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Chaotic behaviour in the Solar System

By J. Wispom

Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, U.S.A.

There are several physical situations in the Solar System where chaotic
behaviour plays an important role. Saturn’s satellite Hyperion is
currently tumbling chaotically. Many of the other irregularly shaped
satellites in the Solar System had chaotic rotations in the past. There are
also examples of chaotic orbital evolution. Meteorites are most probably
transported to Earth from the asteroid belt by way of a chaotic zone.
Chaotic behaviour also seems to be an essential ingredient in the
explanation of certain non-uniformities in the distribution of asteroids.
The long-term motion of Pluto is suspiciously complicated, but objective
criteria have not yet indicated that the motion is chaotic.

1. INTRODUCTION

The Solar System is generally perceived as evolving with clockwork regularity.
Indeed, it was a search for the principles that underlie the perceived regularities
in the motions of the planets that culminated in Newton’s formulation of the laws
of mechanics and universal gravitation 300 years ago. Recently it has been widely
recognized that dynamical systems possess irregular as well as regular solutions.
Irregular solutions of deterministic equations of motion are termed ‘chaotic’. The
Solar System is just another -dynamical system; the study of this preeminent
dynamical system-is not untouched by the discoveries in nonlinear dynamics.
Solar System dynamics encompasses the orbital and rotational dynamics of the
planets and their natural satellites, the coupling between them, and the slow
evolution of the orbits and spins due to tidal friction. It is primarily the dynamics
of resonances and resonances are almost always associated with chaotic zones.
Chaotic behaviour must be considered a possibility in almost any dynamical
situation in the Solar System. In this paper a number of physical applications of
modern dynamics to the Solar System will be reviewed. Applications to rotational
dynamics will be considered first, followed by applications to orbital dynamics.

2. TUMBLING OF HYPERION

The chaotic tumbling of Hyperion, one of Saturn’s more distant satellites with
an orbit period of 21 days, offers one of the most dramatic physical examples of
chaotic behaviour (Wisdom et al. 1984). The rotation rate and spin-axis orientation
are predicted to undergo significant changes in only a few orbit periods. The
chaotic tumbling of Hyperion is primarily a consequence of Hyperion’s highly
aspherical shape, which was determined from Voyager 2 images to have radii of
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110 J. Wisdom

190 km x 145 km x 114 km + 15 km (Smith et al. 1982), and to a lesser extent a
consequence of the large eccentricity of Hyperion’s orbit (e ~ 0.1). Weak tidal
friction acting over the age of the Solar System is responsible for bringing Hyperion
to this chaotic state.

An out-of-round satellite in a non-uniform gravitational field is subject to a
torque. The torque arises because the attractive force on the side of the satellite
nearest the planet is stronger than the attractive force on the far side of the
satellite. For an out-of-round body the torques arising from these forces do not
balance, and give rise to a net torque, a ‘gravity gradient torque’. Hyperion is
subject to especially large torques because of its highly aspherical shape. In
addition, these torques have a strong time dependence because of the large
eccentricity of Hyperion’s orbit.

Earth’s Moon very nearly always points the same face toward Earth; the
equality of the rotation period and the orbit period of the Moon is a natural
consequence of the action of tidal friction. Tidal friction tends to bring the spin
axis into coincidence with the axis of largest moment of inertia, and over longer
times brings the spin axis perpendicular to the orbit plane as the rotation rate is
slowed until the rotation period equals the orbital period (see Goldreich & Peale
1966; Peale 1977). All satellites in the Solar System which are sufficiently close to
their host planet for the tidal torques to have been strong enough to significantly
affect the rotation rate over the age of the Solar System are observed to be in this
state where the spin period is locked to the orbit period. The timescale for the spin
of Hyperion to be slowed by tidal friction to synchronous rotation is on the order
of the age of the Solar System. Thus, the magnitude of Hyperion’s rate of rotation
is near that which Hyperion would need to always point one face toward Saturn.
Hyperion’s rotation would not be chaotic if it were not tidally evolved. At the
same time, if the timescale for tidal despinning were much shorter than the age of
the Solar System, Hyperion might have already found its way into a stable
commensurate rotation state.

The chaotic rotation of Hyperion is best illustrated in a simplified model. In this
model the orbit of Hyperion is taken to be a fixed ellipse ; the timescale for chaotic
variations in the spin rate is much shorter than the timescale for significant
variations in Hyperion’s orbit, which are, in any case, not large. Furthermore, the
spin axis is taken to be perpendicular to the orbit plane and aligned with the axis
of largest moment of inertia ; this is the usual outcome of tidal evolution. In this
simplified problem the equation of motion for the orientation is quite simple:

¢ 3 (a)? .
C@— —n?}(B—A4) 2(;) sin 2(60 —f).

The orientation of the satellite is specified by a single angle, 8, which is taken to
be the angle between the axis of smallest principal moment of inertia (the longest
axis of a triaxial ellipsoid) and the inertially fixed line of periapse (the line joining
the planet and the point in the orbit closest to the planet). The angular position
of the satellite in its orbit is also measured from the periapse of the orbit. This
angle is the true anomaly, denoted here by the symbol f. The principal moments
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of inertia are A < B < C; C is the moment of inertia about the spin axis. The mean
angular motion of the satellite in its orbit is », the instantaneous distance from the
planet to the satellite is 7, and the semimajor axis of the orbit is a. The equation
of motion equates the rate of change of the angular momentum, or equivalently,
the product of the moment of inertia about the spin axis and the acceleration of
the orientation, to the external torque. The inverse cube dependence of the torque
on the distance from the planet reflects the origin of the torque as a gravity
gradient. There would be no net torque if the body were axisymmetric about the
spin axis; the asymmetry of the body enters the equation of motion through the
difference of the principal moments of inertia in the plane of the orbit, B—A.
Instantaneously, the torque always tends to try to align the long axis of the
satellite with the line between the satellite and the planet; the angle between the
long axis and the planet-satellite line is 6 —f. This equation keeps only the lowest
moments of the mass distribution in the orientation dependent part of the
potential energy. The contributions that are ignored are of one higher order in the
small ratio of the radius of the satellite to the orbital radius. In this approximation
all bodies have a symmetry under which a rotation by 180° gives a dynamically
equivalent configuration. The factor of two multiplying the difference of angles
reflects this symmetry. ’

This equation of motion has only a single degree of freedom, the orientation
angle 6, but depends explicitly on the time through the distance to the planet, r,
and the non-uniform keplerian motion of the true anomaly, f. It is worth
emphagsizing that it is the non-zero eccentricity of the orbit that spoils the
integrability of this simplified problem. If the eccentricity is set to zero then the
planet to satellite distance remains equal to the semimajor axis, and the true
anomaly becomes simply the mean motion times the time. The equation of motion
for the angle ¢ = 6 —nt is

a0’ 3n*(B—4) . ,
T 2 sin 26°.

Except for the factor of two, which could easily be removed by a further change
of variables, this is the equation of motion for a pendulum, which of course can be
explicitly integrated. An important feature is that the problem now has an integral

do'\* 3n*B—A)
=1 — : 4
E—EO(dt> 1 cos 26’

Hamiltonian systems with more than one degree of freedom almost always
exhibit a divided phase space: for some initial conditions the trajectory is chaotic,
and for others the trajectory is regular (Hénon & Heiles 1964). The explicit time-
dependence cannot be eliminated from the equations of motion for the simplified
spin-orbit problem when the eccentricity is non-zero. Thus the spin-orbit problem
may be expected to display the generic mixed phase space. The structure of the
phase space is most easily understood by computing surfaces of section. For the
simplified spin-orbit problem surfaces of section are generated by looking at the
rotation state stroboscopically, once per orbit. The equation of motion is numeri-
cally integrated, and every time the satellite goes through periapse the rate of
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112 J. Wisdom

change of the orientation, df/dt, is plotted against the orientation, 6. The surface
of section for Hyperion is shown in figure 1. A number of different trajectories
have been used to illustrate the principal types of motion that are possible. Recall
that if the motion is quasiperiodic the points will fill a one-dimensional curve; if
the points seem to fill an area the motion is chaotic. All of the scattered points in

(1/n)d6/ds

0 in in in n

Ficure 1. Surface of section for Hyperion (with a = 4/[3(B—A4)/C] = 0.89 and ¢ = 0.1). The rate
of change of the orientation is plotted against the orientation at every periapse passage.
The spin axis is fixed perpendicular to the orbit plane.

the centre of the section belong to the same trajectory. The two trajectories that
generate an X in the upper centre part of the section are also chaotic. The other
trajectories appear, without close examination, to be quasiperiodic, and certainly
identify the main regions of quasiperiodic motion. The islands in the chaotic sea
correspond to various states where the rotation period is commensurate with the
orbit period. The island in the lower part of the section near 6 = 0 is the syn-
chronous- island, where Hyperion would on the average always point one face
toward Saturn (i.e. never make a complete relative rotation). The island in the
upper part of the large chaotic zone is the 2-state, where Hyperion would on the
average rotate twice every orbit period. A number of other islands are shown. The
curves in the bottom of the section near @ = in represent a non-commensurate
quasiperiodic rotation. If the range of the ordinate were greater it would be seen
that they stretch all the way across the figure, as do other non-commensurate
quasiperiodic curves near the top of the section. Only the portion of the section
between 0 and m is shown because the addition of © to 6 gives a dynamically



Chaotic behaviour in the Solar System 113

equivalent state. Note, however, that the synchronous states on the section at
0 =0 and 0 = = differ in that they present opposite faces to Saturn.

This simplified model was motivated by the standard picture of the tidal
evolution of rotations in which the spin axis is driven to the orbit normal as the
spin is slowed to synchronous rotation. Elements of the standard picture must
now be reexamined. In particular, it is necessary to reexamine the stability of the
spin axis orientation perpendicular to the orbit plane. Without giving the details
of the methods used, it turns out that the chaotic zone is attitude unstable. This
means that if Hyperion were placed in the chaotic zone with the slightest deviation
of its spin axis from the orbit normal this deviation would grow exponentially. The
timescale is just a few orbit periods. This is also true of the synchronous state ; that
state in which all other tidally evolved satellites in the Solar System are found is
attitude unstable for Hyperion! The attitude stability of the other commensurate
islands is mixed, some are stable while others are unstable. The equations that
govern the three-dimensional tumbling motion are Euler’s equations with the full
three-dimensional gravity gradient torque. These equations have three degrees of
freedom, through, say, the three Euler angles, plus the explicit time-dependence
from the non-uniform keplerian motion in an orbit with non-zero eccentricity. It
is no longer possible to plot a surface of section for a problem with so many degrees
of freedom. However, another property of chaotic trajectories is that neighbouring
trajectories separate exponentially from one another. The rates of exponential
separation are quantified by the Lyapunov characteristic exponents. The three-
dimensional tumbling state which is entered as the spin axis falls away from the
orbit normal is a fully chaotic state. There are no hidden integrals of the motion;
the chaotic tumbling motion has three positive Lyapunov exponents.

When the evolution due to tidal friction is included the problem is no longer
strictly hamiltonian. However, there is a tremendous disparity between the
dynamical timescale and the timescale over which the tides are important. The
tidal evolution is consequently viewed as a slow evolution through the phase space
of the hamiltonian system. Most likely Hyperion at one time had a rotation period
much shorter than its orbital period and began its evolution high above the top
of the section in figure 1. Over the age of the Solar System its spin gradually slowed,
while the obliquity damped nearly to zero. As it damped to zero the assumptions
made in computing figure 1 came closer to being realized. By ‘the time Hyperion
reached the large chaotic zone its spin axis was nearly normal to the orbit plane.
Once the large chaotic zone was entered, however, the work of the tides over aeons
was undone in a matter of days. Because the large chaotic zone is attitude unstable,
Hyperion quickly began to tumble through all orientations. Ultimately, Hyperion
may be captured by one of the small attitude stable islands. It can never be
captured by the synchronous island because the synchronous island is attitude
unstable.

Observations of Hyperion are not yet adequate to fully confirm the chaotic
tumbling, though they are all consistent with it. The most convincing evidence for
chaotic tumbling comes from the Voyager pictures themselves, which show that
the long axis of Hyperion is out of the orbit plane and the spin axis is near the
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plane. This is consistent with chaotic tumbling, but inconsistent with other known
regular rotation states. Further observations of Hyperion will be needed to
unambiguously determine whether its rotation is chaotic. If the observations are
complete enough it might be possible to invert the light curve for the initial
conditions and moments. Numerical simulations indicate that the moments may
be determined with accuracy which increases exponentially with the time interval
over which the observations are made.

3. IRREGULARLY SHAPED SATELLITES

Are there other examples of chaotic tumbling in the Solar System ? Hyperion
appears to be alone in its chaotic dance, the result of a unique combination of
factors which are nowhere else realized in the Solar System. It turns out though
that many other satellites tumbled chaotically in the past. In fact, all irregularly
shaped satellites in the Solar System must tumble chaotically just at the point
where the spin is about to be captured into synchronous rotation (Wisdom
1987a).

Almost all resonances are surrounded by chaotic zones, though in some cases
these chaotic zones may be very narrow. The commensurate spin-orbit states are
examples of resonances. Resonances appear as islands on a surface of section. Two
moderately narrow chaotic zones were illustrated in the upper part of figure 1.
There exist approximate methods of estimating the size of these chaotic zones (see
Chirikov 1979). The width of the chaotic zone surrounding the synchronous island
may be specified in terms of the magnitude of the chaotic variations of the integral
E of the zero eccentricity problem :

AE  14me
— X —e

~ —n/2a
E o? ’
where o, the asphericity parameter, is 1/[3(B—A4)/C]. Note that this estimate has
the correct limit for zero orbital eccentricity, where the simplified problem is
integrable. Although the width of the chaotic zone depends exponentially on the
asphericity parameter, it only depends linearly on the orbital eccentricity. Thus
satellites with large deviations from spherical symmetry, but small eccentricities
may still have significant chaotic zones.

Phobos, a satellite of Mars, is almost as out-of-round as Hyperion, but its orbital
eccentricity is only 0.015. A surface of section for Phobos is shown in figure 2. The
chaotic zone is a significant feature on the section. Even for Deimos, the other
satellite of Mars, where the orbital eccentricity is considered to be anomalously
small (e ~ 0.0005), the chaotic zone is not microscopic (see figure 3.) Surfaces of
section for several other irregularly shaped satellites with a near unity confirm the
existence of significant chaotic zones surrounding the synchronous island.

Stability analysis shows that the chaotic zones of these irregular satellites is in
every case attitude unstable, just as it is for Hyperion. A slight displacement of
the spin axis from the orbit normal grows exponentially, leading to chaotic
tumbling. The surprising result is the strength of this attitude instability. In every
case the timescale for the exponential growth of obliquity is only a few orbit
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(1/n)d6/dt

Ficure 2. Surface of section for Phobos (with a = 0.83 and ¢ = 0.015). The chaotic zone is a
significant feature on the section.
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Fieure 3. Chaotic separatrix for Deimos (with a = 0.81 and e = 0.0005). The chaotic zone is
sizable considering the very low orbital eccentricity.
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periods. This is true even for Deimos, with its low orbital eccentricity, and narrow
chaotic zone. The orbital eccentricity does not play a crucial role in this attitude
instability. It turns out that even for zero eccentricity the synchronous separatrix
is attitude unstable, and leads to chaotic three-dimensional tumbling, even though
the simplified problem with the spin axis perpendicular to the orbit plane is
integrable.

It is not possible to tidally evolve into the synchronous state without passing
through a region that is attitude unstable. The resulting tumbling motion is
always chaotic. All synchronously rotating satellites with significantly irregular
shapes must have spent a period of time tumbling chaotically. The length of time
spent in this state must be comparable with, and probably somewhat greater than,
the despinning timescale ; it is not yet possible to make a rigorous estimate. Thus
Deimos probably spent of the order of 100 Ma tumbling chaotically, and Phobos
spent on the order of 10 Ma in this tumbling state.

Enhanced dissipation of energy during the chaotic tumbling phase may help
explain the anomalously low eccentricity of Deimos, and certainly must be taken
into account in future studies of the orbital histories of the irregularly shaped
satellites. This new episode in the adolescence of the irregularly shaped satellites
is, however, fascinating in itself. The World, and newtonian mechanics in par-
ticular, works in a surprising way.

4. 3/1 KIRKWOOD GAP

The distribution of the semimajor axes of the asteroids is not uniform ; it shows
several gaps as well as several enhancements. The origin of these gaps has been the
object of a great deal of speculation. One major clue to the cause of these non-
uniformities, which was noted at the time of their discovery by D. Kirkwood, is
that they occur near mean-motion commensurabilities with Jupiter. That is, a
small integer times the mean motion of an asteroid in a gap will nearly equal the
product of another small integer times the mean motion of Jupiter. However, the
mere association of a gap with a resonance does not in itself explain the formation
of the gap. Nature herself provides the counterexamples: there are gaps at some
resonances and enhancements at others. The basic difficulty in understanding
the formation of the gaps was that the motion near complex resonances was not
well understood analytically, and numerical simulations could not alleviate the
problem because of the great amount of computer time required. Integrations
over 10 ka did not uncover a mechanism for the formation of gaps. Integrations
over significantly longer times were prohibitively expensive and did not seem
warranted.

Longer integrations were made possible by the introduction of a new
method for following the trajectories of asteroids (Wisdom 1982). Following
the ideas of Chirikov (1979), an algebraic mapping of the phase onto itself was
derived which approximates motion near the 3/1 commensurability. The map
is an approximation to the stroboscopic section that would be obtained by looking
at the coordinates of the asteroid once each Jupiter period (which is about 12
years); evolution of an asteroid is followed by successively iterating this map. The
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derivation of the map relies on the averaging principle, as have most other studies
of the long-term evolution of asteroid orbits. The terms with highest frequency,
the orbital frequency, are first removed by averaging, leaving the resonant terms
and the secular terms. New high-frequency terms are added in such a way that
delta functions are formed. The new equations can be integrated across the delta
functions and between them, giving a map of the phase space onto itself. The map
is significantly faster than more conventional methods; it is more than a thousand
times faster than a full integration and several hundred times faster than the
methods that rely on numerical averaging to increase the basic step size. This
great increase in computation speed made integrations over much longer intervals
possible.

Integration over longer times was justified. Fig. 4 shows the orbital eccentricity
as a function of time for a chaotic trajectory near the 3/1 commensurability

0.4 T T
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F1eUrE 4. Eccentricity against time for a chaotic trajectory near the 3/1 commensurability.
Time is measured in millennia. A short (10 ka) integration would give a very poor idea of
the nature of this trajectory.

computed with the planar elliptic map. Although excursions in eccentricity of this
magnitude were previously known (Scholl & Froeschlé 1974), the possibility that
an orbit could spend a hundred thousand years or longer at low eccentricity and
then ‘suddenly’ take large excursions was quite unexpected. Subsequent
numerical integrations of the full, unaveraged, differential equations have verified
that the behaviour is not an artifact of the method (Wisdom 1983 ; Murray & Fox
1984).

It is only when the trajectory is computed over millions of years that one begins
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to feel as though the true nature of the motion is represented. Figure 5 shows the
typical behaviour. of the eccentricity of a chaotic trajectory near the 3/1 resonance
in the planar elliptic problem. There are bursts of irregular high-eccentricity
behaviour interspersed with intervals of irregular low-eccentricity behaviour, with
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Ficure 5. Eccentricity of a typical chaotic trajectory over a longer time interval. The time is
now measured in millions of years. Bursts of high-eccentricity behaviour are interspersed
with intervals of irregular low-eccentricity behaviour, broken by occasional spikes.

an occasional eccentricity spike. Figure 6 shows a very interesting, though rela-
tively rare behaviour. The eccentricity jumps shown in figure 6 all reach the same
eccentricity, but seem to occur at irregular intervals. A most surprising result is
that if the plot is expanded near two different jumps and then superimposed the
eccentricity jumps are practically identical. Both of these trajectories were com-
puted with the map. For discussions of the growth of numerical error see Wisdom
(1983, 1987b). )

The unexpected behaviour of the eccentricity can be understood by putting the
trajectory in context on a surface of section (Wisdom 1985a). At first sight this is
not possible because the planar elliptic problem has two and a half degrees of
freedom (through, say, the x and y coordinates and the explicit time dependence
resulting from the keplerian motion of Jupiter in its elliptical orbit), but the
problem may be reduced to two degrees of freedom by averaging over the orbital
period. A surface of section corresponding to figure 5 is shown in figure 7. Here the
variables x = e cos (w—w;)and y = e sin (w — w;) are plotted each time a particular
combination of the mean longitudes goes through zero. The distance from the
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FicurE 6. Eccentricity of a relatively rare, but quite interesting chaotic trajectory. The time
is measured in millions of years.

—-0.2
-01 0 0.1 0.2 0.3

Fiaure 7. Surface of section corresponding to the trajectory of figure 5. The coordinates are
x = e cos (@—w,;), and y = esin (w—w,). The orbital eccentricity is the radius from the
origin. The trajectory is free to explore a rather large chaotic zone, but sometimes spends
a period of time near the islands close to the origin.
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origin on this section is the orbital eccentricity, e, and the ws are the longitudes
of perihelia for the asteroid and Jupiter. During the intervals of low-eccentricity
behaviour the trajectory stays in that part of the chaotic zone near the origin,
encircling one of the islands; during the high eccentricity intervals the trajectory
is moving in the extended chaotic zone to the right of the figure. The origin of the
peculiar behaviour of the eccentricity shown in figure 6 is apparent on the surface
of section shown in figure 8. The chaotic zone that surrounds the origin has a very
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Fieure 8. Surface of section for a trajectory similar to the one used to generate figure 7. The
narrow branch of the chaotic zone explains the irregularly appearing, but nearly identical
jumps in eccentricity.

narrow branch that extends to high eccentricity. The similarity of the different
jumps is explained by the narrowness of the chaotic zone. The fact that the jumps
occur at irregular intervals simply reflects the irregular nature of the motion in the
chaotic zone. Thus the peculiar behaviour of the eccentricity of chaotic trajectories
near the 3/1 commensurability can be understood as a simple manifestation of
chaotic behaviour in a problem with two degrees of freedom.

The long-period motion can also be understood semianalytically (Wisdom
1985b). Over much of the phase space the resonance timescale and the secular
timescale are well separated. An analytic average over the resonance timescale
gives a long-period hamiltonian with one degree of freedom. This approximation,
for instance, recovers the large jumps in eccentricity. It also gives a rather
interesting picture of the evolution in the chaotic zone, where the chaotic
trajectories are for the most part predictable, but occasionally enter a region
where the motion is essentially four dimensional.
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Now that the nature of trajectories near the 3/1 commensurability is better
understood, can the formation of the 3/1 Kirkwood gap be explained ? The large
eccentricity increases are important for the formation of the gap because at the
location of the gap eccentricities above 0.3 are Mars-crossing. It turns out that all
of the chaotic trajectories cross the orbit of Mars. Orbits that previously appeared
to be limited to low eccentricity are now understood to have large excursions in
eccentricity on longer timescales. The quasiperiodic resonance librators also gen-
erally have sufficient variation in eccentricity to cross the orbit of Mars. Thus
asteroids with both resonant quasiperiodic trajectories and chaotic trajectories
near the 3/1 commensurability can be removed by close encounters or collisions
with Mars. Comparison of the outer boundary of the chaotic zone with the actual
distribution of asteroids shows remarkably good agreement (figure 9). This figure
gives strong evidence that chaotic behaviour has indeed played a role in the
formation of this gap.
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Fieure 9. Comparison of the actual distribution of asteroids with the outer boundaries of the
chaotic zone. There is both a chaotic region and quasiperiodic region in the gap, but
trajectories of both types are planet-crossing.

5. TRANSPORT OF METEORITES

It is rather surprising that the origin of the meteorites, those stones which
contain so many clues concerning the formation of the Solar System, is still not
definitively known. It is widely believed that meteorites originate in the asteroid
belt, yet until recently a dynamical mechanism for transporting them to Earth
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which was consistent with the meteorite date eluded discovery. Monte-Carlo
simulations of Wetherill (1968) ruled out the previously suggested sources, and
seemed to indicate that there was another source of high-eccentricity orbits.

When the orbit of Jupiter is assumed to be fixed, and the motion of the asteroid
is limited to Jupiter’s orbit plane, chaotic trajectories near the 3/1 commensur-
ability are limited to eccentricities below about 0.4. As the integration is made
more realistic, though, by allowing three-dimensional motion and including the
variations of Jupiter’s orbit which result from the perturbations of the other
planets, the variations in eccentricity become more extreme. Chaotic trajectories
which begin at normal asteroidal eccentricities (e &~ 0.15) reach eccentricities
above 0.6, which is large enough for the orbit to cross the orbit of Earth. Figure
10 shows an example of such behaviour. Besides giving a stronger mechanism for
clearing the 3/1 Kirkwood gap, these chaotic trajectories provide a new dynamical
mechanism for bringing debris from asteroidal collisions near the 3/1 resonance
directly to Earth (Wisdom 1985b). Wetherill (1985) has shown that this new
source is consistent with the meteorite data, and that the larger fragments from
asteroid collisions partly account for the observed population of Earth crossing
asteroids. This discovery of a dynamical route from the asteroid belt to Earth is
an important scientific application of chaotic behaviour.

6. 2/1 KIRKWOOD GAP AND THE HILDA ASTEROIDS

The fact that there is a gap in the distribution of asteroid semimajor axes near
the 2/1 commensurability and an enhancement in the distribution near the 3/2
commensurability needs an explanation. Unfortunately, the dynamics of the 2/1
and 3/2 resonances are considerably more complicated that the dynamics of the
3/1 resonance. These resonances are not well represented by low-order truncations
of the disturbing potential. This makes analytic investigations difficult if not
impossible. ,

The only alternative appears to be direct numerical integrations. Numerical
integration of problems in celestial mechanics is particularly time consuming
because of the great range of timescales involved. The orbital dynamics of the
Solar System only begins to be interesting when studied over timescales of millions
of years. The single trajectory in figure 10 used the equivalent of about 200 VAX
hours. The Digital Orrery (Applegate et al. 1985) is a special purpose computer
specifically designed to study problems in celestial mechanics. The design and
construction of the Orrery were led by Gerald J. Sussman, from the Artificial
Intelligence Laboratory and the Department of Electrical Engineering at MIT.
The construction of the Orrery is an extremely important advance for planetary
dynamics, which evidently had a need for a dedicated supercomputer. The Orrery
runs at -about 60 times the speed of a VAX for celestial mechanics problems, or
about a third the speed of a Cray.

Chaotic behaviour near the 2/1 commensurability was first discovered by
Giffen (1973), though short integrations by Froeschlé & Scholl (1976, 1981)
indicated that chaotic behaviour was not very widespread or catastrophic. A new
survey of the structure near the 2/1 and 3/2 resonances is currently underway
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F1curE 10. Eccentricity against time in millennia for a test particle perturbed by the four jovian
planets. At times the eccentricity is typical of asteroids, at other times it is large enough
for the orbit to cross the orbit of Earth. This integration shows meteoritic material may
be directly transported to Earth from the asteroid belt by way of the 3/1 chaotic zone.

with the Digital Orrery. The preliminary results of this survey are quite inter-
esting. Figure 11 shows the chaotic zone near the 2/1 commensurability. In this
figure a cross indicates that a trajectory of the planar elliptic problem with this
initial eccentricity and semimajor axis is chaotic. Though the exploration is not
yet complete, the outline of the chaotic region is probably well represented. There
appears to be a sizable chaotic zone near the 2/1 commensurability. On the other
hand, the corresponding plot for the region near the 3/2 commensurability shows
that the resonance region is basically devoid of chaotic behaviour. There is thus
a qualitative difference in the structure of the phase space near the 2/1 and 3/2
commensurabilities which corresponds to the qualitative difference in the ob-
served distribution of asteroids. There is a large chaotic zone at the 2/1 resonance
and there is also a Kirkwood gap at that resonance. The Hildas are located near
the 3/2 resonance and this region is devoid of chaotic behaviour. However, detailed
comparison with the actual distribution of numbered asteroids near the 2/1
resonance, figure 12, does not show perfect agreement. This discrepancy is most
likely a result of the use of the planar-elliptic approximation in the survey.
The integration of a test-particle with initial conditions in the discrepant region
perturbed by the four jovian planets showed it to be chaotic.

The association of chaotic behaviour with a gap in the distribution of asteroids
does not by itself explain the formation of the gap. For the 3/1 resonance an



124 J. Wisdom

0.25

e
+
+

0.20

44 Heees R +

+ PRy + +

0.15

++ + Hearas +

€
v o .

0.10

EISTSTT e ++

44444 R T

0.05

I B SR RS R

B

T T ] T | T T T I T T T I T

0.62 0.63 0.64 0.65
o/ ay
Fiaure 11. Chaotic trajectories near the 2/1 commensurability in the planar elliptic approxi-
mation. A cross marks those initial conditions (eccentricity e, and semimajor axis a,
referred to Jupiter’s semimajor axis) which lead to chaotic behaviour. The survey is not

complete, but the basic extent of the chaotic zone is apparent. There is a significant chaotic
zone.
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Fieure 12. Actual distribution of asteroids near the 2/1 commensurability, each evolved to the
same longitudes used in the survey. There is a good qualitative agreement between the gap
and the region of chaotic behaviour shown in figure 14. The boundaries on the high
semimajor axis side are in excellent agreement, whereas there seems to be a discrepancy on
the low semimajor axis side.
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essential ingredient was the fact that chaotic trajectories, as well as resonant
quasiperiodic trajectories, crossed the orbits of Mars and Earth. The sweeping
action of these planets can clear the 3/1 gap. It seems a prior: unlikely that a
similar mechanism can account for the formation of those gaps that are signi-
ficantly more distant from Mars and Earth. Froeschlé & Scholl (1981) attempted
to answer this question. They integrated Giffen’s chaotic trajectory in the planar
elliptic approximation for 100 ka, but found that it seemed to be limited to
eccentricities below 0.15, which is no larger than the eccentricity of a typical
asteroid. As before, the planar elliptic problem is not an adequate representation
of the problem. The integration of test particles perturbed by the jovian planets
shows more dramatic increases in eccentricity. For these trajectories the
eccentricity and the inclination show the remarkable correlation exemplified in
figure 13. Initially the inclination is low and the eccentricity seems to be limited to
values below about 0.25. Over the span of the integration though the trajectory
seems to trace out a pathway to high eccentricity which temporarily takes it
through inclinations as high as 0.44 rad. Thus the three-dimensional nature of
the motion is crucial. At the peak in eccentricity this trajectory is marginally

Fieurg 13. Including perturbations of the jovian planets, chaotic trajectories near the 2/1
commensurability show this remarkable correlation between eccentricity and inclination.
There is a path in the phase space that takes the trajectory from low eccentricity to high
eccentricity which requires that it temporarily take moderate inclination. The three-
dimensional nature of the motion is crucial.
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Mars-crossing. This does provide a mechanism for the removal of the asteroids on
these chaotic trajectories, but I am not convinced that this is the final answer.

A few words must be said to clear up some misunderstandings. It is often said
that the Kirkwood gaps are a ‘simple consequence of the breakdown of K.A.M.
tori near resonances’. This is not so. Resonances occur in the circular restricted
problem, but the microscopic chaotic zones associated with them could never
account for the creation of gaps. Such a global statement about the stability of
resonances can also not account for the contrasting stability of the Hilda asteroids
and the Kirkwood gaps. Only a detailed examination of successively more realistic
representations of the dynamics begins to account for the distribution of asteroids.
Chaotic behaviour near resonances also has nothing to do with the formation of
gaps in Saturn’s rings. The gaps have an entirely different origin in the collective
response. to resonant perturbation of a large number of particles which collide
frequently, on the order of 20 times per orbit period. The qualitative character of
the long-period evolution. of individual trajectories is irrelevant.

7. OUTER PLANETS AND PLUTO

The determination of the stability of the Solar System is one of the oldest
problems in dynamical astronomy. While Arnol’d’s proof of the stability of a large
measure of solar systems with sufficiently small planetary masses, eccentricities,
and inclinations marks tremendous progress towards a rigorous answer to this
question (Arnol’d 1961), the stability of the actual Solar System remains unknown.
Certainly, the great age of the Solar System demands a high level of stability, but
weak instabilities may still be present. Experience with the motion of asteroids
has demonstrated that weak instabilities may sometimes even lead to sudden,
dramatic changes in orbits. The stability of the Solar System should thus not be
taken for granted.

The first application of the Digital Orrery was to the long-term evolution of the
outer planets. For many years the million-year integration of Cohen et al. (1973)
held the title of the longest integration of the Solar System. With the Orrery, the
interval of integration has been extended to 210 Ma (Applegate et al. 1986).

The integrations showed that the best analytic approximations of the motion of
the outer planets were in serious need of improvement. Bretagnon (1974) lists over
200 corrections to the Lagrange solutions. It turns out that there are contributions
to the motion of the jovian planets which are larger than all but seven of those
corrections. Higher-order terms were more important than the terms taken into
account by Bretagnon. More recent work, particularly that of Laskar (1986, and
unpublished work) is in better agreement, and provides independent confirmation
of the results of the numerical integration.

The motion of Pluto is extraordinarily complicated. Pluto’s orbit is unique
among the planets. It is both eccentric (¢ & 0.25) and inclined (i ~ 16°). The orbits
of Pluto and Neptune cross one another, a condition which is only permitted by
the libration of a resonant argument associated with the 3/2 mean motion com-
mensurability. This resonance assures that Pluto is at aphelion when Pluto and
Neptune are in conjunction and thus prevents close encounters. The next level of
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complexity is that the argument of perihelion of Pluto librates about r with a
period near 3.8 million years (Williams & Benson 1971). The Orrery integrations
confirmed this libration, but found that the picture was not yet complete ; there
are significant contributions to the motion of Pluto with much longer periods. The
amplitude of libration of the argument of perihelion has a strong modulation with
a period of 34 million years. In fact, the frequency of the second largest con-
tribution to the eccentricity of Pluto corresponds to a period of 137 Ma. This long
period results from a near commensurability between the frequency of circulation
of .the longitude of the ascending node of Pluto and one of the fundamental
frequencies in the motion of the jovian planets. Figure 14 shows the inclination of
Pluto over 214 Ma. There seems to be an even longer period present (or perhaps
even a secular drift)! The motion of Pluto is suspiciously complicated. However,
the computation of the Lyapunov characteristic exponent for Pluto does not yet
show any objective evidence for chaotic behaviour. Much longer integrations seem
to be required to determine the true nature of Pluto’s motion.
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Figure 14. The inclination of Pluto for 214 Ma. Time is given in millions of years. Besides the
34 Ma modulation of the 3.80 Ma oscillation, there is evidence of much longer period
variations-(or perhaps even a secular drift!).

CONCLUSIONS

Several physical examples of chaotic behaviour in the Solar System have been
presented. Hyperion tumbles irregularly as a consequence of its out-of-round
shape, large orbital eccentricity, and tidally evolved rotation. Hyperion is cur-
rently the only example of this chaotic tumbling in the Solar System. However,
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all of the tidally evolved, irregularly shaped satellites in the Solar System tumbled
chaotically in the past, just at the point of entry into the synchronous rotation
state.

Physical examples of chaotic orbital behaviour have also been presented. The
distribution of asteroids seems to be, in several instances, a reflection of the
character of the trajectories in the underlylng phase space. This is clearly the case
for the 3/1 Kirkwood gap. There is a sizable chaotic zone, and the phase space
boundary of the distribution of asteroids corresponds quite well with the outer
boundary of the-chaotic zone. In this case, the fact that both chaotic and quasi-
periodic trajectories cross planetary orbits explains the removal of any asteroids
originally in the gap.

Allowing three-dimensional motion and taking into account the perturbations
of the outer planets, trajectories in the 3/1 chaotic zone reach Earth-crossing
eccentricities. These trajectories seem to provide the long-sought dynamical route
for the transport of meteoritic material from the asteroid belt to Earth. Studies by
Wetherill have shown this source to be consistent with the ordinary chondrite
data.

The 2/1 Kirkwood gap and the Hilda group have long presented a paradox to
classical dynamical astronomy. A new survey with the Digital Orrery indicates
that the qualitative difference in the distribution of asteroids at these two reson-
ances is reflected in a qualitative difference in the underlying dynamics. Dis-
crepancies in the detailed comparison probably result from the use of the planar
elliptic approximation in the survey. When perturbations of the jovian planets are
taken.into account and three-dimensional motion is allowed, chaotic trajectories
at the 2/1 resonance reach very large eccentricities at low inclinations, by way of
a path that temporarily takes them to high inclinations. The three-dimensional
aspect of the problem is essential. The eccentricities become large enough that the
chaotic trajectories cross the.orbit of Mars, but there may yet be other mechanisms
for clearing the distant gaps.

The stability of the Solar System itself has been examined through a 210 Ma
integration of the outer planets. The motion of the jovian planets themselves
seems to be regular, though perhaps a bit more complicated than might have been
expected. On the other hand, the motion of Pluto is extraordinarily complicated.
Besides the well-understood mean-motion resonance which prevents the close
approach of Pluto and Neptune even though their orbits cross, Pluto participates
in at least two other resonances. First, it has been known for some time that the
argument of perihelion librates about in. Then, the frequency of the circulation of
Pluto’s ascending node is nearly commensurate with one of the fundamental
frequencies in the motion of the jovian planets. This near commensurability gives
rise to strong variations in the eccentricity with a period of 137 Ma. There is also
evidence of much longer periods in the inclination, which appears to be secularly
declining over the 210 Ma integration. Although the abundance of resonances
raises suspicions about the stability of Pluto, there is not yet any objective
evidence that the motion: of Pluto is chaotic.
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