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Abstract

The Turing mechanism (Phil. Trans. R. Soc. B 237 (1952) 37) for the production of a broken spatial symmetry in an initially
homogeneous system of reacting and diffusing substances has attracted much interest as a potential model for certain aspects of
morphogenesis (Models of Biological Pattern Formation, Academic Press, London, 1982; Nature 376 (1995) 765) such as pre-
patterning in the embryo. The two features necessary for the formation of Turing patterns are short-range autocatalysis and long-
range inhibition (Kybernetik 12 (1972) 30) which usually only occur when the diffusion rate of the inhibitor is significantly greater
than that of the activator. This observation has sometimes been used to cast doubt on applicability of the Turing mechanism to
cellular patterning since many messenger molecules that diffuse between cells do so at more-or-less similar rates. Here we show that
Turing-type patterns will be able to robustly form under a wide variety of realistic physiological conditions though plausible
mechanisms of intra-cellular chemical communication without relying on differences in diffusion rates. In the mechanism we
propose, reactions occur within cells. Signal transduction leads to the production of messenger molecules, which diffuse between
cells at approximately equal rates, coupling the reactions occurring in different cells. These mechanisms also suggest how this

process can be controlled in a rather precise way by the genetic machinery of the cell.
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Keywords: Turing pattern; Signal transduction; Morphogen; Pattern formation; Morphogenesis; Reaction-diffusion

1. Introduction

Each cell in an organism contains an identical copy of
the full set of genetic material for that organism, yet a
brain cell is very different from a kidney cell. The vast
functional differences between cell types in a multi-
cellular organism are due to differences of gene
expression: some of the genes are turned on in every
cell, while others are turned on only in cells of a given
type. Other genes are designed to turn on and off
throughout the life of the cell, and do this in response to
specific internal signals or external stimuli. Most genes
in a cell are probably turned off most or all of the time.
Through modulation of the genetic “‘switches” occur-
ring at the transcriptional level, or further downstream
at the translational level, the genetic program can also
modulate the rates of many processes. For all of the
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above reasons it is wrong to view the genetic informa-
tion as a mere list of proteins—it is also a detailed
program for how to use these proteins, when to start and
stop their production, and which genes get turned on
and off together. In an embryo there is initially only one
genetic program since there is only one copy of genetic
material. As the cells in the embryo divide, more
identical copies of the genes are made, but how does
the cell “know” where and when to switch different
genes on and off? In this context what could possibly
constitute a genetic blueprint for the developments of a
complicated multicellular organism?

This is a fundamental problem in biology, the
problem of cellular morphogenesis in the embryo. It is
a problem that ultimately requires much more than a list
of genes for its full solution. While insight into this
problem may be applicable to many types of biological
pattern formation, here we are particularly interested
in the early stages of morphogenesis. This process is
initiated by a cascade of gene switching events that
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occur, seemingly magically, at the right times and places
within an embryo leading to the development of a
complex multicellular organism. The principal problem in
this case is the determination of a mechanism by which
complex order may set in an initially homogeneous
system. That is, if the initial state of each cell (the set of
active genes) and the laws of development (the genetic
information in toto) are the same in every cell, how is the
symmetry of the fertilized egg broken? How does the
initial symmetry breaking occur within the rather
constrained arena of the genetic regulatory processes
and biochemistry of the cell? So far no one has provided a
convincing answer to this important problem.

This question was partially addressed by Alan Turing
in 1952 in his seminal paper on chemical morphogenesis
(Turing, 1952) where he showed that a system of reacting
and diffusing chemical species could spontaneously form
stationary spatial patterns given a certain set of
chemically plausible mechanisms. This requires that there
be at least two reacting chemical species that diffuse at
very different rates. The system is an intrinsically non-
equilibrium one; both substances are continuously
created (by the cells) at every point in space, and also
decay or are removed at specified rates. The slowly
diffusing substance (the activator) is autocatalytic, mean-
ing it participates in its own production. In another
reaction some of the activator is transformed into
the fast-diffusing substance (the inhibitor). Lastly, the
inhibitor causes the activator to be removed from
the system at a rate proportional to the concentration
of the inhibitor at that point in space. Thus in these
reactions the activator makes more activator and
inhibitor, and the inhibitor destroys the activator.

The Turing mechanism has often been put forward, as
was Turing’s original intent, as a model for certain
aspects of morphogenesis (Meinhardt, 1982; Koch and
Meinhardt, 1994; Kondo and Asai, 1995; Sawai et al.,
2000) such as pre-patterning in the embryo. It has also
served as a model for self-organization in more generic
systems (Glansdorff and Prigogine, 1971). With the first
verifiable observation of Turing pattern formation in a
real chemical system (Castets et al., 1990) the subject
now finally has an experimental basis (Lengyel and
Epstein, 1992). The specific model proposed by Turing is
not the only possibility that will support pattern
formation of the type Turing was specifically interested
in. The two features of the reaction necessary for the
formation of Turing patterns are short-range autocata-
lysis and long-range inhibition (Gierer and Meinhardt,
1972), and there are a number of ways this can be
brought about. However, under most conditions it has
been found that pattern formation can only occur when
the diffusion rate of the inhibitor is significantly greater
than that of the activator.

Therein lies, as is often noted by researchers familiar
with real biological mechanisms, a big problem: fairly

small molecules usually do the diffusing, but most small
molecules diffuse at approximately the same rates in
aqueous solutions. Even molecules of substantially
different size will diffuse at fairly similar rates. (A
least-squares fit of the diffusion coefficients of 146
proteins in Sober (1970) reveals that they scale roughly
as Doc M~%37)) While some patterns can form in systems
where the ratio of the diffusion coefficients is greater
than 2, in practice it has been found that the diffusion
rates usually need to be even more different that this
for stable and robust patterns to form. Not only is it
difficult to imagine molecules that have the appropriate
properties, it is also difficult to imagine how any kind of
sensitive cellular control of the pattern forming process
can be achieved since it would probably be nearly
impossible for the cell to directly modulate intrinsic
properties like the diffusion rates of chemical morpho-
gens. These caveats have been more than enough to
cause some to seriously doubt the applicability of the
Turing mechanism to cellular patterning of any kind.

Turing’s original model is also completely linear. The
original intent was to illustrate the onset of an instability
leading to pattern formation. The model is not realistic
in regard to the subsequent development of the pattern,
since the patterns would have to be restablized far from
equilibrium by nonlinearities not included in the original
model. Even subsequent nonlinear studies have in most
cases focused on mathematically interesting improve-
ments rather than chemically or biologically realistic
mechanisms. What is needed is a realistic model for
pattern formation that is robustly able to produce
patterns out of the basic biochemical machinery of the
cell. Because of the above-mentioned problems it is not
obvious how this is to be accomplished. In the past,
most or all of the focus has been placed on reactional
aspects, while the more difficult problems of the
chemicals behind the reactions, and especially the
biological mechanisms behind these reactions, have
been largely ignored.

In this paper we aim to deal with these neglected
aspects of the problem. We show that stationary,
symmetry-breaking Turing-type patterns can form in
physiologically realistic systems, even when the extra-
cellular diffusion coefficients are equal. Strictly speaking
then, these are not “Turing” patterns since the mechan-
ism is different. However “Turing-type” patterns do
occur for the same reasons as “Turing” patterns. The
physiologically realistic models we consider are ones
that make use of the basic kinetic properties of the
receiver and transmitter proteins responsible for signal
transduction through the cell membrane. The proposed
pattern-forming mechanism is not only capable of
explaining pattern formation when the diffusion rates
of the morphogens are very similar, but also shows how
details of the mechanism might be sensitively controlled
by the genetic machinery of the cell.
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2. The signal-transduction and reaction—diffusion
mechanisms

In the class of mechanisms we examine, schematized
in Fig. 1, we make a sharp distinction between reactants,
which participate in reactions inside the cell, and
messenger molecules, which diffuse between cells. No
transport of molecules across cell membranes takes
place. Rather, signal transduction across the cell
membrane, mediated by membrane proteins, connects
the genetically controlled biochemical reactions in the
cytosol to the production of messenger molecules that
diffuse through the aqueous extracellular matrix. The
messenger molecules diffuse outside the cells at approxi-
mately equal rates, coupling the reactions taking place
inside cells at different points in space. Importantly, the
cell essentially has nearly complete freedom to control
the signal transduction kinetics, whose associated rates
could quite easily vary by many orders of magnitude.
This is to be strongly contrasted with the situation where
the diffusion coefficients themselves are required to
differ by a large amount—the standard route to Turing
patterns—since it is difficult to imagine realistic situa-
tions where this holds true.

The specific model we use as an example below makes
use of reactions and reaction kinetics of a type which
can be found in every living cell. The chemical equations
we use are derived from catalysed chemical reactions.

extracellular

cytosol matrix

cell membrane reaction pathways

- — — — signal transduction pathways

W\ diffusion pathways

Fig. 1. General kinetic schematic for model. The three basic kinetic
elements of our model are shown. The simplified reactions in the
cytosol involve an activator substance A and inactivator / which are
created at constant rates by the cell and likewise broken down at the
rates 14 and Z;. In this case trans-membrane signal transduction takes
the form of transformation of A4 and 7 in the cytosol (mediated by
the membrane proteins 74 and 77) into corresponding messenger
molecules M, and M; in the extracellular matrix. Likewise R4 and R;
mediate the reverse transformation. Both of the messenger substances
diffuse at rate D through the extracellular matrix.

The genetic machinery of the cell controls the rates of
these reactions by controlling the production of the
catalysts. The chemical reactions and other properties
incorporated in this class of models are rather generic,
and similar results can be realized in many possible
systems.

We purposely do not specify the details of this signal
transduction mechanism any more than is absolutely
necessary, and virtually any type of signal transduction
kinetics will do. We will show that the coupling via
signal transduction between reactions occurring in cells
is enough to allow Turing-type patterns to sponta-
neously form in collections of cells, even if the messenger
diffusion rates (D) are identical or very similar in the
aqueous extracellular environment. Because of this we
believe the mechanisms described here could be of some
relevance to understanding many aspects of cellular
morphogenesis.

The simplified set of reactions taking place in the
cytosol involves an ‘“‘activator” substance A and an
“inhibitor’ substance I that are synthesized by the cell at
the rates ¢4 and ¢; respectively, and in turn are broken
down by the cell at the rates 14 and A; as diagrammed in
Fig. 1, where

d[A]/dt = ¢4 — dqlA), d[I1/dt = ¢; — Al (1)

Activator is also produced by the autocatalytic
process

A+ E\=E A (K| = [E\|][4]/[EiA4),
Wt ELALS By A+ 4, ©)

d[4]/dt = \[A]/(Ki + [A], Vi =[Ei]l.ki,

where we will use y as a shorthand for substances from
the large and constant concentration of assorted
biochemical building blocks present in the cell that are
used to synthesize 4 and I. The activator also catalyzes
the production of more inhibitor through the set of
reactions

A+ Ey=E)A (K> = [E>][A]/[E2A)),

/Cz

U+ EyA— E2A + 1, (3)

d[7]/dt~V,[A]/ K>, V> = [E2] ks,

where for simplicity we have assumed that this reactions
operates well below saturation, with [4] < K. Lastly, the
inhibitor suppresses the activator through the set of
reactions

A+ Es=E3A (K3 = [E3][A]/[E3A)),
[+ E3A2S s Al S EsyI > Es +y + 1, )
—d[A4]/dt = V3[AI11/(K3 + [A4]), V3 = [E3].ks.

The rates of the catalytic process are given by the
Michaelis—Menten (Fersht, 1984) kinetics, where K; are
the Michaelis constants, k; the catalytic rates and V; the
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limiting rates for the catalytic processes. The E;’s are
catalysts of the reactions where [E;]. are the total
concentrations of these catalysts produced by the genetic
machinery of the cell. Because of the need for enzymes,
we assume these reactions, including the breakdown of
A and I, can only occur inside the cell.

In addition to being biologically reasonable, our
model differs from the classical Turing model in two
important respects. First, it takes into account the fact
that genetically regulated biochemical processes will
take place inside the cell, while cell-to-cell inter-
action must involve some form of trans-membrane
signaling, since most biomolecules are highly insoluble
in the lipid matrix of the cell membrane. Secondly,
the diffusion of the two messenger molecules through
the extracellular matrix can take place at identical
rates D.

Since pre-patterning is likely to involve switching on
different sets of genes in different cells, some mechan-
isms must exist for signaling between the genes. Our
model makes use of signal transduction kinetics
diagrammed in Fig. 1, where a4 and o; are the rates of
production of the messenger molecules M, and M;.
This process is mediated by transmitter proteins T4 and
T in the membrane. In the figure, signal transduction is
viewed as the transformation of 4 and I into M4 and
M| respectively (though transformation into messenger
molecules is not a requirement of the model). Con-
versely, the 5, and f3; are the rates of transformation of
M, and M; into A4 and I, a process mediated by R4 and
R;, the receiver proteins. Since the basic features
responsible for the self-organization of the system are
generic, this simplified picture can stand for more
complex signal transduction mechanisms. For example,
the signal transduction could involve the binding of 4 or
I to specific receptor proteins on the intracellular side of
the membrane, triggering the release of messenger
molecules on the extracellular side of the membrane
which then carry the signal to other cells.

One could view the coupling of the reactions
occurring within cells as a process analogous to
diffusion. Viewed in this general way, it relies on the
same basic mechanism of short-range activation and
long-range inhibition as Turing patterns. However, we
stress that the pattern formation is not enabled by
differing rates of diffusion in the true sense. Another
important distinction is that in our model the para-
meters that control pattern formation are determined by
the rates of production of the proteins that serve as the
catlysts inside the cell. As a result it is clear how, in this
case, pattern formation could be be switched on and off
or from one mode to another by the genetic machinery,
possibly on the scale of minutes.

The biological mechanism we propose here is
analogous to the mechanism proposed as an ex-
planation for the chlorite-iodide-malonic acid-starch

reaction system, which was the first chemical system in
which Turing patterns were observed experimentally
(Castets et al., 1990). Lengyel and Epstein (1991, 1992)
showed that the existence of Turing patterns in this
system, despite the similar diffusion coefficients of the
reactants, is a consequence of the binding and unbinding
of iodine to starch molecules that have been immobi-
lized by the gel, which serves as an “inert” medium of
the reaction. What we are proposing here is a
biologically realistic and necessary mechanism that is
able to provide just this type of effect in living cells. In
this analogy, the role of the starch is played by the cell
membrane.

3. Discrete model

Since cells are discrete, we consider the case
where reactions take place at discrete locations, but
where the extracellular matrix in which cell-to-cell
diffusion takes place is continuous. Taking an array of
cells, where A4;(7) and I;(f) represent the concentrations
[4] and [I] of activator and inhibitor in the cell at
location (x;,y;), we have the ordinary differential
equations

d4; Vid;,  VRA

- — A4A; J S’ i A A

T A R M A M
+ﬁAMA(xj9yj)a (5)

dr; , A;

= cr — /L[Ij —|—L — O([Ij + ,B[M[(x,',yj). (6)

dt K,

In the extracellular matrix, each cell is a point source
and sink (represented with delta functions). Letting
M4(x,y) =[M4] and M;(x,y) =[M;] be the concen-
trations of messenger molecules at position (x,y) we
have

OMa(x.y) = aa Yy 0;Aj— Ba) | 9Ma— DV My, (7)

OMi(x.y) =os Yy il — 'y &My~ DV My, (8)

where 6; = 6(x — x;)0(y — ;) is equal to 1 when x = x;
and y = y; and 0 otherwise.

Fig. 2 shows a simulation using arrays of individual
cells in one and two dimensions, demonstrating patterns
in which the pattern wavelength is close to the size of
a cell.

4. Linear stability analysis of the system

We now consider a fully continuous version in order
to examine the analytic structure of the stability of the
model.

Setting A(x,t) = [A], I(x, 1) =[], M 4(X, t) = [M 4] and
Mj(x,t) = [Mj] to be the concentration at a given time ¢
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(b)

Fig. 2. Stable patterns in small arrays of cells. Concentrations were set
to zero at t =0 and allowed to build up naturally, the situation that
would arise if the genes for the production of A and I were suddenly
switched on at ¢ = 0. The activator is shown as shades of green (black
indicating 0 and green the maximum value A4,,,,), and the inhibitor
as shades of red (red indicating the maximum value 7,,,,,) as shown in
the legend (a). The two are superimposed so that yellow indicates the
presence of both activator and inhibitor. (b) A one-dimensional array
of ten cells. A4,,,x=24.2, I,,..=14.0(c). A 2 x 2 array cells. 4,,,.=28.5,
I,.x=13.0, A,,=A4,,=4, I,,=1,,=170 and D = 300; there is no
diffusion of reactants through the cell membrane. Numerical method:
The reaction component of the equations was integrated using a
forward-Euler method. For the purpose of simulation, the extracellular
matrix was treated as discrete. The Laplacian (diffusion) term was
implemented using the following conservative method: for each pair
of locations {i,j}, 4;(t + 1) = A(t) + AA; A;(z + 1) = A;(1) — AA where
AA = MyD(Ai(t + 1)f (i, 1) — A;j(t + 1)f(j, t))At and Mj; is the connec-
tivity matrix. The noise function f'is a uniformly distributed random
variable, ranging from 0 to 107>, and models the effect of very weak
fluctuations of the type that are require to initiate the initial instability.
A von Neumann neighborhood and toroidal boundary conditions
were used.

and position x, we can derive the following set of four
reaction—diffusion equations:

0 A =cy— AyA +KI/1+AA — K?fil —oayA

+ My — VA, ©)
o = cp — I + %A — oyl + B My — eV, (10)
oMy = oyA— My — DV*M,, (11)
oM = oyl — p;M; — DV>M;. (12)

Here ¢ is a rate of diffusion arising from ‘leakage”
though the cell membrane which occurs very rarely,
and hence is very small (or negligible) in comparison
to D. We introduce this small quantity for mathe-
matical reasons in order to give the first two equations a
spatial scale (which, in the discrete case, is set by
the size of a cell) and to remove the singular nature
of the limit where ¢ = 0. The smallness of ¢ is related
to the smallness of the (relative) size of the cells in
comparison to typical spatial scales in this continuum
model. Another way to introduce a cell spatial scale

is to model the cell as discrete points in space as we
have done in the previous section. In this case the e—0
limit represents the case where the ratio of the spatial
scale associated with the cell dimension to the spatial
scale associated with the morphogen diffusion goes
to zero.

For the purposes of keeping our illustration as
simple as possible we will specifically consider only the
case where ¢y =c¢; =1, 04 =f,=1and oy = f5; = p.
We further set limiting velocities of the catalyzed
reactions to V7 =600, I, =1, and V3 =6, and the
parameters 14 = 1/100, 2; =7, K; = 100, K, = 1, and
K3 = 1/10. For this model the stationary homogeneous
state is A(x) = M 4(x)~2.46 and I(x) =M;(x)~2.25. A
standard linear stability analysis (Meinhardt, 1982) of
Eqgs. (1-4) about this state tells us that an initial
perturbation of the uniform state with a given wave
vector k will have an amplitude that grows (or shrinks)
in proportion to the factor e’*/, where A, are eigenvalues
of the stability matrix

355 —ek? -1 =577 1 0
- 6 —7 — p — &k? 0 p
1 0 —1 -k 0 ’
0 o 0 —p —k?

(13)

and can be real or come in complex conjugate pairs.
Each value of k corresponds to a spatial mode with
wavelength L = 2n\/5/k. The real parts of the eigen-
values corresponding to this mode, R(/;), determine the
stability of perturbations away from the homogeneous
state with the corresponding wavelength: R(4;)<0
indicates the mode is stable, and R(4;) > 0 indicates an
unstable mode which will grow when a small random
fluctuation displaces it from equilibrium. Thus the
existence of a wave number k such that A; >0 means
patterns will form. Turing patterns occur when the
largest eigenvalue is real (3(4;) = 0) which is the case
for the parameters we have chosen here. The largest
eigenvalue has a negative real part (R(4;)<0) when
D —0 showing that the system is globally stable in the
absence of diffusion. Fig. 3 shows the linear stability
spectrum of the model.

The type of patterns that form will depend to a large
degree on the spectrum of unstable k modes; it especially
depends on the mode with the greatest /i, but also on
the range of other unstable modes. As was mentioned
above, we included a small diffusion effect through the
membrane with diffusion coefficient ¢ for mathematical
reasons in order to remove the singular nature of the
equations when the diffusion vanishes. In Fig. 3b we
show the effect of varying ¢ on the frequency spectrum.
As ¢—0 the spectrum of unstable modes is broadened
towards the higher frequency modes until at ¢ = 0, the
maximum k value in the spectrum goes to infinity.
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Physically, this means that shorter and shorter wave-
lengths will come to dominate, and at some point the
wavelength of the patterning will be limited by the finite
dimension of the cells.

Fig. 4 shows patterns in a system in which the pattern
wavelength is larger than the size of a cell, simulated
according to the continuous model. The figure shows
some of the ordered patterns that emerge spontaneously
in the system for varying values of p. Patterns can range
from (a) a “honeycomb” pattern (p = 6) to (b) stripes
(p = 11.5) to (c) spots (p = 100).

1 0
0.5 104
:
g , 0 20 40 50 K
© !
-0.5 \ 10—3
o al £=107

Fig. 3. Linear stability spectrum of the model. The dotted lines
indicate regions where the eigenvalue with the largest real part is
complex. Parameters are given in the text. Plot (a) shows the spectrum
of stability eigenvalues for several values of the critical parameter p.
For p<3.5 all the eigenvalues have negative real parts, and the
homogeneous distribution of reactants is stable. Turing patterns set in
when p > 3.5, and a range of frequency modes become unstable, giving
rise to spontaneous ordering. Plot (b) shows the effect on the spectrum
when p = 5 as ¢ is varied. As ¢—0, the most unstable mode shifts to
higher and higher frequencies, but ordering will still take place.

@

5. Discussion

The proposed system is capable of supporting
more or less the same patterns as an ordinary
Turing mechanism that uses widely differing diffu-
sion coefficients. The principal difference is that our
mechanism provides a physiologically and chemi-
cally feasible route by which a wide range of patterns
could arise.

Previous work has shown that pattern formation can
occur in some systems with equal diffusion coefficients,
but only if there is some kind of initial asymmetry such
as a finite size perturbation (Vastano et al., 1987;
Andresen et al., 1999; Henry and Wearne, 2002), an
external advective flow (Rovinsky and Menzinger, 1992,
1993), or an already established gradient (Kerszberg and
Wolpert 1998). These mechanisms might provide useful
models for subsequent morphogenetic events in the
embryo where some spatial genetic patterning or
chemical gradients have already been set up, but still
does not provide an adequate explanation of initial pre-
patterning events which may start from a completely
homogeneous initial state. The existence of an organiz-
ing center begs the question of how the center itself
formed.

Our model provides a possible, physiologically
realistic route to symmetry-breaking instabilities in
cellular systems, and we hope that it will provide a
useful context in which to explore the possible relevance
of Turing mechanisms to cellular morphogenesis. For
instance, our model makes a clear distinction between
reacting and diffusing entities and thus provided some-
what different expectations for making experimental
observations. The messengers could be almost any type
of molecule, and are not required to have any complex
reactive chemical properties. Rather, it is the properties
of the transmitter and receiver proteins in the signal
transduction pathway that will control the pattern
formation. As a consequence it may be unproductive
to search for specific “morphogens’ since the biochem-
ical substances that differentiate spatial patterns in a

Fig. 4. Two-dimensional Turing patterns. (a) Stable concentrations of activator and inhibitor in a two-dimensional array of cells for p = 6. The
extracellular diffusion rate D = 600 and ¢ = D/100; the grid size is 100. A4,,,,, =32.0 and 1,,,,, =21.3. (b) Concentrations of 4 and I for p = 11.5 and
other parameters as above. 4,,,,.=53.8 and 1,,,,,=28.4. (c) Concentrations of A and [ for p = 100. 4,,,,,=117.6 and 1,,,,,=35.3.
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collection of cells may be unrelated to the substances
that actually mediate the cell-to-cell communication.
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