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Tidal evolution has significantly affected the history of the Uranian satellite system. 
The presence of large chaotic zones at past mean-motion commensurabilities among the 
Uranian satellites has resulted in significant changes in the orbital elements of some of 
the satellites, while allowing them to escape from the commensurabilities and evolve to 
their present nonresonant configuration. Miranda and Umbriel have probably passed 
through the 3 : 1  commensurability, resulting in Miranda's current anomalously high 
inclination, and constraining the Q of Uranus to be less than 39,000 (W. C. Tittemore 
and J .  Wisdom 1989, Icarus 78, 63-89). The orbits of both satellites become chaotic during 
evolution through the eccentricity resonances associated with the 3 : 1 commensurability. 
During this phase of evolution, the orbital eccentricity of Miranda can be driven up to a 
value of about 0.05. Miranda can then escape from the 3 : 1  commensurability with a 
relatively large orbital eccentricity, which can damp to the current value in the time since 
resonance passage. Tidal friction may have heated the interior of Miranda to a temperature 
near the eutectic melting point of NH 3 • H20 , but most likely did not result in the melting 
of significant quantities of water ice. Miranda and Ariel passed through the 5 : 3 mean- 
motion commensurability if the Q of Uranus is less than about 12,000. During evolution 
through this commensurability, the semimajor axis ratio (aM/aA) decreased. As the orbits 
enter a large chaotic zone associated with this commensurability, both the eccentricity 
and inclination of Miranda's orbit jump to values up to six times higher than the values 
approaching the resonance. Upon escaping from the resonance, the orbit of  Miranda 
may have retained moderately high eccentricity and inclination, or eM and i M may have 
decreased back to values comparable to those approaching the resonance. If the Q of 
Uranus is smaller than about U,000, Ariel  and Umbriel would have encountered the 2 : 1  
mean-motion commensurability. However,  capture into this resonance is very likely if the 
eccentricities of the orbits approaching the resonance were comparable to the current 
values: the probability of escape would not have been significant unless the initial eccentric- 
ities were of order 0.03 or larger. It is therefore unlikely that these satellites encountered 
this resonance, constraining the Q of Uranus to be greater than 11,000. The specific 
dissipation function of  Uranus is therefore well constrained: 11,000 < Q < 39,000. © 1990 
Academk Press, Inc. 

i Contribution 89-07 of the University of Arizona Theoretical Astrophysics Program. 

394 
0019-1035/90 $3.00 
Copyright 6) 1990 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



DYNAMICS OF PAST URANIAN RESONANCES 395 

1. INTRODUCTION 

The Uranian satellite system contains a 
rich variety of features of interest to plane- 
tary scientists. Voyager 2 revealed that the 
satellites Miranda, Ariel, and Titania have 
had spectacular geological histories (Smith 
et al. 1986), despite their small sizes and low 
current temperatures. Sources of internal 
heat for these satellites must have been pres- 
ent at some point in time to account for the 
exotic features observed on their surfaces. 
In addition, there are some interesting 
anomalies in the orbits of the Uranian satel- 
lites. For one, the satellites are not currently 
involved in any low-order mean-motion res- 
onances, in contrast to the satellite systems 
of Jupiter and Saturn. Also, the orbital ec- 
centricities of the inner large satellites are 
anomalously large when the time scale of 
damping due to satellite tides is taken into 
consideration (Squyres et  al. 1985). Finally, 
the orbital inclination of Miranda is more 
than an order of magnitude larger than those 
of the other satellites (Whitaker and Green- 
berg 1973, Veillet 1983). 

Tidal evolution is an important process 
in planetary satellite systems. Most of the 
commensurabilities in the Jovian and Satur- 
nian systems are probably the result of tidal 
evolution of the orbits (Goldreich 1965). 
Tidal heating of Io in the Laplace resonance 
explains the geological activity on this satel- 
lite (Peale et  al. 1979). Tides raised on Ura- 
nus by its major satellites tend to increase 
in the orbital semimajor axes, as energy is 
dissipated in the planetary interior. Because 
the major satellites move in eccentric orbits, 
the tidal distortion of the satellites caused 
by the planet varies periodically. Internal 
friction dissipates energy in the satellites, 
tending to decrease the orbital semimajor 
axes and eccentricities, and heating the sat- 
ellite interiors. 

Two features of the Uranian system dis- 
tinguish it from the Saturnian and Jovian 
systems: the oblateness of the planet is rela- 
tively small, and the satellite-to-planet mass 
ratios are relatively large. The importance 

of the small oblateness of Uranus was 
pointed out by Dermott (1984), who sug- 
gested that since resonances at mean-mo- 
tion commensurabilities among the Uranian 
satellites are not well separated, there might 
be chaotic behavior. He speculated that cha- 
otic behavior at past orbital commensurabil- 
ities might explain some of the currently 
observed dynamical features. Significant 
secular interactions between the satellites 
(Greenberg 1975, Dermott and Nicholson 
1986, Laskar 1986) resulting from the rela- 
tively large satellite masses may also con- 
tribute to chaotic behavior. Since there are 
large increases of eccentricity and inclina- 
tion at the asteroidal resonances (Wisdom 
1982, 1983, 1987b), it is natural to speculate 
that similar chaotic behavior among the 
Uranian satellites might lead to significant 
changes in the orbits and tidally heat the 
satellites. 

To address this problem in a rigorous 
manner, we have been carrying out a sys- 
tematic study of mean-motion resonances 
which may have been encountered by the 
Uranian satellites as the orbits evolved due 
to tidal friction. We have found significant 
chaotic zones at low-order mean-motion 
commensurabilities between the Uranian 
satellites (Tittemore and Wisdom 1987, 
1988a,b, 1989, Tittemore 1988). The pres- 
ence of these chaotic zones significantly af- 
fects the mechanisms and outcomes of reso- 
nance passage. Satellites may spend a 
considerable period of time evolving within 
a commensurability, during which orbital 
eccentricities and/or inclinations may vary 
significantly, and then escape from the reso- 
nant interaction, allowing the satellites to 
evolve to their present nonresonant config- 
uration. The standard integrable theory of 
evolution through resonances (Goldreich 
and Peale 1966, Counselman and Shapiro 
1970, Yoder 1979a, Henrard 1982, Henrard 
and Lemaitre 1983, Borderies and Goldreich 
1984, Lemaitre 1984) has limited applicabil- 
ity to the Uranian satellite system. 

Our approach has been to model the most 
important interactions involving the orbital 
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TABLE I 

URANIAN SATELLITES 

Satelli te R a m / M u  ~ a / R t j  ~ T ~ e b i c 

(km) (days) (radians) 

Miranda 242 + 5 8.63 ± 2.6 × 10 -7 4.96 1.41 0.0014 -+ 0.0002 0.0737 --- 0.0028 
Ariel  580 - 5 1.55 ± .28 × 10 -5 7.29 2.52 0.0017 --- 0.0002 0.0054 ± 0.0019 
Umbriel  595 ± 10 1.47 ± .28 × 10 -5 10.15 4.15 0.0043 ± 0.0002 0.0063 ± 0.0014 
Titania 805 ... 5 4.00 --- .21 × 10 -5 16.65 8.70 0.0025 ± 0.0001 0.0025 - 0.0005 

Oberon 775 - 10 3.37 ± .19 × 10 -5 22.27 13.46 0.0003 --- 0.0001 0.0018 ± 0.0004 

Stone and Miner  (1986). M U = 8.69 x 1025 kg, and Rtj = 26,200 km (French e t  a l .  1985). 
b Peale (1988). 

¢ Veil let  (1983). 

eccentricities or inclinations of satellites 
near a resonance by a Hamiltonian system 
with a parameter that evolves due to tidal 
friction. The parameter changes at a rate 
determined primarily by the tidal specific 
dissipation function (Q) of the planet. Tidal 
dissipation in the satellites may also affect 
the rate at which the model parameter 
changes, and affects the orbital eccentrici- 
ties through direct tidal damping, which in- 
troduces frictional terms into the equations 
of motion. The time scale over which tidal 
effects become important is in general much 
longer than the dynamical time scale of the 
resonant interaction, and therefore tidal ef- 
fects act as slow changes in the Hamilto- 
nian. As a first approximation, we have only 
modeled the effects of planetary tides on the 
resonant interactions. This has allowed us 
to explore the dynamical environment of the 
most important resonances among the Ura- 
nian satellites, and to determine constraints 
on the extent to which the satellite system 
has tidally evolved. We have used nominal 
orbital and physical properties of the satel- 
lites in our models (see Tables I and II), to 
represent as closely as possible the evolu- 
tion of the physical system. 

In some cases, a two-degree-of-freedom 
Hamiltonian model is appropriate, allowing 
detailed study of the dynamics using sur- 
faces of section. We have developed alge- 
braic mappings from these models (see, e.g., 
Tittemore and Wisdom 1988a), similar to 
those developed by Wisdom (1982, 1983) 

to study resonant asteroidal motion, which 
reduce the amount of computer time needed 
to carry out the numerical simulations. We 
have integrated many trajectories through 
the commensurabilities using the mappings, 
to determine probabilities of various out- 
comes, and have tested the effects of vari- 
ous perturbations on our models. 

During our program of study of the Ura- 
nian satellite system, we have found that a 
large chaotic zone exists at the Ariel-Um- 
briel 5 : 3 commensurability (Tittemore and 
Wisdom 1988a, henceforth referred to as 
TW-I). During evolution through this com- 
mensurability, the orbital eccentricities of 
Ariel and Umbriel may have increased mod- 
erately within the chaotic zone, before the 
satellites escaped from the resonance. How- 
ever, the increases in the orbital eccentricity 

T A B L E  II 

TIDAL PARAMETERS 

Satelli te p~ /z b k2 c Q 
(g/cm 3) (dyn/cm 2) 

Miranda 1.26 ± 0.39 4 x 101° 1.4 × 10 -3 100 
Ariel  1.65 ± 0.30 l011 4.3 x l0  -3 100 
Umbrie l  1.44 ± 0.28 l011 3.3 × 10 -3 100 

a Stone and Miner  (1986). 
b Shear  modulus,  ~ 4  × 1010 dyn/cm z (water  ice), 

~6.5 x l0  II dyrdcm 2 (rock). 

3 p i g i R i  
c k2 i = ~ _ _ ,  

1 + 19P . i / 2p ig iR  i 19P.i 
k2 = 0.104 (Gavri lov and Zharkov  1977). 
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of Ariel at this resonance do not appear to be 
sufficient to significantly affect its thermal 
evolution. We have also found that the cur- 
rent anomalously high orbital inclination of 
Miranda can be accounted for by passage 
through the 3:1 commensurability with 
Umbriel (Tittemore and Wisdom 1987, 
Tittemore and Wisdom 1989, henceforth 
referred to as TW-II). The satellites are tem- 
porarily captured into one of the inclination 
resonances, until a secondary resonance,  
or commensurability between the resonant 
libration frequency and the frequency differ- 
ence between neighboring resonant argu- 
ments, drags the satellites into a large cha- 
otic zone at large iM, whereupon the 
satellites can escape from the inclination 
resonance region. The requirement that the 
satellites have passed through this commen- 
surability constrains the Q of Uranus to be 
less than 39,000 [using k2 = 0.104 (Gavrilov 
and Zharkov 1977)]. We also found that the 
orbital eccentricity of Miranda increases 
dramatically during evolution through this 
commensurability (Tittemore and Wisdom 
1987, TW-II), possibly providing a signifi- 
cant internal heat source. This phase of 
lution is further discussed in Section 
2.1. 

We have also carried out a careful evalua- 
tion of the effect of the simulated rate of 
tidal evolution on the dynamical outcome. 
In the integrable single-resonance theory, 
the dynamics of resonance passage are inde- 
pendent of rate if a particular "adiabatic 
criterion" is satisfied, that is, the action of 
a trajectory (area in phase space) is approxi- 
mately invariant except at the point of tran- 
sition across the separatrix. This occurs 
when the fractional change in the libration 
frequency in one libration period due to tidal 
evolution is small (see Sections 2.1. I and 
2.2.1 and TW-II). In cases where the evolu- 
tion is dominated by quasiperiodic behavior 
(TW-II), the single-resonance adiabatic cri- 
terion may be used to determine the simu- 
lated rate of tidal evolution at which the 
dynamics become independent of rate. 
However, in cases where the evolution is 
dominated by chaotic behavior (TW-I, see 

also below), the dynamics of resonance pas- 
sage may be extremely sensitive to the simu- 
lated rate of tidal evolution, even if the simu- 
lated rate is orders of magnitude slower than 
the rate predicted by the single-resonance 
adiabatic criterion. In such cases, the rele- 
vant criterion is based on a "chaotic" adia- 
batic invariant (e.g., Brown et al. 1987). In 
the case of chaotic Hamiltonian systems 
with two degrees of freedom, the adiabatic 
invariant is the phase space volume en- 
closed by the energy surface containing the 
chaotic zone. This is a natural generalization 
of the concept of adiabatic invariants in 
integrable systems (e.g., Lenard 1959, 
Kruskal 1962, Arnold 1963). Approximate 
conservation of the chaotic adiabatic invari- 
ant requires that the chaotic zone be well 
explored by the trajectory on time scales 
much shorter than the time scale of reso- 
nance passage. We are continuing to exam- 
ine the applicability of chaotic adiabatic in- 
variants to orbital resonances. In some 
cases, however, we have found that adia- 
batic invariants do not exist even at tidal 
evolution rates that are within our con- 
straints on the physical rate, for example, in 
the Miranda-Umbriel 3 : 1 commensurabil- 
ity during evolution through the eccentricity 
resonances when the inclination of Miranda 
is high (see Section 2.1). In this case, high- 
dimensional chaos is important, and the 
dynamics are not well approximated by a 
two-degree-of-freedom model. 

Dermott et al. (1988) have also found cha- 
otic variations at the Miranda-Umbriel 3 : 1 
commensurability, by integrating the full 
gravitational equations of motion at the res- 
onance for a relatively short time with the 
orbital eccentricity and inclination of 
Miranda artifically enhanced. Although the 
integration of the full gravitational equations 
of motion includes all of the higher-order 
resonant dynamical effects, this approach 
requires significantly longer computational 
times: direct numerical integrations require 
about three orders of magnitude more com- 
puter time than the algebraic mapping meth- 
ods we have employed (Wisdom 1982). 
Therefore, using direct numerical integra- 
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tions, it is not yet feasible to simulate tidal 
evolution of trajectories fully through a 
commensurability at rates within our con- 
straints on the physical rate. However, as 
we show (see Section 2.1), at the 3 : 1 Mi- 
randa-Umbriel commensurability, it is nec- 
essary to use simulated tidal evolution rates 
within our constraints on the physical rate, 
or there will be rate-induced artifacts in the 
dynamics. Even the short numerical integra- 
tions carried out by Dermott et  al. use too 
high a simulated tidal evolution rate (see 
Section 2.1), and therefore the dynamics are 
significantly affected by rate-induced arti- 
facts. A number of techniques used by those 
authors to reduce the computing time for 
numerical integrations that evolve all the 
way through the commensurability also in- 
troduce artifacts into the dynamics. First, 
the authors use the single-resonance adia- 
batic criterion to judge whether the simu- 
lated rate of tidal evolution is slow enough. 
As we have shown in TW-I and TW-II and 
here in Section 2.1, this is not a sufficient 
criterion. The authors also artificially in- 
crease the mass of Umbriel, simultaneously 
increasing the J2 of Uranus. The justification 
given for this is to increase the single-reso- 
nance adiabatic rate and, thereby, further 
reduce the computing time. However, 
changing the masses and J2 significantly 
changes the dynamical characteristics of the 
problem. Finally, the authors cause trajec- 
tories to ultimately escape from the reso- 
nance by increasing the simulated rate of 
tidal evolution by a factor of 20 in the middle 
of the integration, which also significantly 
alters the dynamics and probably artificially 
drags the trajectory out of the chaotic zone. 
Therefore, although the large increases in 
eccentricity and inclination and eventual 
disruption of the resonance found by the 
authors are interesting, they do not repre- 
sent the dynamics of the actual Mi- 
randa-Umbriel system. The results of their 
numerical integrations of Miranda through 
a series of first-order resonances with Ariel 
are also affected by similar problems. How- 
ever, those resonances were probably never 

encountered, because if they had been, Ar- 
iel and Umbriel must have passed through 
the 2 : 1 commensurability, which we have 
shown to be highly unlikely (see Section 
2.3). 

Marcialis and Greenberg (1988) have pro- 
posed an alternate model for the tidal heat- 
ing of Miranda, in which the damping of the 
orbital eccentricity during a phase of chaotic 
rotation at some point in its early history 
provides the energy source. However, a 
number of key assumptions made by the 
authors are not well justified: (a) The au- 
thors have not determined the size of the 
chaotic zone for parameters appropriate to 
Miranda. Their assertion that a large chaotic 
zone exists is dependent upon Miranda hav- 
ing a large orbital eccentricity of order 0. l, 
which cannot be primordial, since the or- 
bital eccentricity damping time scale of 
Miranda is only of order 108 years (see Sec- 
tion 2.1). (b) The authors do not demon- 
strate a mechanism for transferring Miranda 
from the synchronous rotation state to the 
chaotic zone. The resonance overlap crite- 
rion (see Wisdom et  al. 1984) cannot by itself 
be used to determine whether a satellite is 
attitude unstable. For example, Phobos and 
several other small, irregularly shaped satel- 
lites satisfy the resonance overlap criterion 
for the synchronous and 3/2 rotation states, 
and have large chaotic zones in the spin-or- 
bit phase space (Wisdom 1987a), but are not 
currently in a chaotic rotation state. (c) For 
a body in a chaotic tumbling state, tidal evo- 
lution of the spin and orbit is determined 
by the damping of the "rotational Jacobi 
integral" due to tidal dissipation, not just 
the damping of the orbital eccentricity (see 
Wisdom 1987a). These problems must be 
addressed before this mechanism can be 
considered viable. 

We present here the results of our contin- 
uing studies of the Uranian satellite system. 
Section 2 explores the evolution of Miranda 
and Umbriel through the 3 : l mean-motion 
commensurability. Tittemore and Wisdom 
(1987, see also TW-II) found that during 
evolution through this commensurability, 
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the orbital eccentricity of Miranda may also 
have increased dramatically. We more fully 
explore this phase of the evolution here. 
Following an initial phase of temporary cap- 
ture into one or more of the second-order 
eccentricity resonances associated with this 
commensurability, the satellites enter a 
large chaotic zone. In the planar-eccentric 
approximation, the maximum and minimum 
eccentricities in the chaotic zone increase in 
a very regular manner, indicating the exis- 
tence of a chaotic adiabatic invariant. How- 
ever, because of the high inclination of Mi- 
randa's orbit that develops during the prior 
passage through the inclination resonances, 
there is a strong coupling between the ec- 
centricity and inclination resonances, and 
the actual variations of eccentricity are 
much more irregular than the planar approx- 
imation, although the maximum values of 
eccentricity are similar in both models. Dur- 
ing evolution through the large chaotic zone, 
the orbital eccentricity of Miranda varies 
chaotically from zero to about 0.05. Chaotic 
variations occur over time scales compara- 
ble to the resonance passage time scale even 
for simulated tidal evolution rates within our 
constraints for the physical rate of evolu- 
tion, due to significant high-dimensional 
chaotic wandering. This indicates that a cha- 
otic adiabatic invariant does not exist in the 
three-dimensional case at physical rates of 
tidal evolution. Miranda may have retained 
a relatively large value of eccentricity after 
the satellites escaped from the resonant in- 
teraction. In the time since the satellites en- 
countered this commensurability, the incli- 
nation of Miranda's orbit would have 
remained high, explaining the current anom- 
alously high value, while the orbital eccen- 
tricity would have damped to the current 
value. Tidal heating of Miranda may have 
raised its internal temperature to a value 
near the eutectic melting point of ammo- 
nia hydrate, but most likely did not result 
in the melting of large quantities of water 
ice. 

The 5 : 3 mean-motion commensurability 
involving Miranda and Ariel, which would 

have been encountered if Q is less than 
12,000 [using k 2 = 0.104 (Gavrilov and 
Zharkov 1977)], is discussed in Section 2.1. 
This commensurability is similar to the 3 : 1 
Miranda-Umbriel commensurability in that 
the mass of Ariel is much greater than that of 
Miranda, so the orbital elements of Miranda 
are more strongly affected by the resonance 
passage than are those of Ariel. It is similar 
to the 5 : 3 Ariel-Umbriel commensurability 
(TW-I) in that they involve the same combi- 
nations of resonance angles for the two sat- 
ellites, and because the orbits are relatively 
close together, there is a relatively strong 
secular interaction between the satellites 
which significantly affects the orbit of 
Miranda. However, passage through this 
resonance differs from the previously con- 
sidered ones in a significant way: for the 
nominal masses of Miranda and Ariel (see 
Table I), the semimajor axis ratio (aM/aA) 
decreases due to tidal dissipation in the 
planet. Upon encountering this resonance, 
the orbital eccentricity and inclination of 
Miranda suddenly increase by about a factor 
of 6 as the satellites evolve through a large 
chaotic zone. The changes in the orbit of 
Ariel are relatively insignificant. Miranda 
may leave this resonance with an orbital 
eccentricity and inclination comparable to 
or somewhat larger than the current values. 
The maximum rate of tidal heating of Mi- 
randa at this resonance was about one-third 
the maximum rate at the 3 : 1 commensura- 
bility with Umbriel. Both the structure of 
the phase space and the numerical experi- 
ments indicate that there is no mechanism 
of capture into this resonance, a conclusion 
also reached by Peale (1988) using argu- 
ments based on the available energy. 

Finally, the Ariel-Umbriel 2:1 mean- 
motion commensurability is discussed in 
Section 2.3. The probability of capture was 
very high if the satellites approached this 
resonance with orbital eccentricities compa- 
rable to the current values. For such small 
initial eccentricities, the evolution is domi- 
nated by quasiperiodic behavior: although 
secondary resonances among fundamental 
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frequencies affect the amplitude of libration 
in the resonance, the chaotic zones associ- 
ated with the secondary resonances are 
small. Once captured into the resonance, 
the satellites would have evolved to the 
equilibrium eccentricity of Ariel without the 
resonance becoming unstable. For much 
larger initial eccentricities, significant cha- 
otic zones are present at this resonance; 
however, eccentricities of order 0.03 would 
have been required for the probability of 
escape to be significant. Therefore, it is un- 
likely that the satellites ever encountered 
this commensurability. The 2 : 1 commensu- 
rability is probably a dynamical "barrier" 
to the tidal evolution of the satellite system. 
Therefore, the specific dissipation function 
(Q) of Uranus is constrained to be greater 
than 11,000 [using k 2 = 0.104 (Gavrilov and 
Zharkov 1977)]. 

There are significant chaotic zones associ- 
ated with all of the resonances considered 
in this investigation. The dynamics are ex- 
citing. The mechanisms of resonance pas- 
sage are significantly different than in the 
integrable theories of resonance passage. 
There are some similarities between differ- 
ent resonances, but each has unique proper- 
ties, resulting in a rich variety of dynamical 
behavior in the Uranian satellite system. 
The dynamics of the individual resonances 
may be used to constrain the evolution of 
the system as a whole. Since passage 
through the 3 : 1 resonance with Umbriel can 
explain the current inclination of Miranda's 
orbit, it is likely that the satellites have tid- 
ally evolved at least enough to encounter 
this commensurability. This sets an upper 
limit of 39,000 on the specific dissipation 
function (Q) of Uranus. Requiring that Ariel 
and Umbriel did not encounter the 2 : 1 com- 
mensurability constrains Q to be greater 
than 11,000. This rather narrow range may 
be useful in modeling the interior of Uranus. 

2. RESONANCE DYNAMICS 

In this section, we describe in detail the 
dynamics of the Miranda-Umbriel 3:1, 
Miranda-Ariel 5 : 3, and Ariel-Umbriel 

2-1 mean-motion commensurabilities. We 
have considered three models for each com- 
mensurability. First, we consider the pla- 
nar-eccentric approximation, in which the 
resonant motion can be described by a two- 
degree-of-freedom Hamiltonian, and the dy- 
namics can be studied in detail using sur- 
faces of section. We have carried out a sys- 
tematic survey of each commensurability, 
determining capture probabilities, studying 
the effects of the rate of tidal evolution on 
the dynamics, and determining the structure 
of the phase space at different points in the 
evolution. This has allowed us to gain a de- 
tailed understanding of the dynamical mech- 
anisms affecting the evolution of the orbital 
eccentricities at these resonances. For the 
planar-eccentric models, numerical calcula- 
tions have been carded out using the alge- 
braic mappings. The development of the pla- 
nar-eccentric Hamiltonian models is given 
in Appendix I, and the development of tidal 
parameters is given in Appendix II. In calcu- 
lating the numerical values of the Hamilto- 
nian coefficients and other quantities, the 
adopted unit of time is one year, of mass is 
the mass of Uranus, and of length is the 
radius of Uranus (see Appendix I), unless 
otherwise specified. 

We also consider the effects of perturba- 
tions on the planar-eccentric dynamical 
models. There are important resonant terms 
involving the inclinations at each commen- 
surability. The inclinations are coupled to 
the eccentricities through nonlinear terms. 
We have developed Hamiltonian models for 
the study of the three-dimensional resonant 
behavior (Appendix I) and algebraic map- 
pings to carry out the numerical integra- 
tions. 

In addition, for each commensurability 
we determine the effects of perturbations 
due to other satellites on the resonant be- 
havior. The secular interactions between 
the major Uranian satellites result in sig- 
nificant variations of the eccentricities and 
inclinations (Dermott and Nicholson 1986, 
Laskar 1986), and the frequencies are com- 
parable to the important frequencies at reso- 
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nances. We have developed Hamiltonian 
models for  the motion at a mean-motion 
commensurabil i ty per turbed by the secular 
interactions of  the two resonant  satellites 
with a third (see Appendix I). At the 
Miranda-Umbrie l  3 : 1 commensurabil i ty,  
we consider the perturbations due to Ariel; 
at the Miranda-Ariel  5 : 3  commensurabil-  
ity, those due to Umbriel;  and at the 
Arie l -Umbrie l  2 : 1 resonance,  those due to 
Titania. Numerical  integrations of  the aver- 
aged equations of  motion were carded  out 
using the Bul i rsch-Stoer  (1966a,b) algo- 
rithm. 

2.1. THE MIRANDA--UMBRIEL 3 : 1 
COMMENSURABILITY 

2.1.1. The Planar-Eccentric Model 

We consider first the interaction between 
Miranda and Umbriel in the planar-eccen- 
tric approximation,  initially ignoring the fact 
that it is likely that the orbital inclination of  
Miranda was comparable  to its current  value 
at the time of  encountering the eccentrici ty 
resonances.  Although in fact the large or- 
bital inclination of  Miranda significantly af- 
fects the evolution through the eccentrici ty 
resonances (see Section 2.1.2), consider- 
ation of  the planar model enables us to un- 
derstand many qualitative features of  the 
evolution through the eccentrici ty reso- 
nances. 

The tidal parameter  is defined to be 8 = 
3nu - nM -- t~U -- &tJ (see Appendix I). At 
this commensurabil i ty,  the orbital semima- 
jor  axis of  Miranda increases much more 
rapidly than that of  Umbriel.  The time rate 
of  change of  8 is approximated by (see Ap- 
pendix II) 

3 hM 
" - (1) - - n  M - -  ~ n M - - .  

aM 

The equilibrium eccentrici ty at this reso- 
nance is e M = 0.026, if Q = 11,000 for Ura- 
nus and Q = 100 for Miranda (see Appendix 
II). However ,  as we will show, the interac- 
tion between the satellites at such eccentric- 
ities is chaotic,  and an equilibrium configu- 
ration may not be achieved. 

The dynamical  propert ies of  the 3 : 1 com- 
mensurabili ty were determined by integra- 
ting sets of  trajectories through the reso- 
nance. The initial coordinates for each 
trajectory in a set were determined from the 
physical parameters  aM = 4.8630, 
a U = 10.1179, e~ = 0.005, and e u = 0.005, 
together with the initial angles o-u = ~-/2, 
and o- u = 3~r/2, f rom which the coordinates 
x i = 0.0, YM = 0.0009213, XU = 0.0, and 
Yu = -0.004574,  and the parameter  
8 = -0 .6153  were computed for an initial 
trajectory.  These  eccentricities are compa- 
rable to the current  eccentricities of  the Ura- 
nian satellites. F rom this initial point, the 
coordinates of  199 additional points, spaced 
in time by 100 mapping periods (T = 2zr/40 
years) were computed using the mapping 
without tidal dissipation. These points 
formed the initial coordinates of  the trajec- 
tories, each starting with the same energy, 
8, and action (area enclosed by a trajectory 
in phase space), but with different phases.  
These trajectories were then tidally evolved 
through the resonance using the mapping. 

As in TW-I and TW-II,  we have carried 
out a study to determine the influence of 
the simulated rate of  tidal evolution on the 
dynamics of  the 3 : 1 resonance,  by integra- 
ting sets of  trajectories through the reso- 
nance at different dissipation rates. The 
simulated rate of  tidal evolution is parame- 
terized by the effective specific dissipation 
function of  Uranus,  as usual designated by 
~, which is distinguished from the physical 
specific dissipation function Q for Uranus,  
which is presumably fixed and unknown. 
We wish to determine a simulated rate of  
tidal evolution sufficiently slow that the dy- 
namics of  resonance passage are not af- 
fected by rate-induced artifacts. 

Plotted in Fig. 1 are the mean escape or- 
bital eccentricities of  Miranda and Umbriel 
for each set of  trajectories as a function of 
dissipation rate. The mean escape orbital 
eccentrici ty of  Miranda is quite high, of  or- 
der 0.02, for  ~ > 1. For  ~ < 0.1, the escape 
orbital eccentricities of  Miranda and 
Umbriel are the same as the initial values: 



402 TITTEMORE AND WISDOM 

0.03 , , , , ~ , , 

(e) 

0.02 

0.01 

0 it.0 0 

m m m 

s ~ t ~ 

I I 

20 310 410 50 610 710 8.0 
log 10 (11,000 / Q) 

FIG. 1. Mean escape orbital eccentricities of  Miranda 
(0 )  and Umbriel  ([~) for ensembles of  200 trajectories 
as a function of  tidal dissipation rate, expressed in 
terms of  the effective specific dissipation function of  
Uranus ~.  The single-resonance adiabatic rate for the 
e~ resonance is denoted by the vertical bar (9~ = 0.07, 
itM/a M = 9.4 × 10 -9 per  orbit period). For  simulated 
tidal evolution rates larger than this the trajectories are 
dragged through the resonance without displaying any 
interesting behavior. However ,  the dynamics are sensi- 
tive to the rate even for rates an order  of  magnitude 
slower than this. 

they have been dragged through the reso- 
nance without displaying any interesting be- 
havior. Between these values of  ~, the aver- 
age escape eccentrici ty varies significantly. 

As we have done for the circular-inclined 
problem (TW-II), we can compare  the sim- 
ulated tidal evolution rate at which dynami- 
cal artifacts appear  to the adiabatic rate 
based on the single-resonance model. The 
first eccentrici ty resonance to be encoun- 
tered is the e~ resonance.  We express the 
simulated rate of  tidal evolution as the 
change of  libration f requency of  the e~ 
resonance considered independently in one 
libration period divided by the libration 
f r e q u e n c y :  (AtOL/tOL). In the single-reso- 
nance model,  the action (area enclosed 
by a trajectory in the phase space) is 
approximately conserved if this nondimen- 
sional quantity is less than about unity, 

since the dynamical time scale is then 
much shorter than the tidal time scale. 

The libration f requency of  the e~ reso- 
nance considered independently is given by 
(see TW-II for details of  analogous calcula- 
tions in the circular-inclined approximation) 

toE = -- 4H(8 - 80) (2) 

where 60 = 2(C - D) - 16BXM is the value 
at which libration zones first appear  in the 
phase space of  this resonance.  The change 
in the libration f requency of  the e~ reso- 
nance in one period is Aw L -~ -47rHS/to 2, 
w h e r e a  ~ 4 . 1  × 10-4/&. For  eM = eu = 
0.005 well before the resonance is encoun- 
tered, 80 = - 0 . 2 9 ,  and the trajectory en- 
counters the resonance at 8 = 0.5. There- 
fore,  the single-resonance theory predicts 
that for the e 2 resonance with e i = e U = 
0.005, AtOL/O L ~ 0.07/~. In the single-reso- 
nance approximation,  then, the results of  
numerical simulations should be indepen- 
dent of  the simulated tidal evolution rate 
if ~ > 0.07. We have denoted the single- 
resonance adiabatic rate in Fig. 1 by the 
vertical bar in the upper  right of the figure. 
The results shown in Fig. 1 indicate that for 
simulated tidal evolution rates higher than 
this value, not much of  dynamical interest 
happens. However ,  the dynamical outcome 
appears to be sensitive to the simulated rate 
of  tidal evolution for rates about an order  of 
magnitude slower than the rate predicted 
by the single-resonance adiabatic criterion. 
Therefore,  the single-resonance approxima- 
tion is not sufficient to determine the adia- 
batic rate in the planar-eccentric model. A 
large chaotic zone dominates the evolution 
through the eccentrici ty resonances,  and the 
relevant adiabatic criterion for the planar- 
eccentric model is based on a chaotic adia- 
batic invariant. 

The slowest rate used to integrate many 
trajectories,  ~ = 110 (//M/am ~ 6 × 10 -12 
per orbit period), appears to be slow enough 
to represent  the dynamics of  passage 
through this commensurabil i ty well in the 
planar-eccentric approximation.  Numerical  
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simulations of resonance passage at this rate 
show that the chaotic zone is well explored 
on time scales much shorter than the tidal 
evolution time scale (e.g., Fig. 3, see be- 
low), indicating that a chaotic adiabatic in- 
variant is approximately conserved. 

In Fig. 2, the distributions of time-aver- 
aged escape eccentricities for Miranda and 
Umbriel for ~ = 110 are shown. As in the 
circular-inclined problem (see TW-II), the 
orbit of Umbriel is also significantly affected 
by the resonant interaction, although the 
changes in eccentricity are small compared 
to those of Miranda. It is quite possible for 
the orbit of Miranda to attain orbital eccen- 
tricities much larger than the single-reso- 
nance equilibrium value of about 0.026 dur- 
ing passage through this resonance, even in 
the planar approximation. The high orbital 
eccentricity of Miranda remaining after es- 
cape from the resonance can damp to the 
current value in the time since resonance 
passage. 

Again, for this problem we can "freeze" 
the energy and 8 of a trajectory at any point 
in the evolution and study the structure of 
the phase space by computing surfaces of 
section, to understand the qualitative be- 

havior of the trajectory. The surfaces of sec- 
tion chosen plot YM versus XM when Xu = 0, 
which we designate section I, and tr u versus 
Eu when XM = 0 (O'M = ~'/2), which we 
designate section II. Initial conditions on 
the surface of section are determined by 
solving a quartic equation (see TW-I). As 
with the circular-inclined model (TW-II), 
the phase space is simple enough that we 
need only study one quartic root family for 
each surface of section: the second largest 
root for section I and the largest root for 
section II. On section I, e M is the radial 
distance from the origin, while the resonant 
argument o- M is measured counterclockwise 
from the positive abcissa. On section II, eu 
is plotted along the right ordinate axis for 
scale. 

Figure 3 shows the variations of the or- 
bital eccentricities of Miranda and Umbriel 
for one of the trajectories evolved through 
the 3:1 commensurability in the planar- 
eccentric approximation. The maximum 
and minimum orbital eccentricities are plot- 
ted in a small interval of 8 (AS ~ 0.0035). 
Well before the resonance is encountered, 
the motion is regular. Both orbital eccentric- 
ities are nearly constant: the mutual secular 
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FIG. 2. Distr ibut ions of  escape  orbital  eccentr ic i t ies  of Miranda (a) and Umbriel  (b) for an ensemble  
of  200 trajectories  evo lved  through the resonance  with ~ = 110, or i~M/a M = 6 × 10-12 per  orbit  period. 
Both orbits are affected by the resonant  interaction.  The high orbital  eccentr ic i ty  of  Miranda  retained 
after escape from the resonance  can damp to the current  value in the t ime since resonance  passage.  
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FIG. 3. Evolut ion of  the  orbital eccentrici t ies of  Miranda (a) and Umbriel  (b) during passage  through 
the 3 : 1 commensurab i l i ty  in the  planar-eccentric approximation,  with hM/aM = 6 × l0 -12 per orbit 
period (~ = 110). The  m a x i m u m  and min imum eccentricit ies are plotted in intervals A8 = 0.0035. 
After  initially being captured into the  mixed  (eMeu) resonance ,  the trajectory enters  a large chaotic  
zone and the orbital eccentrici ty of  Miranda evolves  to a large value before the trajectory escapes  f rom 
the resonance .  

interactions are quite weak. As the reso- 
nance is approached, the amplitude of ec- 
centricity variation increases slightly. At 
8 ~ 0.5, the trajectory encounters the e 2 
resonance, which it is not captured into, 
resulting in the slight decrease of average e U 
visible in Fig. 3b. Shortly thereafter, the 
trajectory encounters the mixed (eMeu) res- 
onance, at 8 = 0.8. Figure 4a displays the 
phase space (section II) through which the 
trajectory has evolved at this point in its 
evolution. The two large islands and narrow 
chaotic zone visible in the center of the fig- 
ure are associated with the e 2 resonance. At 
the bottom left of the figure is the libration 
region associated with the eMeu resonance, 
surrounded by a chaotic zone. Between the 
two primary resonant libration regions are 
smaller chains of islands and narrow chaotic 
zones, associated with low-order commen- 
surabilities between the circulation frequen- 
cies of the e 2 and eMe u resonant arguments. 
Near the eMe U resonance, the spacing be- 
tween these secondary resonant zones is 
smaller than the widths of the islands, and 
gives a complicated appearance to the cha- 

otic zone at the bottom of the figure. The 
trajectory displayed in Fig. 3 has just been 
captured into the eMeu resonance, and is in 
the libration region in the lower left of the 
figure. 

As this trajectory evolves within the eMetj 
resonance, the orbital eccentricities of both 
satellites increase. Shortly after being cap- 
tured, though, the trajectory encounters a 
chain of four islands associated with a sec- 
ondary resonance between the libration fre- 
quency of the eMe u resonance and the fre- 
quency of circulation of the e~j resonant 
argument. Figure 4b shows the phase space 
inhabited by the trajectory displayed in Fig. 
3 just after capture into this secondary reso- 
nance. The trajectory from Fig. 3 generates 
two loops in the chain of four islands within 
the zone of libration of the eMe U resonance 
in the bottom left of the figure. The chaotic 
zone surrounding the libration region has 
grown, having "swallowed" more neigh- 
boring secondary resonant island chains 
that were separate in Fig. 4a. 

The trajectory is "dragged" out of the 
eMe u libration zone by the secondary reso- 
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FIG. 4. Surfaces of section II showing the phase space available to the trajectory displayed in Fig. 
3. (a) 8 = 0.804. The trajectory has escaped from the e~ resonance (center), and has just been captured 
into the eMeu libration zone at lower left. A large chaotic zone is forming at the eMeo resonance. (b) 
8 = 1.01. The trajectory has been captured in a secondary resonance in the eMe o libration zone, and 
generates the two loops in the chain of four islands. The chaotic zone has increased in extent. (c) 8 = 
1.385. The trajectory has been dragged into the large chaotic zone. The eMe U resonance has become 
unstable. 

nance, and enters the chaotic region. This 
mechanism of escape from resonance 
through secondary resonance capture was 
first identified in our study of the 
Miranda-Umbriel 3 : 1 inclination reso- 
nances (TW-II). However,  in contrast to the 
inclination resonances, the trajectory 
spends a considerable period of time in the 
chaotic zone before escaping from the ec- 
centricity resonances. Both eccentricities 
continue to increase, and as they do, the 
extent of the chaotic region in phase space 

increases. Figure 4c shows section II after 
the system has entered the chaotic zone. 
The eme U libration zone has become unsta- 
ble due to a period 3 secondary resonance. 
The period 3 secondary resonance visible in 
Figs. 4a and b between the primary libration 
zones has been absorbed into the large cha- 
otic zone. Eventually, the chaotic separatrix 
associated with the e 2 resonance also 
merges with the large chaotic zone. Figure 
5 shows section I at the same point in the 
evolution as Fig. 4b. The heavy solid curve 
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FIG. 5. Surface of  section I showing the phase space 
available to the trajectory displayed in Fig. 3 at 8 = 
1.385 (see also Fig. 4c). The eMeu resonance zone is at 
the bottom of the figure. The e 2 resonance zone has 
appeared at the center of the figure. 

is the energy surface boundary of  the sur- 
face of  section, within which trajectories are 
constrained. The large chaotic zone fills 
much of  the displayed region of  the phase 
space, but remnants  of  the individual sec- 
ond-order  eccentrici ty resonances are still 
visible at this point in the evolution. The 
unstable libration region of  the eMeu reso- 
nance is visible at the bot tom of  the figure. 
The quasiperiodic zone in the center  of the 
figure is the region into which trajectories 
eventually escape from the eccentrici ty res- 
onances.  The two quasiperiodic zones 
above and below center  are libration regions 
associated with the eL resonance.  The cha- 
otic zone becomes  much more uniform in 
structure as the system continues to evolve.  

As the trajectory evolves within the large 
chaotic zone, the eccentricities vary be- 
tween well-defined maximum and minimum 
values, forming a smooth " e n v e l o p e "  of  
eccentricities visible in Fig. 3. At a particu- 
lar value of  8, these " e n v e l o p e s "  corre- 
spond to the boundaries of  the chaotic zones 
on the surfaces of  section of  the frozen Ham- 
iltonian. This indicates that the chaotic zone 
is being well explored on a time scale much 

shorter than the time scale over  which 8 
evolves significantly due to tides. This in 
turn indicates that while the trajectory is in 
the chaotic zone, a chaotic adiabatic invari- 
ant is being approximately conserved.  Note  
also that at values of  8 of  approximately 2 
and 4.5, the trajectory is temporari ly recap- 
tured into a quasiperiodic resonant  region. 

For  small initial eccentricities, the loca- 
tions of  secondary resonances are well pre- 
dicted by the analytical techniques we em- 
ployed in our  study of  the inclination prob- 
lem (see TW-II),  allowing us to analytically 
determine the point of  transition from quasi- 
periodic to chaotic behavior.  

2.1.2. The Eccentric-Inclined Model 

In TW-II,  we introduced the eccentric- 
inclined Miranda-Umbrie l  3 : 1 resonance 
model, and showed that the inclination of  
Miranda's  orbit remains high during chaotic 
evolution through the eccentrici ty reso- 
nances at the 3 : 1 commensurabil i ty.  (See 
Note at end of  Appendix I.) We further ex- 
plore the dynamics of  this resonance here. 

The tidal evolution parameter  8 is defined 
to be the nonresonant  contributions to 
3nu - nM -- ½(¢~M d- ~0 U -I- t iM "~ f l U ) ( s e e  

Appendix I). Initial conditions for trajector- 
ies to be numerically evolved through the 
resonance were generated as follows. From 
an initial set of  coordinates,  calculated from 
the orbital elements a M = 4.86345, av = 
10.1179, e M = e M = 0 . 0 0 5 ,  i M = i U = 0.005 
radian, o- M = o- c = 0, ~b M = ~bu = 0, points 
were computed without tidal dissipation, 
spaced in time by 100 mapping iterations, or 
15.7 years (l~ = 40). 

This model comprises three eccentrici ty 
resonances,  three inclination resonances,  
and secular interactions. The eccentricities 
are coupled to the inclinations through non- 
linear terms; this model has four degrees 
of  freedom. For  chaotic systems with two 
degrees of  f reedom, such as the planar- 
eccentric case described above,  chaotic 
zones are isolated from each other  in phase 
space by quasiperiodic zones,  and thus the 
variations possible within a chaotic zone are 
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FiG. 6. E c c e n t r i c i t y  and  inc l ina t ion  v a r i a t i o n s  of  a trajectory evo lved  through the 3 : 1 M i r a n d a - U m -  
br ie l  mean-motion commensurabil i ty (hu/a u = 6 × 10-12 per orbit period). (a) Orbital inclination of 
Miranda .  (b) Orb i t a l  i nc l i na t ion  of  U m b r i e l .  (c) Orb i t a l  e c c e n t r i c i t y  of  M i r a n d a .  (d) Orb i t a l  e c c e n t r i c i t y  
of  Umbriel .  The inclination resonances  are encountered first, and the satellites escape  from them, 
leaving both satellites with low inclinations. Evolution through the large chaotic zone  associated 
with the eccentricity resonances  is qualitatively similar to that in the planar-eccentric approximation 
(compare with Fig.  3). 

restricted. In systems with more than two 
degrees of freedom, though, chaotic zones 
are not isolated. (see, e.g., Chirikov 1979, 
Hrnon 1983). Therefore, where this higher- 
dimensional chaos is important, the trajec- 
tory may wander far from its initial state, 
over a long enough time scale, exploring a 
much larger volume of phase space than the 
two-degree-of-freedom system. The extent 

of these chaotic wanderings will depend on 
the diffusion time scale compared to the 
tidal evolution time scale. Since this higher- 
dimensional diffusion occurs generally over 
a much longer time scale than the fundamen- 
tal dynamical periods in the problem (Chiri- 
kov 1979), a chaotic adiabatic criterion 
which is based on the trajectory exploring 
all of the chaotic zone before significant tidal 
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evolution takes place may not exist for 
higher-dimensional systems. Therefore, 
where this higher-dimensional chaos is sig- 
nificant, the dynamical outcome may be sen- 
sitive to the simulated tidal evolution rate, 
even for rates implied by our constraints on 
the physical Q of Uranus. 

In the planar-eccentric two-degree-of- 
freedom model, the conservation of a cha- 
otic adiabatic invariant is indicated by the 
smooth "envelope"  of maximum and mini- 
mum eccentricities in the chaotic zone, 
which show that the chaotic zone is well 
explored by the trajectory on a time scale 
much shorter than the tidal evolution time 
scale. Figure 6 shows the inclination and 
eccentricity variations of Miranda and 
Umbriel for a trajectory that escapes from 
all the inclination resonances, thus encoun- 
tering the eccentricity resonances with both 
inclinations small. In each plot, the maxi- 
mum and minimum eccentricity or inclina- 
tion is plotted in intervals of A8 = 0.0033. 
For this trajectory, the nonlinear coupling 
between inclination and eccentricity reso- 
nances is weak, because both orbital inclina- 
tions are small. All of the elements vary 
chaotically during evolution through the ec- 
centricity resonances, but we still see a 
smooth "envelope"  of the maximum and 
minimum eccentricities in the chaotic zone 
(Figs. 6c and d), as we did in the planar 
approximation (Fig. 3). This indicates that 
an adiabatic invariant is being nearly con- 
served. 

The rate of tidal evolution used for the 
trajectory in Fig. 6 was i~M/a i = 6 × 10-12 
per orbit period (~ = 110), the same rate 
used for the trajectory displayed in Fig. 3 in 
the planar approximation. To test whether 
the behavior is similar at physical rates, we 
have taken the state variables of the trajec- 
tory shown in Fig. 6 in the chaotic zone 
(8 = 2.649), and continued the integration 
with ~ = 11,000. The orbital eccentricity 
variations of Miranda for this experiment 
are shown in Fig. 7. The maximum and mini- 
mum boundaries of the chaotic zone are still 
well defined, confirming the near conserva- 

0.035 , , 

eM 

0.03 

0.025 

0.02 

0.015 

0.01 

0.005 

0 i I 
1.0 1 5 2.0 

/ 
/ 

/ 

25 310 315 
8 

I I 
4 .0  4.5 

Fro. 7. Eccentricity variations of Miranda in the cha- 
otic zone of the 3 : 1 commensurability with Umbriel, 
at a simulated rate of  tidal evolution of  ~tM/a M = 6 × 

10 -14 per orbit period (Q = 11,000) within our con- 
straints on the physical Q of Uranus.  With both inclina- 
tions small, the boundaries of the chaotic zone vary 
smoothly. 

tion of a chaotic adiabatic invariant at physi- 
cal rates. The planar-eccentric model is 
therefore a good approximation if the orbital 
inclinations are small. 

However, with a high inclination of 
Miranda's orbit resulting from temporary 
capture into the inclination resonances, we 
see markedly different behavior. Figure 8 
shows the inclination and eccentricity varia- 
tions of Miranda and Umbriel evolved 
through the 3 : 1 commensurability with the 
three-dimensional mapping with ~ = 
l 1,000. The maximum and minimum eccen- 
tricities and inclinations are plotted in inter- 
vals of AS -- 0.0037, and the region between 
the maximum and minimum envelopes has 
been shaded, to better show how the ele- 
ments vary. We have not artifically en- 
hanced the simulated rate of tidal evolution 
in this calculation; 9~ is within our con- 
straints on the physical Q of Uranus set by 
the dynamics. In this example, the trajec- 
tory is captured into the i~ resonance. The 
evolution through the inclination reso- 
nances is not significantly affected by the 
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FIG. 8. Eccentricity and inclination variations of a trajectory evolved through the 3 : 1 Miranda- 
Umbriel mean-motion commensurability with ~ = 11,000 (/~M/aM = 6 × 10- t4 per orbit period), within 
our constraints on the physical Q of Uranus. (a) Orbital inclination of Miranda. (b) Orbital inclination 
of Umbriel. (c) Orbital eccentricity of Miranda. (d) Orbital eccentricity of Umbriel. The maximum and 
minimum values are plotted in intervals of A8 = 0.0066. This figure represents about 10 II orbit periods 
of Miranda. In this case, the trajectory is captured into the i~ resonance, and iM evolves to a high value. 
With the orbital inclination of Miranda high at the point of encounter of the eccentricity resonances, 
the orbital eccentricity of Miranda varies extremely irregularly within this chaotic zone, even on 
timescales comparable to the resonance passage timescale. The orbital inclination of Miranda remains 
high. 

n o n r e s o n a n t  va r ia t ions  in eccen t r ic i ty ,  as 
we p rev ious ly  showed  in TW-I I .  At  8 ~ 8.0, 
the t ra jec tory  in Fig.  8 is cap tu red  in to  the 
2 : 1  s e c o n d a r y  c o m m e n s u r a b i l i t y  b e t w e e n  
the l ib ra t ion  f r e q u e n c y  of  the i 2 r e s o n a n t  

a r g u m e n t  a nd  the c i rcu la t ion  f r e que nc y  of  
the i 2 r e s o n a n t  a r g u m e n t  (see TW-I I ) .  

This  2 : 1 s e c o n d a r y  r e s o n a n c e  even tua l ly  
drags the t ra jec tory  d i sp layed  in  Fig. 8 into 
the chaot ic  zone  assoc ia ted  wi th  the inc l ina-  
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tion resonances.  During evolution through 
this chaotic zone, both the inclinations and 
the eccentricities vary chaotically. With a 
high orbital inclination of  Miranda, the non- 
linear coupling between the eccentrici ty and 
inclination resonances is strong and causes 
significant variations in the orbital eccen- 
tricity of  Miranda. The trajectory escapes 
from the inclination resonances,  becomes 
briefly quasiperiodic, and then enters the 
large chaotic zone associated with the ec- 
centricity resonances,  which dominates the 
rest of  the evolution through the commensu- 
rability. The variations of  the eccentricities 
and inclinations of  both satellites are very 
irregular in this chaotic zone. Note,  how- 
ever,  that the variations in orbital inclination 
of  Miranda are relatively small: it maintains 
a large average value. As the trajectory 
evolves further  in the chaotic zone, the max- 
imum eccentrici ty of  Miranda's  orbit be- 
comes larger, reaching a maximum value 
of  about 0.04 before the trajectory escapes 
from the commensurabil i ty.  After escape, 
the orbital eccentrici ty of  Miranda is about 
0.011. The chaotic variations in the orbital 
eccentrici ty and inclination of  Umbriel are 
not large compared to those of  Miranda. 

Even  though this t rajectory was com- 
puted with a simulated tidal evolution rate 
within the physical bonds,  the orbital ele- 
ments vary extremely irregularly on time 
scales comparable to the resonance passage 
time scale: there is not a smooth "enve-  
lope"  to the chaotic eccentrici ty variations 
as seen in the previous example .There  is 
no evidence for an adiabatic invariant when 
both the orbital inclination and eccentricity 
of  Miranda are large, even at this very  slow 
simulated tidal evolution rate. The dynam- 
ics are sensitive to the simulated rate, even 
if the Q of  Uranus is within our  constraints. 
Therefore, to avoid dynamical artifacts, 
simulated tidal evolution rates must be 
within the physical constraints. The reso- 
nant mapping methods first developed by 
Wisdom (1982, 1983) have made this compu- 
tationally feasible. 

Although the eccentric-inclined model 
has too many degrees of  f reedom to study 
using surfaces of  section, we can verify the 
presence of  the secondary resonances.  In 
Fig. 9a, the i~j resonant  argument,  d/u = 
½(3hu - h M - 2l}u), is plotted against the 
i 2 resonant  argument,  tkM = ½(3hu -- hM -- 
21} M) for the trajectory shown in Fig. 8 at 
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FIG. 9. V a r i a t i o n  o f  t h e  r e s o n a n t  a r g u m e n t s  ~b M = ½(3hu - hM -- 21~M) a n d  ~0 U = ~(3' h u  - hM -- 2 f lu )  
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u s i n g  u n a v e r a g e d  d i f f e r en t i a l  e q u a t i o n s .  
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= 9.147. Points were computed using the 
mapping with an iterative time step of 57.37 
days. qJM is librating in this figure as Ou circu- 
lates. In addition, the trajectory is nearly 
periodic: it is librating in the 2 : 1 secondary 
resonance region (see Fig. 12 of TW-II 
for a surface of section of this region of 
phase space in the circular-inclined 
model). 

As a further check of the secondary reso- 
nance mechanism for escape from this reso- 
nance, we have explored the same region of 
phase space using direct unaveraged numer- 
ical integrations. Our Hamiltonian models 
utilize Jacobi coordinates (see Appendix I). 
We have taken the Jacobi coordinates of the 
trajectory shown in Fig. 9a, and converted 
them to the following Uranus-centered or- 
bital elements: a M = 4.863473, a U = 
10.117934, e M = 0.00497385, e U = 
0.00500281, i M = 4.416421 degree, i U = 
0.279794 degree, X M = h u = 0, &M = 
45.013320 degree, &u = 21.380209 degrees, 
f~M = 271.650075 degrees, and f~u = 
282.078623 degrees. We carried out a direct 
unaveraged numerical integration of the 
gravitational equations of motion for the res- 
onant system, in Uranus-centered coordi- 
nate, including planetary oblateness terms 
of order J2. The integration was carried out 
using the Bulirsch-Stoer integrator, with a 
relative precision of 10 -9 per step size of 
approximately 0.069 day (about 1/20th of an 
orbital period of Miranda), and points were 
plotted in intervals of approximately 57.37 
days. Figure 9b shows the variations of ~M 
and tktj for Miranda and Umbriel using unav- 
eraged differential equations. The variations 
of the resonant arguments on this plot are 
virtually identical to those in Fig. 9a, indi- 
cating that the eccentric-inclined Hamilto- 
nian model and mapping represent the ac- 
tual dynamics of the 3 : 1 Miranda-Umbriel 
resonance well. 

We have further explored the evolution 
of Miranda through the 3 : 1 mean-motion 
commensurability. We have generated 
starting conditions for trajectories with large 
i M, using the state variables of the trajectory 

displayed in Fig. 8 at 8 = 10.397,just before 
it enters the chaotic zone associated with 
the inclination resonances. From these co- 
ordinates, we have generated three new sets 
of coordinates, by integrating the mapping 
forward in time, without tidal dissipation, 
spaced in time by 100 mapping iterations 
(15.7 years). This provides a set of initial 
conditions with identical values of 8 and the 
Hamiltonian, but with different angular 
phases. These different initial conditions 
have each been integrated forward in time 
through the eccentricity resonances using 
the mapping, with ~ = 11,000, to provide 
some idea of the possible range of behavior 
of trajectories at this resonance. Figure 10 
shows the orbital eccentricity variations of 
Miranda for the three trajectories, displayed 
in the same format as Fig. 8c. For each case, 
the variations of eccentricity are extremely 
irregular, with the trajectory in Fig. 10a 
reaching a maximum value of about 0.05. 
Upon escape from the resonance, Miranda 
may have a relatively large orbital eccentric- 
ity (Fig. 10b), or a value comparable to the 
value before the resonance was encountered 
(Fig. 10a). The mechanism by which trajec- 
tories enter the large chaotic zone appears 
to depend on the behavior during passage 
through the chaotic zone associated with the 
inclination resonances. For example, in Fig. 
10a, the eccentricity varies chaotically be- 
tween 10.5 < 8 < 11.4, but leaves the chaotic 
zone with a relatively low value. It then 
becomes temporarily trapped in the eMeu 
resonance between 11.5 < 8 < 12.3, exhibit- 
ing behavior similar to what is seen in the 
planar-eccentric model. The trajectory dis- 
played in Fig. 10b shows a similar temporary 
capture phase. However, the trajectories 
displayed in Figs. 10c and 8c do not show 
the temporary capture phase. There appear 
to be other mechanisms for entering the cha- 
otic zones in these cases. For each of the 
trajectories displayed in Fig. 10, the orbital 
inclination of Miranda remains large during 
evolution through the chaotic zones, and the 
variations in the orbital elements of Umbriel 
are relatively small. 
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FIG. 10. Eccentricity variations of Miranda for three trajectories evolved through the 3 : 1 Mi- 
randa-Umbrie l  eccentricity resonances with iM having a high initial value (~ = 11,000). The maximum 
and minimum values are plotted in intervals of A8 = 0.0033. As in Fig. 8, the orbital eccentricity of  
Miranda varies extremely irregularly within the chaotic zone. 

2.1.3. Secular Perturbations 

Figure 11 shows an example of  the evolu- 
tion of  the orbital eccentricity of  Miranda 
during evolution through the 3 : 1 mean-mo- 
tion commensurabil i ty with Umbriel, in- 
cluding secular perturbations due to Ariel, 
with ~tM/a M = 6 × 10 -13 per orbit period. 
The initial orbital parameters for this trajec- 
tory were a M = 4.8631, a g = 7.0846, au = 
10.1179, era = eA = eu = 0.005, ~b = 0, &M 

= 0, t3 A = - Ir/2, and ~u = zr/2. In Fig. 11, 
the maximum and minimum eccentricities 
are plotted in the intervals of  A8 = 0.0033, 
with the resulting envelope shaded to better 
display the variations. The behavior of  e M is 
qualitatively similar to that in the planar- 
eccentric case, with the average value in- 
creasing during evolution through the cha- 
otic zone. The orbital eccentricities of  both 
other satellites vary chaotically, but these 
variations are relatively small. However ,  as 



DYNAMICS OF PAST URANIAN RESONANCES 413 

0.04 

0.03 

eM 0.02 

0.01 

0 
0 0.5 1.0 1.5 2.0 

5 

FIG. 11. Eccentr ic i ty  variat ions of  Miranda for a 
trajectory evolved through the 3 : 1 Mi randa -Umbr i e l  
eccentrici ty resonances ,  per turbed by the secular  vari- 
ations o f  Ariel. The  m a x i m u m  and mi n i mum eccentrici- 
ties are plotted in intervals  of  A8 = 0.0033. The  eccen- 
tricity variat ions are more  irregular than  in the 
unper turbed  case.  

in the eccentric-inclined model,  the maxi- 
mum and minimum boundaries of  the cha- 
otic zone are not well defined, indicating 
that there is no chaotic adiabatic invariant. 
This has been verified by integrating a tra- 
j ec tory  through the chaotic zone with /~M/ 
aM = 6 × 10 -14 per  orbit period (~ = 
11,000). The initial coordinates were those 
of  the trajectory displayed in Fig. 11 at 8 = 
1.374. For  this trajectory,  the maximum and 
minimum eccentrici ty envelopes were very 
irregular. 

2 . 2 .  T H E  M I R A N D A - A R I E L  5 : 3 
C O M M E N S U R A B I L I T Y  

2.2.1. The Planar-Eccentric Model 

At this resonance,  the mean motion of  
Ariel decreases  more rapidly than that of  
Miranda. The time rate of  change of  8 = 
5hA -- 3riM -- t~u - t~  A (see Appendix I) is 
approximated by 

~ _ 0.492(5hA) 

-- 0.492 15 nA aA. (3) 
2 a A 

Because aM/a A is decreasing, there is not 
an equilibrium eccentrici ty configuration for 
this resonance in the single-resonance ap- 
proximation (see also Peale 1988). 

The initial coordinates of  the trajectories 
to be numerically evolved through the com- 
mensurability were determined from an ini- 
tial state with the following orbital parame- 
ters: a M = 4.6361, a A =6.5110, eM = 0.005, 
e A = 0.005, o" M = 90 °, and O'A = 90 °. From 
this initial state, the 19 other  states in the 
ensemble were determined by integrating 
the equations of  motion forward in time with 
the mapping without tidal dissipation, spac- 
ing successive states 66 mapping iterations 
([l = 40.0 year  - l ,  At = 66 × 2zr/[l = 10.4 
years). Each of  these initial states was then 
integrated forward in time with tidal dissipa- 
tion included. 

Ensembles of 20 trajectories were 
evolved through the resonance at different 
simulated rates of  tidal evolution, to deter- 
mine the effect of  the simulated rate of tidal 
evolution on the dynamics. Figure 12 shows 
the results of  this study of  the effect of the 
rate of  tidal evolution on the dynamics. Plot- 
ted are the averages of  the maximum orbital 
eccentricities in the chaotic zone as a func- 
tion of  the rate expressed in terms of  ~. 
There  is a dependence  of  the maximum ec- 
centricity of  Miranda on ~ for ~ < 11 ( / /A/aA 

2.4 x 10 -l° per orbit period); for slower 
dissipation rates (larger ~), the dynamics in 
the chaotic zone appear  to become indepen- 
dent of  the rate of  evolution. Therefore,  the 
trajectory explores the chaotic region well 
on time scales much shorter than the evo- 
lution time scale, and there appears to 
be a chaotic adiabatic invariant for ~ > 
l l .  

At this resonance,  the single-resonance 
adiabatic criterion is insufficient to deter- 
mine where the dynamics become indepen- 
dent of  the simulated rate of  tidal evolution. 
Because the orbit of  Ariel is evolving out- 
ward more rapidly than that of  Miranda, the 
first eccentrici ty resonance to be encoun- 
tered is the e 2 resonance.  We compute  
( A ( . O L / t . O L )  for  this resonance• The libration 
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FIG. 12. M a x i m u m  eccentrici t ies o f  Miranda (~)  and 
Ariel ([J) in the  chaotic  zone o f  the 5 : 3 commensurabi l -  
ity, related to the  rate of  tidal evolut ion expressed  in 
te rms  of  the effective specific dissipation funct ion o f  
Uranus  ~.  For  ~ > 10, trajectories explore the full 
ex tent  of  the  chaotic region before escaping from the 
resonance;  for higher  rates ,  the dynamics  are not  well 
represented.  The  s ingle-resonance adiabatic rate for 
the e L resonance  is denoted by the vertical bar (9~ = 
0.0063, i~A/a A ~ 4 X 10 -7 per  orbit period). For  simu- 
lated tidal evolut ion rates larger than  this,  the trajector- 
ies are dragged through the resonance  without  display- 
ing any  interest ing behavior .  Note  that  the dynamics  
are sensi t ive to the rate for rates  more  than three orders  
o f  magni tude  s lower than  this. Clearly, the  single-reso- 
nance adiabatic criterion is not  sufficient for the planar- 
eccentr ic  case.  

right of  Fig. 12. Howeve r ,  Fig. 12 reveals  
that the chaotic zone is not fully explored 
in the tidal evolution t ime scale until the 
simulated rate of  evolution is approximate ly  
three orders o f  magnitude slower than the 
criterion based on the single-resonance ap- 
proximation.  

Figure 13 shows the evolut ion of  this same 
ensemble  of  trajectories in 8, AE paramete r  
space at a simulated tidal evolution rate of  
CIA/a A = 2.4 × I 0  -11 per  orbit  period (~ = 
l l0).  AE is defined as 

AE = e - E 2 (5) 

where e is the energy of  the Hamiltonian,  
and 

E2 = ~ 0, 8 <  - 2 ( C -  D) + 4F 

L - ( 8  + 2(C - D) - 4F)Z/64B, 

8-> - 2 ( C -  D) + 4F (6) 

(see TW-I) .  I f  the Hamil tonian is equal to 
E2(AE = 0), the quartic equat ion that deter- 

f requency of  this resonance  is given by 

to 2 = - 4F(8 - 80) (4) 

where  80 = 2(C - D) - 16B~u. The change 
in the libration f requency of  the (e 2) reso- 
nance in one libration period due to tidal 
evolution of  the orbits is Ato L --~ 
-4zrFS/to~, where  ~ ~ - 1 . 8  × 10-3/~ in 
our  units, at low eccentri t ies.  For  e M = e U 
= 0.005 well before the resonance  is en- 
countered,  80 = 7.03. When the resonance 
is encountered  at 8 = 8.46, AtOL/tO L ~- 

- -  0.0063/~. In the single-resonance approx-  
imation, dynamical  artifacts should appear  
i f ~  < 0.0063, or hA/a A ~ 4 X 10-7 per  orbit 
period. The single-resonance adiabatic rate 
is denoted by the vertical bar  in the upper  

Z~E 

- . ~ v v  
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FIG. 13. Twen ty  trajectories in 8, AE space with 
= 110. The mean  initial eccentricit ies of  the orbits 

are e M = 0.0045 and e x = 0.0050. Solid lines indicate 
quasiperiodic behavior ;  dashed  lines indicate chaotic 
behavior.  Evolut ion of  the  energy during the  chaotic 
phase  of  evolut ion is quite regular,  indicating the exis- 
tence of  a chaotic  adiabatic invariant.  Trajectories es- 
cape f rom the resonance  via the  chaotic  zone at irregu- 
lar intervals ,  evolving to large negat ive AE. 
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mines initial conditions on the surface of 
section has no solutions at zero eccentricity 
on the section. If the Hamiltonian is greater 
than EE(AE > 0), there is a finite area on the 
surface of section near the origin in which 
the quartic equation has no solutions. 
Within this area, points cannot be generated 
on the surface of section. 

In Fig. 13, 8 decreases with time, and 
trajectories evolve toward the right. Trajec- 
tories are excluded from the heavily shaded 
region in the upper fight of the figure. The 
lightly shaded region represents the range 
of values of Hamiltonian and the parameter 
8 where large-scale chaos is present in the 
phase space. The extent of this region was 
numerically determined using surfaces of 
section. The surfaces of section used for this 
purpose plot x M versus YM when XA = 0. 
For different values of AE and 8, the initial 
conditions of 20 trajectories were deter- 
mined, with initial coordinates equally 
spaced on the ordinate axis of the surface 
of section. For each trajectory, the rate of 
growth of distance between nearby trajecto- 
ries (Lyapunov exponent) was evaluated. 
Where one or more trajectories indicate a 
positive Lyapunov exponent, large-scale 
chaotic behavior is present. 

In the small unshaded region near the 
boundary of the excluded zone, the resonant 
arguments o- M = ½(5hA -- 3hM -- 2&M)and 
or A = ½(5h A - 3h M - 2tbA)must librate 
about +-~-/2, because of the shape of the 
energy surface boundary. This region disap- 
pears as 8 decreases, indicating that perma- 
nent capture into quasiperiodic libration 
does not occur during passage through this 
commensurability via the capture mecha- 
nism described in TW-I. Tidal evolution 
drives trajectories into the unshaded region 
of parameter space in the lower right of this 
figure, where there is no known mechanism 
of capture into resonance. [Peale (1988) also 
concludes that capture into this resonance 
cannot occur, using arguments based on the 
available energy.] 

The trajectories shown in Fig. 13 initially 
evolve to positive AE in a regular fashion, 

then enter a large chaotic zone. Solid lines 
indicate quasiperiodic behavior, and dashed 
lines indicate chaotic behavior in this figure. 
The evolution of the energies is also very 
regular during the chaotic phase, until the 
trajectory escapes to a quasiperiodic region 
of phase space and evolves to large negative 
AE. The regularity of the evolution of AE 
while the trajectories are chaotic is further 
evidence for the approximate conservation 
of a chaotic adiabatic invariant. There is not 
an obvious pattern to the escape process: 
trajectories "drop out"  of the chaotic zone 
in a seemingly random manner. 

Figure 14 shows the distribution of aver- 
age orbital eccentricities of Miranda after 
escape from the resonance. For reference, 
the time-averaged initial value of about 
0.0045 is shown by the vertical bar in the 
upper part of the figure. For most trajector- 
ies, the average orbital eccentricity of 
Miranda is higher than the value approach- 
ing the resonance, which is qualitatively in 
agreement with the predictions of the single- 
resonance theory. However, a few trajecto- 
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Fie .  14. Distribution of  t ime-averaged orbital eccen- 
tricities of  Miranda for the trajectories displayed in Fig. 
13. The vertical bar at the top of  the figure indicates 
the average eccentricity prior to resonance encounter.  
Most  trajectories escape from the resonance with an 
average eccentricity larger than the initial value, but in 
a few cases the average eccentricity decreases during 
resonance passage. 
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FIG. 15. Variations of the orbital eccentricities of  Miranda (a) and Ariel (b) during evolution through 
the 5 : 3 mean-motion commensurability, t~A/a A = 2.4 x 10-11 per orbit period (& = 110). The maximum 
and minimum values are plotted in intervals of  A8 = 0.005. Upon entering the chaotic zone, the 
maximum orbital eccentricity of  Miranda suddenly jumps to relatively high values. The final eccentrici- 
ties of  both orbits are larger than the initial values. 

ries evolve to lower eccentricity, which can- 
not happen in the single-resonance theory. 
Also, the mean value of the time-averaged 
orbital eccentricities of Ariel decreases from 
about 0.005 prior to resonance encountered 
to about 0.0048 after escape, with a scatter 
of about 10% about this value. 

There is a correlation between the orbital 
eccentricities upon escape from the reso- 
nance and the length of time spent in the 
chaotic zone. Figures 15 and 16 show the 
evolution of the orbital eccentricities of two 
different trajectories in this ensemble. In 
these figures, the maximum and minimum 
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FIG. 16. Variations of  the orbital eccentricities of Miranda (a) and Ariel (b) during evolution through 
the 5 : 3 mean-motion commensurability. ~lA/a A = 2.4 × 10- H per orbit period (~ = 110). The maximum 
and minimum values are plotted in intervals of A8 = 0.005. The final eccentricities are smaller than 
the initial values. 



DYNAMICS OF PAST URANIAN RESONANCES 417 

eccentricities in a small interval of 8 (AS 
0.005) are plotted versus 8. In each case, the 
eccentricity "envelopes" are smooth and 
well defined well before the resonance is 
encountered. The orbital eccentricities ini- 
tially oscillate with amplitudes determined 
by the strength of the secular coupling. As 
the trajectories approach the resonance, the 
amplitude of oscillation increases. There 
may be a sudden small change in the oscilla- 
tion amplitude, just before the large chaotic 
zone is entered, when the trajectory crosses 
a secondary commensurability (see below). 
When the trajectory enters the chaotic zone, 
the maximum orbital eccentricity of Mi- 
randa suddenly jumps to a value approxi- 
mately four times the maximum prior to res- 
onance encounter. The orbital eccentricity 
of Miranda varies irregularly between about 
0.002 and 0.02. Meanwhile, the orbital ec- 
centricity of Ariel also varies chaotically, 
but through a much smaller range. As the 
trajectories tidally evolve through the cha- 
otic zone, the eccentricities continue to vary 
in an irregular manner, but within well- 
defined limits which both decrease as 8 
decreases. The presence of these well- 
defined "envelopes" further indicates that 
the trajectory fully explores the chaotic 
zone on time scales much shorter than the 
time scale of tidal evolution, and that there- 
fore a chaotic adiabatic invariant is con- 
served. 

Eventually, the trajectories escape from 
the resonance. The trajectory shown in Fig. 
15, after only a short time in the chaotic 
zone, escapes with an average orbital eccen- 
tricity of Miranda approximately twice the 
value prior to resonance encounter. The or- 
bital eccentricity of Ariel also increases a 
tiny amount. For a trajectory that spends a 
long time in the chaotic zone, such as the 
one shown in Fig. 16, the average eccentrici- 
ties of both orbits are lower after escape 
from the resonance than before the reso- 
nance was encountered. In both cases, es- 
cape from the chaotic zone is accompanied 
by slight sudden changes in the oscillation 
amplitude of the eccentricities associated 

with passage through secondary reso- 
nances. 

To better understand the qualitative fea- 
tures of the dynamics of resonance passage, 
we have studied the evolution of the trajec- 
tory shown in Fig. 16 using surfaces of sec- 
tion. The surfaces of section chosen for 
study plot YM versus XM when XA = 0 
(defined as section I) and YA versus XA when 
x M = 0 (defined to be section II). The sec- 
tion condition x,. = 0 corresponds to 2 or 4 
values of the conjugate Yi, due to the quartic 
nature of the Hamiltonian. These values of 
Yi are obtained numerically by solving a 
quartic equation, and are designated a-d in 
descending numerical order (see TW-I). For 
section I, there are two high-eccentricity 
quartic root "families" and two low-eccen- 
tricity root families. Unfortunately, to dis- 
play all of the features of the phase space, 
it is necessary to plot surfaces of section 
corresponding to at least two of these root 
families, as was the case in the Ariel-Um- 
briel 5:3 resonance problem (TW-I). For 
section II, the phase space is even more 
complicated due to the appearance of an 
excluded region near the origin for AE > 0. 
We have chosen here to display sections 
Ia and Ib. On these plots, e M is the radial 
distance from the origin. 

Figure 17 shows sections I just after the 
trajectory in Fig. 16 has entered the chaotic 
zone, at 8 = 8.337. The heavy solid curve 
enclosing each plot is the energy surface 
boundary, which constrains where points 
can be generated on the section. On both 
sections Ia and Ib there is a quasiperiodic 
zone near the origin and a large chaotic zone 
which extends to the energy surface bound- 
ary. The trajectory has entered the chaotic 
zone from the quasiperiodic zone on section 
Ib (Fig. 17b), and will eventually escape 
from the resonance into the quasiperiodic 
zone on section Ia (Fig. 17a). The chaotic 
zone acts as a bridge between these two 
regions. By studying this figure, it is possible 
to understand the origin of the sudden large 
jump in orbital eccentricity experienced by 
Miranda as it enters the chaotic zone. Prior 
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FIG. 17. Sections I showing the phase space available to the trajectory in Fig. 15 jus t  after entering 
the chaotic  zone,  at 8 = 8.337. The chaotic zone extends from the edge of the quasiperiodic region on 
sect ion Ib (b) to the energy surface boundary on section Ia (a), explaining the sudden jump in e M when 
the chaotic zone is entered.  

0.02 

to resonance encounter, the trajectory is 
confined to the quasiperiodic region in Fig. 
17b. The evolution in this region involves 
the secular interaction between the satel- 
lites, and the orbital eccentricity of Miranda 
never gets above about 0.005. When the tra- 
jectory enters the large chaotic zone, a much 
more extensive region of phase space is 
available to the trajectory, including the 
chaotic zone in Fig. 17a. The chaotic zone 
extends all the way out to the energy surface 
boundary, which constrains the extent of 
motion. On Section Ia, the energy surface 
boundary extends to an orbital eccentricity 
of Miranda of about 0.02, about four times 
the maximum in the quasiperiodic zone be- 
fore resonance encounter. In the chaotic 
zone, the orbital eccentricity varies irregu- 
larly between a value corresponding to the 
maximum extent of the energy surface 
boundary on Fig. 17a and a minimum value 
corresponding to the outer edge of the quasi- 
periodic region on Fig. 17b. Because the 
time scale of evolution within the chaotic 
zone is much shorter than the tidal evolution 
time scale, we see the sudden jump in the 
maximum orbital eccentricity of Miranda in 

Figs. 15 and 16. Clearly, to fully explore the 
chaotic zone, a tidally evolving trajectory 
must reach the maximum eccentricity in the 
chaotic zone as defined by the energy sur- 
face boundary of the surface of section. This 
explains the fact that the mean maximum 
eccentricity reached by trajectories levels 
off for slow simulated tidal evolution rates 
at a value corresponding to the maximum 
distance of the energy surface boundary 
from the origin on the phase plane (see Fig. 
12). 

Note that there is a chain of four islands 
associated with a secondary resonance visi- 
ble in the quasiperiodic region in Fig. 17b. 
The appearance of this and other secondary 
resonances at the edge of the chaotic zone 
may result in the transfer of trajectories into 
the chaotic zone. 

As a trajectory evolves through the com- 
mensurability, surfaces of section generated 
for the "frozen" Hamiltonian at successive 
points in the evolution qualitatively resem- 
ble Fig. 17, but occupy a smaller region of 
the phase plane, and the maximum extent 
of the chaotic zone decreases. 

We have also studied the evolution of tra- 
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jector ies  with higher initial eccentricit ies  
(eM = eA "~ 0 . 0 1 ) ,  a n d  s i m i l a r  r e l a t i v e  in-  

creases  in the orbital eccentricity  o f  Mi- 
randa have  been  found.  

2.2.2. The Eccentric-Inclined Model 

The tidal evo lut ion  parameter 8 is defined 
to be the nonresonant  contributions to 
5hA -- 3nM - -  ½(¢~M q- (@A + t i M  -~- f i A ) ( s e e  

Appendix  I). Because  both the orbital ec- 
centricity and the inclination o f  Miranda are 
significantly affected by this resonance ,  it is 

expected,  based on the results o f  Sect ion 2, 
that higher-dimensional  chaos  may be im- 
portant, and therefore the dynamical  out- 
c o m e  is sensit ive to the simulated rate o f  
evolut ion.  Therefore,  w e  have  used a simu- 
lated rate o f  tidal evolut ion corresponding 
to ~ = 11,000, within our constraints on 
the physical  Q or Uranus.  The initial orbital 
e lements  used in the numerical  experiments  
are a M = 4.6361, aA = 6.5110, e M = e A = 
0.005, iM = iA = 0.005 radian, o- M = ~r/2, 
Or A ~-  37r/2, ~ / M  = 37r/2, and tkA = 7r/2. In 
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FIG. 18, V a r i a t i o n s  of the orbital inclinations (a, b) and eccentricities (c, d) of Miranda and Arie l .  
The rate of evolution is a k / a  A = 2.4 × 10-13 per orbit pe r iod  (9~ = 11,000), within our constraints on 
the physical Q of Uranus. The maximum and minimum values are plotted in intervals of A8 = 0.0033. 

Both e M and i M suddenly jump to moderately l a rge  v a l u e s  upon encountering the large chaotic zone, 
and e M reaches l a rge r  v a l u e s  t h a n  in the planar-eccentric approximation. Note that the limits of 
eccentricity and inclination appear to evolve in a fa i r ly  regular manner in the chaotic zone, in contrast 
with the M i r a n d a - U m b r i e l  3 : 1 problem (see Figs .  8, 10). 
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Fig. 18, the max imum  and minimum eccen- 
tricities and inclinations of  Miranda and Ar- 
iel are displayed in intervals of  AS = 0.0033. 
When the t ra jectory enters the large chaotic 
zone,  the variat ions in the orbital inclination 
and eccentr ici ty of  Miranda are significant. 
e M reaches a max imum  value of  about  0.03, 
compared  to a value of  0.02 reached in the 
planar-eccentr ic  model  for a comparable  ini- 
tial eccentrici ty.  The inclination reaches a 
max imum value of  about  1.5 °. Note  that at 
this simulated rate of  tidal evolution, there 
appear  to be relatively smooth  " e n v e l o p e s "  
of  max imum and minimum eccentr ici ty and 
inclination in the chaotic zone: perhaps  
there may  be an adiabatic invariant for this 
model  at sufficiently slow rates. It  is inter- 
esting to note that the max imum orbital ec- 
centricity reached by  Miranda is only about  
a factor  of  2 lower  than the max imum 
reached at the 3 : 1 commensurabi l i ty  with 
Umbriel  (see Fig. 9). 

2.2.3. Secular Perturbations 

To take into considerat ion the effects of  
other satellites on the Miranda-Ar ie l  5 : 3  
resonance,  we used a model  that includes 
secular per turbat ions  due to Umbriel .  Fig- 
ure 19 shows an example  of  the evolution of  
the orbital eccentricit ies of  Miranda, Ariel, 
and Umbrie l  for a t rajectory evolved 
through the resonance  using this model  with 

= 22 (/~M/aM = 1.2 × l0 -i° per  orbit 
period). The initial orbital pa ramete rs  for 
this t ra jectory were  a M = 4.6394, aA = 
6.5157, a U = 10.056, eM = eg = eu = 0.005, 
~b = 0, and &u = &A = &U = --7r/2. Shown 
in the figure are the m ax i m um  and minimum 
eccentricit ies in intervals of  A8 = 0.005. 
The evolution of  Miranda ' s  orbital eccen- 
tricity is not markedly  different than in the 
planar-eccentr ic  case involving only Mi- 
randa and Ariel: the m ax i m um  eccentr ici ty 
jumps  suddenly when the evolution be- 
comes  chaotic• There  still appear  to be well- 
defined limits to the chaotic variations in e M 
as the satellites evolve through the reso- 
nance.  The average  orbital eccentr ici ty after 
escape  f rom the resonance  is about  a factor  

of  2 larger than the initial value. The changes 
in orbital eccentr ici ty of  both  Ariel and Um- 
briel, though chaotic,  are not significant. 

2 . 3 .  T H E  A R I E L - U M B R I E L  2 : 1  

C O M M E N S U R A B I L I T Y  

2.3.1. The Planar-Eccentric Model 

At this commensurabi l i ty ,  the semimajor  
axis of  Ariel is increasing much  more  rapidly 
than that of  Umbriel .  The rate at which 
8 = 4n v - 2n A - t~ A - t~ U increases due 
to planetary tides is given by (see Appendix  
II)  

~ - 2hA ~- 3hA aM. (7) 
a M 

For  the Ar ie l -Umbr ie l  2 : 1 resonance,  the 
equilibrium eccentr ici ty of  Ariel is approxi-  
mately  0.02 (see Appendix  II) if  Q = 11,000 
for Uranus  and Q = 100 for Ariel. 

To determine capture probabili t ies for 
this resonance,  we numerical ly integrated 
six sets of  20 trajectories through the com- 
mensurabil i ty using the mapping,  each with 
different eccentricit ies approaching the res- 
onance.  Orbital pa ramete rs  used to calcu- 
late the initial states of  the trajectories in 
each run are given in Table III .  F rom the 
initial state in the table,  19 other  initial con- 
ditions were  computed  by  integrating the 
equations of  motion forward in t ime using 
the mapping without tidal dissipation, with 
a t ime interval of  66 mapping iterations 
( ~  = 40.0 year  - i  , At = 66 x 27r/f~ = 10.4 
years),  yielding a set o f  trajectories with 
identical initial values of  8 and the Hamil to-  
nian, but with different angular phases.  
Each of  the initial states in the run was then 
integrated forward in t ime with tidal dissipa- 
tion included. 

These  numerical  exper iments  were  car- 
tied out using simulated rates of  tidal evolu- 
tion be tween  ~lA/a A ~--- 2.7 x 10 -s per  orbit  
period (~ = 0.00011) and ~lA/a A = 2.7 × 
10 - l l  per  orbit  period (~ = 110). At rates 
s lower than about  ~lA/a A = 2.7 × l 0  - 7  per 
orbit period (~ -- 0.011), all trajectories in 
runs 1-4 were  captured into resonance.  
Only trajectories f rom runs 5 and 6 had mea- 
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FIG. 19. Variations of the orbital eccentricities of Miranda (a), Ariel (b), and Umbriel (c) during 
evolution through the Miranda-Ariel  5 : 3 mean-motion commensurability. The maximum and minimum 
values are plotted in intervals of A8 = 0.005. The orbital elements of all three satellites vary chaotically. 

surable probabilities of  escape at slow tidal 
rates (~ = 110). 

This indicates that the probability of  es- 
cape from the Arie l -Umbrie l  2 : I resonance 
is very  small if the orbital eccentricities are 
smaller than about  0.03, much larger than 
the current  values. The capture mechanism 
for trajectories with low initial eccentricities 
is very  robust: the rate at which artifacts 
appear  is two to three orders of  magnitude 
larger than the rates at which artifacts ap- 
peared in the dynamics of  the previously 
considered resonances.  This appears to be 

partly a consequence of  the fact that at ec- 
centricities comparable  to the current  val- 
ues, the evolution is dominated by quasipe- 
riodic behavior,  and trajectories do not 
cross separatrices associated with the pri- 
mary mean-motion resonances.  Rather,  
capture occurs  via evolution of  the energy 
surface on which a t rajectory evolves (see 
below), analogous to the capture mecha- 
nism at the Arie l -Umbrie l  5 : 3  resonance 
(TW-I). The region of  escape does not ap- 
pear  until eccentricit ies are much higher. 

Figure 20 is a plot of  the maximum and 
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TABLE III 

ARIEL--UMBRIEL 2; 1 COMMENSURABILITY: INITIAL PARAMETERS 

Run AE 8 aA eA O'A XA YA n 
au eu O'u Xu Yu 

1 -7.7095 x 10 -5 -7.8351 6.3100 0.005 90.0 0.0 4.1764 x 10 -3 
10.0400 0.005 90.0 0.0 4.5651 × 10 -3 20 

2 -2 .7344 x l0 -4 -6.3464 6.3100 0.01 90.0 0.0 8.3527 × 10 -3 
10.0400 0.01 270.0 0.0 -9.1302 × 10 -3 20 

3 -7.3931 × 10 -4 -6.5488 6.3050 0.015 90.0 0.0 1.2529 × 10 -2 
10.0400 0.015 270.0 0.0 -1.3695 × 10 -2 20 

4 -1.4568 x 10 -3 -5 .7580 6.3000 0.02 90.0 0.0 1.6705 × 10 -2 
10.0400 0.02 270.0 0.0 -1.8260 x 10 -2 20 

5 -1 .0299 x 10 -3 7.1446 6.3055 0.03 90.0 0.0 2.5058 x 10 -2 
10.0400 0.03 270.0 0.0 -2.7391 x 10 -2 20 

6 -9 .2686 x 10 -4 21.2018 6.3057 0.04 90.0 0.0 3.3411 x 10 -2 
10.0400 0.04 270.0 0.0 -3.6521 x 10 -2 20 

minimum orbital eccentricit ies  o f  Ariel and 
Umbriel  in intervals o f  A8 = 0.008 for a 
trajectory in run 1, with a simulated tidal 
evolut ion rate corresponding to 9~ = 110. 
Both  orbits are captured into resonance  
without  displaying significant chaotic  be- 
havior. H o w e v e r ,  there are sudden changes  
in the amplitudes o f  osci l lation o f  the eccen-  

tricities, for example, at values of 8 of about 
0.6, 2.7, 4.7, and 7.5. The orbital eccentric- 
ity of Ariel reaches its equilibrium value 
(0.02) without disruption of the resonance. 

To understand this complicated behavior, 
we have computed surfaces of section for 
the frozen Hamiltonian at various values of 
8. The section conditions chosen for study 
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FIG. 20. Orbital eccentricity variations of Ariel (a) and Umbriel (b) of  a trajectory from run 1 during 
evolution through the 2 • 1 commensurability. Shown are the maximum and minimum eccentricities in 
intervals of AS = 0.008. The evolution is primarily quasiperiodic, but with modulations of  the oscillation 
amplitudes o fe  A and e U due to secondary resonances. The trajectory attains the equilibrium eccentricity 
e A = 0.02 without escaping from the resonance. 
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are plotting YA versus x A when Yu = 0, 
defined to be section I, and plotting Yu ver- 
sus xtj when YA = 0, defined to be section II. 
As with the second-order resonant models, 
initial conditions on the surface of section 
are determined by solving a quartic equa- 
tion. Only one quartic root (the one with the 
lowest value) need be plotted to show the 
important features of the phase space. 

Figure 21 shows section II at 8 = 2.786, 
during one of the aforementioned jumps in 
the oscillation amplitude of the eccentricity. 
In this plot, the orbital eccentricity of Um- 
briel is the radial distance from the origin; 
the value of the resonant argument tro = 
½(2hu - hA -- &u) is measured counter- 
clockwise from the positive abscissa. The 
heavy solid curve is the energy surface 
boundary of the surface of section: points 
generated on the section according to the 
above criteria are constrained to lie within 
this boundary. At this point in its evolution, 
the trajectory displayed in Fig. 21 generates 
points that form the three quasiperiodic 
loops in the chain of three resonant islands 
shown on the figure. Points generated by 
neighboring trajectories have also been plot- 
ted to display the structure of the phase 
space. Most of the points appear to lie on 
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FIG. 21. Sect ion II at 8 = 3.769. The  trajectory in Fig. 
20 genera tes  the  three  r e sonan t  islands.  Quasiperiodic 
behavior  domina tes  the  phase  space.  

curves: quasiperiodic behavior dominates 
the evolution. The trajectory displayed in 
Fig. 21 has been temporarily captured into 
a secondary resonance, which is why it oc- 
cupies the chain of islands. The chaotic sep- 
aratrix associated with the secondary res- 
onance is also displayed; however, it 
occupies only a small region of the displayed 
phase space. During evolution within the 
secondary resonance, the orbital eccentric- 
ity of Umbriel increases slightly. However, 
evolution within the secondary resonance 
does not lead to escape from the resonance: 
the trajectory does not cross a chaotic sepa- 
ratrix associated with the primary reso- 
nance. Capture into resonance for low ec- 
centricities occurs via a mechanism 
analogous to the mechanism found at the 
Ariel-Umbriel 5 :3  resonance (see TW-I): 
evolution of the energy surface boundary on 
the surface of section constrains the reso- 
nant argument to librate. In Fig. 21, the en- 
ergy surface boundary still encloses the ori- 
gin, which means that some trajectories pass 
through all values ofo- U. However, note that 
the center of the region of motion is offset 
from the origin. Eventually, the energy sur- 
face boundary no longer encloses the origin, 
and for all trajectories, o- o librates about 7r 
on the surface of section and in the full phase 
space. 

For large initial eccentricities, chaotic be- 
havior becomes more important, and the 
evolution is more complicated. The second- 
ary resonant zones widen and eventually 
overlap, resulting in a large chaotic sea. At 
sufficiently large initial eccentricities, the 
chaotic zones associated with the primary 
resonances also appear. The initial eccen- 
tricities must be quite large, of order 0.03, 
for the probability of escape from the reso- 
nance to become significant. Interestingly, 
the eccentricity required for escape in our 
model is similar to the eccentricity below 
which capture is certain in the single-reso- 
nance model (see Peale 1988), even though 
the behavior is qualitatively quite different 
when the resonance is encountered at such 
large values of eccentricity. 
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FIG. 22. Orbital eccentrici ty variations of  Ariel (a) and Umbriel  (b) during evolution through the 2 : 1 
commensurab i l i ty  for a trajectory f rom run 5. Shown are the  m a x i m u m  and min imum eccentrici t ies in 
intervals  o f  48 = 0.0066. The  trajectory is chaotic for a significant interval of  t ime during evolut ion 
through the resonance ,  then  escapes  f rom the resonance ,  with e U > eA. 

Figure 22 shows the evolution of the or- 
bital eccentricities for a trajectory from run 
5 that escapes from the 2 : 1 commensurabil- 
ity. The maximum and minimum orbital ec- 
centricities of Ariel (Fig. 22a) and Umbriel 
(Fig. 22b) are plotted in intervals of A8 = 
0.0066. Well before the resonance is en- 
countered the evolution is quasiperiodic and 
dominated by the secular interaction among 
the satellites. At 8 ~ 12.3, the system enters 
a large chaotic zone, which dominates the 
evolution until the satellites escape from the 
resonance at 8 ~ 20.7. 

Figure 23 shows section II at 8 = 20.64, 
just before the trajectory escapes from the 
resonance. This picture looks quite different 
from the surfaces of section for lower initial 
eccentricities (Fig. 21). At this point in the 
evolution, the trajectory displayed in Fig. 
22 is still in the large chaotic zone, which 
occupies most of the phase space in the fig- 
ure. The small crescent-shaped quasiperi- 
odic region to the right of the origin of the 
figure is the region into which trajectories 
escape from the resonance. Note that this is 
well away from the origin: hence, the orbital 
eccentricity of Umbriel is relatively high 

upon escape from the resonance (see Fig. 
22b). The oval quasiperiodic region near the 
origin of the figure is a region into which 
trajectories may escape from the eu rest- 
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FIG. 23. Section II at 8 = 20.640. The trajectory 
displayed in Fig. 22 is still in the  large chaotic zone.  
Trajectories m a y  escape  from the resonance  into the 
sma l l  c r e s c e n t - s h a p e d  q u a s i p e r i o d i c  r e g i o n  a t  t h e  r i g h t  

of  center.  The  quasiperiodic region near  the origin is 
associa ted  with capture  into the  e A resonance  only. 
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nance,  but are captured into the e A reso- 
nance. 

2.3.2. The Eccentric-Inclined Model 

At the Ariel -Umbriel  2 :1  mean-motion 
commensurability,  there are two first-order 
eccentricity resonances ,  three second-or- 
der eccentricity resonances,  three second- 
order inclination resonances,  and second- 

order secular interactions, and the eccen- 
tricities are coupled to the inclinations 
through nonlinear terms. ~i is defined to be 
the nonresonant contributions to 4n v - 
2hA -- ½(t~A + t~u + ~ A  + ['~U)" 

Figure 24 displays the evolution of  the 
orbital eccentricities and inclinations of  Ar- 
iel and Umbriel during evolution through 
the resonance with & = l l , 000  (fiA/aA = 
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FIG. 24. Variat ions in orbi tal  incl ination [Ariel (a), Umbriel  (b)] and eccentr ic i ty  [Ariel (c), Umbrie l  
(d)] for a trajectory integrated through the 2 : 1 commensurabi l i ty  using the mapping with ~ = 11,000. 
The maximum and minimum values  are plotted in intervals of A8 = 0.033. The qual i tat ive behavior  is 
init ial ly s imilar  to the planar-eccentric problem, but at 8 = 12.6 the system is captured into the i 2 
resonance. A period of  chaotic behavior  at large values  of e A and iA does not lead to escape from the 
resonance. 
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2.7 × 10-13 per  orbit  period). The initial or- 
bital pa ramete rs  for this t rajectory were  
a A = 6.3100, au = 10.0400, eA = eu = 
0.005, i A = itj = 0.005 radian, or A = o- u = 
7r/2, and qJA = qJU = ~r/2. The mapping was 
used, with l~ = 40 year-1 .  Maximum and 
minimum eccentricit ies are plot ted in inter- 
vals of  A8 = 0.033. 

The evolut ion through the resonance is 
qualitatively similar to that in the planar- 
eccentr ic  approximat ion  with similar initial 
eccentricit ies (run 1, see Fig. 20), until 8 = 
13.7. At this point,  the t rajectory is captured 
into the i 2 resonance.  As i A increases,  e A 
and e u maintain constant  average  values. 
Eventual ly,  the sys tem becomes  chaotic at 
iA ~ 1.3 °. Howeve r ,  this does not lead to 
escape  f rom the 2 : 1 resonance.  Eventual ly  
the t ra jectory becomes  quasiperiodic again, 
remaining captured in the resonance.  

Thir teen other  trajectories,  generated 
f rom the above  orbital e lements ,  were  inte- 
grated through the resonance,  using a simu- 
lated tidal evolution rate corresponding to 
2~ = 110. All of  the trajectories displayed 
qualitative behavior  similar to that dis- 
played in Fig. 20, and all were  captured into 
resonance.  

The numerical  results indicate that for low 
initial eccentricit ies,  the interaction be- 
tween the inclination and eccentr ici ty reso- 
nances does not lead to a significantly en- 
hanced probabil i ty  of  escape.  Because  the 
inclination resonances  are not encountered 
until af ter  Ariel reaches  its equilibrium ec- 
centricity,  these interactions would proba-  
bly never  be important .  Fur thermore ,  even 
if the high-inclination chaotic zone were  to 
lead to escape,  it would mos t  likely leave 
Ariel with a substantial  orbital inclination, 
which we do not observe  today.  

2.3 .3 .  S e c u l a r  P e r t u r b a t i o n s  

To take into considerat ion the effects of  
other satellites on the Ar ie l -Umbr ie l  2 :1  
resonance,  we used a model  that  includes 
secular per turbat ions  due to Titania. Figure 
25 shows the evolut ion of  the orbital eccen- 
tricities of  Ariel, Umbriel ,  and Titania for 

a t rajectory evolved  through the resonance 
using this model  with ~ = 220 ( a A / a  A = 

1.4 × 10-11 per  orbit  period). The initial or- 
bital pa ramete rs  for  this t ra jectory were 
a A = 6.3100, a u = 10.0400, a x = 16.633, 
e A = e U = e T = 0 . 0 0 5 ,  q~ = 0 . 0 ,  and 6~ A 
= ~u = ~x = --zr/2" The max imum and 
minimum eccentricit ies are plot ted in inter- 
vals of  A8 = 0.01. The presence  of  Titania 
does not affect  the evolution much: both 
resonant  arguments  are captured into libra- 
tion. As the t rajectory evolves ,  it encoun- 
ters various secondary  resonances  which 
only change the oscillation ampli tudes of  the 
eccentricities.  The chaotic zones  at these 
secondary  resonances  are perhaps  some- 
what  larger than in the two-satelli te problem 
with similar initial eccentricit ies (run 1), as 
can be seen f rom the burst  of  chaotic behav-  
ior in the orbital eccentricit ies at 8 just  
greater  than zero. Howeve r ,  the qualitative 
behavior  of  the trajectories does not change 
much: e A reaches  the equilibrium value 
without escaping f rom the resonance.  Two 
other trajectories,  with similar initial condi- 
tions, and simulated rates of  tidal evolution 
corresponding to ~ = 110, showed similar 
qualitative behavior .  

We have also explored the small chaotic 
zone, at 8 jus t  above  zero,  using a simulated 
tidal evolution rate corresponding to ~ = 
11,000. The initial coordinates  of  the trajec- 
tory were  taken f rom the t rajectory dis- 
played in Fig. 25 at 6 = -0 .0608 ,  and the 
t rajectory was integrated to 8 = 0.9392. The 
trajectory did not escape  f rom the resonance  
during the chaotic phase  of  evolution,  and 
eventually became  quasiperiodic again. 

3. D I S C U S S I O N  

At the 3 :1  commensurabi l i ty  with 
Umbriel ,  both  the orbital inclination and ec- 
centricity of  Miranda undergo large in- 
creases.  Miranda escapes  f rom the com- 
mensurabil i ty with a high inclination which 
is observed  today,  as we found in TW-I I  in 
the circular-inclined approximation.  

Miranda displays many  features that indi- 
cate that it has been  strongly heated at some 
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FIG. 25. Orbital eccentricity variations of Ariel (a), Umbriel (b), and Titania (c). The maximum and 
minimum eccentricities in intervals of A8 = 0.01 are plotted. The trajectory does not escape from the 
resonance before e A reaches its equilibrium value. 

point in its evolution. The surface of 
Miranda is very complex (Smith et  al. 1986). 
In addition to cratered terrain on the sur- 
face, there are regions referred to as "trape- 
zoids," "banded ovoids," and "ridged 
ovoids" by Smith et  al. (1986), and named 
"coronae" by Strobell and Masursky 
(1987). There are possibly solid-state volca- 
nic flow features on the surface (Jankowski 
and Squyres 1988).The cratered terrain ap- 

pears to be the youngest in the Uranian sat- 
ellite system (Plescia 1988). Could tidal 
heating of Miranda during passage through 
the 3:1 resonance have driven the pro- 
cesses that altered the surface of this sat- 
ellite? 

We can estimate the rate at which the 
interior of Miranda was heated during the 
high-eccentricity phase of evolution through 
the 3 : 1 commensurability with Umbriel, us- 
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ing (Peale and Cassen 1978) 

5 3 
dE _ 21 k2 M M R  Mn~ e2 
dt 2 a~lQ~ 

~7.4  × 1018e2ergssec-I (8) 

using parameters appropriate for this satel- 
lite (Tables I and II). Tidal heating due to 
the nonzero obliquity of Miranda in Cassini 
state 1 would have been negligible, since 
the obliquity would have been small (see 
Tittemore 1988). Based on the results of the 
numerical integrations using the eccentric- 
inclined model, the maximum instantaneous 
tidal heating rate is about 1.9 × 1016 ergs 
sec-1 at eu ~ 0.05. However, this tidal heat- 
ing rate is not sustained for long periods. 

Figure 26 shows a short section of Fig. 
10a during the period over which the orbital 
eccentricity of Miranda reaches its largest 
values. The time interval represented by this 
plot is about 4.9 × 107 years (~ = 11,000). 
Over this time interval, the eccentricity re- 
mains at large values for relatively short pe- 
riods. For example, at 8 ~ 16.5, the average 
value of e M is about 0.042 for a period of 
about 3 million years. At an average heating 

0.06 i i i i f 

0.05 

0.04 

eM 0.03 

0.02 

0"01 I[ I~' I I I ~' ~ I '  [ I ~  

0 ~  15.4 15.7 16.0 16.3 16.6 16.9 17.2 
8 

FIG. 26. Orbital eccentricity variations of Miranda 
during evolution through the 3:1 commensurability 
with Umbriel. This figure is a portion of Fig. 10a with 
an expanded scale. The time interval represented is 
about 4.9 × 107 years. Miranda spends relatively short 
periods of time at large eccentricity. 

rate of 1.3 × 1016 ergs sec-1 over this time 
period, the internal thermal energy of the 
satellite would increase by approximately 
1.2 × l03° ergs, most of which would be 
retained over such a short time scale. If the 
heat capacity of the interior of Miranda has 
a value comparable to that of water ice 
(~-~2 × 107 e r g s  g -  1 sec- l), this would result 
in a global temperature increase of about 
I°K. The tidal heating of a body is not uni- 
formly distributed throughout the interior: 
the rate of heating at the center of a homoge- 
neous, incompressible body is about three 
times the globally averaged heating rate 
(Kaula 1964, Peale and Cassen 1978), so 
near the center of the satellite the increase in 
temperature might be a few degrees. Several 
such bursts of tidal heating are possible dur- 
ing evolution through the chaotic zone; 
however, it is not expected that the increase 
in interior temperature would be large if this 
were the only heating mechanism. 

The time scale of evolution through the 
commensurability is comparable to the time 
scale for the eccentricity of Miranda's orbit 
to damp due to dissipation of tidal energy 
in the satellite (Appendix II). Satellite tides 
affect both the values of the eccentricities 
and the rate of evolution through the reso- 
nance. Because the excursions to large val- 
ues of eccentricity occur on time scales 
much shorter than the eccentricity damping 
time scale, the effects of tidal dissipation in 
the satellites on the chaotic variations of 
eccentricity are probably not important. It is 
possible, however, that a quasi-stable state 
might be reached by the system: chaotic 
dynamical systems may mimic regular be- 
havior for significant periods of time (see 
Wisdom 1982, 1983). The equilibrium eccen- 
tricity of Miranda in the 3 : 1 resonance is 
0.026 (see Appendix II). It is not clear 
whether an equilibrium eccentricity could 
be maintained in the chaotic zone; however, 
it provides an upper limit to the sustained 
rate of heating of the interior of Miranda of 
about 5 × 1015 ergs sec-1 for Q = 11,000. 
The central temperature of a uniformly heat- 
ing spherical body in conductive equilibrium 
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and with constant thermal conductivity is 
given by (e.g., Stevenson 1984) 

Hv 
T e = T s + ~ - R  2 (9) 

where R is the radius of the satellite, H v is 
the volumetric heating rate, k is the thermal 
conductivity, and T s is the surface tempera- 
ture, which is about 70°K for Miranda. The 
thermal conductivity k of water ice at low 
temperatures is about 5.3 x 105 erg cm -1 
sec -1 deg -1 at 100°K (Hobbs 1974). If an 
equilibrium tidal heating state were possi- 
ble, this model predicts that sustained tidal 
heating of Miranda at the equilibrium eccen- 
tricity in the 3 : 1 resonance with Umbriel 
can raise the central temperature of Miranda 
by only about 16°K. As mentioned above, 
however, the central tidal heating rate in a 
homogeneous body is about three times the 
global average rate, so the temperature in- 
crease near the center may be somewhat 
larger. In addition, the presence of bubbles 
and imperfections in the ice, silicate parti- 
cles, and hydrates and clathrates with rela- 
tively low conductivities may lower the 
thermal conductivity of the interior of Mi- 
randa by about a factor of 2 compared to 
pure water ice (Stevenson 1982), resulting 
in a steeper temperature gradient. If these 
effects are important, a stable equilibrium 
tidal heating configuration could increase 
the central temperature of Miranda to a 
value comparable to the eutectic melting 
temperature of NH3 H20, about 175°K. 
Whether or not a stable equilibrium state is 
likely depends on the dynamical effects of 
tidal dissipation in the satellites, which in- 
troduce direct damping terms into the equa- 
tions of motion. Further work on this prob- 
lem is currently underway. 

Miranda can escape from the 3 : 1 reso- 
nance with an orbital eccentricity signifi- 
cantly larger than the value prior to reso- 
nance encounter. Our numerical 
experiments in the planar-eccentric approx- 
imation show that the escape eccentricity of 
Miranda in the absence of satellite dissipa- 
tion can be larger than 0.06 (see Fig. 2a). 

The largest escape eccentricity found in the 
eccentric-inclined model was only 0.02 (Fig. 
10b); however, this was based on a more 
limited set of runs. Tidal damping of the 
eccentricity following escape from the reso- 
nance may have significantly heated 
Miranda. Dermott et al. (1988) estimate that 
the damping of an eccentricity of 0.07 is 
required to raise the internal temperature 
of Miranda to the eutectic melting point of 
ammonia hydrate. This value is comparable 
to the largest escape eccentricity we found 
in our numerical simulations. Their estimate 
is really a lower limit, though, since it was 
calculated assuming that all of the tidally 
generated heat is retained in the interior of 
Miranda, and it does not take into consider- 
ation the possible importance of internal 
heat transport processes over the eccentric- 
ity damping time scale of order 108 years. In 
addition, this value of eccentricity is much 
larger than the equilibrium eccentricity of 
0.026, so it is not clear whether the satellite 
could reach such a large value before escap- 
ing from the resonance. However, it is likely 
that Miranda left the 3 : 1 resonance with an 
orbital eccentricity significantly larger than 
the preencounter value, and that some tidal 
heating occurred as the eccentricity damped 
to its current value. 

In summary, our numerical experiments 
indicate that the orbital eccentricity of 
Miranda may have reached a large enough 
value to have affected its thermal evolution. 
A combination of the heating mechanisms 
discussed above may have raised the inter- 
nal temperature to a value comparable to the 
eutectic melting point of ammonia hydrate. 
Nevertheless, it is not likely that tidal heat- 
ing of Miranda could have caused significant 
melting of water ice in the interior of this 
satellite. 

There is a large chaotic zone associated 
with the Miranda-Ariel 5:3 mean-motion 
commensurability, even in the planar 
approximation. The orbital eccentricities of 
both satellites may vary chaotically for a 
considerable period. After a sudden in- 
crease at the point of entering the chaotic 
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zone, the maximum orbital eccentricity of  
Miranda gradually decreases until the tra- 
jec tory  escapes from the resonance.  The 
final average orbital eccentrici ty and incli- 
nation of  Miranda are most  likely, though 
not necessarily,  somewhat  higher than the 
initial values. On average, the average final 
eccentrici ty of  Ariel is lower than the initial 
value. 

Since the rate of  tidal heating depends 
strongly on the distance to the planet 

dE 1 
- -  oc ( 1 0 )  dt a 15/2 

a given value of  e M will cause the interior of  
Miranda to be heated about 40% more at the 
5 : 3 resonance with Ariel than at the 3 : 1 
resonance with Umbriel. The maximum 
eccentricities achieved at the 5 : 3  reso- 
nance are about  half as high as those 
achieved at the 3 :1  resonance with Um- 
briel, implying a maximum tidal heating rate 
about a third as large. Considering the un- 
certainties about  the interior of  Miranda dis- 
cussed above,  if tidal heating of  Miranda 
was important  at the 3 :1  resonance with 
Umbriel,  it may have been significant here, 
too. 

Another  possibility is that Miranda may 
have left the 5 : 3 resonance with an orbital 
inclination of  order  one degree. The rela- 
tively rapid increase in inclination possible 
during chaotic evolution through this reso- 
nance (e.g., Fig. 19) may have left Miranda 
with a substantial rotational obliquity; how- 
ever,  this would have quickly damped to 
the equilibrium Cassini state (see Tit temore 
1988). Therefore ,  a relatively high inclina- 
tion of  Miranda's  orbit could have been re- 
tained over  the time interval between the 
5 : 3 resonance involving Ariel and the 3 : 1 
resonance involving Umbriel,  possibly af- 
fecting the evolution through the latter com- 
mensurability. However ,  we have shown 
that even if Miranda approached the 3 :1  
commensurabil i ty involving Umbriel with a 
relatively high orbital inclination, i M still 
may have jumped  to its present  value (see 
Fig. 15 of  TW-II). 

For  initial eccentricities approaching the 
2 : 1 commensurabil i ty which are compara- 
ble to or up to about  a factor  of  10 higher 
than the current  values, capture into this 
resonance is very likely. Although even at 
low eccentricities a series of  important sec- 
ondary resonances between the frequencies 
of  libration of  (r U and o- g are encountered,  
they affect only the details of  resonance pas- 
sage, i.e., the oscillation amplitudes of the 
eccentricities. Interactions between these 
terms and terms associated with the inclina- 
t ion-type resonant  arguments or with secu- 
lar terms involving the other  Uranian satel- 
lites may affect the resonant  interaction, but 
do not appear to increase the likelihood of  
escape from the eccentr ici ty-type reso- 
nances. 

Could the satellites have encountered the 
resonance at high eccentrici ty and escaped? 
The eccentricities required are of  order  0.03, 
according to the numerical simulations. Are 
these likely initial values? We can estimate 
the equilibrium eccentrici ty of  Ariel in the 
absence of  the resonant  interaction, using 
Eqs. (42) and (51) in Appendix II and QA = 
100, Q = 11,000: 

eA = ~ 0.038. (11) 

At this eccentricity,  the secular increase in 
semimajor axis due to tides on the planet 
would just  be counterbalanced by the de- 
crease due to dissipation in the satellite; 
hence,  the orbit would not be evolving to- 
ward the resonance.  Therefore ,  for the sat- 
ellites to have evolved into the resonance,  
e A must have been less than this. Since this 
is comparable to the initial eccentrici ty re- 
quired to escape from the resonance,  it is 
not likely that Ariel and Umbriel ap- 
proached the 2 : 1 resonance with eccentrici- 
ties large enough to escape from the reso- 
nance. 

We conclude that it is unlikely that Ariel 
and Umbriel ever  encountered the 2 :1  
mean-motion commensurabil i ty.  This im- 
plies that the specific dissipation function of  
Uranus (Q) is greater than about  11,000. 
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This result, combined with the results from 
TW-II, constrains Q to within less than a 
factor of 4, or more tightly than the Q of any 
other giant planet has been constrained so 
far [see Burns (1986) for a recent review]. 

We have found the Uranian satellite sys- 
tem to have a rich variety of dynamical be- 
havior. To summarize, the principal results 
of our research on the Uranian satellites to 
date are the following: 

• Due to the low oblateness of Uranus 
(J2 = 0.0033), there are significant chaotic 
zones at the low-order mean-motion com- 
mensurabilities among the Uranian satel- 
lites. There are chaotic variations in the ec- 
centricities and/or inclinations for 
significant intervals of time during evolution 
through these commensurabilities. 

• These chaotic zones have a significant 
effect on the mechanism of passage through 
resonance. For example, at both the 5:3 
and 2 : 1 commensurabilities involving Ariel 
and Umbriel, trajectories may be captured 
into resonance while they are still chaotic. 

• Simulated evolution through the reso- 
nances must be extremely slow to avoid dy- 
namical artifacts: slower than (1/a)(da/dt) ~- 
10-1, to 10-10 per orbit period where chaotic 
adiabatic invariants are present, and slower 
than (1/a)(da/dt) ~- 10-14 to 10-13 per orbit 
period where higher-dimensional chaotic 
diffusion is important. For example, to 
properly represent the dynamics of Miranda 
and Umbriel during evolution through the 
3 : 1 eccentricity resonances, the simulated 
tidal evolution rate must  be within the physi- 
cal constraints, 2 × 10 -14 < (1/a)(da/dt) < 
6 × 10-14 per orbit period. 

• At the 5 :3  Ariel-Umbriel resonance 
the eccentricities in the chaotic zone are 
typically a factor of 2 to 3 higher than the 
preencounter values. Eccentricities large 
enough to have a significant effect on the 
thermal evolution of Ariel have not been 
found so far at this resonance (Tittemore 
and Wisdom 1988a). 

• Evolution through the 3:1 Mi- 
randa-Umbriel commensurability explains 
the anomalously high inclination of Mi- 

randa. Passage through this resonance in- 
volves interesting new dynamical features: 
escape from the resonance occurs via sec- 
ondary resonances, which drag trajectories 
into a chaotic region (Tittemore and Wis- 
dom 1987, 1989). 

• There are large increases in the orbital 
eccentricity of Miranda during chaotic evo- 
lution through the 3:1 Miranda-Umbi'iel 
commensurability. This may have affected 
the thermal evolution of Miranda, if low 
temperature melting occurred. 

• Passage through the 5 :3  Miranda-Ariel 
resonance may have modestly increased the 
eccentricity and inclination of Miranda. 

• Escape from the 2:1 Ariel-Umbriel 
commensurability is not likely at typical sat- 
ellite eccentricities; therefore, this probably 
provides a dynamical barrier to the evo- 
lution. 

• Since the anomalously high orbital in- 
clination of Miranda is a natural outcome of 
passage through the 3 : 1 commensurability 
with Umbriel, the requirement that the sat- 
ellites encountered this resonance places a 
lower limit on the specific dissipation func- 
tion (Q) of Uranus of 39,000. 

• Since capture into resonance at the 2 : 1 
Ariel-Umbriel commensurability is likely at 
typical satellite orbital eccentricities, the re- 
quirement that the satellites did not encoun- 
ter this resonance constrains Q to be greater 
than 11,000. 

• The requirement that the orbital eccen- 
tricity of Miranda damps to its current value 
since passage through the 3 : 1 commensura- 
bility with Umbriel indicates that Q is closer 
to 11,000. 

APPENDIX I: THE AVERAGED 
RESONANT HAMILTONIAN 

In this appendix, we develop the averaged 
Hamiltonian models used in this paper. 
Tables IV to VII give expressions and nu- 
merical values of the Hamiltonian coeffi- 
cients. For calculations of the numerical val- 
ues of the coefficients and other quantities, 
the adopted unit of time is one year, of mass 
is the mass of Uranus, GM u = 5.794 × 106 
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T A B L E  I V  

PLANAR-ECCENTRIC M O D E L  COEFFICIENTS:  EXPRESSIONS 

Coefficient Miranda-Umbfiel 3 : I Miranda-Ariel 5 : 3 ArieI-Umbriel 2 : 1 

a - 4 r ~  + 4 r~ - 4 ' r' .  4 r~, 2 r-------~-, r~ 

- 3a2M2m~m~l _ 27GZM2m~mu - 2_._TO2M2mhm},l 75GZM2rn2Am' n 3GZM2mZAm'A 12G2M2m~mb 
B 32 F 4 32 F~j 32 F 4 32 F 4 8 F 4 8 F~j 

1 4  2 [9m4"'m'~_3mMm'M] 1 4 [ 15m~m~ 6m~m~] lG4M4RZJ2[6ra~7~_9m~m'~] 
c 2r v r;, J 2-if, - r;, J , 2 a J  

G2MmMmt,,rab [ 3 ~ + 2 o G2 MmMm2 m'A 5 0 G2 Mm Am~ m~J [~b l r2 (~  ) 

+ _.d.d j,0 . ~ mu mb/FM 3_~ ~ d m ^ m k / 3 r  M 5F~ ~_dho ,  mUm{j[F A 2r~'~ 

(2)-'°'1 (2),0q 
FM J r u  J FA J 

I G,M~R2 J [3m~m~ 3mhm~] 1 [6m[m2 9m~lm~.ll I G,M~R2" f9m~m~ 3m~Am~] 
o 2 2[  r~ - 2r~ 3 2~'M~2"~2[ r~ - 2r 7 J 2 -2[ 2r 7 - r~ J 

~ - - . - ~  r±o G2MmMm2Am'Ar ' o , + G2MmAm~mlJ [~u 
+ 4r2u [ru bl/2(a) + 4F--~A [~A b'a(~' 4r~ bl%(O) 

d 0 m o m~ [F M 3F2u'~ d . m^ mk [3FM 5F~\ ' + 7 b . ( a ) - - - - / - -  + ~ /  + . . . . . .  + 7a/,%(,0 m u ' ~  (FA + 2r~ ] 
a c t  " "  m. mh\r~j r~: dab'a(ct)rnMmh~r~ + r~) . . . . . .  w~ r~,/ 

(3),oq ( o!1 (3),0,] 
Fu J F^ J Fu J 

- G2MmMm~:mb (21)(- I) G2MmMmZAm'A (21)(- 0 _ GZMmAm~j m[~ (21)(- I} 
4r2x/r--~u 4r2Vrur^ 4r2VrAru 

2 2 , G MmMm,,m U 3 ' GZMmAm2,,m~ _ v (172)() G2MmMm2Am (̂172)(5) _ v (172)(~) 
F 4r~rM 4r~rM 4r~r^ 

2 2 , , G2MmAm2m{j _ G Mm~.~.mu (182)(2) G2MrnMm~AmA(182)(4) - %-.Z.- (182)(3) 
G 4FuV FMFu 4F2~/VMF^ 4F2V FAro 

_ G2MmMm~mu (192)(1) G2MmMm2Am'A (192)0) G2MmAm2mu 
H 4F~ 4F 3 - 4r  3 (192)(2) 

_ G2MmAm~mu (50)(2) 
1 2r~Vr^ 

GZMmAm~ mb I 
j - 2 ~ u u  (70)() 

km 3 sec-~ (Stone and Miner 1986), and of 
length is the radius of Uranus, R o = 26,200 
km (French e t  al .  1985). The Hamiltonians 
are developed in Jacobi coordinates (see, 
e.g., Plummer 1960). In the Jacobi coordi- 

nate system, the coordinates of the inner 
satellite are referred to the center of the 
planet, and the coordinates of the outer sat- 
ellite are referred to the center of mass of the 
inner satellite and the planet. The reduced 
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T A B L E  V 

PLANAR-ECCENTRIC M O D E L  COEFFICIENTS:  NUMERICAL VALUES 

433 

Coeff ic ien t  M i r a n d a - U m b r i e l  3 : 1 ~ M i r a n d a - A r i e l  5 : 3 b A r i e l - U m b r i e l  2 : V 

B - 5 1 6 4 . 7  - 4 9 2 0 9  - 1617.0 

C - 0.31244 - 0.51831 - 0 .13026 

D - 0 .14744 - 0.35891 - 0 .073054 

E 0.00039381 0.0051029 0.0054908 

F - 0.0070667 - 0.064822 - 0.017678 

G 0.0052590 0.037080 0.047364 

H - 0.00017401 - 0.0052682 - 0 .031349 

1 0.010364 

J - 0.0034123 

a aM = 4.8659,  a U = 10.1179. 

b aM = 4.6361,  a A = 6.5157.  

c aA = 6.3255,  a o = 10.0400. 

T A B L E  V I  

ECCENTRIC-INCLINED M O D E L  COEFFICIENTS:  EXPRESSIONS 

Coefficient Miranda-Umbriel 3 : 1 Miranda-Ariel 5 : 3 Ariel-Umbriel 2 : 1 
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2 t rb 2r7 j 2 6  M ' R J s [ - - - - ~ A  - 2r7 j 2 ~[ 2r~ 2r~ J 

G2Mmum2,m~2 r 3 G2MmMm2m'A ~ 0 G2MmAm~mb r 4 0 
+ 4r u2~ t-u/F-b°a(a) + 4r~ [FA bin(a) + 4r~ [~ bi'2(~) 

__d. o mumD/rM 3 r ~  + d b o a mAm'A/3FM 5_.~ ~ d ~ o ,  m u m { j / F  ^ 2r2 \  
+ de°li2(a)mld m~ I tF~s + F~-~u ) ~ ,:2( )'~u'~ut'~A + r~ ] + " ~  %2'<~, m"-~Am--~Atr---~u + r-~u] 

(11) ̀0) ] (11)(0!] (11) (°) ] 
ru 1 r^ J ~ j 

GSMmMm~m~: (ll)(O ) GSMmMm2m,A 2 2 , (11) (0) G MmAm~m U (11) (0) 
M 2r~ rvrf~ur% 2r2x/rurA 2 r 2 v r ^ r u  

- G2MmMm~mb (212)(3) GSMmMm2m'A (212)0) G2MmAm~mb (212)(4) 
N 4r2ru 4rs ru  - 4rsr^  

G2MmMm~ m~ 3 GSMmMm2m'A 5) GSMmAm~ m~2 (212)(4) 
o 2r~ rx/'f~Mr~ (212)() 2r~ rx/-f-~urA (212)( 2r~Vr- ' :~  

_ C-2MmMm~lm{1 (212)(3) G2MmMm2Am'A (212)(5) G2MmAm~mb (212)(4) 
P 4r~ 4r~ - 41" 4 
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TABLE VII 

ECCENTRIC-INCLINED MODEL COEFFICIENTS:  NUMERICAL VALUES 

C o e f f i c i e n t  M i r a n d a - U m b r i e l  3 : 1 ° M i r a n d a - A r i e l  5 : 3 b A r i e l - U m b r i e l  2 : I c 

B - 5166 .14  - 49209  - 1617.03 

C - 0 . 3 1 2 6 3  - 0 . 5 1 8 2 3  - 0 . 1 3 0 3 0  

D - 0 .14783  - 0 .35883  - 0 .073083  

E 0 . 0 0 0 3 9 3 5 8  0 . 0 0 5 1 0 6  0 . 0 0 5 4 8 9 3  

F - 0 . 0 0 7 0 6 3 5  - 0 .064858  - 0 . 0 1 7 6 7 4  

G 0 . 0 0 5 2 5 7 2  0 .037098  0 .047355  

H - 0 .00017391  - 0 .0052705  - 0 . 0 3 1 3 4 4  

I 0 . 0 1 0 3 6 2  

J • - 0 . 0 0 3 4 1 1 5  

- K 0 . 0 4 4 3 6 6  - 0 . 0 7 0 8 4 0  0 . 0 1 8 9 1 4  

L - 0 .12043  - 0 . 23024  - 0 . 0 3 8 3 0 8  

M - 0 . 0 0 0 6 7 5 9 0  - 0 .0062127  - 0 . 0 0 7 3 9 1 7  

N - 0 . 0 0 0 9 7 7 0 3  - 0 .0072991 - 0 . 0 0 2 1 3 6 5  

O 0 . 0 0 0 3 9 3 5 8  0 .0031582  0 .0039091  

P - 0 . 0 0 0 0 3 9 6 3 7  - 0 . 0 0 0 3 4 1 6 2  - 0 .0017881  

a aM = 4 .8652 ,  a v = 10.1179.  
b a M = 4 . 6 3 6 1 ,  a A = 6 .5152 .  

c aA = 6 .3256 ,  a u =~ 10.0400.  

' = ( M u / ( M u  + m O ) a n d  masses are m I ml 
m~ = m2((Mu + m O / ( M  U + m I + m2)) f o r  
(al < a2). A development  of  the planar 
second-order  resonant  mapping is given in 
TW-I; the other  mappings used here are 
similar in form. 

P l a n a r - E c c e n t r i c  M o d e l s  

In this section, we summarize the reso- 
nant Hamiltonians for the planar-eccentric 
problems. These  can be approximated by 
two-degree-of-freedom models. We give a 
brief  description of  the resonant  coordinates 
and the form of  the resonant  Hamiltonians. 
A detailed derivation of  the Arie l -Umbriel  
5 : 3  resonance planar-eccentric model is 
given in TW-I. The Hamiltonians of the 
other resonances are derived in an analo- 
gous way,  and only the expressions and val- 
ues of  the coefficients are given here. 

We consider second-order  resonances in- 
volving the combination of  mean longitudes 
ih 2 - j h  I, i - j = 2, where subscripts 1 
and 2 refer to the inner and outer  satellites, 
respectively.  

The resonance coordinates are defined to 

b e  

0-1 = ½(iX2 - - J X l  - -  2cbl) 

0" 2 = ½(iX 2 - - j X  1 - -  2 t ~ 2 )  ( 1 2 )  

and the conjugate momenta  are 

L1 2 
Z ,  = -~-- e, 

L2 2 
~ 2  ~ -2- e2 (13) 

w h e r e L  i -~ m i ~ .  
The resonant  part of  the Hamiltonian for 

a second-order  resonance is given by (see, 
e.g., Leverr ier  1855): 

G m l m z  
~ R - -  

a 2 

e 2 

-I- ( 1 8 2 )  ( i - I )  - ~ - ~  C o s ( i ~  2 - -  J ~ l  - -  ~)1 - -  ~)2) 

e 2 2&2)] + ( 1 9 2 ) ( i - z ) ( 2 )  COS(iX2--JXl--  

(14) 
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where 

1 
(172) (/) = ~ ( - 5 1  + 412)b~/2(a) + ( - I  + 2l) 

1 °t 2 d 2 
ot d b~/E(a ) + 2 ~ a  2 b~/E(a ) 

(182) a) = ( - 2  - 41)lb~/2(ct) + ( - 2  - 4/) 
d E 

a ~ b~/E(Ct) - o~ 2 ~ 2  b~/2(a) 

(192)a) = 1(4  + 91 + 412)b~/E(a) + (3 + 2/) 

d b~/E(Ot) + 1 °t 2 d E l a -d-da ~ bl/2(a) (15) 

where l is an integer, a = aJa2 is the ratio 
of  semimajor axes, and b~(a) are Laplace 
coefficients. For  the 3 : 1 resonance,  there 
must also be included the indirect term 
- (27 /2 )  a in the expression for (192) m. 

The form of  the Hamiltonian is 

= 2A(EI 4- ~2) + 4B(~1 + ~2) 2 

+ 2C~ 1 + 2 D ~  2 

"4- 2 E V ~ I ~  2 COS(O- I -- 0-2) 

+ 2 F ~  I cos(20-1) 

+ 2GX/~lY~ 2 cos(o-1 + 0"2) 

+ 2H~2 cos(20-2). (16) 

For  the 2 : 1 resonance,  there are the addi- 
tional first-order resonance terms in Ha: 

(50)(2)(-~)  COS(2hU -- ~.A -- ~ A) 

+ (70)(1) (~-~) COS(2hu -- hA -- 6~u) (17) 

where 

(50) 2 = _4b~n(a) _ a d ~aa b2/2(a) 

(70) 0) = 3bl/2(a ) + ot ~ bl/2(ot) - 4a.  (18) 

The last term in the expression for (70) o) is 
the indirect term. The first-order resonance 
terms are included in the resonant  Hamilto- 

nian in the following terms: 

I"V~-~ ! cos  0-1 -[- J V ~ 2  cos  0" 2. (19) 

In terms of  the Cartesian elements 

Yi = ~ sin(o"i) ~ e i V ~ i  sin(o-i) or 

iiX/-£ii sin(o-i). (20) 

and the conjugate momenta  

xi = V ~ i  cos(o'i) ~ eiX/L/i cos(o-i) or 

6X/~  sin(o-i) (21) 

the Hamiltonian may be expressed 

= ¼(8 - 2(C + D))(x 2 + y2 + x 2 + y22)2 

+ B(x  + + + y )2 

+ C(x~ + y2) + D(x~ + y2) 

+ E(XlX2 + YlY2) 

+ F(x  2 _ y2) + G(xlx2 - YlY2) 

+ H(x  2 _ y2) (22) 

with the additional terms 

Ix  I + Jx  2 (23) 

for the 2 : 1 resonance,  and where 

8 - - -  4A + 2(C + D )  ~ in 2 - j n  l 
- t~l - ~ 2 .  ( 2 4 )  

This definition of  8 is chosen so that the 
coefficients are evaluated in the middle of  
the resonance region. Numerical  values of  
the coefficients were calculated at zero ec- 
centricity and 8 = 0. Expressions for the 
coefficients are given in Table IV, and nu- 
merical values in Table V. In the evaluation 
of  the coefficients, the unit of  mass is the 
mass of  Uranus,  the unit of  time is one year,  
and the unit of  length is the radius of  Uranus. 
During evolution through the resonance,  the 
quantity in2 - jn~ changes by a large amount  
relative to the other  coefficients, which are 
therefore approximated to be constant.  

Eccentr ic - Inc l ined  Mode l s  

To include the effects of  three-dimen- 
sional motion on the interactions at a com- 
mensurability, we can develop a resonant  
Hamiltonian similar to that developed for 



436 TITTEMORE AND WISDOM 

the planar-eccentric case, but generalized to 
include the inclination resonant terms. We 
define 

0-1 = ½(ih2 -- jhl  - 2&1) 

0-2 = ½(iX2 -- j h l  - 2t~2) 

FI 2 
Y~I = T e ~  

F2 2 
~2 ~" T e2 

@1 = ½(ih2 --  Jh l  - -  2 ~ 1 )  

@2 = ½(ih2 --  Jh l  --  2 ~ 2 )  

"1  ~ T l l  

F2 2 
xIt 2 ~ ~- i2 

F1 = L1 + ~ (El + E2 --F ~Xtl --F ~tI/2) 

i 
F2 = L2 - ~ (ZI  + ~2 + Xttl + xtt2)" (25) 

The inclination part of the secular contri- 
bution to the Hamiltonian is given by (see, 
e.g., Leverrier, 1855) 

~ s  - G m l m 2  { (1)  (°) (11)(°)[(2)2 

+ ( ~ ) 2 -  2 ( ~ ) ( 2 ) C O S  (~-~1- ~"~2)] } (26) 

where 
(1)(o) 1 o = 2 o t b l / 2 ( o t )  

(I 1)(°) = _ ½ab~/2(a) (27) 

and the inclination part of the resonant con- 
tribution is given by 

~ a  = Gmlm-~z (212) (0 
a2 

i~ i 2 
- 2 ~- ~ C O S ( i h  2 - -  jh~ - ~ ' 1  - ~ ) - 2 )  

(28) 

where 
(212)(0 = ½ab~t/~ 1) (a).  (29) 

a is the ratio of semimajor axes, and bls(a) 
are Laplace coefficients. 

In terms of these coordinates, the Hamil- 
tonian is 

= 2A(~1 + ~2  + xI/1 + xlt2) 

+ 4B(~l + ~2 + ~1 + xi/2)2 

+ 2 C ~  1 + 2DY~ 2 

+ 2E~v/~1~2 cos(o- 1 - 0-2) 

+ 2F~  1 cos(20-1) 

+ 2GX/~1~]2 cos(o-1 + 0-2) 

+ 2H~] 2 cos(2o-2) 

+ 2 K ~  1 + 2Lqt2 

+ 2MX/~lxIt 2 cos(~b I - t0z ) 

+ 2N~1 cos(2tkl) 

+ 2OV~lXt t2  COS(~bl + I]/2) 

+ 2PXIt 2 cos(2t02). (30) 

For the 2:1  resonance, there are also the 
terms 

I X / ~  1 cos O'l + J X / ~ 2 c o s  0-2. (31) 

Expressions for the coefficients A through 
J are the same as in the planar-eccentric 
model, with the redefined Fi given above. 8 
is defined to be the nonresonant contribu- 
tions to in 2 - j n  1 - ½(~o I + ~o 2 + (]1 + 
~2) = 4A + (C + D + K + L). This defini- 
tion is chosen so that the coefficients are 
evaluated in the middle of the resonance 
region. Expressions for the coefficients are 
given in Table VIII, and numerical values 
of the coefficients, evaluated at 8 = 0 and 
zero eccentricity and inclination, are given 
in Table IX. 

[Note:  For the Miranda-Ariel  5 : 3 reso- 
nance, 8 was defined incorrectly to be 
5hA -- 3riM -- (¢~M -- O-)A -- ~'~M -- ~A) = 4A 
+ 2(C + D + K + L). The main effect of 
this is to slightly change the values of  the 
coefficients in Table VII; however, the dif- 
ferences are not significant.] 
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TABLE VIII 
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Coefficient Miranda-Umbriel 3 : 1 Miranda-Ariel 5 : 3 ArieI-Umbriel 2 : 1 

tl 

C 

D" 

U 

W 

3 G4M4m~rn~lR2J2 3 G4M4m4m~tR2J2 3 G4M4m4m'A3R2J2 
4 L 7 4 L 7 4 L 7 

G2 Mmum2 m'A (2)(~.A G2 MmMm2 m'A (2)~A G2MmArn2 mb (2)~b 
4L  2 L M 4L 2 L M 4L 2 L A 

GE Mmum2 m~ (2)~u G2 MmMm2 m~ (2)~tj GE Mm Am2 m÷ (2)~ 
4L 2 LM 4L 2 LM 4L 2 LA 

4 t3 2 3 G4M4m4m{~REJ2 3 G4M4m4m'A3R2J2 3 GgM4momu R J2 
4 L 7 4 L 7 4 L7u 

G2MmMm~m~j (3)~u G2MmMm2 m'A (3)~A GEMmAm2 m{j (3)~{j 
4L~ Lu 4L 2 LA 4L~ Lc 

GZMmAm2 m~ (3)~ C.3MmAmE m{j (2)~ GEMmum2m~ (2)~ 
4L 2 L U 4L 2 L A 4L 2 L U 

3 G4Mgm4Am'A3R2J2 3 G4M4m~m{jaR2J2 3 G4M4m4m~3R2J2 
4 L 7 4 L 7 4 L 7 

GEMmMm2m'A (3)~A 2 2 , (0) G MmMmum U (3)MU GEMmAmEm~ (3)~ 
4L 2 LA 4L~ L~ 4L~ LT 

2 , (0) 2 , (0) GEMmAmumg (2)AU G2MmAmumu (3)AU GEMmomEm~ ra~(0) ~ / U T  

4L 2 L T 4L 2 LA 4L 2 Lu 

G2MmMm2mu - l G2MmMm2rn'A (21 )(M-~ ) (21)~tj ) 
4L 2A X/ LML A 4L 2u ~/ LMLu 

G2MmArn~mu ( 2 1 ) ~ - 0  G2MmAm2mu (21)(A-J I 
4L~X/LAL U 4L2uVLALu 

G2MmArn2m÷ (21 )(AT ') 
4L2"~v/LALT 

G2Mmum2mT " 1" 
- - - 2  - ( 2 1 ) U T '  

'~LTVLuLT 

Secu lar  Per turba t ions  

To inc lude  the  s e c u l a r  p e r t u r b a t i o n s  due  
to o t h e r  sa te l l i t e s ,  the  d e v e l o p m e n t  o f  the  
H a m i l t o n i a n  is s o m e w h a t  d i f fe ren t ,  in o r d e r  
to  k e e p  s e c u l a r  va r i a t i ons  d i s t inc t  f r om reso-  
nan t  va r i a t i ons  ( see  W i s d o m  1982). W e  de-  
fine as  c o o r d i n a t e s  

th = j h l  -- ih2 

Pi ~ eiN/-Lii cos (  - &i) o r  ii~V~i cos(  - fli) 

qi ~- eiN/-Lii sin( - &i) o r  

iiV'-Lii sin( - f l  i) (32) 

and  e x p a n d  the  H a m i l t o n i a n  a b o u t  the  r e so -  
nan t  va lue  o f  L1 ( p e n d u l u m  a p p r o x i m a t i o n ) .  
The  m o m e n t u m  c o n j u g a t e  to  ~b is qb = ( l / j )  

(L l - Lm) ,  w h e r e  the  r e s o n a n t  va lue  o f L  m 
is de f ined  b y  se t t ing  0~0/0qb = 0 and  w h e r e  
~0  is the  n o n r e s o n a n t  pa r t  o f  the  Hami l -  
ton ian .  

The  H a m i l t o n i a n  for  the  t w o - b o d y  reso -  
n a n c e  p r o b l e m  can  then  be  e x p r e s s e d  as  

+ C ' ( p  2 + q~) + D ' ( p  2 + q~) 

+ E(p lPz  + qJq2) 

+ F((p~ - q2) cos  th + 2plql sin ~b) 

4- G( (p lpz  - qlqz) cos  t h 

4- (Plq2 4- qlP2)s in  ~b) 
+ H((p~ - q2) cos  4) 4- 2PEq 2 sin ~b) (33) 
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T A B L E  I X  

SECULAR PERTURBED MODEL COEFFICIENTS: NUMERICAL VALUES 

Coefficient Miranda-Umbriel 3 : 1 a Miranda-Ariel 5 : 3 b Ariel-Umbriel 2 : 1 c 

a - 1 6 5 2 8 0  - 1 . 5 7 4 7  × 106 - 5 . 1 7 4 2  × 104 

C" - 0 . 1 8 8 9 6  - 0 . 2 2 5 2 1  - 0 . 0 7 5 8 3 9  

D "  - 0 . 0 1 9 3 9 9  - 0 . 0 6 8 8 0 9  - 0 . 0 2 1 7 6 1  

E 0 . 0 0 0 3 9 3 8 0  0 . 0 0 5 1 0 3 1  0 . 0 0 5 4 9 1 2  

F - 0 . 0 0 7 0 6 6 0  - 0 . 0 6 4 8 2 4  - 0 . 0 1 7 6 7 9  

G 0 . 0 0 5 2 5 8 5  0 . 0 3 7 0 8 1  0 . 0 4 7 3 6 6  

H - 0 . 0 0 0 1 7 3 9 9  - 0 . 0 5 2 6 8 3  - 0 . 0 3 1 3 5 0  

1 0 . 0 1 0 3 6 4  

J - 0 . 0 0 3 4 1 2 5  

U - 0 . 0 5 4 3 9 6  - 0 . 0 1 7 8 3 1  - 0 . 0 0 3 9 3 9 5  

V 0 . 0 0 3 6 1 0 1  0 . 0 0 0 3 3 9 0 3  0 . 0 0 0 5 6 7 7 7  

W 0 . 0 0 9 8 4 3 1  0 . 0 0 6 3 4 4 5  0 . 0 0 3 3 4 4 3  

a aM = 4.8658,  a A = 7.0846,  a U = 10.1179. 

b aM = 4.6361,  a A = 6.5157, a U = 10.0560. 

c aA = 6.3256, au  = 10.0400, a T = 16.6330. 

where a ~ 32B, and where  C'  a n d D '  contain 
only precess ion  terms due to planetary ob- 
lateness and satellite interactions. For  the 
2 :1  resonance,  there are the additional 
terms 

I (x  I COS t~ + Yl sin ~b) 

+ J(x 2 cos qb + Y2 sin ~b). (34) 

To  include the per turbat ions  due to a third 
satellite, we add the terms in the secular part  
o f  the disturbing function involving the third 
satellite and its interactions with the first 
two. For  the Hamil tonian we end up with 
the express ion 

= ½Ot(I )2 

+ C"(p 2 + q~) + D"(p~ + q2) 

+ E(PlP2 + qlq2) 

+ F((p~ - q~)cos ~b + 2plql sin ~b) 

+ G((PlP2 - qlq2) COS ~b 

+ (Plq2 + qlP2)sin ~b) 

+ H((p2 _ q2) cos th + 2P2q2 sin ~b) 

+ U(p2 + q2) + V(pjp3 + qlq3) 

+ W(P3P2 + q3q2) (35) 

where  the perturbing satellite is designated 
by subscript  3. For  the 2 : 1 resonance,  there 
are the additional te rm 

I(X 1 COS ~ + Yl sin th) 

+ J(x z c o s t h  + Y2sin~b). (36) 

The expressions for  the coefficients E - H  
(and I and J for the 2 : 1 resonance)  are the 
same as those in the two-satelli te problem,  
and a ~ 32B, except  that  in the expressions 
for the coefficients,  L i should be  substi tuted 
for F,.. Numerical  values of  the coefficients 
were evaluated at zero eccentrici ty.  Expres-  
sions for  the coefficients C", D", U, V, and 
W are given in Table  VI,  and numerical  val- 
ues of  all the coefficients are given in Table 
VII .  

Note.  In TW-I I  (Tit temore and Wisdom 
1989), there is an er ror  in the definition of  
the coefficient of  the e 2 resonance  in the 
Mi randa -Umbr ie l  3 : 1 eccentric-inclined 
resonance  model .  The Lever r ie r  coefficient 
(192) ~1) contains an extra  indirect te rm 
- 3 / 2 a  2 which should not have been in- 
cluded. The incorrect  definition of  this coef- 
ficient introduced errors  into the numerical  
integrations of  the eccentric-inclined model  
only, and did not affect  the main body of 



DYNAMICS OF PAST URANIAN RESONANCES 439 

the paper dealing with the circular-inclined 
problem. The error does not affect the 
mechanism that leads to the high orbital in- 
clination of Miranda. The main conclusions 
drawn from the numerical integrations of 
the eccentric-inclined model, that the orbital 
inclination of Miranda remains large during 
evolution through the chaotic zone associ- 
ated with the eccentricity resonances and 
that the orbital eccentricity of Miranda in- 
creases significantly during passage through 
the eccentricity resonances, also remain un- 
changed. 

APPENDIX II: T IDAL E V O L U T I O N  

In planetary satellite systems, tidal evolu- 
tion is caused by tides raised on the planet 
by the satellites and tides raised on the satel- 
lites by the planet. In the Uranian satellite 
system, the former tend to the orbital semi- 
major axes, while the latter act to decrease 
the semimajor axes and eccentricities. 

In the absence of an orbital resonance, 
the equilibrium eccentricity of a satellite is 
the value at which there is no net change in 
the semimajor axis due to tides, because the 
rate of energy dissipation due to tides raised 
on the satellite is equal to the rate of energy 
input to the orbit due to tides raised on the 
planet. 

For satellites involved in an eccentricity 
resonance, the equilibrium eccentricity has 
a somewhat different meaning. At the Ar- 
iel-Umbriel 5 : 3, Miranda-Umbriel 3 : 1, 
and Ariel-Umbriel 2:1 resonances, planet 
tides tend to expand the inner satellite orbit 
(I) relative to the outer orbit (O); therefore, 
the semimajor axis ratio (aI/ao) tends to in- 
crease. However, the forced orbital eccen- 
tricities resulting from the resonant interac- 
tion also increase, so some of the energy 
gained by the orbits is tidally dissipated in 
one or both of the satellites. At each of the 
above resonances in the Uranian system, 
most of the tidal dissipation occurs in the 
inner satellite. Under these conditions, the 
equilibrium eccentricity of the inner satellite 
is the value at which the semimajor axis 

ratio of the two satellites (at/ao) remains 
constant as the orbits expand due to tides 
(see, e.g., Yoder 1979b, Peale 1988). 

We present the calculation of the equilib- 
rium eccentricity for the 2 : 1 Ariel-Umbriel 
case in detail; equilibrium eccentricities for 
the other commensurabilities may be ob- 
tained in an analogous manner. Note, how- 
ever, that the Miranda-Ariel 5 : 3 commen- 
surability does not have an equilibrium 
eccentricity because the semimajor axis ra- 
tio (aM/aA) is decreasing. At the end of this 
section, we summarize the effective tidal 
evolution rates due to planetary tides, the 
equilibrium eccentricities at the resonances, 
and the eccentricity damping time scales. 

Of the various coefficients in the reso- 
nance Hamiltonian, only 8 depends strongly 
on the resonant combination of mean mo- 
tions; during passage through the reso- 
nance, the fractional change in the parame- 
ter 8 is large compared to the fractional 
changes in the other coefficients. The other 
coefficients will therefore be taken to be 
constant. In addition, the value of 8 is influ- 
enced by the damping of eccentricities due 
to tidal dissipation in the satellites. For the 
Ariel-Umbriel 2:1 commensurability, the 
time rate of change of 8 is 

= 4 A. (37) 

From the expansion of A to first order in 
~i, 

-~ (4ha -- 2hM) -- 16B(~M + ~A)- (38) 

The first two terms are due to the tidal 
expansion of the orbits, and the other terms 
are due to the exchange of angular momen- 
tum between the satellites resulting from 
dissipation of energy in the satellites (Yoder 
1979b). Note that 

[ 43 4n---~.h/ 2~]'e;d ~ i  = E i --  "{- (39) 

Tidal friction results in a secular variation 
of the mean motions 

hi = hip + his (40) 



440 TITTEMORE AND WISDOM 

where the first term is due to tides raised on 
the planet (e.g., Goldreich 1965) 

9, 2mi[R'~ 5 1 
hip = -- 5 r2ni -M ~: -Q" (41) 

The second term is due to tidal dissipation 
in the satellite, which for a synchronous ro- 
tation state must conserve the orbital angu- 

lar momentum: Gi = d/dt V'GMai(I - e 2) = 
0, so h ~- 2aiei~i. Therefore, 

h i = hip - 3niei~ i. (42) 

Tidal friction also changes the orbital ec- 
centricities (Goldreich, 1963) 

p.i = _ 21 k2iniM (Ril5 ei 
2 mi \ a l l  Qi 

578 . mi [R'~ 5 ei + k2n i-~ ~ )  ~ (43) 

where k2 and Q are, respectively, the poten- 
tial Love number and specific dissipation 
function for Uranus, and the k2; and Q,. val- 
ues are the same quantities for the satellites. 
The first term in the expression for ~i is the 
contribution due to tidal dissipation in the 
satellite, and the second term is due to tidal 
dissipation in the planet. The relative contri- 
butions of these components is 

bs 28 
ep - ~ Di (44) 

where 

Di=-~2 -~ik2i(M)'(-~) 5Q~ (45) 

expresses the ratio of the satellite tidal scale 
factor to that of the planet (e.g., Yoder 
1979b). For Ariel, D n = 100.7 (Q = 11,000 
and QA = 100), and the satellite dissipation 
term dominates the planet dissipation term 
by about two orders of magnitude. This is 
also the case for the other satellites. Since 
hp/n and ~p/e are of the same order, this 
means that 

• ei 
~ i  ~ 2 • i 7  = Lieiei.  (46) ei 

Using numerical values from Table I to 
evaluate relative contributions to 8, 

4hu -~ 4mu (a--3-A/8 ~ 0.047 (47) 
2hA 2mA k a U /  

so the semimajor axis ratio increases. The 
ratio of the eccentricity-dependent terms is 

~'U k2umAnu(go~5(a__.3_AtsaA~'u 
~A k2A mu nA \RA/  \ao/ ao ~'A 

k e A / -  (48) 

The most significant terms in ~ are 
therefore 

= - 2 h  A - 16B~ n. (49) 

Note that (see Appendix I) 

16B= --6hA [1 + L A  4m--AA(a--AAI 2 ] m U  \au/J (50) 

and 
en 7 ea 
- 7 = g D a  - (51) 
nA nA 

Therefore 

--2hA{I-- 14DAe2A[ l+2mA(aAt2]l'mUkaU/_lJ 

(52) 

The tidal parameter 8 will be stationary at 
the equilibrium eccentricity 

e A = . (53) 

14D A 1 + 2 m---A a__&A 
mu \au/ d 

This expression is in agreement with the 
expressions for the equilibrium eccentricity 
of the 2 : 1 two-body resonances in the Jov- 
ian satellite system found by Yoder (1979b). 
For the Ariel-Umbriel 2:1 resonance, the 
equilibrium eccentricity of Ariel is 

~/2 - 0.02 (54) 
1 

e A = 5 . ~ D  A 

i fQ  = 11,000. 
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We summarize  the effect ive  tidal evolu-  
t ion rates due to planetary tides,  the equilib- 
rium eccentricit ies  o f  the satellites,  and the 
eccentricity  damping time scales.  These  val- 
ues  were  computed  using Q = 11,000 for 
Uranus,  Q = 100 for the satellites,  and the 
physical  parameters  given in Tables  I and 
II. 

At the Miranda-Umbrie l  3 : 1 c o m m e n s u -  
rability 

8 = 3n U - nM -- ¢bvt -- cbo (55) 

and and 

-~ 3 aM 
nM~mm = 3.71 × 10 - S y e a r  -2 (56) 

with am~aM = 5.63 x 10-14 per orbit period• 
The equilibrium eccentricity  o f  Miranda is 
e m = 0.026, and the eccentricity damping 
time scales  are 108 years for Miranda and 
109 years for Umbriel .  

At the Miranda-Arie l  5 : 3  commensura-  
bility, 

8 = 5 n  A -- 3riM -- ~M -- COA (57) 

and 

8 ~ 0.492(5hA) ~ - 0.492 ~ nA-~AA 

= - - 1 . 6 0 X  10 -7 year -2 (58) 

with hA/a A = 2.35 x 10-13 per orbit period. 
The eccentricity  damping t ime-scale  o f  both 
satellites is about  108 years.  

At the Ar ie l -Umbr ie l  2 : 1  commensura-  
bility 

8 = 4ntj - 2n u - c~ A - c~ u (59) 

and 

~ _ 2 h  A ~ 3 n  A a__&A 
a A  

= 1.65 x I0 -Tyear  -2 (60) 

with CtA[a A = 2.73 × 10-13 per orbit period. 
The equilibrium eccentric i ty  o f  Ariel is ap- 
proximately  0.02• The eccentricity  damping 
time scale o f  Ariel  is about  6 × 107 years,  
and that o f  Umbrie l  is about  109 years.  
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