt

\ [S Â
M

c
(t)

I
. (115)

First transform to a frame precessing with S(t) \M
c
,

to obtainC)(bt)S
p
(t),

dS
p

dt
\ S

p
Â

M(0)
I

, (116)

simply solved with the help of the Euler-Rodrigues formula :
Finally,S

p
(t)\C)p

(p
p
t)S

p
(0), X

p
\ M(0)/I, p

p
\[oX

p
o .

is under control.S(t)\C)p
(p

p
t)C)(pt)S(0). H

AThe Hamiltonian is slightly more difficult to handle.H
BThe equations of motion

dM
dt

\ MÂ

(

t

:

t

t

(A
c
/a)P

(A
c
/a)Q

C
c

c
R]

AF1
a

[
H1
c
B
R

c

)

t

;

t

t

,

dM
c

dt
\ M

c
Â

(

t

:

t

t

(A/a)P
c

(A/a)Q
c

C
c

R
c
]
AF1

a
[

H1
c
B
R

)

t

;

t

t

(117)

take the simpler form

dM
dt

\ MÂ
(

t

:

t

t

0
0

)
z
m

)

t

;

t

t
,

dM
c

dt
\ M

c
Â
(

t

:

t

t

0
0

)
z
c

)

t

;

t

t
, (118)

where and)
z
m \ (C

c
/c[ A

c
/a)R ] (F1/a [ H1/c)Rc

)
z
c \

These equations conserve(C/c[ A/a)R
c
] (F1/a [ H1/c)R.

both R and and drive the rotation of both M andR
c

M
cabout the mantle z-axis with frequencies and respec-)

z
m )

z
c,

tively. We recover the evolution of the frame from

dS
dt

\ SÂ

(

t

:

t

t

(A
c
/a)P

(A
c
/a)Q

C
c

c
R]

AF1
a

[
H1
c
B
R

c

)

t

;

t

t

, (119)

which, when rewritten as

dS
dt

\ S Â
3
A

c
a

M ]
(

t

:

t

t

0
0

)
z
m

)

t

;

t

t

4
, (120)

suggests the following treatment : Set S(t) \ C
z
()

z
mt)S

p
(t).

Then

dS
p

dt
\

A
c

a
S
p

Â C
z
~1 M [ C

z
~1

d
dt

C
z
S
p
] S

p
Â
(

t

:

t

t

0
0

)
z
m

)

t

;

t

t
.

(121)

The last two terms cancel, leaving

dS
p

dt
\A

c
a

S
p

Â M(0) . (122)

So precesses about M(0), and S(t) evolves by the com-S
pposition of this precession with C

z
()

z
mt).

With these explicit solutions for the dynamics generated
by both and we construct a Lie-Poisson integratorH

A
H

B
,

for the free core-mantle body by interleaving the actions of
andH

A
H

B
.

12.1. Handling Dissipation
The Hamiltonian dynamics is supplemented with two

sources of dissipation. The Ðrst, tidal in origin, was treated
in Touma & Wisdom (1994b), where the tidal evolution of
the Earth-Moon system was studied. The second results
from dissipative core-mantle interactions, which can be
either magnetic or viscous in origin. The full dynamics is
split into conservative and dissipative vector Ðelds. The
conservative Ðeld is calculated with the Lie-Poisson algo-
rithm and is followed with a dissipative kick calculated with
a Ðrst-order scheme, which for the applications being con-
sidered is sufficient.

Dissipation at the core-mantle interface results from Ñuid
or magnetic stresses. Toomre (1966, 1974), among others,
discusses both in detail. The upshot is that a torque is
applied on the mantle, and an equal and opposite torque
acts on the core, dissipating any velocity mismatch between
Ñuid and mantle. Of course, the total angular momentum is
not a†ected by such torques.

Independent of the form, how do such torques a†ect the
core angular momentum variables that we use in the Lie-
Poisson description? The mantle experiences a dissipative
torque its angular momentum changes :T

v
; M

m
\ I

m
w

Here This translates into adM
m
/dt \ T

v
. I

m
\ I[ I

c
.

change of the mantle angular velocity, which by conserva-
tion of the total angular momentum a†ects the ““ angular
velocity ÏÏ of the Ñuid core w

c
:

dw
c

dt
\ [I

f
~1 II

m
~1 T

v
. (123)

Here I, and are diagonal inertia tensors, with diago-I
f
, I

cnals diag I \ (A,B,C), anddiag I
f
\ (F

c
,G

c
,H

c
), diag I

c
\

Thus we obtain the rate of change of(A
c
,B

c
,C

c
). M

c
:

dM
c

dt
\ (I

f
I
m
~1 [ I

c
I
f
~1 II

m
~1)T

v
. (124)

For a nearly spherical core, with a small contribution to the
total inertia of the system, the right-hand side reduces to
[T

v
.
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The integrated dissipative torque on the mantle is pro-
portional to the di†erential angular velocity of the Ñuid core
and the rigid mantle : The speciÐc form ofT

v
\ i@(p

c
, q

c
, r

c
).

i@ depends on the nature of dissipation being considered. To
compare with the analytic results, we characterize the decay
of the core tilt mode by a quality factor Q. We parameterize
the dissipation by the e†ective laminar viscosity regardless
of the actual mechanism of dissipation. For a laminar layer,
with Q is approximatelyi@ \ C

c
u2/2Q,

Q\ 0.382R
c
u2

2Jlu
, (125)

where l is the kinematic viscosity of the Ñuid, is the coreR
cradius, u is the angular velocity, and is the frequency ofu2the core mode (Greenspan 1990).

13. SIMULATION RESULTS

The numerical simulations are meant to provide a check
on the analytic work and the simpliÐed resonance models,
but they also allow the dynamics to be explored in regimes
that are difficult to handle analytically. For instance, in the
resonance models we assume that the obliquity is constant,
and that the z-component of the angular velocity of the core
matches that of the mantle, a condition that can break
down for low enough e†ective viscosity. These assumptions
are relaxed in our algorithms, which in addition allow an
examination of the dynamics of obliquity and wobble when
the core-mantle system is gravitationally coupled to the rest
of the solar system. Our full numerical model includes all
the planets (evolving chaotically, of course), the Moon, and
the coupled core-mantle system for Earth or Venus. Direct
and cross lunar and solar tidal interactions for Earth, the
Moon, and Venus are taken into account. The initial condi-
tions were taken from the calculation of TW94a. The step
size was near 1 hour. We found that with larger step sizes
(Chandler) wobble is artiÐcially excited.

These simulations played a crucial role in the develop-
ment of our analytical models. There is no room to hide
when Newton is standing there glaring at you. Compari-
sons of the analytical results with the numerical results
uncovered early errors in our analytic development and
clariÐed its essential ingredients. More importantly, the full
simulations uncovered crucial aspects of the evolution that
we did not anticipate. Namely, a signiÐcant portion of the
energy that is dissipated from friction at the core-mantle
boundary comes out of the energy of rotation of the planet,
enhancing the rate of despinning of the planet over that
expected from tidal friction alone. Consequently, the time
spent in the resonance is shorter than was expected and the
total energy dissipated during resonance passage is smaller
than was expected.

We began our investigations with enhanced tidal friction.
This reduces the computational demands and allows a
check on the analytical developments. Our expectation was
that the results could be scaled to the estimated actual rates
of tidal evolution. More speciÐcally, we expected that if we
enhanced the rate of tidal evolution by a factor of, say, 10,
and then stretched the time scale accordingly, then the plot
of the evolution of the core-mantle o†set would be invari-
ant. This expectation was conÐrmed for tidal evolution
enhancements in the range 10È1000. Unfortunately, the
scaling breaks down for realistic rates of tidal evolution, as
we document below.

First, consider the evolution of Earth through the pro-
grade annual resonance. We have examined the conse-
quences of EarthÏs passage through resonance for a variety
of tidal evolution rates and dissipation rates at the core-
mantle interface. In Figure 8, we show the core-mantle
o†set as a function of time for one representative case :
l\ 0.01 cm2 s~1, giving an estimated Q at time of reso-
nance of Q\ 15,000, with the rate of tidal evolution
enhanced over the actual estimated rate by a factor of 10.

For comparison, the core-mantle o†set in the evolution
computed with a simple two-resonance model is displayed
in Figure 9. The eccentricity is constant in this two-
resonance model with a value of 0.04835. This is the eccen-
tricity in the full model at the time of peak excitation. We
see that the evolution of the two-resonance model is in
pretty good agreement with the full simulation (Fig. 8).
Away from resonance, some di†erences can be traced to the
fact that EarthÏs orbital eccentricity varies with time
because of planetary perturbations in the full simulation,
whereas the eccentricity is Ðxed in this resonance model.

However, upon closer examination we see that the peak
excitation is slightly higher and the shape of the peak is
slightly broader than in the full simulation. It turns out that
in the full simulation, there is an enhancement of the rate of
change of the length of day over that from tidal evolution
alone. Energy is dissipated at the core-mantle boundary,
and much of this energy comes from the rotational kinetic
energy. So dissipation of energy leads to an enhancement of
the rate of deceleration of the rotation. We call this e†ect
rotation feedback. As a consequence of rotation feedback,
the system spends less time in a resonance than one would
otherwise estimate, and so the total energy dissipated as a
resonance is crossed is less, by as much as an order of
magnitude, than one would estimate without considering
this feedback. Rotation feedback is thus an important e†ect
that must be taken into account in estimating the conse-

FIG. 8.ÈCore-mantle o†set angle J (in arcseconds) vs. time (in years)
for the full numerical simulation. The time origin has been chosen to
coincide with the time of annual resonance passage. In this simulation the
e†ective viscosity is l\ 0.01 cm2 s~1 and the rate of tidal evolution has
been increased by a factor of 10 over the actual estimated rate.
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FIG. 9.ÈCore-mantle o†set angle J (in arcseconds) vs. time (in years)
for a two-resonance model. Here l\ 0.01 cm2 s~1 (Q\ 15,000). The rate
of tidal evolution has been increased by a factor of 10 over the estimated
rate.

quences of core-mantle resonance passage. The full simula-
tions were essential for uncovering this e†ect.

To include rotation feedback in the approximate reso-
nance models, we need to estimate the additional deceler-
ation of the rotation due to the dissipation of energy. As
before, we work with an axisymmetric planet, in which a
core-mantle friction (resulting from Ñuid viscosity, magnetic
resistivity, or both) works to eliminate any relative velocity
between the core and the mantle. Such relative velocities are
excited by the passage through core-mantle resonance. For
simplicity, and without serious loss of generality, we work
with a dissipative torque of the form WeT

v
\i@(p

c
, q

c
, r

c
).

are particularly interested in the z-component of the torque,
which slows the rotation

du
dt

\ i@
C

m
r
c

, (126)

where is the mantleÏs moment of inertia about the axis ofC
msymmetry and is nearly (for a spherical cavity this isr

cexactly the case) the angular velocity of the core relative to
the mantle. The rotation is also slowed by tidal friction.

We Ðrst express in terms of the resonance dynamicalr
caction #. Recall that or in terms ofr

c
\ (CR

c
[ C

c
R)/c,

the Andoyer-like variables, Followingr
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\ (CS[ C

c
L )/c.

canonical transformation to the primed actions, r
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\

For the core tilt mode, with[(C[ C
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no wobble, S@ B #/(1 [ d). Recall that Noted \C
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# . (127)

Now,

# B 12(1[ d)dCu sin2 K , (128)

so

du
dt

B [ i@
2C

m
u sin2 K . (129)

Recall that and that the rate of energy dissi-i@\ C
c
u2/(2Q),

pation sodE/dt B 12Cu2d(1[ d)(u2/Q) sin2K,

du
dt

B [ 1
2(1[ d)2

1
Cu

dE
dt

. (130)

This expresses the additional rate of deceleration of the
planet due to energy dissipation resulting from core-mantle
tilt that is excited during resonance passage.

In Figure 10, we show the rate of change of the rotation
from both the full simulation and a resonance model to
which has been added the additional deceleration due to
rotation feedback. The agreement is satisfactory.

Having clariÐed the main physical e†ects with artiÐcially
accelerated tidal friction, we now investigate the evolution
of Earth through the annual resonance at a more realistic
rate of tidal evolution. Figure 11 shows the core o†set angle
versus time without any enhancement of the rate of tidal
evolution. Note how much sharper the peak is compared
with the evolution with enhanced tidal evolution. Rotation
feedback enhances the rate of change of the rate of rotation

near the peak more than sixfold over tidal evolution(u5 )
alone. Here we have assumed that the orbit is Ðxed, with an
eccentricity of 0.04835, that the obliquity is constant at 23¡,

FIG. 10.ÈRate of change of the rate of rotation vs. time. The rate of(u5 )
change of rotation is in 10~11 rad day~1 day~1 ; the time is measured in
years. The origin of time has no signiÐcance. For the upper two traces, the
rate of tidal evolution is enhanced by a factor of 10. The trace with the
peak in the center is from the full simulation. The trace with the peak
displaced to the right is from the resonance model with rotation feedback.
The rotation feedback resonance model is in satisfactory agreement with
the full simulation. Rotation feedback enhances the rate of evolution by
about 50%. In the upper two traces, the time scale is stretched to show the
evolution as if there were no enhancement in the rate of tidal evolution.
The lower trace is for the resonance model with rotation feedback without
any enhancement of the rate of tidal evolution. At the resonance peak,
rotation feedback enhances the rate of evolution by more than a factor of 6.



No. 2, 2001 NONLINEAR CORE-MANTLE COUPLING 1045

FIG. 11.ÈCore-mantle o†set angle J (in arcseconds) vs. time (in years)
for a two-resonance model with rotation feedback. Note how rotation
feedback sharpens the peak. Here l\ 0.01 cm2 s~1 (Q\ 15,000). The orbit
is Ðxed with eccentricity 0.04835.

and that the equinox regresses uniformly with a period of
26,000 yr. The e†ective core viscosity is l\ 0.01 cm2 s~1
(Q\ 15,000). For this case, we Ðnd that the total energy
dissipated in passing through the prograde annual reso-
nance, without rotation feedback, is about 1.82] 1026 J, in
good agreement with the linear estimates. Including rota-
tion feedback reduces the total dissipated energy by about a
factor of 3, to 6.32 ] 1025 J.

Modeling the variation of EarthÏs orbit by the Ðrst four
terms in the quasi-periodic series of Laskar (1988), we Ðnd

FIG. 12.ÈCore-mantle o†set angle J (in arcseconds) vs. time (in years)
for a two-resonance model with rotation feedback and Earth orbital varia-
tions. Here l\ 0.01 cm2 s~1 (Q\ 15,000).

the evolution of the core o†set angle shown in Figure 12.
The total dissipated energy is 3.74 ] 1025 J. This value is
sensitive to the eccentricity of Earth at the time of the core-
mantle resonance encounter. These estimates are similar to
that given by Gre†-Le†tz & Legros (1999), who found
5 ] 1025 J, for an unspeciÐed eccentricity. They did not
include rotation feedback.

We must also consider other values of the e†ective core
Q. The rotation feedback e†ect is stronger at higher core
o†set because the rate of dissipation of energy is larger. At
lower Q the excitations are lower, so rotation feedback is
less e†ective at reducing the total energy dissipation. Figure
13 shows the total energy dissipated in Earth as a function
of the e†ective Q. In these calculations the eccentricity of
Earth is Ðxed at 0.05, and the obliquity is Ðxed at 23¡. For
Earth, the rotation feedback e†ect has a noticeable e†ect on
the total energy deposited only if the e†ective core Q is
larger than about 1000.

13.1. Venus
We looked at a hypothetical Venus, which starts out

spinning retrograde with a rotation period of less than 19
hours. Its geophysical properties are Earth-like, except for
the delay of the tidal bulge, which is taken to be a Ðfth of
that on the present Earth. This value accounts for the fact
that Venus has no oceans. The rate of tidal evolution for
Venus is also di†erent from that of Earth, because Venus
has no moon and is closer to the Sun. The net e†ect is that
the rate of tidal evolution for Venus is estimated to be(*0 )
about a quarter that of Earth. As mentioned before, dissi-
pation is parameterized by an e†ective viscosity in a
laminar boundary layer. Other stresses will have a similar
integrated form. Given the uncertainties about core vis-
cosity, as well as mantle conductivity, we have explored a
range of e†ective viscosity.

Figure 14 shows the excitation for Venus versus time for
an e†ective viscosity of 10~4 cm2 s~1 (a Q near resonance of

FIG. 13.ÈEnergy dissipation in Earth vs. core-mantle Q, including
rotation feedback. The obliquity is 23¡ ; the orbital eccentricity is 0.05. The
dashed line indicates the linear estimate, eq. (103), which is independent of
Q. Rotation feedback is more important for larger Q.
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FIG. 14.ÈAmplitude of the core tilt mode (in arcseconds) for the full
model vs. time (in years). Venus was started spinning with a period of 19 hr,
an initial obliquity of 157¡ (retrograde rotation with obliquity 23¡), and an
equivalent core-mantle Q\ 2.26] 105. The peak excitation of about 700A
reÑects the extent of the chaotic zone in the inviscid limit. The rate of tidal
evolution is enhanced by a factor of 10 relative to the estimated rate.

226,000). The excitation reaches 700A, comparable to the
maximum extent of the chaotic zone shown in Figure 2. The
tidal evolution has been enhanced by a factor of 10 to
reduce computational demands.

The excitation as a function of time for a two-resonance
model with rotation feedback is shown in Figure 15. This
model uses a four-term quasi-periodic model for the orbital
variations of Venus (Laskar 1988). The two-resonance
model and the full simulation are in satisfactory agreement.

Having achieved satisfactory agreement between the full
simulation and the resonance model with accelerated tidal
evolution, we can use the resonance model to explore the
evolution of the system through the resonance at
(estimated) realistic rates of tidal evolution. The evolution
of the two-resonance model for the actual estimated rate of
tidal evolution is shown in Figure 16. Even though the
evolution is complicated and shows evidence of chaotic
behavior, the actual energy dissipation (8.7] 1025 J) is
more than an order of magnitude smaller than the linear
estimate. Rotation feedback substantially shortens the
interval of large excitation. Also, nonlinear saturation is
quite strong at such a high e†ective Q (see Fig. 7).

The total energy dissipated in Venus during passage
through the retrograde annual resonance depends on
several factors : the rate of tidal evolution, the e†ective core-
mantle Q, and the obliquity at the time of passage. We may
estimate the rate of tidal evolution using what is known
about the tidal evolution of EarthÏs rotation as a guide. We
have estimated that the rate of change of * for Venus is
about a quarter that for Earth. Figure 17 shows the total
energy deposited in Venus during passage through the
annual resonance as a function of the enhancement factor,
x, of the rate of tidal evolution relative to this nominal
estimated rate. Roughly, the energy dissipation scales

FIG. 15.ÈAmplitude (in arcseconds) of the core tilt mode vs. time (in
years) for a two-resonance model with a quasi-periodic approximation to
the orbital variations of Venus. This model includes rotation feedback. The
equivalent core-mantle Q is 2.26] 105. The obliquity is 23¡, with retro-
grade rotation. The rate of tidal evolution is enhanced by a factor of 10
relative to the estimated rate, matching the rate of evolution in the full
simulation.

inversely with as in the linear estimate given in equation*0 ,
(103).

The total energy dissipated in Venus also depends on the
e†ective core-mantle Q. Though the linear estimate is inde-

FIG. 16.ÈAmplitude (in arcseconds) of the core tilt mode vs. time (in
years) for a two-resonance model with a quasi-periodic approximation to
the orbital variations of Venus. The equivalent Q is 2.26] 105. The rate of
tidal evolution is the estimated rate, without any enhancement.
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FIG. 17.ÈEnergy dissipation in Venus vs. the logarithm of the tidal
evolution enhancement factor, x, with (squares) and without (circles) rota-
tion feedback. The obliquity is 23¡. The e†ective core viscosity is 0.01 cm2
s~1.

pendent of Q, nonlinear saturation limits the amount of
excitation and dissipation at large Q. The phenomenon of
rotation feedback further reduces the amount of energy dis-
sipation. Figure 18 shows the energy dissipation in Venus
versus Q for a two-resonance model with rotation feedback
and quasi-periodic orbital variations. The rotation is retro-
grade and the obliquity is 23¡.

The strengths of the core-mantle resonances depend on
the obliquity, but the obliquity that Venus might have had
during the passage through the retrograde annual reso-
nance is totally unconstrained. Figure 19 shows the total
energy dissipation in Venus as a function of the obliquity at
the time of resonance passage. The maximum energy dissi-

FIG. 18.ÈEnergy dissipation (joules) in Venus vs. core-mantle Q, with
(squares) and without (circles) rotation feedback. The obliquity is 23¡.

FIG. 19.ÈTotal energy dissipation (joules) vs. obliquity (degrees), for
e†ective core viscosity l\ 100 cm2 s~1 (circles) and l\ 0.01 cm2 s~1
(squares), with the two-resonance model with rotation feedback and quasi-
periodic orbital variations.

pation occurs for an obliquity near 45¡, but is within a
factor of 2 of the maximum for any obliquity from about
15¡ to 75¡.

14. SPECULATIONS CONCERNING VENUS

Traditionally, the spins of the planets have been thought
to have been established by an orderly accretion process, a
thought inspired by the fact that prograde rotations pre-
dominate in the solar system. Within this mind-set, the
retrograde rotation of Venus is a puzzle framed by the ques-
tion, ““ How did Venus Ñip over? ÏÏ To this day, the dis-
cussion of the history of the rotation and obliquity of Venus
focuses on initial prograde rotation states and possible
mechanisms of turning Venus upside down (e.g., Goldreich
& Peale 1970 ; Yoder 1995a ; de Surgy & LaskarNe� ron
1997).

Recently, though, opinion has shifted to the idea that late,
large impacts play a dominant role in establishing the spins
of the terrestrial planets (Hartmann & Vail 1986 ; Lissauer
& Safronov 1991 ; Dones & Tremaine 1993 ; Lissauer 1995).
The spin that results from numerous large impacts may be
either prograde or retrograde. In this view, a sequence of
terrestrial planets with their spins all lined up (all prograde
or all retrograde) would be a surprise. Think about tossing
four coins. The most likely outcome is that three of the
coins will be the same and one di†erent (probability It is12).
very unlikely that all will be the same (probability 18).
Among the terrestrial planets, three are prograde and one is
retrograde. From this point of view, an initial retrograde
rotation of Venus is not surprising. Indeed, why bend over
backward to make Venus Ñip upside down? The simplest
scenario for Venus is that the rotation has always been
retrograde.

The rotation period of Mars (25 hr) is essentially primor-
dial. When the Moon was close to Earth, the rotation
period of Earth was near 5 hours. The initial rotation
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period of Mercury is unknown. We might expect that the
initial rotation period of the other terrestrial planets might
be comparable to that of Mars and Earth. An initial retro-
grade rotation of Venus with a period shorter than 19 hours
is plausible. If the initial rotation of Venus was retrograde
and Venus initially had a rotation period shorter than
about 19 hours, then Venus would have passed through
the retrograde annual core-mantle resonance. (We are
assuming an Earth-sized Ñuid core.)

We have estimated the energy deposited in Venus as the
retrograde annual resonance was crossed (see ° 13 for a
detailed discussion of results). For the nominal rate of tidal
evolution, the total energy deposited can be as large as
2 ] 1027 J, for an e†ective core-mantle Q of order 100
(e†ective l\ 100 cm2 s~1). For larger Q, the total energy
deposited is smaller. For slower rates of tidal evolution, the
energy that is deposited is larger. We may compare this
with estimates of the energy deposited during passage of
Earth through the prograde annual resonance, which
occurred near the Permo-Triassic boundary 250 million
years ago. The value depends on the eccentricity at the time
of resonance passage ; the energy deposited is of order
4 ] 1025 J, with perhaps a factor of 2 uncertainty. Thus, the
energy deposited in Venus in crossing the retrograde annual
resonance could be nearly 50 times larger than the energy
deposited in Earth during the prograde annual resonance
passage.

It has been suggested that the Siberian traps, which occur
at the Permo-Triassic boundary, and possibly even the
Permo-Triassic extinction are a result of this resonance
passage and the mantle plumes set in motion by this heat
pulse. Further study is required to decide what role EarthÏs
passage through the annual resonance had in the formation
of the Siberian traps and the Permo-Triassic extinction. The
timing is certainly suggestive, but it may just be a coin-
cidence. On the other hand, if the Siberian traps are a result
of passage through the annual core-mantle resonance, then
we may speculate as to the consequences of as much as 50
times as much heating in Venus as the retrograde annual
resonance was crossed. It seems a natural explanation of the
global resurfacing of Venus. Venus has (and perhaps always
has had) a retrograde rotation, and the rate of tidal evolu-
tion of the rotation of Venus is slower than for Earth. As a
result, Venus is subjected to dramatically more resonant
heating than Earth. Venus has been globally resurfaced, and
Earth has the Siberian traps.

That is all very exciting, but there are serious problems.
One issue is whether the energy that is deposited is sufficient
to cause the global resurfacing of Venus (or the Siberian
traps). Preliminary mantle convection simulations of this
process have yielded promising results (B. Hager 2001,
private communication). In a simulation in which 2] 1027
J were deposited at the base of the mantle, sufficient heat
was carried to the surface to generate 250 m global equiva-
lent melt. It has been estimated that 500 m global equiva-
lent melt was required to resurface Venus (Solomon,
Bullock, & Grinspoon 1999). This is very encouraging, but
further study is required.

The most serious problem is how to get from there to
here. The core-mantle resonance occurs for a rotation
period near 19.3 hr, but Venus rotates slowly today. Can
tidal friction slow Venus from a rotation period of 19 hours
to its current period of 243 days in less than a billion
years (an estimated upper limit to the age of the surface of

Venus) ? For Venus to slow to its present rotation rate from
a 19.3 hr rotation period in less than 1 Gyr requires an
e†ective tidal Q less than 10, in the range 5È8. For compari-
son, the e†ective tidal Q of Mars is about 85, the tidal Q for
the Moon is about 27, and the e†ective Q for Earth is about
12 (Yoder 1995b). The Q for Earth is dominated by ocean
dissipation in the shallow seas. The Q of the Moon is
thought to result from turbulent dissipation at a core-
mantle boundary or to a partially molten layer in the
mantle. Could the sort of heating that passage through the
core-mantle annual resonance implies change the interior of
Venus so that the time-average e†ective tidal Q is less than
10?

An interesting possibility is that there is especially large
tidal dissipation in the several hundred meter deep magma
ocean that is required to resurface Venus. The viscosity of
molten rock is several orders of magnitude larger than the
viscosity of water, so if EarthÏs oceans reduce the e†ective Q
of Earth to 12, perhaps the e†ective Q of Venus would be
much lower. Water and sulfur dioxide introduced into the
atmosphere during resurfacing raise the temperature of the
atmosphere (Solomon et al. 1999), slowing the cooling.
Tidal dissipation (heating) might then act to maintain the
magma ocean in a molten state while slowing rotation. In
addition to supplying the melt for resurfacing the mantle,
plumes might also create a partially molten or low-viscosity
layer below the surface of Venus that might also reduce the
e†ective tidal Q. These processes will be explored in another
paper.

Another possibility that should be considered is that non-
hydrostatic contributions to the Ñattening of the core-
mantle boundary could actually drive the system back
through any of these resonances. Core-mantle resonance
passage might not be a one-time a†air. Reverse passage
through these resonances is signiÐcantly di†erent from
passage in the direction we have been considering. Two
distinct mechanisms allow the system to be captured into
resonance during reverse passage.

First, the nonlinear dynamics of Ðrst-order resonances
allows capture for reverse passage. Indeed, for isolated Ðrst-
order core-mantle resonances with constant obliquity and
eccentricity, capture is certain for small initial core o†sets if
the rate of resonance passage (rate of change of non-
hydrostatic Ñattening) is small enough. The actual outcome
of resonance passage is more complicated to determine,
because of the presence of dissipation, multiple resonances,
and orbital variations. We have veriÐed that reverse capture
in these nonlinear Ðrst-order core-mantle resonances is pos-
sible through simulations with our resonance models. We
defer further discussion to a future paper.

Rotation feedback provides another mechanism for reso-
nance capture. An increase in the core Ñattening due to
nonhydrostatic contributions can drive the system back
toward the resonance. As the resonance is approached, the
excitation increases and energy dissipation increases. But
because of rotation feedback, as energy is dissipated there is
an additional slowing of the rotation, which tends to make
the system move away from resonance. An equilibrium is
possible. As nonhydrostatic ellipticity changes drive the
system back to resonance, rotation feedback drives the
system away from resonance. The two e†ects can balance.
What happens in this captured state is that the core preces-
sion frequency is maintained near resonance with the orbital
mean motion. The way this happens is that the rotation rate
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decreases to compensate for the increase in core ellipticityÈ
the core precession frequency is proportional to the product
of the ellipticity and the rotation rate. Of course, energy is
dissipated as long as the system stays in resonance.

This raises another interesting possibility for slowing
Venus down after resonance passage (and resurfacing). If
the pattern of mantle convection that is responsible for the
increase in the nonhydrostatic Ñattening is intensiÐed by the
heating generated by the resonance excitation, then a feed-
back is possible whereby the nonhydrostatic Ñattening
monotonically grows, while rotation feedback constantly
reduces the rotation rate, keeping the system in resonance
and powering the further growth of nonhydrostatic Ñat-
tening. The rotation rate could be substantially reduced by
this process. If, say, the nonhydrostatic Ñattening contribu-
tion is so large as to double the total Ñattening, then the
rotation rate will be reduced roughly by half (the hydro-
static contribution to the Ñattening is reduced as the rota-
tion rate decreases). This could be a signiÐcant step in the
process of slowing Venus. The process is only limited by
how much nonhydrostatic Ñattening can be supported.

We have veriÐed that this equilibrium exists by running
the resonance models with additional nonhydrostatic con-
tributions to the Ñattening and mapped out the parameters
for which capture occurs. Essentially, the rate of increase of
nonhydrostatic Ñattening must be large enough so that the
resonance is encountered in the reverse direction, over-
coming the decrease in hydrostatic Ñattening that occurs
because of tidal slowing of the rotation. But we also Ðnd
that if the rate of increase of nonhydrostatic Ñattening is too
large, the system is not captured. We will report on these
results in a future paper.

Even if it turns out that passage through the annual reso-
nance is not directly related to the global resurfacing event,
it is still possible that Venus passed through the annual
resonance early in its history. The heating then may have
dramatically altered the state of the atmosphere and inte-
rior and still be a part of the explanation of the divergent
histories of Earth and Venus.

15. SUMMARY

This paper documents our extended investigations of the
nonlinear dynamics of the astronomically forced coupled
core-mantle system, which we began in 1993. To some
extent this paper is a diary of our developing understanding
of this problem. The astronomically forced core-mantle
system is a beautiful problem that has never before been
considered from a modern nonlinear dynamics point of
view. We were drawn to it by its intrinsic interest and the
fact that it o†ered fertile new unexplored territory for the
application of modern methods of nonlinear dynamics. But
also we began our investigation with the hunch (or hope)
that core-mantle dynamics might play a role in the both the
Permo-Triassic extinction and the resurfacing of Venus.

We have given an exact Hamiltonian formulation of the
model. We have given a novel Hamilto-Poincare� -Hough

nian derivation of the normal modes of the linearized
system. We have derived an approximate Hamiltonian gov-
erning the evolution of the tilt mode that includes the Ðrst
nonlinear contribution. We then developed, in this Hamil-
tonian formulation, expressions for the perturbations. We
have identiÐed and derived the main resonance contribu-
tions near the principal core-mantle precession resonances.
These are the resonances in which the period of precession

of the core vorticity is commensurate with orbital period of
the planet. For the most important resonances the core
frequency is an integer multiple of the orbital mean motion,
but there are also resonances that are half-integral multi-
ples. We give analytic estimates of the excitation that would
be expected at each resonance, if it were isolated. We focus
attention on the prograde and retrograde annual reso-
nances. We Ðnd that near each commensurability, there are
actually multiple resonances with small frequency splitting
due to the precession of the equinox and perihelion. The
multiple overlapping resonances give rise to chaotic behav-
ior. For Earth, with prograde rotation, the chaotic zones
are small ; for Venus, with retrograde rotation, the chaotic
zones are large. The precession of the core is in the opposite
direction to the rotation. For Venus, the core precesses in
the same direction as Venus goes around the Sun, with
great e†ect.

There are two distinct dissipative e†ects to consider. The
rotation of the planet is slowed by tidal friction, and any
core-mantle o†set results in energy dissipation at the core-
mantle boundary. We specify the magnitude of this dissi-
pation by the e†ective Q but otherwise make no
commitment to a speciÐc dissipation mechanism. We esti-
mate the times at which Earth passed through these core-
mantle resonances. The annual resonance nominally occurs
257 million years ago, just before the Permo-Triassic extinc-
tion and the Siberian traps. The timing is suggestive but
may, in the end, just be coincidence. As a point of compari-
son for our investigations of the nonlinear dynamics of reso-
nance, we linearized our model and considered the
excitation and energy dissipation in the linear regime. We
Ðnd in the linear model that about 24 times as much
energy is dissipated in Venus compared with Earth as each
passes through the annual resonance. Turning to the non-
linear dynamics of resonance passage with dissipation,
we Ðnd that for small Q the excitations are small and the
evolution of the system is pretty well described by the linear
model. As Q is increased the nonlinear dynamics be-
comes more important, and the fact becomes apparent
that in the inviscid limit a separatrix is crossed as the
resonance is encountered. For Q above about 10,000,
the dynamical nonlinearity limits the magnitude of the
excitation (nonlinear saturation) and limits the total energy
dissipation.

We have developed new symplectic algorithms to study
the evolution of the core-mantle system numerically. Our
full numerical model describes a coupled core-mantle
system, subject to astronomical perturbations from the full
chaotically evolving solar system. The model includes direct
and cross tidal friction on Earth and the Moon. The full
simulations are compared with approximate resonance
models. The approximate models are used to explore the
parameter space ; the full simulations provide a check on the
approximate resonance models. Comparison of the two
uncovered an important feedback e†ect : energy that is dissi-
pated as a result of core-mantle o†set comes primarily from
the rotation, enhancing the rate of change of rotation over
the rate expected from tidal evolution alone. A consequence
is that the system spends less time in resonance than one
would otherwise expect, and the total energy deposited is
also reduced. We call this e†ect rotation feedback. Depend-
ing on the parameters under investigation, rotation feed-
back can reduce the total energy deposited by an order of
magnitude. With rotation feedback included in the reso-
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nance models, we mapped out the total energy dissipated in
Earth and Venus, as a function of the various unknown
parameters. Generally, for small e†ective core Q the total
dissipation in Venus is as much as 20È50 times larger than
the total dissipation in Earth.

This scenario for resurfacing Venus has many attractive
features. The main di†erence that has resulted in such rad-
ically di†erent present conditions on Earth and Venus
might be as simple as the accident that Venus rotates in a
retrograde sense and Earth in a prograde sense. Where does
all the energy come from that is required to resurface
Venus? Could it really come just from a rearrangement of
the heat already in the interior? In our scenario, the energy
that is required to resurface the planet is drawn from the
kinetic energy of rotation of the planet. Though not inÐnite,
the rotational kinetic energy is a very large reservoir (about
2.5] 1029 J). There is plenty of available energy. The
energy that is dissipated during resonance passage (as much
as 2] 1027 J) seems to be sufficient to initiate the

resurfacing of Venus. Preliminary mantle convection simu-
lations (B. Hager 2001, private communication) have pro-
duced encouraging results concerning resurfacing, given the
amount of resonant heating we have estimated here. Venus
must slow down to the present slow rate of rotation in the
billion or so years since resurfacing. A number of possible
braking mechanisms were presented. Further study is
required.
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