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Ariel and Umbriel have passed through the 5 : 3 mean-motion commensurability if the 
specific dissipation function (Q) for Uranus is less than about 100,000. There is a signifi- 
cant chaotic zone associated with this resonance. Due to the presence of this chaotic 
zone,  the standard theory describing passage through orbital resonances is not applica- 
ble. In particular, there are significant changes in the mechanism for and probability of 
capture into resonance. Tidal evolution within the chaotic zone may have driven orbital 
eccentricities to relatively high values, with some probability of escape from resonance 
remaining. In the planar approximation, eccentricities high enough to have a significant 
effect on the thermal history of Ariel have not been found. © 1988 Academic Press, inc. 

1. INTRODUCTION 

The major satellites of Uranus are not 
presently involved in any mean-motion 
commensurabilities. However, a number of 
low-order resonances between various sat- 
ellites may have been encountered in the 
past as the orbits of the satellites evolved as 
a result of tidal friction (see Peale 1988 for a 
recent review). The present eccentricities 
of the inner large satellites are anomalously 
high when the time scales of eccentricity 
damping due to tides raised on the satellites 
by Uranus are considered (Squyres et al. 
1985), and this cannot be accounted for by 
the mutual perturbations alone (Dermott 
and Nicholson 1986, Laskar 1986). Also, 
the recent observations by Voyager 2 
(Smith et  al. 1986) of extensive resurfacing 
of Miranda, Ariel, and Titania indicate that 
the thermal histories of these satellites have 
been spectacular. The importance of tidal 
heating in the thermal balance of satellites 
has been demonstrated in the melting of Io 
due to tides raised by Jupiter on this satel- 
lite (Peale et al. 1979), and the possibility 
that analogous phenomena have signifi- 
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cantly affected the Uranian satellites war- 
rants investigation. 

Dermott (1984) has suggested that reso- 
nant motion of the Uranian satellites may 
be chaotic. His argument is based on the 
resonance overlap criterion, which pro- 
vides a useful criterion for predicting the 
onset of large-scale chaotic behavior in 
many systems (see Chirikov 1979). For the 
satellite systems of Jupiter and Saturn, the 
group of resonances associated with a par- 
ticular mean-motion commensurability are 
well separated by precession induced by 
the planetary oblateness, However, the J2 
of Uranus is small (,/2 -~ 0.0033) and the 
resonances associated with any particular 
mean-motion commensurability between 
the Uranian satellites are not well sepa- 
rated. Dermott argues that the resonance 
overlap criterion then implies that there 
should be chaotic behavior. While Dermott 
was correct in pointing out the importance 
of the small J2 for the motion of the Uranian 
satellites, the specific application of the res- 
onance overlap criterion is incorrect. The 
overlap criterion states that chaotic behav- 
ior ensues when the sum of the libration 
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half-widths of two neighboring resonances 
is larger than their separation. Intuitively, 
two independent combinations of the vari- 
ables in the problem cannot simultaneously 
librate. For example, if o-j = 0j - 02 oscil- 
lates about zero while both 01 and 02 are 
circulating, then the possibility of the si- 
multaneous oscillation of 0-2 = 01 - 202 is 
excluded. If a "good"  perturbation theory 
suggests that both variables should oscillate 
then chaotic behavior most likely results. 
For mean-motion resonances the situation 
is more complicated. Different resonance 
variables may correspond to independent 
degrees of freedom. In this case the libra- 
tion of one resonance is independent of the 
libration of the other resonance. In the ex- 
ample above, the oscillation or circulation 
of 01 may be completely independent of the 
oscillation or circulation of 02. The fact that 
a system is in a region of phase phase where 
both 01 and 02 oscillate does not indicate the 
presence of chaotic behavior. In this case 
the simultaneous libration of independent 
combinations of 01 and 02 is not prohibited. 
Wisdom (1985a) has shown that "overlap- 
ping" resonances belonging to the same 
mean-motion commensurability do not nec- 
essarily lead to chaotic behavior, but also 
that chaotic behavior may result from only 
a single mean-motion resonance if accom- 
panied by the proper secular terms. For ex- 
ample, the mathematical problem of motion 
near a first-order commensurability in the 
elliptic restricted three-body problem, tak- 
ing into account only the two resonances 
which are first order in eccentricity, is inte- 
grable, even though there is strong "over- 
lap" of the region of libration in the individ- 
ual resonances (see Wisdom 1987 and 
references therein). No simple argument 
about overlapping mean-motion resonances 
can predict whether large-scale chaos ex- 
ists. A proper application of the resonance 
overlap criterion involves checking for the 
overlap of regions of libration of indepen- 
dent resonances between the degrees of 
freedom. In any case, the proximity of sev- 
eral resonances in the situation where ./2 is 

small certainly enhances the likelihood of 
interesting dynamical behavior. 

The theory of passage through isolated 
mean-motion commensurabilities between 
satellites is well developed (Allan 1969, Sin- 
clair 1972, 1974, Yoder 1979, Henrard and 
Lemaitre 1983, Lemaitre 1984, Borderies 
and Goldreich 1984). The work of Henrard 
(1987), in particular, places the theory of 
passage through mean-motion resonances 
in a general framework of passage through 
isolated resonances. The single resonance 
theory can be used to compute the probabil- 
ity of capture into a mean-motion commen- 
surability, and the changes in the eccen- 
tricity or inclination as the resonance is 
encountered, provided the assumptions 
which have been made in deriving the for- 
mulas are satisfied. Unfortunately, critical 
assumptions of the single resonance deriva- 
tion are not valid for the Uranian satellites. 
First, the Hamiltonian which is used in the 
derivation of the single resonance formulas 
is assumed to be well represented by the 
terms from the disturbing function involv- 
ing a single resonant argument, and actually 
more commonly by a single resonant term 
from the disturbing potential. However, 
since the J2 of Uranus is small (J2 --~ 0.0033) 
the resonances are not well separated, and 
the quasiperiodic resonance regions can be 
significantly different from those predicted 
by single resonance approximations. In 
some cases alternate formulas could be de- 
rived which are based on the more com- 
plete resonance Hamiltonian, though to our 
knowledge calculations of this sort have not 
as yet been published (see, however, Titte- 
more and Wisdom 1988). A more funda- 
mental problem with the standard single 
resonance theory is that the motion at the 
point of capture into resonance is assumed 
to be regular, i.e., quasiperiodic. Whether 
the trajectory is captured or escapes de- 
pends on the (generally unknown) phase of 
the resonant argument as the separatrix is 
encountered. The separatrix is the regular 
trajectory of the single resonance problem 
which separates regions where the resonant 
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argument librates from regions where it cir- 
culates. The "decision" of capture or es- 
cape is made on a single libration and de- 
pends on the phase at which the separatrix 
is encountered. A capture probability is de- 
fined by assuming some initial distribution 
of phases and is computed by evaluating 
certain integrals along the separatrix. The 
assumption of a regular, quasiperiodic sep- 
aratrix completely permeates the existing 
theory of passage through mean-motion 
resonances. Generically, though, the mo- 
tion near a separatrix is chaotic, not quasi- 
periodic (see e.g., Chirikov 1979). Thus the 
boundary has a finite width. The motion 
near the separatrix is no longer the motion 
assumed by the isolated resonance theory. 
The presence of the chaotic zone will be 
unimportant if the chaotic zone is so small 
that it is crossed in a time short compared 
to a libration period, for then the chaotic 
dynamics are indistinguishable from the 
regular dynamics assumed in the standard 
theory of passage through resonance. On 
the other hand, if the region of chaotic be- 
havior near the separatrix is large enough 
that the trajectory has enough time to make 
significant chaotic wanderings during the 
transition then there  is no reason  to be l ieve  
that  the s ingle  r e s o n a n c e  pred ic t ions  have  
any  re l evance  at  all. The process of pas- 
sage through resonance has qualitatively 
changed. As will be demonstrated below 
there are significant chaotic zones near 
mean-motion commensurabilities between 
the Uranian satellites. Thus predictions 
based on the single resonance model are 
highly suspect, and most likely irrelevant. 
The importance of the chaotic separatrix in 
changing the mechanism of capture was 
previously pointed out by Wisdom et al. 
(1984). 

This paper is the first of a series of papers 
which will systematically examine the tidal 
evolution of the orbits and spins of the Ura- 
nian satellites. The full extent of the tidal 
evolution of the Uranian satellites is un- 
known, since the magnitude of the specific 
dissipation function (Q) for Uranus is un- 

known. Our systematic examination begins 
then with the current configuration and pro- 
ceeds backward in time. Hopefully, at 
some point a barrier will be reached, 
through which evolution to the present con- 
figuration will be impossible or unlikely. 
The requirement that that configuration 
has never been encountered would then 
provide a constraint on the Q of Ura- 
nus. 

In this, our first study, we consider only 
the Ariel-Umbriel 5:3 mean-motion com- 
mensurability. The 5:3 commensurability 
between Ariel and Umbriel would have 
been the most recently encountered of the 
first- and second-order commensurabilities 
between the Uranian satellites. For this 
commensurability there are three important 
mean-motion resonances involving the ec- 
centricities and three involving the inclina- 
tions, as well as a strong secular coupling. 
The 5:3 resonance therefore promises to 
be quite interesting. 

We consider the Ariel-Umbriel 5 : 3 reso- 
nant interaction in the planar approxima- 
tion. The restriction to the planar problem 
has been made in an effort to get some un- 
derstanding of the dynamical mechanisms 
involved in the passage through such a 
complicated resonance. The planar system 
has the advantage of being reducible to two 
degrees of freedom, which allows the de- 
tailed study of the phase space using the 
Poincar6 surface of section technique. This 
technique has been found to be invaluable 
for understanding the qualitative features of 
motion of asteroids in the 3 : 1 Kirkwood 
gap (Wisdom 1985a). 

In Section 2, the planar resonant Hamil- 
tonian of the system is discussed, the full 
development being given in Appendix I. 
Since the masses of the satellites are com- 
parable, a treatment of the full resonant 
three-body problem is required. The evolu- 
tion of the system is studied with the aid of 
an algebraic mapping with the same reso- 
nant structure as this three-body problem, 
analogous to that developed by Wisdom 
(1982, 1983) for the restricted problem to 
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study resonant asteroid motion. The map 
and its derivation are given in Appen- 
dix II. 

In Section 3 some aspects of the dy- 
namics of the 5 :3  Ariel-Umbriel mean-mo- 
tion commensurability are exhibited. Sur- 
faces of section for this system reveal the 
presence of significant chaotic zones, even 
for relatively low eccentricities. A pair of 
islands on the surfaces of section may be 
associated with the normal modes of the 
linear secular theory. The development of 
large-scale chaotic zones is associated with 
the fixed point associated with one of these 
modes becoming unstable. 

Section 4 explores the evolution of the 
system through the resonance with small 
tidal dissipation included. Results are com- 
piled for five numerical runs with distinct 
families of initial conditions. In each case 
large numbers of trajectories have been fol- 
lowed to assess the probabilities of various 
outcomes. It is found that the satellites can 
be driven to relatively high eccentricities in 
the chaotic zone and still escape from the 
resonance. The maximum eccentricities 
during passage through resonance are al- 
ways found to be higher than the initial val- 
ues and occur during the chaotic phase of 
the resonance encounter. The mechanism 
of capture is markedly different from that of 
the isolated resonance theory. In the single 
resonance picture capture or escape occurs 
depending on the phase of the trajectory as 
the regular separatrix is encountered. For 
the 5 :3  commensurability the "decision" 
of capture or escape occurs while the mo- 
tion is chaotic. The trajectory approaches 
the resonance from a quasiperiodic region 
of phase space in which the resonant argu- 
ments circulate. There is another quasipe- 
riodic circulation region on the other side of 
the resonance, into which trajectories may 
escape. In the resonance region the phase 
space is dominated by a large chaotic zone. 
The chaotic zone acts as a bridge between 
these two quasiperiodic regions. If, during 
the period of chaotic evolution, the trajec- 
tory becomes trapped in the second region 

of quasiperiodic circulation, the trajectory 
escapes from the resonance. If, on the 
other hand, the trajectory remains in the 
chaotic zone, then the energy surface even- 
tually divides the phase space into two re- 
gions in which libration of one or more res- 
onant arguments must occur. At this point 
capture into resonance has occurred, even 
though the trajectory may still be chaotic. 
Upon further evolution those trajectories 
which were chaotic at the point of capture 
eventually become quasiperiodic librators. 
The probability of escape depends not only 
on the eccentricities of the satellites far 
from the resonance, which vary considera- 
bly due to the strong secular interaction, 
but also on the initial distribution of energy 
between the two secular modes. The cou- 
pled nature of the problem makes compari- 
son with the standard single resonance 
model of evolution through resonances im- 
possible. Even qualitative features of pas- 
sage through resonance differ from the pic- 
ture developed for passage through isolated 
resonances. For example, the average ec- 
centricity of Umbriel after escape from the 
resonance can be higher than the average 
value before the resonance is encountered. 
In the standard theory, the eccentricity af- 
ter escape is always smaller. 

Section 5 discusses physical applications 
of these results. Final eccentricities of es- 
caping trajectories are consistent with the 
present values. Eccentricities high enough 
to have had a significant effect on the ther- 
mal history of Ariel have not been found so 
far in this study. This may be due to limita- 
tions of the planar approximation; higher 
eccentricities may be possible in the full 
three-dimensional problem (see Wisdom 
1983, 1987). 

Since we are concerned with the determi- 
nation of the probabilities of various out- 
comes of tidal evolution in a complicated 
dynamical environment we have as a check 
verified that our methods properly repro- 
duce the known capture probabilities in the 
single resonance approximation. Appendix 
III discusses these results. 
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2. THE R E S O N A N T  HAMILTONIAN 

This study looks at the system of  Uranus 
and its satellites. The planet is considered 
to be the dominating mass, which is sym- 
metric about its rotation axis, and the satel- 
lites are considered to be n - 1 point 
masses. The gravitational potential of this 
system can be written 

n-lGMmi I ~ (R) 1 ] 
U = - ~'~ 1 + Jt P/(sin ~i) 

i=1 ri l=2 

_ ~ Gmimj, (1) 
i<j<n rij 

where the satellite index i increases with 
the satellite's distance from the planet. G is 
the gravitational constant,  M is the mass of 
Uranus,  rni are the satellite masses, ri are 
the distances of  the satellites from Uranus, 
R is the planet radius, J~ are the gravita- 
tional harmonic coefficients, PI are Legen- 
dre polynomials,  ~o i are the satellite lati- 
tudes with respect  to the planet equator,  
and ri: are the distances between the satel- 
lites. 

To first order  in the ratios of satellite 
masses to planet mass, the total Hamilto- 
nian for the system can be written 

n-lGMmi[i=l ~ ~ ( R ) I  ] = - ~ 1 + J/ P/(sin ~i) 
1=2 

- ~ GmimJRij, (2) 
i<j<n aj 

where R,-j is the disturbing function (see, for 
example,  Leverr ier  1855). This Hamilto- 
nian represents a set of n - 1 perturbed 
Kepler  problems. The lowest order  terms in 
the perturbations due to spherical harmon- 
ics are of  order  Jz(R/ai) z relative to the Kep- 
lerian terms. The lowest order  terms in the 
disturbing function are of  order  a/aj, so 
these perturbations are of order  (mi/M) 
(a/aj) relative to the Keplerian terms. In 
the case of  Uranus and its satellites, the 
effects of these two types of perturbation 
are of similar magnitude (see Table I). This 
has important consequences  for the evolu- 
tion. 

TABLE I 

PHYSICAL PARAMETERS 

Units: 
Mass: mass of Uranus: GM = 5.794 × 106 km 3 

sec -1 (Stone and Miner 1986) 
Distance: radius of  Uranus: R = 26,200 km 

(French et al. 1985) 
Time: years 

rn--3AM = 0.0000155, - ~  = 0.0000147 

(Stone and Miner 1986) 
RA = 0.0221R, Rv = 0.0227R 

(Stone and Miner 1986) 
e^ = 0.0017, eu = 0.0043 (Peale 1988) 
Potential Love number of  Uranus: k2 = 0.104 

(Gavrilov and Zharkov 1977) 
Shear modulus (rigidity) of  satellites:/x = 3 × 106 

(~10 Il dynes/cm) 
Potential Love numbers  of  satellites, using the 

expression: 
3/2 3pigiRi 

k21 = 1 + 19tzi/(2oigiRi) ~ 19/Xl 
kzA = 4.1 × 10 -3 , kzu = 3.3 × 10 -3 

Specific dissipation functions: QA ~ Qu = 100 
Spherical harmonic of Uranus: ,/2 = 0.0033461 

(French et al. 1985) 

In this paper all terms in the disturbing 
function involving inclinations are set equal 
to zero. Since the inclinations are less than 
one degree, this is a reasonable first ap- 
proximation. Recall, though, that taking 
into account  the inclinations in the 3 : l as- 
t e ro id - Jup i t e r -Sun  problem significantly 
enhanced the variations in the eccentrici- 
ties (Wisdom 1983, 1987). 

We are interested in studying changes in 
the osculating eccentricities and longitudes 
of  pericenter  of the orbits caused by pas- 
sage through the resonance.  These changes 
occur  over  time scales which are generally 
much longer than the orbit periods. The 
major contributions to these changes in the 
elements are resonant  interactions between 
Ariel and Umbriel involving the slowly 
varying combination of mean longitudes 
5htj - 3hA and the secular interactions be- 
tween the satellites. Here  and in the follow- 
ing development,  the subscript A refers to 
Ariel and the subscript U to Umbriel.  
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The secular interactions of  the Uranian 
satellites are relatively strong (Dermott and 
Nicholson 1986, Laskar  1986). However ,  
the largest contributions to the secular vari- 
ations of  Ariel and Umbriel arise from their 
mutual interaction. In this first paper we 
have ignored the secular perturbations due 
to the other  satellites. With this approxima- 
tion the problem remains a two degree of 
f reedom problem, allowing a detailed study 
of  the complicated dynamics with the sur- 
face of  section technique. 

Near  the resonance,  the evolution of e; 
and o) i is dominated by the low frequency 
perturbations,  with frequencies associated 
with changes in the resonant  combination 
of  longitudes 57,v - 3hA and the longitudes 
of  pericenter  o3i. The high-frequency contri- 
butions associated with the motions of XA 
and htj, and with other  nonresonant  combi- 
nations of  the mean longitudes, are re- 
moved in first order  by averaging. 

As resonance coordinates we have cho- 
sen (see Appendix I) 

1 
Or A = ~ (5hU -- 3h  A -- 2O3A ) 

1 
t ru  = ~ (5AU -- 3hA -- 2o30) (3) 

which together  with ha and hu form a com- 
plete set of  generalized coordinates.  The 
momenta  conjugate to o'A and o'u are, in 
terms of  the Delaunay momenta  Li -~ 
m i n i  and G i  = L i X / I  - -  e 2 (see Plum- 
mer 1960): 

~A = LA -- GA 

~u = Lu - Gu. (4) 

This choice of  variables results in two inte- 
grals of  motion, the momenta  conjugate to 
YA = hA and Yu = Xu, since in the new 
variables the resonant  Hamiltonian is cyclic 
in these variables. The resonance integrals 
are 

3 
FA = L A  +~(~;A + ~U) 

5 
Fu = Lu - ~ (~A -~ ~U)- (5) 

Note  that E,- ~ Fie2~2. The lowest order  

resonant  terms in the disturbing function 
which influence the evolution of  the eccen- 
tricities and pericenter  longitudes are of  or- 
der e~. The lowest order  secular terms are 
also of  this order  (see Appendix I). The 
Hamiltonian is now expanded in powers of  
~,i/Fi to this order,  and constant terms are 
removed.  The resulting expression is 

= 2A(Y~A + Y~U) + 4B(~A + ~u) 2 

+ 2C~A + 2D~Zu 

+ 2EX,/]~A~U COS(O" A -- O'U) 

+ 2FS~A COS(2OrA) 

+ 2 G X / ~ A ~ U  COS(O'A + O'U) 

+ 2 H ~u  cos(2o-u). (6) 

Expressions for the coefficients are given 
in Appendix I. For  low eccentricities, the 
coefficient A -~ l ( 5 n u  - 3hA). Near  the 5 : 3 
mean-motion resonance,  this quantity is 
near zero. Tidal dissipation in the planet 
causes the orbits of  the satellites to expand 
differentially (Goldreich 1965). Because of 
this differential expansion, nA decreases 
relative to nu (see Section 4.1). Therefore,  
the quantity (5nu  - 3hA) increases as en- 
ergy is dissipated in the planet and changes 
sign when the mean motions are exactly 
commensurate .  This provides a convenient  
measure of  distance from the resonance.  
We define the parameter  3 = 4A + 2(C + D) 
to be the resonance parameter  in this prob- 
lem. At small eccentricities it is propor- 
tional to the nonresonant  contribution to 
5ntj - 3nA -- ~A -- o~U, and it changes sign 
in the middle of  the resonance region (see 
Appendix III). The other  coefficients are 
proportional to the semimajor axis ratio as 
it appears in the Leverr ier  coefficients (see 
Appendix 1). The change in semimajor axis 
ratio as the resonance is t raversed is of  or- 
der one part in a thousand, while the frac- 
tional change in 3 is of order  unity. The 
changes in the numerical values of the coef- 
ficients are therefore small compared to the 
changes in 3 and consequent ly  will be ne- 
glected. 

The transformation to canonical coordi- 
nates 
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Yi = ~ sin(o-i) ~ eiV~i  sin(o-i) (7) 

and the conjugate momenta 

xi = ~ cos(o'e) -~ e i ~ i i  cos(o'i) (8) 

is made, resulting in the final form of the 
Hamiltonian: 

1 
= ~ ( 8 - 2 ( C + D ) ) ( x  2 + y2A + xzU + y2) 

+ B(X2A + y2A + X~j + y2)2 

+ C(XZA + y2) + D(x~j + y2u) 

+ E(XAXU + YAYU) + F(X2A -- Y2A) 

+ G(XAXu -- YAYU) + H(X~j -- y~). 
(9) 

This Hamiltonian has two degrees of free- 
dom. Note the similarity between this and 
the Hamiltonian studied by H6non and 
Heiles (1964)--essentially a pair of har- 
monic oscillators with nonlinear coupling. 
H6non and Heiles studied a cubic interac- 
tion; in this case the nonlinear terms are 
quartic. 

Wisdom (1982, 1983) has derived an alge- 
braic map of phrase space onto itself for the 
Hamiltonian describing the motion of aster- 
oids near the 3 : 1 Kirkwood gap, analogous 
to the approach used by Chirikov (1979) for 
systems with pendulum-like Hamiltonians. 
This method has had considerable success 
in predicting the behavior of asteroidal mo- 
tion near the Jovian mean-motion commen- 
surabilities. In a similar way, the Ariel- 
Umbriel 5:3 resonance problem can be 
approximated by a mapping (see Appendix 
II). However, since this problem is not a 
restricted three-body problem, it requires a 
different development. The basic principle 
involves changing the form of the high-fre- 
quency terms in the Hamiltonian. These 
terms are first removed by averaging, and 
then new high-frequency terms are intro- 
duced in such a way that periodic data func- 
tions are formed. The resulting equations 
are "locally integrable" across the delta 
functions and between them. Integration of 
the equations of motion now involves only 
the evaluation of simple functions. The 
main advantage of the algebraic mapping is 
speed of computation. Of course, if is diffi- 
cult to make meaningful comparisons of 

speed between qualitatively different meth- 
ods. In practice, though, the mapping 
makes a MicroVAX competitive with con- 
ventional methods used on supercom- 
puters. The gain in this case is approxi- 
mately a factor of 10 over the analytically 
averaged differential equations with a 
relative precision of 10 -9 per time step, 
which is on the order of one year. The gain 
over direct integration of unaveraged differ- 
ential equations would be at least one or 
two orders of magnitude. One could argue 
that since the relative precision of the map- 
ping is the full numerical precision of the 
computer, the real gain in speed of compu- 
tation is much greater. This gain is signifi- 
cant for long numerical runs involving 
slow tidal evolution. It is essential that the 
simulated tidal evolution be slow enough 
to avoid artifacts (see Section 4.1). 

3. R E S O N A N C E  D Y N A M I C S  

3.1. Surfaces o f  Section 

In problems such as that considered by 
H6non and Heiles the presence of large- 
scale chaos is difficult to predict with the 
resonance overlap criterion or other meth- 
ods. The Hamiltonian (9) is quite similar to 
the H6non-Heiles Hamiltonian in this re- 
spect; it is a bit too complicated to rely on a 
simple criterion such as the resonance 
overlap criterion. In order to securely de- 
termine the extent of chaotic behavior, it is 
necessary to resort to numerical methods. 
For a system with two degrees of freedom, 
it is possible to study the structure of phase 
space using the Poincar6 surface of section 
technique (see H6non and Heiles 1964). 
The basic idea of the surface of section is to 
study the intersections of a trajectory with 
a two-dimensional plane through the phase 
space, rather than the full four-dimensional 
phase space. These intersections reveal the 
qualitative character of the trajectories, 
i.e., whether they are chaotic or quasipe- 
riodic. For quasiperiodic trajectories suc- 
cessive intersections will fall on smooth 
curves; for chaotic trajectories successive 
intersections appear to fill an area in an ir- 
regular manner. 
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Two  sections have  been chosen for study 
in this paper:  plotting YA VS XA when xu = 0, 
which we designate section I, and plotting 
yu vs xu when XA = 0, which we designate 
section II.  On these plots,  the radial dis- 
tance f rom the origin is proport ional  to ec- 
centricity,  and the resonance  variables tri 
are polar  angles. The choice of  these sec- 
tion conditions simplifies the determination 
of  initial conditions on the section. 

A point on a section defined by a condi- 
tion such as x; = 0 does not necessari ly cor- 
respond to a unique trajectory.  It  is useful 
to add further  conditions on the section so 
that this will be the case. For  instance, in 
the H r n o n - H e i l e s  (1964) problem,  the 
usual surface of section is to plot py versus 
y whenever  x = 0. Since the H r n o n - H e i l e s  
Hamil tonian is quadratic in the momenta ,  
each point on the section corresponds  to 
two possible values ofpx.  Points on the sec- 
tion will cor respond to unique trajectories if 
an additional condition, say that px  be non- 
negative,  is added. Our problem is more 
complicated.  The Hamil tonian is quartic in 
the xi  and y i .  Due to the quartic nature of  
the Hamil tonian,  for given values of  8, the 
energy,  and the coordinates  on the sub- 
space defining the section, there can be two 
or four values of  yg conjugate to that xi for 
which the section condition xi  = 0 has been 
chosen.  It  is desirable,  therefore,  to further 
constrain the surface of  section as belong- 
ing to one of  four  root  " fami l i es . "  When 
there are four roots these families are la- 
beled a ,  b ,  c ,  d in order  of  decreasing nu- 
merical value. When there are only two 
roots they are labelled a and d in order  of  
decreasing numerical  value. As indicated 
by the nomencla ture  these two families join 
cont inuously the corresponding families in 
the four root case. Root  families a and d 
will be referred to as the " o u t e r "  pair and 
root families b and c will be referred to 
as the " i n n e r "  pair. The sections for 
these particular root families will be re- 
ferred to as Ia ,  Ib, Ic, Id  and l la ,  l ib,  IIc,  
and IId. 

Inspect ion of  the Hamil tonian (9) allows 
us to determine regions in the &energy pa- 

rameter  space in which these root families 
may  be found. For  energies less than zero,  
only two real roots of  the quartic equation 
exist. This is the outer  pair. For  energies 
greater  than zero and 8 > - 2 ( C  - D) + 4F, 
the inner pair of  root families exists for 
points on both sections near  the origin. 

For  energies greater  than 

0, 6 < 2(C - D) + 4H, 

E1 = - ( 8  - 2(C - D )  - 4 H ) Z / 6 4 B ,  

6 - > 2 ( C - D )  + 4H, (10) 

there are no real roots for points at the ori- 
gin of  sections I. The boundary  of  the en- 
ergy surface on the section divides it into 
two separate  regions, and O'A must  librate 
on sections I. In this case libration on the 
section cor responds  to an actual libration of  
or A in the full phase  space. 

Similarly, for energies greater  than 

0, 6 < - 2 ( C  - D) + 4F, 

E2 = - ( 6  + 2(C - D )  - 4 F ) 2 / 6 4 B ,  

8-> - 2 ( C - D )  + 4F, (11) 

trtj must  librate on sections II  and in the full 
phase  space (see Fig. 6). Note  that E~ > E2. 

The most  interesting dynamical  behavior  
occurs  for energies near  E~ and E2. To more  
easily display the results of  our  calculations 
we introduce the new pa ramete r  AE = % - 
E2, where % is the numerical  value of  the 
Hamiltonian.  AE naturally reflects the 
types of  mot ion possible on sections. For  
AE ___ 0, o-tj must  librate; for A E  > E1 - E2 ,  

both O" n and tru must  librate. For  0 > AE > 
- E 2 ,  the resonance  variables may  circulate 
or librate, and there are four root families. 
For  AE < - E 2  (equivalently % < 0), there 
are only two root families, and the reso- 
nance variables circulate. This is summa- 
rized in Fig. 1. The shaded regions in the 
upper  left corners  of  each plot are regions 
of  8, AE in which there are no real roots for 
either subspace,  and are therefore forbid- 
den regions. 

Far  f rom the resonance,  the resonant  
combinat ion of  mean  longitudes 5Xu - 3hA 
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circulates rapidly, and the interaction is 
dominated by the secular interaction. The 
terms in (6) containing the angles 20"A, 2tru, 
and O'A + O'U oscillate rapidly; the angle 
O'A -- O'U = --(O3A -- O3U) varies slowly. If  a 
canonical transformation to new variables 
which are the sum and difference of  trA and 
o-u is made, the combination ZA + ~v is 
conjugate to the rapidly circulating sum and 
is therefore approximately conserved.  Af- 
ter removing the high-frequency resonant  
terms by averaging, the new Hamiltonian 
becomes 

1 
~ '  = ~ (8 + 2(C - D))(x 2 + y~) 

1 
+ ~ (8 - 2(C - D))(xZu + yZu) 

+ E(xaxu + YaYu) (12) 

which is the linear secular Hamiltonian for 
these two satellites in the resonance coordi- 
nates. For  a given value of  the Hamilto- 
nian, a point on a surface of  section defined 
by x; = 0 can have either of  two values of 
the conjugate coordinate yi, which may be 
found by solving a quadratic equation. The 
points on the section are made to corre- 
spond to unique trajectories by specifying 
which of  the two root  families is being plot- 
ted. These two root  families correspond to 
the outer  pair of  roots in the more complete 
resonance problem. 

This Hamiltonian can be diagonalized 
and normal modes found, yielding the stan- 
dard Lagrange solution of  the secular prob- 
lem (see, e.g., Brouwer  and Clemence 
1961). The solution is of  the form 

Xi = Ail cos(o~lt ~- •1) + Ai2 cos(o~2t -~ •2) 

Yi = Ai l  sin(al t  + flO + Ai2 sin(o~2t +/~2), 

(13) 

where a ' s  are the eigenfrequencies.  
Periodic orbits are found wherever  the 

amplitude of  one of  the modes is zero, and 
the eccentricities are constant.  In these 
cases, the solutions are of  the form 

xA = AAj cos(a j t  + /~r) 

YA = AAr sin(art + fir) 

xv = Aur cos(aj t  + fir) 

Yu = Aur sin(art +/3j).  (14) 

If  the section condition is, for instance, 
Xu = 0, then art + flj = 7r/2 or 37r/2, and 
therefore XA = 0 also. There are two fixed 
points on the section, with :cA = 0 and YA - -  

+AAr- The " r o o t s , "  the values of  the coor- 
dinate conjugate to the section variable 
xu(=0)  for the fixed points on the section, 
are Yu -- -+Aur, one root  in family a and one 
root in family d. There  are two such fixed 
points associated with the other  eigen- 
mode. We therefore expect ,  that for a given 
section condition, there are four fixed 
points on the y-axis, two of  which belong to 
root family a and two to root family d. Thus 
sections Ia, Id, IIa,  and IId each have two 
fixed points in the linear secular problem. 

Representat ive surfaces of  section for the 
full 5 : 3 resonance problem before the reso- 
nance is encountered are shown in Figs. 2 
and 3. Figures 2a and b display sections 
Ia ,d ,  respectively,  and Figs. 3a and b dis- 
play sections IIa,  d, respectively.  The same 
trajectories are plotted on all figures. As ex- 
pected,  on each section there are two fixed 
points corresponding to each pure mode, 
each surrounded by concentric invariant 
curves. Note  that the regions dominated by 
each mode are not periodic islands associ- 
ated with a resonance phenomenon,  and 
they are not divided by an infinite period 
separatrix with an unstable equilibrium. 
The position of  a curve on the section de- 
pends on the relative strengths of  the two 
eigenmodes. For  a particular trajectory 
points alternately appear  on the sections 
corresponding to the two root  families. For  
instance the points forming the small loop 
at the top of  Fig. 3a and the small loop at 
the bot tom of  Fig. 3b were generated by the 
same trajectory.  Similarly, the big loops on 
Figs. 3a and 3b were generated by the same 
trajectory.  Each section is dominated by 
one of  the modes.  The other  mode appears 
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0.02 

0.02 

on the sec t ions  near the boundary  o f  the 
energy  surface.  N o t e  that e v e n  though  the 
re sonance  angle  cri ma y  not  enc irc le  the ori- 
gin on  the sec t ion  for a particular trajec- 
tory,  the  r e s o n a n c e  variable  is not  librating. 
T he  apparent l ibration on the sec t ion  is s im- 
ply  a matter  o f  o ne  r e s o n a n c e  variable be- 
ing strobed by  the other.  W e  des ignate  the 
m o d e  dominat ing  sec t ions  I as Mode  I, and 
that dominat ing  sec t ions  II as M o d e  II. 

The  surfaces  o f  sec t ion  in Figs.  4 and 5 
s h o w  more  interest ing  behavior .  The  same 
trajectories on  both sec t ions  Ia-d (Fig. 4) 
and sec t ions  IIa-d (Fig. 5) are s h o w n .  For 
these  parameters  all four root  fami l ies  ex-  
ist.  A l l  s ec t ions  for all root fami l ies  con-  
t inue to s h o w  the b imodal  structure,  but 
n o w  the m o d e s  are separated by  a large 
chaot ic  region.  T h e  f ixed point  at the center  
o f  the  large quas iper iodic  is land on sec-  
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The small quasiperiodic curves in the midst of  the chaotic zone  on sections IIc and l i d  are generated 
b y  the same trajectory that generates the small quasiperiodic curves in F i g s ,  4 a  a n d  4 b ,  for which O'A 

librates. 

0.02 

tions Ia and Id is part o f  a cont inuous  fam- 
ily o f  periodic orbits which b e c o m e s  Mode  I 
far inside the resonance  region (6 ~ 0). Sim- 
ilarly, the fixed point at the center o f  the 
large quasiperiodic island on sect ions Ib 
and Ic is part o f  a cont inuous  family o f  peri- 
odic orbits which  b e c o m e s  Mode  I far out- 
side the resonance  region (6 >> 0). The 
quasiperiodic z o n e  surrounding these latter 
islands is the region o f  phase space into 

which trajectories escape  from the reso- 
nance.  We cont inue then to refer to the is- 
lands surrounding these fixed points as 
Mode  I. Trajectories in Mode  I on sect ions 
Ia and Id alternately visit each of  these  sec- 
tions. In a similar manner,  Mode  I trajecto- 
ries on sect ions  Ib and Ic alternately visit 
each o f  the sect ions.  N o  Mode  I trajectory 
generates  points on all the sect ions corre- 
sponding to all four root families. For cha- 
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0.02 

otic trajectories successive points appear 
on the sections corresponding to all four 
root families in a typically chaotic manner. 
The small islands in the lower parts of  Figs. 
4a and 4b (sections Ia and Ib) are alter- 
nately visited by the trajectories which gen- 
erate them. The periodic orbits at the cen- 
ter of  these islands are associated with 
Mode II, but in a more complicated way 
than was the case for Mode I (see next sec- 
tion). A similar part of  small islands exists 
on sections Ic and Id, but trajectories be- 
longing to these islands were not computed 

on the figure. Trajectories on these small 
islands librate in O "  A and may librate in tru. 
Mode I trajectories do not librate. The sur- 
faces of  section in Fig. 5 show the same 
features as in Fig. 4, but in Umbriel vari- 
ables (sections II). The large features in 
Fig. 5 were generated by the same trajecto- 
ries as generated the large features in Fig. 
4. The small islands in both Figs. 4 and 5 
were generated by the same trajectories. 

The surfaces of  section in Fig. 6 show the 
same trajectories as in Fig. 5, but this time 
computed using the averaged Hamiltonian 
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(9) with a relative precision of 10 -9 per time 
step. The correspondence between trajec- 
tories in excellent, indicating that the map- 
ping represents the Hamiltonian (9) well. 
The slight difference in appearance of the 
chaotic zone is expected, since using a dif- 
ferent integrator is equivalent to beginning 
with a slightly different initial set of coordi- 
nates. In a chaotic region, two trajectories 
with slightly different initial coordinates di- 
verge exponentially with time. While the 
detailed evolution within the chaotic zone 
will differ, the qualitative behavior is the 
same. In the long run the same region of 
phase space will be filled. 

The surface of section in Fig. 7 is at AE = 
0, computed with the mapping. The energy 
surface has split the section into two inde- 
pendent regions, and O-u librates for trajec- 
tories in each region, independently of the 
quasiperiodic or chaotic character of the 
trajectory. The libration is forced by the to- 
pology of the energy surface. Successive 
appearances of points on the section are 

confined to one region or the other. At still 
higher AE, the two regions move apart, and 
the large chaotic zone disappears. The 
forced libration of chaotic trajectories is a 
new feature of this problem. More usually, 
the chaotic zone occurs at the boundary be- 
tween libration and circulation, and thus a 
chaotic trajectory alternately librates and 
circulates. This new feature provides a new 
mechanism for capture into resonance. Tra- 
jectories may be captured into resonance 
while they are still chaotic. 

Figure 8 shows results of a computation 
of the maximum Lyapunov characteristic 
exponent h (see, e.g., Bennettin et al. 
1976). The Lyapunov characteristic expo- 
nent provides a measure of the exponential 
divergence of trajectories in chaotic zones. 
Trajectories from two different regions of 
parameter space have been represented: 
one in the large chaotic zone shown in Figs. 
4-6 and one in the large chaotic zone in the 
librating region shown in the lower half of 
Fig. 7. In both cases, h approaches a value 
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FIG. 8. M a x i m u m  L yapunov  characterist ic  exponents  for trajectories in the chaotic zones  in the 
previous figures. The  unit  of  t ime is one year.  The  upper  curve at low t was computed  for a trajectory 
in the chaotic zone in the  lower libration region shown in Fig. 7, and the lower curve  at low t was 
computed  for a trajectory in the  chaotic zone  in Figs. 4 and 5. 
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~0.03 year -1. This corresponds to an e- 
folding time for the distance function of 
about 30 years, which is comparable to the 
secular evolution time scale. 

3.2. Onset of  Chaos 

The lightly shaded regions in the lower 
right of Fig. 1 show the parameter regions 
where "macroscopic" chaotic zones are 
accessible some place on the surface of sec- 
tion. The extent of the region was deter- 
mined by evaluating the rate of growth of 
distance between two nearby trajectories 
for 20 initial conditions evenly spaced along 
the y-axis between the energy boundary 
limits on Sections II for a given 8 and AE--- 
if one of these was found to indicate chaos, 
the section is considered to have a "macro- 
scopic" chaotic zone. Note that the two 
single resonance separatrix energies, de- 
noted $1 and $2, run through the middle of 
the chaotic zone (see Appendix III). 

The onset of large-scale chaos is associ- 
ated with an instability of the Mode II fixed 
point. A tidally evolving system with in- 
creasing 8 will encounter the region in 8- 
AE parameter space in which large-scale 
chaos is present on the surfaces of section 
from the lower left of Fig. 1. Near the 
boundary of this region of large-scale chaos 
the fixed point of Mode II goes through two 
period-3 bifurcations (see, e.g., Meyer 
1970, Hrnon 1970). These bifurcations are 
associated with a 3:1 resonance between 
the degrees of freedom in the problem. Af- 
ter these bifurcations the nature of the fixed 
points has changed, with the result that trA 
librates in the small quasiperiodic island 
surrounding the Mode II fixed point. Before 
the bifurcations irA circulated in Mode II. 

Figure 9 illustrates these bifurcations on 
section IIb. The changes in 8 and AE in the 
series 9a-9e simulate possible variations 
during tidal evolution (see next Section). 
These surfaces of section therefore illus- 
trate the changes in the structure of the 
phase space available to a trajectory as it 
crosses the boundary. Successive appear- 
ances of points on the section near the 

Mode II stable fixed point before the bifur- 
cation (Fig. 9a) alternate between sections 
IIb and IIc, and trA and o-tj circulate. As the 
parameters evolve toward larger 8 and AE, 
the region of stability near the Mode II 
fixed point shrinks, the extent of the cha- 
otic zone in phase space increases, and 
eventually the Mode II fixed point becomes 
unstable (Fig. 9b). After the first bifurca- 
tion, a stable island appears around the 
fixed point (Fig. 9c), but now the points al- 
ternate between sections IIa and lib. O'A 
librates for trajectories within these islands. 
A second period-3 bifurcation occurs (Figs. 
9d-9e). Note that the orientation of the 
roughly triangular trajectory surrounding 
the stable fixed point has inverted, a char- 
acteristic feature of this type of bifurcation 
(see, e.g., Hrnon 1966a,b, 1969, 1970). 
Again, the points alternate between sec- 
tions IIa and IIb, and O'A librates. The tra- 
jectories generating these islands librate in 
trh and, as tidal evolution continues, even- 
tually in trtj around ~-/2 or 3~r/2. (A similar 
pair of islands appears on sections IIc and 
IId.) Note that throughout the sequence of 
Figs. 8a-8e the region surrounding the 
Mode I fixed point remains stable. 

Another qualitative change in phase 
space concerns the accessibility of the root 
families. Before the bifurcation, trajecto- 
ries generate points alternately on the sec- 
tions corresponding to the "outer"  pair of 
root families (a and d) or the " inner"  pair 
(b and c). As the first bifurcation occurs, 
the large chaotic zone appears around the 
fixed point on the section corresponding to 
the periodic orbit associated with Mode II, 
which has become unstable. Successive 
points generated by a chaotic trajectory ap- 
pear on the sections corresponding to all 
four root families. Therefore, the appear- 
ance of the chaotic zone supplies a dynami- 
cal mechanism by which trajectories which 
generate points on sections corresponding 
to one pair of root families gain access to 
the sections corresponding to the other pair 
of root families. This is important in the 
mechanism of escape from the resonance, 
as seen in the next Section. 
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FIG. 9. Period-3 bifurcat ion on  sect ion  IIb.  (a) 8 = 2.066, A E  = - 9 . 3 4  × 1 0 - 6 ;  (b) 8 = 2.09,  A E  = 
- 9 . 1  × 10 -6,  (c) 8 = 2.11,  A E  = - 8 . 9  × 10 6; (d) 8 = 2.13,  A E  = - 8 . 7  × 10 6; (e) 8 = 2.15,  A E  = 

- 8 . 5  × 10 -6. This  c o r r e s p o n d s  to a 3 : 1 r e s o n a n c e  b e t w e e n  the degrees  o f  f reedom.  
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For very low eccentricities, the coupling 
between resonances is weakened, and one 
might expect to observe behavior charac- 
teristic of a perturbed single resonance 
problem. Figure 10 illustrates this for val- 
ues of 8 and AE near those where the Um- 
briel resonance is first encountered in the 
single resonance approximation (see Ap- 
pendix III). There is a relatively narrow 
chaotic zone with the characteristic "figure 
8" shape of the separatrix in the single res- 
onance case. 

4. EVOLUTION THROUGH THE RESONANCE 

4.1. Tidal Dissipation 
The results of the previous section illus- 

trate the behavior of the Hamiltonian (9) for 
fixed values of the parameters 8 and AE. 
This section discusses the tidal evolution 
through the resonance. Tidal friction enters 
in two distinct ways. The principal modifi- 
cation of the model is that the coefficients 
of the Hamiltonian become time depen- 
dent. This is primarily due to the differen- 
tial tidal expansion of the orbits. There is 
also the direct action of tidal friction in the 
satellites on the degrees of freedom. Thus 
tidal friction gives rise to time-dependent 
coefficients as well as explicit friction terms 
in the equations of motion. 

Of the various coefficients in the reso- 
nance Hamiltonian, only 8 depends 
strongly on the resonant combination of 
mean motions; during passage through the 
resonance, the fractional change in the pa- 
rameter 8 is large compared to the frac- 
tional changes in the other coefficients. The 
other coefficients will therefore be taken to 
be constant. In addition, the value of 8 is 
influenced by the damping of eccentricities 
due to tidal dissipation in the satellites. The 
time rate of change of 8 is 

= 4A. (15) 

From the expansion of A to first order in I~ 

d 
t$ = ~ [(5no -- 3hA) -- 16B(~A + ~U)] 

= (Stiu -- 3tiA) -- 16B(~A + ~U), (16) 

where 

[ l h i  ~i 1 ~/-~Xi - S n i  + 2 ~  . (17) 

Tidal friction results in a secular varia- 
tion of the mean motions (e.g., Goldreich 
1965) 

9 m, (R]' 1 
ti i = -- "~ k2 n2 ~ \~/// ~ (18) 

and a damping of the orbital eccentricities 
(Goldreich 1963) 

21 M(R)Se i  
k i -  2 k 2 i n i -  - -  mi ~ Qi 

57 mi (Ri] 5 _~, (19) 
d- -~  k2ni --~ \ a i /  

where k2 and Q are, respectively, the po- 
tential Love  number and specific dissipa- 
tion function for Uranus, and the kzi's and 
Oi's are the same quantities for the satel- 
lites. The first term in the expression for ~;i 
is the contribution due to tidal dissipation in 
the satellite, and the second term is due to 
tidal dissipation in the planet. The contribu- 
tion due to tidal dissipation in the satellites 
dominates the contribution due to tidal dis- 
sipation in the planet by approximately a 
factor of 100. Using numerical values from 
Table I with Q = 6600 to evaluate relative 
contributions to ~, 

5hu 5mu (aA] 8 
3ri----~ -- 3m~ \a---u/ "~ 0. I (20) 

so the orbit of Ariel expands relative to that 
of Umbriel. The ratio of the eccentricity de- 
pendent terms is 

~u 0.1 ev. (21) 
~A eA 

The most significant terms in (16) are there- 
fore 

= --3hA- 16B~a (22) 

and the relative contributions from these 
terms are expressed 

16B~__.___~A ~ --1.5 x 103e~. (23) 
3tiA 
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For the current eccentricity of Ariel, the 
above expression -~-0.004, so the hA term 
is clearly dominant in the expression for 8. 
The ~A term becomes comparable to the hA 
term only for eccentricities of approxi- 
mately 0.025. Since we are studying the 
evolution for systems with initial eccentric- 
ities much less than this, we have only re- 
tained the hA term in the expression for 8. 
However, if large increases in the eccen- 
tricity result from resonant interactions be- 
tween the satellites, this approximation will 
require some reconsideration. In our ap- 
proximation, the expression for ~ is 

~- 9 G Z M Z m 3  ~iA (24) 
2F 3 aA" 

Tidal friction also introduces explicit fric- 
tional terms into the equations of motion. 
The most important frictional terms arise 
from the damping of the orbital eccentrici- 
ties from dissipation within the satellites. 
From Eq. (19), with rigidities /XA = /zU 
10 N dynes/cm 2 (see Table I), the eccentric- 
ity damping time scale for Ariel is about 
1.5 × 106QA years, and that for Umbriel is 
about 1.4 x 107Qu years. For QA -~ Qu 
100, these time scales are on the order of 
108 and 109 years, respectively. Whether Oi 
is important in our study depends on the 
time scale of resonance passage compared 
to the eccentricity damping time scale. The 
time scale of resonance passage depends in 
turn on the rate of orbital evolution, which 
is determined by the specific dissipation 
function Q of Uranus, as discussed below. 

The value of Q can be constrained by 
considering reasonable scenarios for the or- 
bital evolution of the satellites of Uranus 
(Peale 1988). The rate at which the system 
evolves is inversely proportional to Q. By 
extrapolating the evolution backward in 
time, and eliminating unreasonable configu- 
rations of the satellites from the present to 
the time of formation of the Solar System, it 
is possible to find upper and lower limits to 
the possible values Q can take. A lower 
limit Q ~ 6600 places Miranda and Ariel at 
the same distance from Uranus at the time 

of formation of the Solar System. This 
study is only relevant if the Q of Uranus is 
less than about 100,000, since this Q places 
Ariel and Umbriel at the 5:3 resonance at 
the time of formation of the Solar System. 
Higher values of Q are possible, but then 
Ariel and Umbriel would never have en- 
countered the 5 : 3 resonance. 

Whether or not ki is important depends 
on Q. The maximum time of resonance pas- 
sage would occur for the maximum Q = 
100,000. We have assumed that during the 
passage through resonance 8 varies linearly 
with time due to the decrease of nA. The 
change in 8 during resonance passage is of 
order 1-3 year -1. This indicates that the 
maximum time of resonance passage is less 
than approximately 3.1 × 108 years. As dis- 
cussed above, the tidal damping time scales 
of the satellites are approximately 108 years 
for Ariel and 109 years for Umbriel. These 
time scales are comparable to the maximum 
time of resonance passage. For the maxi- 
mum value of Q, then, direct tidal damping 
of eccentricities will be important. The rate 
of evolution is inversely proportional to the 
value of Q assumed for Uranus. Therefore, 
for values of Q near the minimum allowed 
Q, the time scale of resonance passage will 
be much shorter (less than ~ 107 years), and 
damping of eccentricities should have a 
much smaller effect on the dynamics of the 
system. The direct tidal damping of ei could 
be important, but we neglect it in this initial 
study. 

The principal effect of tidal friction is that 
the parameter 8 varies secularly. The rate 
of secular variation of 8 depends primarily 
on the unknown value of the Q of Uranus 
(see Eqs. (18)-(24)). 

The numerical study of this system is 
constrained by finite computer resources. 
Unfortunately, even the lower limit of Q 
discussed above requires enormous expen- 
ditures of computer time to make a satisfac- 
tory study of the evolution of trajectories, 
even with the algebraic mapping. It is nec- 
essary, therefore, to artificially increase the 
rate of tidal evolution of the system above 
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the max imum limit imposed by the dy- 
namics of  the Uranian satellite system. In 
the single, integrable resonance model of  
passage  through resonance  the outcome of  
the resonance  encounter  does not depend 
on the rate of  passage  through the reso- 
nance as long as the passage is sufficiently 
slow. The single resonance formulas only 
require that the fractional change in the li- 
brat ion f requency over  a libration period be 
much less than unity. For  the problem un- 
der considerat ion here,  where  the dynamics  
and mechan ism of  passage through reso- 
nance are different than those of the single 
resonance  theory,  it is no longer clear that 
the ou tcome of  resonance  passage will be- 
come independent  of  the rate of  passage for 
sufficiently slow passage.  It  is however  
plausible that this should be the case,  when- 
ever  the time scale for resonance passage 
becomes  much greater  than all dynamical  
t ime scales. In any case,  in numerical  stud- 
ies of  passage through complicated reso- 
nances it is not sat isfactory to simply 
choose  an arbi trary rate of  passage through 

1 . 0  l i 

resonance and hope that it is adequately 
slow. The burden of showing that the 
results of  numerical  exper iments  of  passage 
through resonance  reflect the true dy- 
namics rests with the experimenter .  As we 
illustrate below, the rate of  passage through 
the 5 : 3 Ar ie l -Umbr ie l  resonance must  be 
ext remely  slow in order  to avoid artifacts. 

We parameter ize  the rate of  evolution in 
our numerical  model by the effective spe- 
cific dissipation function of  Uranus.  We 
designate this effective specific dissipation 
function by the script 9~, in order  to empha-  
size that it is the pa ramete r  in our numerical  
model and not the physical  Q of Uranus.  
With limited compute r  resources  we must  
increase the rate of  evolution determined 
by 9~ as much as possible without  affecting 
the ou tcome of the resonance  passage.  In 
order  to draw conclusions about  the physi- 
cal sys tem we must  show that the dynamics  
of  passage through resonance  become  inde- 
pendent  of  9~ for sufficiently large 9~. 

To illustrate the effect of  ~ on the dy- 
namics of  the full resonant  problem,  Fig. 11 
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FIG. 11. Measured probability of escape versus tidal dissipation rate for the full resonance problem, 
in terms of the effective specific dissipation function of Uranus ~. Circles, f~ = 20 year-~; diamond, 
1) = 80 year ~ ; square, differential equations for analytically averaged Hamiltonian. 
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displays the probability of  escape from the 
resonance against dissipation rate. The 
probability of  escape was determined by in- 
tegrating sets of  100 trajectories through the 
resonance with different dissipation rates 
(see Section 4.2 for more details). The rate 
of  dissipation increases to the right in the 
figure, and the value of  Q decreases.  The 
minimum physically reasonable value of 
Q = 6600 corresponds to the minimum dis- 
sipation rate shown. The choice of  ~ appar- 
ently can have a significant effect on the 
results: there is a dependence of  escape 
probability on rate, especially for high dissi- 
pation rates (small ~). Most of  the runs de- 
scribed in this paper have used 9~ = 110, or 
60 times the minimum physical dissipation 
rate. This is the minimum dissipation rate 
for which a data point is shown in Fig. 11. 
This value of  9~ corresponds to aA/aA 
1.4 × 10 -11 per orbit period during passage 
through the resonance.  For  somewhat 
larger dissipation rates, the measured es- 
cape probability is similar to that for ~ = 
l l0, indicating that changes in 9. near this 
value do not greatly affect the dynamics. It 
is plausible that the numerical experiments 
at this 9~ reflect the dynamics at the physical 
Q. Limitations on available computer  time 
have not allowed us to further verify this 
numerically. However ,  trajectories evolved 
through the resonance with 9~ = 3300 do 
show features similar to these with 9~ = 110 
(see next section). As a further check of the 
mapping, we have computed runs with a 
higher mapping f requency ~ = 80 year -1 
(diamond in Fig. l l) and with differential 
equations of  the averaged Hamiltonian with 
a relative precision of  10 -9 per time step 
(square) at 9~ = 6.6. These have similar es- 
cape probabilities to those runs with fl  = 20 
year -1 (circles in Fig. 11). 

Figure 11 emphasizes that for much 
higher dissipation rates, the dynamics are 
strongly affected by the choice of  9~. It is 
apparent  that a run with ~ = 3.3, o r  aA/aA 
4.8 × 10 -1° per orbit period, will produce 
results significantly different from the phys- 
ical system, i.e., there are significant arti- 

facts. This is even more evident when the 
energy evolution of  the trajectories is com- 
pared: the trajectories in Fig. 12 have the 
same initial conditions as those in Fig. 15 
(see next subsection), but the dissipation 
rate is 1000 times higher (t~Aa A ~ 1.4 × 10 -8 
per orbit period). The faster evolution gives 
a more exciting picture of  the evolution 
through resonance,  with large increases in 
eccentricity,  but it is wrong.  

4.2. N u m e r i c a l  R u n s  

Figures 13 through 17 show results of  nu- 
merical runs in which, for  each of five initial 
values of  8 and AE, 100 trajectories were 
evolved through the resonance using the 
mapping (see Appendix II) with slow tidal 
evolution (9~ = 1 I0). The initial values of  8 
and AE, and the physical parameters  corre- 
sponding to these values, are given in Table 
II. The 100 initial points for Run 3 were on 
an invariant curve of sections II. For  the 
other runs each set of  100 initial points was 
obtained by mapping the trajectory forward 
in time 7 (Runs 1, 2, and 4) or 10 (Run 5) 
mapping iterations from the initial point 
with no tidal dissipation, in order  to thor- 
oughly mix the phases or n and cry, but keep 
the " ac t i ons"  the same. Since the trajecto- 
ries are initially quasiperiodic there is, in 
principle, a transformation to action-angle 
variables. Under  slow variation of  parame- 
ters these actions are to first order  con- 
served; the actions are first-order adiabatic 
invariants. For  slightly different initial con- 
ditions the dynamical frequencies are 
slightly different, and the initial angles will 
rapidly be spread over  all values. (Motion 
on the n-torus is ergodic.) Thus the essen- 
tial parameters  which determine the proba- 
bilities of  various outcomes are the actions; 
the angles are physically unknowable and 
considered to be uniformly distributed in 
the calculation of  probabilities. In the single 
resonance theory the phase corresponding 
to these angles is also assumed to be uni- 
formly distributed in the calculation of  
probabilities. 

The trajectories in 8, AE parameter  space 
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FIG. 12. Trajectories evolved through the resonance with a high tidal dissipation rate (~ = 0.11). 
Solid lines indicate quasiperiodic behavior, dashed lines indicate chaotic behavior. The types of 
behavior possible for each orbit may be determined by comparing this figure with Fig. la. Evolution of 
these trajectories is strongly affected by the rate of tidal dissipation: the extremely wide range of 
outcomes is an artifact of evolving the system too rapidly through resonance. These trajectories have 
the same initial conditions as the trajectories in Run 3 (Fig. 15), but the dissipation rate is 1000 times 
higher. This picture is more exciting than that presented in Fig. 15, but this picture is wrong. 

are represented by solid lines when the evo- 
lution is quasiperiodic and by dashed lines 
when the evolution is chaotic, as deter- 
mined by evaluation of the rate of growth of 

the distance between nearby trajectories 
(Lyapunov exponent) at discrete intervals 
in 8 along the trajectories. 

The trajectories appear to have nearly 

TABLE II 

INITIAL PARAMETERS 

Run A E  8 aA eA O'A XA YA 
au eu O'u Xu Yu 

1 -9.4511 x 10 7 -0.1781 7.1633 0.0017 270.0 0.0 -1.4649 x 10 3 
10.0703 0.0043 270.0 0.0 -3.9289 x 10 -3 

2 -5.6281 x 10 -6 -0.1869 7.1625 0.005 90.0 0.0 4.3084 x 10 3 
10.0703 0.005 90.0 0.0 4.5685 × 10 3 

3 -1.9623 x 10 -5 -0.0283 7.1611 0.0102 90.0 0.0 8.7907 x 10 3 
10.0703 0.0031 45.0 0.002 0.002 

4 -2.1626 × 10 -s 1.4263 7.1610 0.01 0.0 8.6168 × 10 -3 0.0 
10.0703 0.01 0.0 9.1371 × 10 -3 0.0 

5 -6.0706 × 10 -s 2.0000 7.1588 0.0125 0.0 1.0771 × 10 2 0.0 
10.0703 0.0125 0.0 1.1421 x 10 2 0.0 
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FIr .  13. Trajectories in 8,AE parameter space for Run 1 with ~ = 110. Solid lines indicate quasipe- 
riodic behavior, dashed lines indicate chaotic behavior. The types of behavior possible for each orbit 
may be determined by comparing this figure with Fig. lb. None of the trajectories in this set escaped 
from the resonance. 
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FIG. 14. Trajectories in ~,~E parameter space for Run 2 with ~ = 110. Solid lines indicate quasipe- 
riodic behavior, dashed lines indicate chaotic behavior. The types of behavior possible for each orbit 
may be determined by comparing this figure with Fig. la. Only one of these trajectories escaped from 
the resonance (see Table III), closely following the curve of E = 0.0. 
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FIG. 15. Trajectories in 8, AE parameter space for Run 3 with 9~ = 110. Solid lines indicate quasipe- 
riodic behavior, dashed lines indicate chaotic behavior. The types of behavior possible for each orbit 
may be determined by comparing this figure with Fig. la. Of the 100 trajectories, 29 escaped from the 
resonance. 
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FIG. 16. Trajectories in 8,AE parameter space for Run 4 with 9~ = 110. Solid lines indicate quasipe- 

riodic behavior, dashed lines indicate chaotic behavior. The types of behavior possible for each orbit 
may be determined by comparing this figure with Fig. la. All of the trajectories which did not escape 
by the end of the run displayed were eventually captured into the resonance. Of the 100 trajectories, 28 
escaped from the resonance. The trajectories which appear linear and quasiperiodic between 8 ~ 2.5 
and 8 ~ 4.5 are temporarily captured into a quasiperiodic region of phase space in which O'A librates. 
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FIG. 17. Trajectories in 8,AE parameter space for Run 5 with ~ = 110. Solid lines indicate quasipe- 
riodic behavior, dashed lines indicate chaotic behavior. The types of behavior possible for each orbit 
may be determined by comparing this figure with Fig. la. All of the trajectories which did not escape 
by the end of the run displayed were eventually captured into the resonance. Of the 100 trajectories, 39 
escaped from the resonance. 
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FIG. 18. This plot shows the evolution in ~, AE parameter space of selected trajectories from Runs 2 

to 5 as they evolve through the 5 : 3 mean-motion commensurability. The corresponding behavior of 
the eccentricities of Ariel and Umbriel for these trajectories during resonance passage can be seen in 
Figs. 19-22. 
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the same evolution in AE until they first 
become chaotic. This can be understood in 
terms of the first-order adiabatic invariance 
of the actions of the trajectories while they 
are quasiperiodic. The paths begin to di- 
verge in the chaotic region. 

Sample trajectories from each of Runs 2-  
5 have been plotted in Fig. 18. Figure 19-22 
show the eccentricity variations of Ariel 
and Umbriel for these trajectories. The 
maximum and minimum eccentricities in 
small intervals of 8 (Fig. 19:A8 ~ 0.0007, 
Fig. 20:A8 ~ 0.001, Fig. 21:A8 ~- 0.003, 
and Fig. 22: A~ ~ 0.002) are plotted versus 
8. These "envelopes"  are smooth when the 
trajectory is quasiperiodic, but the maxima 
and minima vary in an irregular fashion in 
the chaotic zone. In each case, the maxi- 
mum eccentricity in the chaotic zone is 
higher than the initial eccentricity. Note 
that in some cases, the average eccentricity 
of Umbriel after escape from the resonance 
is higher than the average eccentricity be- 
fore the resonance is encountered (e.g., 
Fig. 20b), a phenomenon not possible in the 
standard theory of evolution through iso- 
lated mean-motion resonances 

Figure 23 shows the eccentricity varia- 
tions of a trajectory from Run 5 integrated 
with 9~ = 3300, which is close to the maxi- 
mum dynamically allowed tidal dissipation 
rate in Uranus. The plot was produced in 
the same manner as Figs. 19-22, showing 
the maximum and minimum eccentricities 
in intervals of A8 ~ 0.003. The decrease of 
effective dissipation rate by a factor of 30 
does not dramatically affect the dy- 
namics - fea tures  which are seen in this fig- 
ure are similar to those seen in the previous 
figures. This trajectory was captured into 
the resonance. 

Figure 24 shows the chaotic variations in 
eccentricity of part of the trajectory shown 
in Fig. 22, with the scale of 8 greatly en- 
larged. The eccentricities of the satellites 
vary in an irregular manner. This behavior 
is similar to that observed for asteroid mo- 
tion in the chaotic zone associated with the 
3:1 Kirkwood gap (Wisdom 1982, 1983). 
Note that for 6.008 < ~ < 6.0t7 the mean 

eccentricity of Ariel is relatively high while 
the mean eccentricity of Umbriel is rela- 
tively low. There are relatively sudden 
changes in the eccentricities at the bound- 
aries of this range in 8. Outside of this range 
of 8, the mean eccentricity of Ariel is rela- 
tively low, while the mean eccentricity of 
Umbriel is relatively high. This behavior is 
typical for trajectories in the chaotic zone: 
there are time intervals during which the 
mean eccentricity of Ariel is relatively high 
while that of Umbriel is relatively low, dur- 
ing other time intervals the mean eccentric- 
ity of Umbriel is high while that of Ariel is 
low, with relatively sudden transitions be- 
tween these intervals. This behavior results 
in the erratic alternations between high and 
low maximum eccentricity seen in Figs. 19- 
23. 

Since the tidal dissipation is small, the 
change in energy over a short time interval 
is also small, and the system can be consid- 
ered approximately Hamiltonian. It is pos- 
sible to study the qualitative behavior of a 
trajectory by "freezing" the value of 8 and 
computing surfaces of section. This allows 
us to determine which regions of phase 
space are accessible to a trajectory at par- 
ticular values of 8 and AE, and the types 
of behavior that are possible in each re- 
gion. 

As discussed in Section 4.1, for chaotic 
trajectories points appear in an irregular 
manner on the sections corresponding to all 
four root families. The trajectories are ob- 
served to spend some time with low values 
of both eu and eA, during which time points 
appear on sections Ib, Ic, IIb, and IIc. Tra- 
jectories may jump back and forth between 
regions near to and far from the origin, dur- 
ing which time points appear on all sections 
corresponding to all four root families. 
They may also spend time with high values 
of both eu and eA, during which time points 
appear on sections Ia, Id, IIa, and IId. 

During the periods of time when points 
appear on sections corresponding only to 
either the outer root families or the inner 
root families, there is a correlation between 
the eccentricities of Ariel and Umbriel. At 
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FIG. 19. Eccentricity variations of the trajectory from Run 2 which escaped from the resonance. 
Shown are the maximum and minimum eccentricities of Ariel (a) and Umbriel (b) in intervals of A6 
0.0007. 
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FIG. 23. Eccentricity variations of a trajectory with the same initial conditions as the trajectory 
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4.4, O'A was captured into temporary quasiperiodic libration. This trajectory is ultimately captured into 
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such times, a relatively high eccentricity for 
Ariel requires a relatively low eccentricity 
for Umbriel, and vice versa. This results in 
the interesting behavior of the eccentrici- 
ties displayed in Fig. 24: over relatively 
short time scales, the mean eccentricity of 
one satellite is high while that of the other 
satellite is low. The eccentricities alternate 
between high and low mean values in an 
irregular manner. Eccentricities tend to be 
higher when points are appearing on the 
outer root sections. 

While the trajectory is chaotic, AE 
evolves in a surprisingly regular manner to 
higher values with increasing 8, provided 
that the rate of tidal evolution is slow. Qual- 
itative changes in the evolution of AE have 
been associated with temporary capture 
onto the librating island surrounding the 
Mode II fixed point, or with the trajectory 
"sticking" to a quasiperiodic island for a 
period of time. 

Figure 21 shows some of this interesting 
behavior: after becoming chaotic, the tra- 
jectory apparently becomes quasiperiodic 
again, during which time the eccentricity of 
Ariel increases considerably. It then be- 
comes chaotic again, exhibiting eccentric- 
ity behavior similar to that of the other tra- 
jectories plotted. By plotting surfaces of 
section along this "quasiperiodic inter- 
lude," it was found that the trajectory was 
on one of the islands in the chaotic zone 
and on which trA librates in the full phase 
space. The trajectory became unstable 
again at a later time, possibly due to a 
change in the size of the island. It may also 
have been a case of "sticking," where the 
trajectory spent time near an island, and 
exhibited behavior which only appeared to 
be quasiperiodic (e.g., Wisdom 1983). The 
fact that two of the trajectories in Fig. 16 
which exhibit this behavior become unsta- 
ble at similar values of 8 indicates that the 
phenomenon is not extremely sensitive to 
initial conditions, suggesting that the trajec- 
tory actually was captured onto the quasi- 
periodic island and not stuck to it. Tempo- 
rary quasiperiodic libration has served as a 
conduit to higher eccentricity for Ariel, re- 

suiting in maximum eccentricities more like 
those of the system shown in Fig. 22, which 
has higher initial eccentricities. The energy 
evolution of these two trajectories in the 
chaotic zone further indicates the similar- 
ity. This particular trajectory is eventually 
captured, but examination of the trajectory 
in Fig. 18 indicates that escape is possible 
for similar trajectories. The trajectory from 
Run 5 in Fig. 18, which escapes to large 
negative AE, overlaps the trajectory from 
Run 4, indicating a period in which evolu- 
tion through the chaotic zone occurred in 
the same region of phase space. This mech- 
anism of temporary quasiperiodic libration 
allows for the possibility that trajectories 
approaching the resonance with relatively 
low eccentricities could be driven to much 
higher eccentricities than they would with 
the evolution in the chaotic zone alone, and 
the satellites might escape from the reso- 
nance with higher eccentricities than they 
had approaching the resonance. The trajec- 
tory shown in Fig. 23 also shows this phe- 
nomenon of temporary capture. 

Trajectories may escape from the reso- 
nance almost immediately, or may spend a 
considerable period of time in the chaotic 
zone before they escape, during which time 
the maximum eccentricities can be driven 
to relatively high values. 

Eventually, the trajectories become qua- 
siperiodic again. The final states of the tra- 
jectories fall into two major categories: tra- 
jectories which escape from the resonance 
and trajectories which are captured into 
resonance. For trajectories which are cap- 
tured AE increases and ends up in the upper 
half of the parameter space; for trajectories 
which escape AE decreases to large nega- 
tive values. 

Those trajectories which evolve to large 
negative AE escape into the large quasipe- 
riodic region on the sections corresponding 
to root families b and c, in which both reso- 
nant arguments circulate. This requires that 
both eccentricities have low mean values in 
the chaotic zone (with points appearing 
only on sections Ib,c and IIb,c) for a period 
of time long enough to allow evolution into 
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this quasiperiodic zone. Then,  as 8 evolves 
to higher values, the system moves away 
from the resonance region, and the dy- 
namics of  the system are dominated by the 
secular interactions between the satellites, 
as they were before the system encoun- 
tered the commensurabil i ty.  

Examinat ion of  section II for AE _> 0 
(see Fig. 7) indicates that capture into reso- 
nance occurs  when the two regions of the 
section defined by the energy surface 
boundary separate. Trajectories appear to 
be confined to one region of  phase space or 
the other,  and o-u must librate. We there- 
fore have capture into resonance through 
evolution of  the energy surface. There  is a 
relatively small region of  parameter  space 
for AE just  larger than zero where the tra- 
jec tory  can still be chaotic (see Fig. 1). A 
trajectory can therefore be captured into 
resonance,  yet  still be chaotic. This phe- 
nomenon is a novel feature of our problem. 
As the system continues to evolve,  the two 
"bubb l e s "  move apart on sections II, and 
the eccentrici ty of  Umbriel increases. In 
addition, the large chaotic zone disappears, 
and trajectories become quasiperiodic, in- 
dicating permanent  capture into the reso- 
nance involving the longitude of  pericenter 
of  Umbriel 's  orbit. If  further evolution of 
the trajectory results in AE > E1 - E2, the 
energy surface also divides Sections I into 
two regions in which O'A must librate (see 
Section 3.1). As the system continues to 
evolve,  these two "bubb le s "  also move 
apart on sections I, and the eccentricity of  
Ariel increases. The orbits of  both satellites 
are trapped into quasiperiodic libration. 

The island surrounding the Mode II fixed 
point could provide another  mechanism of 
capture, although the ultimate stability of 
the island is unknown. 

The observed spread in outcomes con- 
trasts with the behavior  of trajectories in 
the single resonance approximation (see, 
e.g., Borderies and Goldreich 1984), in 
which the outcomes are probabilistic due to 
an unknown phase, but are otherwise quite 
predictable. The presence of a chaotic zone 
in this problem indicates that the outcome 

is inherently unpredictable (though still de- 
terministic), due to the extreme sensitivity 
of  the motion to initial conditions. Two tra- 
jectories entering the chaotic zone with 
even very similar phases will diverge expo- 
nentially, making it impossible to predict 
their comparat ive evolutions over  the long 
term. The width of  the chaotic zone when a 
trajectory enters it may be important.  The 
probability of  escape may be much larger 
for a trajectory if the chaotic zone is narrow 
and the quasiperiodic region of escape on 
sections corresponding to root families b 
and c occupies a majority of the phase 
space. This is inferred from observations 
that most  escapes occur  very  shortly after 
the trajectories become chaotic, when the 
chaotic zone occupies a relatively small re- 
gion of phase space. 

The trajectories in each of  the runs de- 
scribed so far in this paper originally all 
have the same actions. The actions depend 
on the positions of  the invariant curves on a 
section. There appears to be a dependence 
of  the probability of  escape on the initial 
distribution of  energy between the normal 
modes,  and therefore on the actions. Figure 
25 shows the energy evolution of trajecto- 
ries with the same 8's and z~E's as the five 
runs in Fig. 13-17, but the trajectory on 
which the initial points are computed gener- 
ates invariant curves on sections I and II 
which are now very close to the fixed point 
associated with Mode I. Ten trajectories 
were integrated for each run. For  these tra- 
jectories,  the evolution of  energy is mark- 
edly different from the evolution of the cor- 
responding trajectories in Figs. 13-17: the 
trajectories all evolve to much higher val- 
ues of  AE before becoming chaotic. All of  
the trajectories were captured into reso- 
nance. The details of the secular interac- 
tions between the satellites before the reso- 
nance is encountered have a significant 
effect on the outcome of the passage 
through the resonance.  

4.3. Statistics of  Escape 

Overall escape statistics are given in Ta- 
ble III. There is a trend toward higher prob- 
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FIo.  25. Trajectories in & A E  parameter space with initial coordinates near the Mode I fixed point. 
The initial values of 6 and AE for each set of  10 trajectories are the same as the initial values of 6 and 
AE for the corresponding sets of  trajectories in Runs 1-5 (Figs. 13-17). Note  that the trajectories 
become  chaotic much closer  to AE = 0 than the corresponding trajectories in Figs. 13-17. None  of the 
trajectories shown escaped from the resonance.  

T A B L E  I I I  

E S C A P E  S T A T I S T I C S  

Run 6o (CA0) a (rest) (¢amax) Peso b 6j {eat} 

(¢U0) (eUma×) (eUl) 

+0.00066 
2 -0 .187  0.00493 0.412 0.0078 0.01 3.000 0.00034 

-0 .00108 

+0.00120 
0.00503 0.0074 0.00123 

-0.00073 

+0.00064 
3 -0 .028  0.00960 1.182 ± 0.301 0.01170 ± 0.00052 0.29 + 0.046 10.000 0.00345 + 0.00101 

-0 .00110 

+0.00172 
0.00417 0.01071 ± 0.00143 0.00365 +- 0.00220 

0.00117 

+0.00168 
4 1.426 0.00837 2.841 ± 0.463 0.01546 ± 0.00139 0.28 ± 0.036 8.114 0.00378 + 0.00073 

0.00288 

+0.00218 
0.01116 0.01577 + 0.00100 0.00937 +- 0.00161 

0.00122 

+0.00215 
5 2.000 0.01037 4.757 -+ 0.812 0.01916 + 0.00216 0.39 -+ 0.048 10.000 0.00541 ± 0.00092 

-0 .00315 

+0.00223 
0.01401 0.01953 + 0.00136 0.01285 + 0.00210 

-0 .00153 

Time average and range of  eccentricity on initial trajectory. 
b Error for Peso is standard deviation of  the mean. All other standard deviations for single value. 
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ability of  escape from the resonance as the 
mean eccentricities of  the satellites before 
the resonance is encountered are increased. 

For both satellites, the maximum eccen- 
tricities in the chaotic zone are higher than 
the initial maximum eccentricities. The 

mean of  the time-averaged final eccentrici- 
ties for each satellite after escape from the 
resonance (last column in Table III) is com- 
parable to or lower than the mean initial 
eccentricity (third column). Figure 26 
shows the distribution of time-averaged fi- 
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FIG. 26. Average final escape eccentricities. (a) and (b) refer to Run 3, (c) and (d) to Run 4, and (e) 
and (f) to Run 5. The average final eccentricity of Umbriel tends to be higher than the average final 
eccentricity of  Ariel. Compare with average initial eccentricities, given in Table III. It is possible for 
the average final eccentricity of  Umbriel to be higher than the average value before the resonance is 
encountered. 



PASSAGE THROUGH 5:3 URANIAN RESONANCE 211 

20.0 a 

15.0 

10.0 

5.0 

0 0.5 1.0 
i 
1.5 210 215 310 3.5 

A8 

20.0 

15.0 [ b 
i0.0 

5.0 

0.5 1.0 1.5 

A8 
210 215 310 3.5 

20.0 e 

15.0 

10.0 

5.0 

o ~ ' 1 ~  ~ ~ 
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

FIG. 27. A8 spent in the chaotic zone for escaping 
trajectories. (a)-(c) refer to Runs 3-5, respectively. 
A8 = 1.0 corresponds to 6.9 x 106 years of evolution 
for Q = 6600. Trajectories with higher initial eccentric- 
ities tend to spend more time in the chaotic zone. 

tered. This may be contrasted with the sin- 
gle resonance model in which the eccentric- 
ity after escape is always lower than the 
initial eccentricity. 

There is a tendency for the average final 
eccentricity of Ariel to be lower than that of 
Umbriel. This can be understood by exam- 
ining the structure of the sections corre- 
sponding to root families b and c (see Figs. 
4b,c and 5b,c). The trajectories escape into 
the quasiperiodic regions surrounding the 
fixed point associated with Mode I, which 
is near the origin in Ariel variables and near 
the boundary in Umbriel variables deter- 
mined by the energy integral. 

Figure 27 shows the distribution of times 
spent in the chaotic zone in terms of 8 for 
the escaping trajectories. For Q = 6600, 
A6 = 1.0 corresponds to about 6.9 × 10 6 

years. There is a trend, with increasing ini- 
tial eccentricity, for the distribution to 
spread out and for escaping trajectories to 
spend more time in the chaotic zone. 

Figure 28 shows the distributions of max- 
imum eccentricities in the chaotic zone for 
the escaping trajectories. There is a correla- 
tion between the length of time spent in the 
chaotic zone and the maximum eccentricity 
achieved--corresponding essentially to the 
upper "envelope"  of eccentricity in the 
chaotic zones in Figs. 19-23. The trajecto- 
ries travel up the chaotic zone to higher and 
higher eccentricities. The largest eccentric- 
ity reached in any of the escaping trajecto- 
ries was the maximum of the trajectory in 
Fig. 22, approximately 0.023. 

Note that some of the trajectories in 
Runs 4 and 5 (see Figs. 16 and 17) are still 
chaotic at the end of the run. When further 
evolved, none of these trajectories es- 
caped. 

nal eccentricities after escape from the res- 
onance. Note that in some cases the aver- 
age final eccentricity of Umbriel after 
escape from the resonance is higher than 
the value before the resonance was encoun- 

5. DISCUSSION 

Well before they encounter the 5 : 3 reso- 
nance, the orbital evolution of Ariel and 
Umbriel is dominated by their mutual secu- 
lar perturbations. The eccentricities of the 
satellites oscillate between minimum and 
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FIG. 28. Maximum eccentricities in chaotic zone. (a) and (b) refer to Run 3, (c) and (d) to Run 4, and 
(e) and (f) to Run 5. The maximum eccentricities of the two satellites in the chaotic zone tend to be 
comparable. 

maximum values determined by the relative 
strengths of  the two normal modes.  The 
variations are quasiperiodic, with two fun- 
damental frequencies associated with the 
modes,  and with high-frequency perturba- 
tions superimposed. The semimajor axes 
slowly increase due to tidal dissipation in 
Uranus. The orbit of  Ariel expands more 

rapidly than that of  Umbriel, and as they 
approach the 5 : 3  mean-motion commen- 
surability resonant perturbations become 
stronger. One of  the secular modes  eventu- 
ally becomes  unstable, and the system en- 
ters a large chaotic zone.  Further tidal dis- 
sipation within Uranus may drive the 
eccentricities up the chaotic zone  to rela- 
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tively high values. They may then either 
escape or be captured into resonance. 

When the system enters the chaotic 
zone, a new low-eccentricity region of 
phase space is made accessible to the sys- 
tem. While in the chaotic zone, the system 
spends time in both regions of phase space, 
and the eccentricities irregularly alternate 
between high and low values. If the system 
is caught in the circulating quasiperiodic re- 
gion in the low eccentricity region of phase 
space, it escapes from the resonance, and 
the orbits continue to differentially expand 
due to dissipation in Uranus. The average 
eccentricities after escape from the reso- 
nance tend to be lower than the values be- 
fore the resonance is encountered, but in 
some cases the average eccentricity of Um- 
briel increases, a phenomenon not pre- 
dicted by the standard single resonance the- 
ory of evolution through resonances. It 
may also be possible for the system to be 
temporarily captured into a librating island 
during passage through the resonance (see 
Section 4.2), with the result that the aver- 
age eccentricities after escape from the res- 
onance could be significantly higher than 
the values before the resonance is encoun- 
tered. After escaping from the resonance, 
the evolution of the orbits is again domi- 
nated by their mutual secular perturbations, 
and the eccentricities slowly damp due to 
tidal dissipation within the satellites. 

If the system does not escape, the energy 
surface divides into two separate regions. 
When this happens, the system is captured 
into resonance, even though the trajectory 
may still be chaotic. Initially, only o'u li- 
brates, and tidal dissipation drives the or- 
bit of Umbriel to higher eccentricity. The 
trajectory becomes quasiperiodic at some 
point. Eventually, O'A may also be trapped 
into a librating state, and the eccentricity 
of Ariel is also driven to high values. Both 
orbits are then captured into the resonance. 

The outcome of resonance passage does 
not depend simply on the mean eccentrici- 
ties; the individual amplitudes of the secu- 
lar modes appear to play a significant role. 

The probability of escape is higher for 
larger initial average eccentricities, but also 
depends on which secular mode is stronger. 
Since the satellites are not presently in the 
resonance, they must have escaped. It ap- 
pears that in order for the probability of es- 
cape to have been significant, the average 
eccentricities before the resonance was en- 
countered were probably higher than cur- 
rent values. The largest increases in ec- 
centricity occur when the trajectory is 
temporarily captured into quasiperiodic li- 
bration during evolution through the reso- 
nance. 

The relatively high current eccentricities 
must be explained. For the highest dynami- 
cally allowed rate of tidal dissipation in 
Uranus (Q = 6600), the time since reso- 
nance passage is about 3 × l08 years. For 
the lowest rate of tidal dissipation in 
Uranus which allows Ariel and Umbriel to 
encounter this commensurability, the time 
since resonance passage is of order 4 × 109 
years. As discussed in Section 4. l, the time 
scales of direct tidal damping of the satellite 
eccentricities are about l08 years for Ariel 
and about 10 9 years for Umbriel. After es- 
cape from the resonance, the eccentricity 
of Ariel tends to be smaller than that of 
Umbriel, which is also the case at the 
present time. If the rate of tidal dissipation 
is near the maximum dynamically allowed 
value, the damping time scale for Umbriel 
is about a factor of 3 longer than the time 
since resonance passage, and that of Ariel 
is about a factor of 3 smaller. This indicates 
that the eccentricity of Umbriel has proba- 
bly not changed significantly since reso- 
nance passage, and that the eccentricity of 
Ariel, which was probably lower than that 
of Umbriel immediately after escape from 
the resonance, has damped to still lower 
values, but not necessarily to negligible val- 
ues, which is consistent with the current 
observations. The run with outcomes most 
closely resembling the current physical 
configuration is Run 3 (Fig. 15). The current 
relatively high eccentricities, then, are rem- 
nants of relatively high eccentricities after 
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passage through the resonance. Of course, 
the average eccentricities of the satellites 
for the initial conditions of Run 3 (eA ----- 0.01 
and eu -~ 0.003) are quite high, so the prob- 
lem is not really solved. We still require 
some mechanism to provide the satellites 
with high eccentricities before the reso- 
nance is encountered, unless the temporary 
capture into a quasiperiodic librating state 
occurred. In this case a trajectory ap- 
proaching the resonance with low eccen- 
tricities could escape from the resonance 
with significantly higher eccentricities. It is 
difficult to determine if this happened to 
Ariel and Umbriel, but it is a tantalizing 
possibility. On the basis of our numerical 
experiments, temporary quasiperiodic cap- 
ture seems to occur with relatively low 
probability. We point out, though, that our 
single run with 9~ = 3300 showed this phe- 
nomenon. 

If the rate of tidal dissipation in Uranus is 
near the minimum value which allows pas- 
sage through this resonance (Q = 100,000), 
then the damping time scale for Umbriel is 
about a factor of 4 smaller than the time 
since resonance passage, and that of Ariel 
is about a factor of 40 smaller. In this case, 
the eccentricities would have damped sig- 
nificantly since passage through the reso- 
nance. Since the present eccentricities are 
high, this seems to argue for a Q of Ura- 
nus closer to the minimum allowed 
value. 

Although Ariel and Umbriel have similar 
masses and radii (see Table I), the surfaces 
of the two satellites are quite different. 
Ariel has had a geologically active past 
(Smith et  al. 1986, Plescia 1987), with 
faults, fractures, and flow features remain- 
ing on its surface. Umbriel presents a 
bland, heavily cratered, primitive surface. 
The density of Ariel is 1.66 -+ 0.30 g cm 1 
(Stone and Miner 1986). If the interior is 
differentiated, it will have a rocky core 
(p ~ 3.0 g cm -l) about 0.7RA in radius, sur- 
rounded by an icy mantle. If the mantle is 
solid, the rate of heat conduction through 
the mantle can be approximated by 

d E  k4rrR2 a A T  
dt  - A R '  (25) 

where k is the thermal conductivity of ice, 
RA is the radius of Ariel, A T is the differ- 
ence in temperature between the base of the 
mantle and the surface, and AR is the man- 
tie thickness. If the bottom of the mantle is 
maintained just below the melting tempera- 
ture of 273 ° K, conduction through a rigid 
ice mantle can remove approximately 1017 

ergs/sec of thermal energy. This is approxi- 
mately the thermal energy that would be 
released by radioactive decay of materials 
in the core with chondritic abundances, 
with an energy production of about l0  -7 

ergs g-~ sec -1 (Kaula 1968). It is also equiv- 
alent to the tidal heating produced if the 
eccentricity of Ariel is about 0.03, using the 
expression for the energy dissipation in a 
synchronously rotating satellite (e.g. Peale 
1988): 

dEi _ 21 3 5 k 2 i M n i R i  e2 i (26) 
dt  2 a 3 Qi 

with reasonable physical parameters for 
Ariel (see Table I). If the energy input to 
the interior exceeds this rate, the tempera- 
ture at the base of the mantle can exceed 
the melting temperature. The mantle can 
become unstable to solid state convection 
(see Reynolds and Cassen 1979). The 
steady state configuration for the mantle in 
this case is a convecting solid layer topped 
by a rigid surface layer. This configuration 
is capable of removing heat at a signifi- 
cantly higher rate than the conducting con- 
figuration, and can still remain mostly solid. 

Peale (1988) estimates that the solid state 
convection process could remove up to ap- 
proximately 7 × 1017 ergs/sec of thermal en- 
ergy from the interior of Ariel. The equiva- 
lent tidal dissipation rate in the satellite 
would result if the eccentricity of Ariel was 
about 0.09 at the 5 : 3 resonance, not taking 
into consideration possible enhancement 
due to radioactive decay in the interior. A 
higher eccentricity would result in large- 
scale melting of the interior of Ariel. The 
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maximum eccentricity reached by Ariel in 
this study for an escaping trajectory is ap- 
proximately 0.023. Considering our results 
in the planar approximation, it seems un- 
likely that passage through the 5:3 reso- 
nance alone could have melted the interior 
of Ariel. Furthermore, the rate of energy 
dissipation in Ariel equals the energy input 
to the orbit due to dissipation in Uranus for 
an eccentricity of about 0.05 (for Q = 6600). 
This provides an upper limit on the eccen- 
tricity that can be maintained through tidal 
evolution of the orbit, assuming that an 
equilibrium configuration is achieved by the 
system. Since this eccentricity is lower 
than that estimated for the melting of the 
interior of Ariel, the eccentricity of Ariel 
may never reach the value required for 
melting. Umbriel is clearly not thermally af- 
fected by passage through the resonance-- 
it requires an eccentricity of about four 
times that of Ariel for an equivalent tidal 
thermal input. 

The Hamiltonian studied in this project 
neglects dissipation in the satellite during 
the relatively brief period of resonance pas- 
sage. The damping of the eccentricities can 
slow down the rate of evolution of 8, as well 
as directly affecting the xi and y;. A possible 
consequence is that the system could have 
remained in the chaotic zone for a longer 
period of time and may have reached higher 
eccentricities before escaping. 

The inclinations were also neglected. 
Lowest order terms in the disturbing func- 
tion for inclination involve terms of order 
sin 2 (I/2), where I is the mutual inclination 
of the two orbits. For current values of the 
inclinations, this quantity is of the same or- 
der as e 2. Therefore, the inclination terms 
could have contributed significantly to the 
evolution of the system. It has been found 
(Wisdom 1983, 1987) that in the case of res- 
onant asteroid motion, including inclination 
terms can lead to much higher eccentrici- 
ties than in the planar case. A similar quali- 
tative change in the behavior of this system 
may result. 

The passage of Ariel and Umbriel 

through the 5:3 mean-motion commensu- 
rability is significantly affected by the pres- 
ence of a large chaotic zone. The mecha- 
nism of capture is qualitatively different 
from the isolated resonance capture mecha- 
nism. Relatively large eccentricities are ob- 
tained while the trajectory is chaotic even if 
the trajectory ultimately escapes. Peak ec- 
centricities for escaping trajectories are 
typically of order two to three times the 
initial eccentricities. Eccentricity increases 
large enough to have a significant affect on 
the thermal history of Ariel have not been 
found in this study. 

6. APPENDIX I 
6.1. A v e r a g e d  Planar  Hami l ton ian  

The problem to be considered is the pla- 
nar Ariel-Umbriel system near the 5:3 
mean-motion commensurability. The Ham- 
iltonian of this system can be written 

= ~K + ~o + ~s + ~R, (27) 

where ~K is the sum of the unperturbed 
Keplerian terms, ~o is the perturbation due 
to the oblateness of Uranus, ~s is the per- 
turbation due to the secular interaction be- 
tween the satellites, and ~R is the per- 
turbation due to the resonant interaction 
between the satellites. In the following de- 
velopment, subscript A refers to Ariel and 
subscript U to Umbriel. 

Expressing the contributions in terms of 
Keplerian elements, were ai is the semima- 
jor axis, ei is the eccentricity, hi is the mean 
longitude, and o3i is the longitude of perihe- 
lion, 

~K = - GMm-----b-A - G M m u .  (28) 
2aA 2au 

Keeping only the J2 terms to second or- 
der in eccentricity in the expression of the 
potential for an oblate planet, 

GMmAj2(R)Z [1 + 3 e ~ ]  
~/~O -- 2aA 

G M m u  R 2 3 e~ ],j 

(29) 
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and f rom the express ion for the disturbing 
function, 

~ s -  

and 

G m h m u [ ( 1 ) ( o ) + ( 2 ) ( o ) ( 2 ) 2  
a u  

eA etJ ] 
+ (21) (-1) -~- -~- cos (O3A -- O3u) (30) 

G m A m u  
~tf~ R -- a u  

x [(172)(5) ( 2 )  2 cos(5hu - 3hA-- 203A) 

CA dU 
+ 082)  (4) ~ - -~ -cos (5hu  - 3hA -- OSA -- a3U) 

+(192)  t3) ( 2 )  2 cos(5h U - 3hA-- 2O5u)], 

(31) 

where  (see Lever r ie r  1855) 

1 
(1)(°) = 5 b°/2(a) 

d 2 
d 1 °t 2 bO/2(ot) {2)(0)  = + 

(3)(0) = (2)(0) 

d 
(21) (-l) = 2b[/z(a) - 2a ~ bl/2(oO 

d 2 
-- 0~2 ~ 2  bl/2(°/) 

(172) (5) = b~/2(a) + 9a  ~ b~/2(a) 

d E 
1 a2 b~/2(a) 

d 
(182) (4) = - 7 2 b 4 / z ( O t )  - 18a ~ b4 /2 (a )  

d E 
__ a2 ~ 2  bl4/2(°0 

(192) (3) = b3/2(ot) + 9a ~aa b~/2(00 

I d 2 
Ot E - -  b3/2(o0 (32) 

+ ~ dot 2 

and a is the ratio of  semimajor  axes,  and 
b](a) are Laplace  coefficients. 

Near  the resonance,  the evolution of ei 
and o3i is dominated by the low-frequency 
perturbat ions,  with frequencies associated 
with changes in the resonant  combinat ion 
of  mean longitudes 5Xu - 3hA and the longi- 
tudes of  per icenter  o3i. The high-frequency 
contributions associated with the motions 
of  the mean anomalies  and with other 
nonresonant  combinat ions of  the mean 
anomalies  are removed  by averaging. 
The Delaunay momen ta  Li ~ mi GVG-M-a~ 
and Gi = LiX/1 - e 2 are conjugate to the 
mean anomalies  and arguments  of  pericen- 
ter, respect ively.  Canonical  Poincar6 ele- 
ments  are defined as the coordinate  angles 
hi  = li + ~ i ,  which are conjugate to L~ = L i ,  

and o~ji = -a3~, which are conjugate to pli = 
Li - G i .  We use the generating function 

1 
F = ~ (5hE - 3hA + 2CO1A)~A 

1 
+ ~ ( 5 h u -  3hA + 2Oglu)~u 

+ hAF A + JkuF U (33) 

to obtain the new resonance coordinates 

1 
O'A = ~ (5hU -- 3hA + 2091A) 

1 
Cru = ~ (5hu - 3hA + 2(olU) (34) 

which together  with YA = hA and Yu = hu 
form a complete  set of  generalized coordi- 
nates. 

The momen ta  conjugate to era and cru are 

~A ~--- PlA = L~ - GA 

Eu = plu = L{j - Gu.  (35) 

The momen ta  conjugate to Ya and Yu 
form two integrals of  motion,  since in the 
new variables the resonant  Hamil tonian is 
cyclic in these variables.  These resonance 
integrals are 

3 
FA = L~ + ~ (EA + EU) 

5 
Fu = L{j - ~ (EA + Eu). (36) 
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Note  that Ei  ~ F;e~/2. The lowest order 
terms in the disturbing function which influ- 
ence the evolution of  the eccentricities and 
pericenter longitudes are of  order e 2. The 
Hamiltonian is now expanded in powers of 
~,i/Fi to this order, and constant terms are 
removed. The resulting expression in terms 
of  the new coordinates is 

= 2A(EA + Eu) + 4B(EA + Eu) 2 

+ 2C]~A + 2DEu 

+ 2EX/~,AEU COS(OrA -- O'U) 
+ 2F.~A COS(20"A) 

+ 2GV',~AvZU COS(O'A + O-U) 
+ 2HEu COS(2O'u), (37) 

where 

3 GZMZm~m'A 5 G2MZm~m{j 
A -  + 

4 F 3 4 F 3 

27 G2M2mZm'A 75 G2MZm~jm{j 
B _ 

32 F 4 32 r 4 

1 [.15m4m~ 3 6m4m~, 3] 
C = -~ G4M4RZj2 I_ 2r~, I'~ J 

G2MrnAm2orn~j [ 5 
+ 4r~ ~ b°/2(~) 

d mu m~ (3FA 5 F ~  (2) (°)] 
+ ~ b°/z(u) m~ m-~a \~,2,- u + F 3 / - ---F-A-a J 

I [6m4m~ 3 9m4m~ 3] 
D = ~ G4M4R2J2 L G ~ j 

G2Mmam2mu I 5 
+ 4F~j Fu b°/2(°0 

d mu m{s (3FA 5 F ~  (3) (°)] 
+ ~ b°/2(c0 m---~ m--~A \~-U + F 3 / - - ~ u J  

E = _ 

F = _ 

G2MmAm~jm{; 
(21)(-~) 

4r~ FvT-2-~AF% 
GZMmAmZm{j 

4F~FA (172)(5) 

GZMmAm~m{j 
4F2u FV/-~AF~ (182)(4) G = _ 

H = - GZMmAm2mo 
4F 3 (192) (3) (38) 

where the m" are reduced masses in the 
Jacobi coordinate system (see, e.g., Plum- 
mer 1960). 

Finally, the transformation to canonical 
coordinates 

Yi = ~ sin(o-i) ~ ei ~ i i  sin(o-i) (39) 

and the conjugate momenta  

Xi : ~ COS(O'i) ~ ei ~ i i  COS(O'i) (40) 
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is made,  resulting in the final form of  the 
Hamil tonian,  

I 
= ~ ( 3 - - 2 ( C + D ) ) ( X 2 A + y e A + x  2 + y~)  

9 9 9 
+ B(xeA + Y'A + X 2 + Yb)" 

+ C(XA + yeA) + D ( x ~  + y 2 )  

+ E(XAXU + YAYu) + F ( x  2 - YeA) 

+ G ( X A X U  --  YAYu) + H ( x  2 - Yu) ,  

(41) 

which has 2 degrees  of  f reedom. 
The units chosen are as follows: distance 

is measured  in units of  the radius of  Uranus 
B, mass  is measured  in units of  the mass of  
Uranus  M, and time is measured  in years.  
The coefficients were evaluated at 8 = 0 for 
ei = 0 and av  = 10.0703R. (The semimajor  
axis at resonance  encounter  is au = 
10.1353. This should properly have been 
used in the evaluation of the coefficients; 
the differences are not significant.) The nu- 
merical  values for  the coefficients thus ob- 
tained are 

B = -2632.82 

C = -0.0803237 

D = -0.0477658 

E = 0.0109693 

F = -0.0319666 

G = 0.0797229 

H = -0.0493825 (42) 

and the integrals of  motion are 

FA = 0.742492 

Fu = 0.834860. (43) 

The state of  a sys tem is determined by its 
coordinates xi and Yi and the two parame-  
ters 8 and the numerical  value of  the Hamil-  
tonian %. 

7. APPENDIX II 

PLANAR MAPPING 

In developing the algebraic mapping,  Eq. 
(37) is rewrit ten 

= 2A(EA + Eu) + 4B(EA + ,~.~U) 2 q- 2C,~,A + 2DEu 

+ 2E X/~AvZU COS(O'A -- O'U) ~ COS n ( ~ t  -- thl) 

+ 2F.~A COS(20"A) ~ COS n( l ) t  -- oh2) 

+ 2G X/~A~ U COS(irA + tru) ~ COS n(f~t -- ~b3) 
n = - - z ¢  

+ 2H~;u cos(2cru) ~ cos n ( ~ t  - 4~4)- (44) 

Express ing the cosine terms using the Fourier  representat ion of the Dirac delta function 
yields 

~t~ = 2A(]~A + ]~U) + 4B(~A + ~U) 2 + 2C~A + 2D~u 

+ 2E V'~£A~U COS(CA - tru)2"n'ST(l)t -- ~bl) 

+ 2F~A COS(2trA)27r3T(l)t -- ~b2) 

+ 2G ~'/,~A~-~U COS(O" A q- O'U) 27r3T(D,t -- qb3) 

+ 2H~,u COS(2tru)2~'3T(D,t -- 4)4). (45) 
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This form allows us to integrate the an- 
gle-dependent terms at singular points, and 
integrate the contributions from the other 
terms between them. The delta functions 
are periodic in T = 2rr/l~, which becomes  
one cycle of  the mapping. During one map- 
ping cycle, the delta functions are inte- 
grated at times related to the phases ~bi, and 
between them the secular terms are inte- 
grated. These integrations are all performed 
analytically. 

Since the new high-frequency terms are 
not directly related to those removed by av- 
eraging, the choice of  the mapping fre- 
quency 12 and the phases ~b~ is largely arbi- 
trary. However ,  for the mapping to be 
valid, 12 must be much higher than the long- 
period frequencies,  which are of  order 10 -4 
of  the orbital frequencies.  An ~ = 20 year -j 
has been found to be suitable for most pur- 
poses.  This is of  order a few hundred times 

the secular frequencies in this problem. We 
have chosen ~bl = 0, ~b2 = 6])4 = 7]'/4 (since 
these two are independent),  and ~bs = 7r/2. 

A full mapping cycle involves the follow- 
ing steps, starting with coordinates ~0) . ~0) -~A , YA , 
x~ ), and y~): 

Step 1. Integrate across first delta func- 
tion a t t  = t~ 

1~) : x~) cos (-~-~ ---E) - y~) sin ( - ~  --E) 

y(~)= y ~ ) c o s  (2__~_)+ x~ ) sin (_~___E) 

x~) : x~' cos (-~--E) - y~) sin ( - ~  E) 

y ~ ) = y ~ ) c o s  + s i n ( ~  --E) 

(46) 

Step 2. Integrate secular part from t = t~ 
to t = t2 = tl + ¢~2/~~ 

-y~)  sin {[~ 

y~) = y~) cos {[~ + 

- x~) sin {[ ~ 

x ~ : x ~ ' c o s { [ ~ -  

- y~) sin (I- ~ 

y~) = y~J) COS {[~ - 

(C - D) + 4B(x~ )2 + y(~)2 + XiJ)2 + 

+ (C - D) + 4B(x~ )2 + y~)2 + x~j)2 

( C  - D )  + 4 B ( x ~  )2 + y~)2 + x~j)2 + 

+ (C - D) + 4B(x~ )2 + y~)Z + x~)2 

(C - D) + 4B(x(~ )2 + y~)2 + X~)2 "1- 

- (C - D) + 4B(x~ )2 + y~)2 + x~})2 

(C - D) + 4B(x~ )z + y~)2 + x}J)z + 

+ y~)2)](~2 ~ ~bl)) 
y~'2)] (562 ~ ~b') ] 
+ y~)2)](~2 ~ q~|)} 
y~)2)l (~b2 ~ ~b') } 

+ x~, sin IF~-  ~ c - " +  4,~x~,2 + y~,2+ x~,2+ y~,2,](~2 - ~ , ) )  ~47~ 

Step 3. Integrate across second and fourth delta function at t = t2 = ~ / l )  

. (2) 1 (e4~rF/l I e_4,rF/fl ) X(~) = X(~) ( e4rrr/o + e-4~rF/n) + YA ~ 

y~) = y(~) 21 (e4wF/~ + e-4~rF/Yt) + -~A'(2) 21 (ea~.F/l) _ e_4~F/l.~) 

X~ ) : X~ ) "21 (e4~rH/~ + e_4rrH/l~) + y~) ~l (e47rH/fl _ e_4~H/~) 

1 (e4~S.s/~ e_4~,H/n ) x~ ) ~ - (48) y~) = y~).~ + + I (e4rrH/s q e_4rrH/O). 
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Step 4. Integrate secular part between t2 Step 5. Integrate across third delta func- 
and t = t3 = t2 + (~b3 - ~bz)/fL tion at t = t3 = ~b3/ft 

X(SA ) = X(~) ~l (e4~rG/f ~ + e_4~rG/ll) + y~j) -21 (e47rG/f ~ _ e_4rrG/ll) 

I (e4rrG/f t + e_4rrG/~ ) + X~j) 1 (ea~.G/f~ _ e_4~G/fz ) Y(~) = Y(~) 5 

X~j) = X~j) ~1 (e4~rG/~ l + e_47rG/ll) + y(~) -21 (e47rG/l I _ e 4,,a/n) 

y~j) = y~)_~l (e47rG/l I + e_4~rG/O ) + X(~) "21 (e4rG/f~ _ e_47rG/a). (49) 

Step 6. Integrate secular part between t3 
and t = t4 = to + 2~-/11. This full cycle of the 
mapping iterates all coordinates forward in 
time by one mapping period T = 27r/~. 

If  tidal dissipation is included, the map- 
ping becomes explicitly time dependent  
through 8 (0  and also through a slightly 
more complicated secular evolution. The 
secular evolution is integrated assuming a 
linear dependence  of  8 on time. 

Since the mapping includes high-fre- 
quency perturbations,  the averaged Hamil- 
tonian is no longer a conserved quantity. 
We require a conserved quantity corre- 
sponding to the energy for the analysis of  
Section 4.2. In addition, if the mapping is 
used to compute  a surface of section ac- 
cording to the standard criteria for the aver- 
aged Hamiltonian, there will be a slight dis- 
tortion due to the difference between the 
mapping coordinates and the averaged co- 
ordinates. For  these reasons, we have used 
perturbation theory to transform from map- 
ping coordinates to averaged coordinates,  

by removing the new high-frequency per- 
turbations (see Wisdom and Tit temore 
1987). 

We use a Von Zeipel transformation to 
go from mapping coordinates to averaged 
coordinates,  using the generating function 

F = ~. "£1o'i + l~S(Y.~,o'i,t) (50) 
i 

and the transformation to first order  in/~ 

OS 

OS 
~r~ = o-i + tx ~ (51) 

The Hamiltonian (44) can be expressed 

~(~ = ~0(~i)  + #~1(~ i ,O ' i )  + tx~fCl(~'i,O'i,t), 
(52) 

where ~ contains t ime-dependent  terms 
(n 4= 0) in Eq. (44). 

To first order  i n / , ,  this Hamiltonian be- 
comes 

OS 
" t t 

~ '  = ~ (~0(~ i (~ / ) )  q- / / , ~ 1 ( ~ / , 0 " / )  q- p~3~l(Y2i,o'i,t) + t x - ~  

OS 
- -  - t r 

= ~o(YZ) + t~1(~2'~,o -') + tXTel('£i,o-i,t) + t~ i f~ 

1 + ~  ~ + ( C - D ) + 8 B ( X ; + X b )  

1 + ~  ~ - (C-D)+88( :~ ;+Xb)  • 

S is chosen to eliminate t ime-dependent terms, so that 

(53) 
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OS - t ! #~l(Xi,~r~,t) + jz 

+ /x acr-----~a 2 + (C - D) + 8B(E~, + E{j) 

+ / ~  ~ - ( C - D )  + 8 B ( E ~ + E ~ )  = 0 .  

221 

(54) 

~ l  = ~ Aij  Cos(io'A + jCru) ~ COS n ( l ) t  - ¢ ~ i j )  
i j  n 4 : O  

then 

= ~ A i j ~  Cos(i(rA + jtru) + n( l ) t  -- d~ij)) 
O n4:0 

S = - ~ ,  Aij  ~ sin(io'A + jo'u + n(~)t + rhij)) 
ij .4-0 Z + n ~  

or 

S = - 2EVEkEb [K(1,-1) sin(~k - ~b) + L(1,-1) cos(~k - ~b)] 
- 2F£~ [K(2,0) s i n (2~ )  + L(2,0) cos(2w~)] 

- 2G~/E~Ef2 [K(I,1) s i n ( ~  + ~f~) + L(1,1) cos(w~ + ~ ) ]  
- 2HE~ [K(0,2) s i n (2~ )  + L(0,2) cos(2~f~)] 

with the functions 

7r cos(z / f~)( l~t  - ~bii - ¢r) 
K ( i , j )  = ~ sin(Z/~)Tr 

Ir s in(z/ f~)( l~t  - chi j - rr) 
L ( i , j )  = - ~ sin(Z/l~)Tr 

evaluated at t = 27r/fL where 

Z =  i ~ +  ( C - D )  + 8B(Y~,+ E~) 

- j [ ~ - ( C - D )  

1 
Z 

(55) 

(56) 

(57) 

(58) 

+ 8B(~£~, + Eb)] (59) 

and i a n d j  refer, respectively, to the coeffi- 
cients of CrA and tru. thij are the phases from 
Eq. (44). 

To first order in /~, the transformation 
from map coordinates to averaged coordi- 
nates is just 

1 as /a~q[x?  
xV = ( l - ~ ~---ET-, / 

1 a s / a < ) [  m 
yaV = (1 -- ~ / . 6 T / L y  i 

cos (/z ~-~.)-  ym sin (/x ~-~i)] 

cos (/~ ~ ) +  xT' sin (/x ~ ) ]  (60) 
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which is a slight rotation and change of 
scale. 

8. APPENDIX III 

STANDARD THEORY OF EVOLUTION 

THROUGH RESONANCES 

In this appendix we shall examine evolu- 
tion into two of the second-order reso- 
nances at the 5 : 3 Ariel-Umbriel commen- 
surability. We treat for the moment these 
resonances as isolated resonances in order 
to verify that our numerical methods are in 
satisfactory agreement with the results of 
the isolated single resonance model when 
the model is applicable. We emphasize that 
this is being undertaken only to verify our 
methods; the actual dynamics near the 5 : 3 
commensurability are much more compli- 
cated, with the presence of large chaotic 
zones in the phase space, and the single 
resonance model is not applicable. 

8.1. Adiabatic Invariance 

The theory of adiabatic invariance can be 
used to completely specify the evolution of 
a one degree of freedom Hamiltonian prob- 
lem with a slowly varying parameter 6, in 
the absence of infinite period orbits (separa- 
trices) and/or chaotic zones. (Because of 
the time dependence of the parameter 8 the 
problem is nonautonomous and separa- 
trices and chaotic zones are strictly speak- 
ing practically everywhere, though most 
are too small to be important (see Chirikov 
1979).) For a one degree of freedom prob- 
lem the adiabatic invariant is, to first order, 
the action J, which is defined for fixed 8 in 
terms of generalized canonical coordinates 
p and q as 

/ ,  

J = ~ pdq (61) 

or the area on the phase plane enclosed by 
the trajectory. For fixed 8 the action is 
strictly conserved since trajectories follow 
level curves of the Hamiltonian for a one 
degree of freedom system. In action angle 
variables, the Hamiltonian is cyclic in the 

angle conjugate to the action: 

~(p,q;8) ~ ~(J ;8) .  (62) 

Evolution of the parameter 8 at some 
slow rate ~ = e can be considered a pertur- 
bation on the motion. By transforming to 
action-angle coordinates and averaging 
over the period of motion on the trajectory, 
which is in general much shorter than the 
time scale of the evolution of 8, it can be 
shown that the action is to first order invari- 
ant (see, e.g., Born 1960, Arnold 1978, Lan- 
dau and Lifshitz 1978). It has also been 
shown that there is an adiabatic invariant to 
all orders in e, if e is sufficiently small 
(Lenard 1959, Kruskal 1962, Arnold 1963). 
To first order then the evolution of the en- 
ergy depends only on the form in which 8 
appears in the Hamiltonian in action angle 
variables: 

~( t )  = ~(6(t)).  (63) 

The evolution of trajectories defined by the 
Hamiltonian as 8 varies can be viewed as 
slow changes in the level curves of ~,  
maintaining constant area on the phase 
plane. 

The standard theory of evolution through 
resonances (Goldreich and Peale 1966, 
Yoder 1979, Henrard 1982, 1987, Henrard 
and Lemaitre 1983, Borderies and 
Goldreich 1984, Lemaitre 1984, Peale 1986) 
treats the resonances arising from a com- 
mensurability independently. This approxi- 
mation may be valid for mean-motion reso- 
nances, for instance, if the Jz of the planet 
is large, and has been successfully applied 
to J : J + 1 resonant motions in the satellite 
system of Saturn (Yoder 1979, Peale 1976, 
Henrard and Lemaitre 1983). 

We consider here two of the second-or- 
der eccentricity resonances at the 5:3 
Ariel-Umbriel commensurability: the reso- 
nance proportional to the square of the ec- 
centricity of Ariel and the resonance pro- 
portional to he square of the eccentricity of 
Umbriel. The Hamiltonians for these two 
resonances, artificially treated as though 
they are isolated, are 
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~A = ~ +  ( C - D )  E A +  4BE 2 +  2FEACOS(20"A) 

=-~ ~ + ( C - D )  (x 2 + y~) + B(x 2 +y2)2 + F(x 2 _ y 2 )  

E 1 ~ u  = ~ -  ( C - D )  Xu + 4BX 2 + 2HXucos(2o-u) 

=-~ ~ -  ( C -  D) (x~ + y~) + B(x~ + y~)2 + H(x~ - y~) 
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(64) 

(65) 

These can be derived by removing the cou- 
pling terms from the full Hamiltonian (6) 
and (9). These are both one degree of free- 
dom problems, and are therefore integra- 
ble. The mixed second-order  resonance 
could of course be treated in a similar man- 
ner, but will not be considered here. 

The structure of  the level curves of  the 
Hamiltonian for second-order  resonances is 
well known. Figure 29 illustrates the level 
curves of  these systems for various fixed 
values of  3, computed with the mapping. 
For  large negative 3, or before the reso- 
nance is encountered,  the curves in xi, yi 
space are approximately concentric circles 
surrounding a stable fixed point at the ori- 
gin, and the eccentrici ty is approximately 
constant.  As the value of 3 is increased, 
curves near the origin become distorted in 
the y-direction. At a critical value of  3cj a 
period-2 bifurcation of  the fixed point oc- 
curs, and it becomes unstable. There are 
now two librating islands surrounding sta- 
ble fixed points on the y-axis, bounded by a 
separatrix with a "figure 8"  shape. As 3 
increases, these islands become larger. At a 
second critical value of  G2, another  bifurca- 
tion occurs  at the origin. The fixed point at 
the origin becomes stable again and is sur- 
rounded by concentr ic  level curves. Two 
unstable equilibria are emitted from the ori- 
gin. The separatrix now resembles two "ba- 
nanas"  joined at the " e n d s . "  Further  evo- 
lution of  3 results in these islands moving 
further from the origin, and the trajectories 
near the origin become more circular. Criti- 

cal values of 3 and coordinates of  stable and 
unstable fixed points are summarized in Ta- 
ble IV. 

For  the physical system trajectories en- 
counter  the resonance as 8 passes from 
large negative values through values near 
zero. The semimajor axis of  the inner satel- 
lite Ariel is increasing more rapidly than 
that of  Umbriel. The ratio of their semima- 
jor  axes, aA/au is increasing. For  this direc- 
tion of  passage through an isolated second- 
order  resonance the trajectory may be 
either captured into resonance or escape 

T A B L E  IV 

S I N G L E  R E S O N A N C E S  

Arie l  r e s o n a n c e  

8cl : - 2 ( C  - D )  + 4 F  = - 0 . 0 6 5  

8¢2 = - 2 ( C  - D )  - 4 F  = 0 .193  

U n s t a b l e  e q u i l i b r i a :  

x~ = 0 .0 ,  8c1 -< 8 < 8~2 

x~ = - [8 + 2 ( C - D )  + 4 F ]  
8B ' ~ => 8c2 

S t a b l e  e q u i l i b r i a :  

y2 = _ [8 + 2 ( C -  D )  - 4 F ]  
8 B  t 8 2> 8c I 

Umb r i e l  r e s o n a n c e  

8c~ = 2 ( C  - D )  + 4 H  = - 0 . 2 6 3  

8c2 = 2 ( C  - D )  - 4 H  = 0 .133  

U n s t a b l e  e q u i l i b r i a :  

x ~ = 0 . 0 ,  G l < - 8 < 8 ~ 2  

x2 2 = _ [8 - 2 ( C -  D )  + 4 H ]  
8B , 8 --> 8c2 

S t a b l e  e q u i l i b r i a :  

y~ = _ [ 8 -  2 ( C -  D ) -  4 H ]  
8B , 8 --> 8~t 
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FIG. 29. Level curves for the Ariel (e~) resonance, 
computed with the uncoupled mapping. (a) ~ = -0.5, 
(b) 8 = 0.15, (c) 8 = 0.5. 

from resonance.  If  the separatrix is encoun- 
tered with 8cl -< 8 -< ~c2 then capture is cer- 
tain. This occurs  for  trajectories with small 
eccentricity.  If  the separatrix is encoun- 
tered with larger values of  8 then the trajec- 
tory may either be captured or escape. The 
adiabatic invariance theory breaks down as 
the trajectory approaches the separatrix, 
since the period of  motion on the separatrix 

is infinite, and it is no longer proper  to 
average the evolution over  the libration 
period. The action (area inside a trajec- 
tory) changes discontinuously on passage 
through the separatrix, which can be seen 
on inspection of  Fig. 29. Trajectories which 
escape have lower eccentricities than they 
had approaching the resonance.  The eccen- 
tricities of  captured trajectories increase 
until the damping rate due to tidal dissipa- 
tion in the satellite becomes comparable to 
the input of  energy to the orbits. 

The evolution of  the energy (the numeri- 
cal value of  the Hamiltonian) of  a trajectory 
can be estimated from the eccentricity be- 
havior of  the various cases, summarized in 
Table IV. Interior to the resonance (8 ~ 0), 
the level curves are roughly circular, and 
adiabatic invariance of  the area enclosed 
by the curves results in the eccentricities 
remaining approximately constant as 8 
changes. Therefore  ~A and ~ v  are linearly 
proportional to 8, and the energies increase 
linearly with time. The same is true for tra- 
jectories which escape. The change in ec- 
centricity at the point of escape causes the 
slope of  ~i  to decrease discontinuously at 
the value of 8 where the separatrix is 
crossed. For  captured trajectories,  the ec- 
centricity increases approximately as 
The functions ~A and ~ u  are quartic in ec- 
centricity. Therefore ,  the energy increase is 
roughly quadratic in time. 

Evolution of  trajectories in 8, AE space 
for the single resonance Hamiltonians are 
much simpler than for the full resonant  
Hamiltonian. Since only two fates are pos- 
sible, trajectories will follow one of  only 
two branches in 8, b E  space for values of  6 
larger than that at which the separatrix is 
crossed. I f  the trajectory is captured into 
the resonance,  AE will increase linearly. If 
it escapes,  A E will decrease quadratically. 

The energies of  the separatrices for ~A 
and ~ u  are shown in Fig. 1. Expressions 
for these energies have been obtained by 
substituting the coordinates of  the unstable 
fixed points as a function of 8 (see Table IV) 
in Eqs. (64) and (65). 
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8.2. Capture Probabilities 

The determination of the fate of a given 
trajectory upon an encounter with an iso- 
lated resonance has been developed in a 
probabilistic approach based on the "bal- 
ance of energy" as the trajectory crosses 
the separatrix (Goldreich and Peale 1966, 
Counselman and Shapiro 1970, Yoder 1979, 
Henrard 1982, 1987, Henrard and Lemaitre 
1983, Borderies and Goldreich 1984, Le- 
maitre 1984). The balance of energy is de- 
fined as the difference between the change 
in energy of the trajectory and the change in 
energy of the separatrix in one cycle of the 
trajectory. 

The analytic theory of capture into reso- 
nance assumes a uniform distribution of 
trajectory energies just before separatrix 
crossing. These energies lie within a range 
corresponding to the energy balance of the 
outer separatrix B0. The probabilities of 
capture and escape depend on the magni- 
tude of the energy balance before transition 
across the separatrix Bi. A trajectory loses 
energy relative to the separatrix as it ap- 
proaches, since the separatrix gains energy 
quadratically with 8 and the trajectory gains 
energy only linearly with 8. Therefore, B0 is 
less than zero. Bi can be either positive or 
negative. If it is negative, the total relative 
change in energy is negative, and the trajec- 
tory continues losing energy with respect to 
the separatrix, and escapes. If Bi > 0, and 
Bi + Bo < 0,  the same thing happens. How- 
ever, if Bi + B0 > 0, and there is a net gain 
in relative energy, capture will occur. The 
outcome will depend on both the phase and 
energy of the trajectory relative to the sep- 
aratrix just before crossing. Since these 
are generally unknown, only an estimate of 
the likelihood of various outcomes can be 

made• Probabilities are assigned under the 
assumption that the energy of the physical 
system is equally likely to have been any- 
where within the balance of energy. Equiv- 
alently, probabilities are assigned by as- 
suming the actual system belongs to an 
ensemble of similar systems whose ener- 
gies are distributed uniformly over a range 
of energies comparable to the balance of 
energy. Probability of capture is then 

Bo + Bi 
Pc = - - ,  (66) 

B0 

where B0 and Bi are estimated at a given 
value of/5 by approximating the motion as 
motion on the separatrix. By distributing 
the energies of trajectories uniformly 
through the range B0, one should obtain a 
representative sample of trajectories with 
both fates. 

The balance of energy has been approxi- 
mated by Henrard (1987) as the rate of in- 
crease of the area in phase space enclosed 
by the separatrix at the value of 8 at which 
the trajectory crosses the separatrix: 

• O J* 
B = - 8  a---~' (67) 

where J* is the area enclosed by the sep- 
aratrix. The probability of capture, then, 
is the ratio of the rate of increase of the 
combined area of the libration islands to the 
rate of increase of the area enclosed by the 
outer boundary of the separatrix. This has a 
nice intuitive interpretation in terms of 
Liouville's theorem. 

When the standard theory is applied to 
the two J : J + 2 resonances in our problem 
treated individually, the probabilities of 
capture are 

2 
P A  = (68) 

1 + zr/(2 sin -l ( - 2 F / X / - F ( 8  + 2(C - D)))) 

for the Ariel resonance and 

2 
Pu = (69) 

1 + 7r/(2 sin -1 ( -2H/ 'X / -H(8  - 2(C - D)))) 
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for the Umbriel resonance.  The value of 8 
is that at which the trajectory crosses the 
separatrix. 

F o r - 2 ( C - D ) + 4 F _ 8 _ < - 2 ( C - D )  
- -4F,  PA= 1, a n d f o r 2 ( C - D ) + 4 H ~ 8  
--< 2(C - D) - 4H,  Pu = 1. For  larger val- 
ues of  8, the dependence  of  probability on 
eccentrici ty far from resonance can be 
found. The action of  a trajectory is to first 
order  adiabatically invariant until just  be- 
fore it crosses the separatrix. At this point, 
the action is approximately equal to the 
area enclosed by the outer  separatrix, for 
which analytic expressions can be found, 

, l - F ( 8  + 2(C - D) - 4 F  2) J~  2 
16B 2 

_ ( 8  + 2 ( C -  D)) [Tr 
4B L2 

+ sin-I X / - F ( 8  + 2(C - D)) , (70) 

for the Ariel resonance and 

, / - / - / ( 8  - 2(C - D) - 4H 2) 
J~j 2 

16B z 
(8 - 2(C - D)) [~r 

- 4B [ 2 

( )] + sin l X / - H ( 8  + 2 ( C -  D)) ' (71) 

for the Umbriel resonance.  
By considering the trajectories far from 

resonance to be approximately circular 
with actions Jr,' -- 2~rEio, and equating these 
with the above expressions,  the depen- 
dence of  capture probability on eccentricity 
far from resonance can be determined. Us- 
ing the above expressions,  eA < 0.00404 
and eu < 0.00474 for certain capture, in 
agreement with the calculations of Peale 
(1988). 

8.3. Numerical  Results 

We have applied the techniques used to 
study the full resonant  problem to a numeri- 
cal check of the formulas for the standard 
theory of passage through isolated reso- 
nances. We have numerically computed the 

probability function for a number of sets of 
100 trajectories,  the trajectories in each set 
having the same initial eccentricities, but 
different phases. Different sets have differ- 
ent initial eccentricities. The mapping (44) 
with all coupling terms set to zero was 
used. We have taken a number of steps to 
ensure that various sources of error  are un- 
der control.  

The values predicted for B0 are esti- 
mates. In order  to avoid possible "edge  ef- 
fec t s"  by under- or oversampling ranges of  
B0 which result in capture or escape,  and to 
ensure that the distribution of phases just  
before crossing the separatrix is uniform, 
we have randomly distributed initial ener- 
gies and phases far from resonance such 
that near the separatrix the spread in en- 
ergy is uniform across approximately 100 
times the energy balance of the outer sep- 
aratrix at the value of  8 at which it is pre- 
dicted to cross. This has taken into consid- 
eration the approximately linear spread in 
energies of  trajectories with slight initial 
differences over  the range of  8 between the 
initial value and the value at separatrix 
crossing. 

This initial spread in energies corre- 
sponds to a spread of  initial eccentricities. 
Because of the variation of  capture proba- 
bility with initial eccentricity in the single 
resonance model, trajectories at opposite 
ends of  the range of initial eccentricity have 
slightly different capture probabilities. This 
contributes some error to the estimate of 
the probability: 

APc = Aeo × °Pc l 
I 

0---~- I <e0>" (72) 

Since the probability function is known, 
the expected statistical fluctuation at any 
point on the function can be estimated us- 
ing binomial statistics: 

APe -- N (73) 

There is some uncertainty in exact values 
of  energy due to fluctuations in the mapping 
integral, which are approximately inversely 
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FIG. 30. Expected probability variations in single resonance capture probabilities. (a) Ariel (e~,) 
resonance, (b) Umbriel (e~) resonance. Solid line: expected statistical fluctuation for 100 trajectories. 
Points: initial spread of eccentricities multiplied by the slope of the probability function. 
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FIG. 31. Single resonance capture probabilities. (a) Ariel (e~) resonance, (b) Umbriel (e~j) resonance. 
Solid lines are theoretical predictions from the single-resonance theory. Data points are measured 
capture probabilities for ensembles of 100 trajectories evolved through the resonance with the uncou- 
pled mapping. The mapping method properly reproduces the capture probabilities within the range of 
eccentricities where the approximations concerning the tidal friction are valid (see Section 4.1). 

p ropor t iona l  to 12 th rough  the K and  L func-  
t ions  (58). 1~ = 80 yea r  -~ has b e e n  chosen  to 
keep the e r ror  less than  abou t  1%. 

Based  on  the above  d iscuss ion ,  the ex- 

pec ted  p robab i l i ty  errors  have b e e n  esti- 
mated .  These  are p lot ted  in Fig. 30 for the 
var ia t ion  over  the p robabi l i ty  func t ions  and  
for the stat is t ical  f luc tuat ions .  The  energy  
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error is less than about 1%. The statistical 
fluctuations dominate over most of the 
range except at the steepest parts of the 
probability functions. 

Numerical measurements of the capture 
probabilities for both resonances were com- 
puted by running sets of 100 trajectories 
through the resonance using the map, each 
with the aforementioned energy and phase 
spreads and (e0) = 0.0025, 0.005, 0.0075, 
0.01, 0.0125, 0.015, 0.0175, and 0.02. 
Results are plotted in Fig. 31, along with 
the predictions of the analytic theory. The 
agreement with the analytical predictions is 
very good. Measured errors are somewhat 
less than expected on the steep part of the 
probability function. 

The agreement between our numerical 
results for these single resonance problems 
and the expectations from the single reso- 
nance model give us confidence that our 
methods can be used to reliably examine 
the passage through the more complicated 
resonances considered in this paper. 
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