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The notion of fitness is central in evolutionary biology. We use a simple spatially extended predator-
prey or host-pathogen model to show a generic case where the average number of offspring of an indi-
vidual as a measure of fitness fails to characterize the evolutionary dynamics. Mutants with high initial
reproduction ratios have lineages that eventually go extinct due to local overexploitation. We propose
general quantitative measures of fitness that reflect the importance of time scale in evolutionary processes.
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The work of Fisher, Haldane, and Wright [1] established
the generation-to-generation change in frequency of geno-
types as a measure of fitness characterizing the role of
natural selection in evolution. The centrality of this char-
acterization [2] has not been diminished by recognized ob-
servational difficulties due to sampling error, the intricacies
of the genotype-phenotype relationship, and the possibil-
ity of environmental changes. The measure most often
used to quantify fitness of a type is the net reproduction
ratio R, the expected number of surviving offspring per
organism over its lifetime (in an environment with other
individuals and species present), or its differential analog,
the “Malthusian parameter” r. The concept of invasibil-
ity is another approach to the question of what types will
come to dominate a population. One considers a popula-
tion dominated by a type p and asks whether a mutant type
p 0 can invade. An evolutionarily stable strategy [3] is one
for which no mutant can invade. Under the assumptions
normally used, the evolutionarily stable strategy is the one
that maximizes R [4]. The assumption that populations that
have reached a stationary state will be composed mainly
of types with the highest number of offspring applies only
to systems where the instantaneous change in frequency is
sufficient to determine the long-term composition of the
population. Conditions such as frequency-[5] and density-
dependent [6] selection provide contexts in which this mea-
sure does not predict the fate of a type before equilibrium
has been reached. In this paper, we use a simple spatially
extended predator-prey or host-pathogen model [7–10] to
show a more direct departure from this characterization.
We first reproduce the results obtained by others using sim-
ilar models and then extend these results by studying the
time-dependent fitness of strains. We then present our con-
clusions, which have been qualitatively anticipated, but are
first quantified here. In the model, the evolutionarily stable
type is out-competed in the short term by seemingly fitter
mutants. These mutants enjoy high reproduction ratios for
many generations, but go extinct in the long term (e.g., af-
ter 200 generations). The rapidly reproducing types mod-
ify their local environment in a way that is detrimental
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to their survival, but this environmental modification and
its feedback to population growth requires many genera-
tions. The distinct fates of the different types are made pos-
sible by self-organized spatial segregation. We will define
a more general measure of invasion fitness that acknowl-
edges that descendents may have different reproductive
success than their ancestors of the same type. This mea-
sure indicates the evolutionarily stable type in such cases,
and it can be used to quantify the time scale at which se-
lection acts against the mutants with short-term advantage.

As an example of a system with different short-term and
long-term fitness, we use a simple spatially extended model
of a parasite or pathogen spreading through a host popula-
tion [8,9]. The model can also be thought of as a predator-
prey system, with the pathogens being predators and the
hosts prey [10,11]. Such systems exhibit interesting spa-
tial dynamics which are not present in the mean-field
approximation; hence, space is fundamental to their dy-
namics, a property believed to be shared by many real
biological systems [12,13]. The model is a probabilistic
cellular automaton, with possible states 0 (empty), H (sus-
ceptible host), and It (host infected with pathogen of trans-
missibility t). It has three parameters. At each time step,
susceptible hosts reproduce into each neighboring cell with
probability g if that cell is not yet occupied; the probabil-
ity of reproduction is independent for each neighbor. An
infected host dies with probability y (virulence). Finally,
an infected host It causes a neighboring uninfected host to
become infected with probability t. In predator-prey lan-
guage, g is the prey reproduction rate, y describes the rate
of predation, and t describes the rate of reproduction and
migration or dispersal to neighboring sites. The subscript
t allows more than one type to be present on the lattice.
The state transition probabilities are

P�0 ! S� � 1 2 �1 2 g�n,

P�It ! 0� � y , (1)

P�S ! It� � 1 2 �1 2 t�mt ,
where n is the number of uninfected host neighbors, and
mt is the number of infected neighbors of transmissibility
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t. The lattice is updated synchronously, as the dynam-
ics are not significantly different when updating asynchro-
nously [8]. When all pathogen individuals are of the same
type, the model reduces to the predator-prey model studied
in [10] except that the probabilities of any two neighbors of
a site sending offspring to that site are independent of each
other (and if more than one neighbor sends offspring to the
site, the parent is chosen at random), rather than being lin-
ear in the number of neighbors. However, this difference
does not significantly affect the dynamics. The model dif-
fers more fundamentally from the forest fire model [14]
and other models of excitable media [15]: growth of sus-
ceptible hosts occurs locally rather than uniformly in space.

In a mean-field approximation [8], the growth rate of
a type monotonically increases with t. Thus, in homo-
geneous systems with competing strains, higher-t strains
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dominate [16]. The mean-field approximation does not
capture interesting aspects of the spatial variation in this
model. The densities of host and pathogen fluctuate locally
[10]. The system as a whole can have one of the follow-
ing outcomes: the pathogen dies out but the host survives,
host and pathogen coexist, or the pathogen drives the host
to extinction. Parasite-driven extinction occurs above a
threshold of t which depends on the values of the other
parameters [17].

In order to investigate the evolutionary dynamics more
fully, we introduce mutation into the dynamics of the
model, as has recently been done in similar models
[9,18,19]. The transmissibility becomes a quantitative
trait of an individual pathogen. When a pathogen of
transmissibility t reproduces, its offspring has probability
m of having transmissibility t 6 e:
P�S ! It� �

∑
1 2

Y
t 0

�1 2 t0�mt0

∏ ∑ m

2 pt2´ 1
m

2 pt1´ 1 �1 2 m�ptP
t 00 � m

2 pt 002´ 1
m

2 pt 001´ 1 �1 2 m�pt 00�

∏
, (2)
where pt � 1 2 �1 2 tmt � and mt is the number of in-
fected neighbors of transmissibility t. For suitably large
lattice sizes, the system evolves to an evolutionarily stable
average value of t [9] (see Fig. 1a). When high values
of t lead to extinction, t does not increase to the point
of extinction; rather, the system reaches an evolutionarily
stable value which is lower than the extinction limit. This
is the case for the entire region of parameter space where
parasites and hosts coexist.

The distribution of t during evolution has significant
features that have not yet been noted. Figure 1b is a density
plot showing the distribution of t over time. In this figure,
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FIG. 1. (a) Snapshot of the lattice for the evolving pathogen-
host model. The pattern changes over time due to host reproduc-
tion, infection, mutation of pathogens, and infected host death.
Susceptible hosts are shown as light gray and infected hosts are
darker shades of gray depending on their value of transmissibil-
ity t, as shown in the legend. Empty sites are white. (b) Time
series of the distribution of t. Each vertical slice represents the
distribution of t at a particular moment in time. Strains of in-
dividuals exceed the evolutionarily stable value of 0.57 (most
notably at T � 6000 and T � 22 000) but then go extinct. The
virulence y is 0.5, the host reproduction rate g is 0.1, the mu-
tation increment ´ is 0.005, and the lattice size L is 175. In
this and all subsequent figures, the system has settled to a stable
value of t.
it is apparent that strains of pathogens continue to evolve
to higher t, but these strains go extinct. A population of
pathogens above the evolutionarily stable value, but able
to coexist with the host, evolves to a lower transmissibility.

To shed light on the evolutionary dynamics of the sys-
tem, we will begin by examining the reproduction ratio for
pathogens of different types when mutations are to a ran-
dom transmissibility rather than being a fixed increment.
Figure 2a shows the net reproduction ratio R�t� for mu-
tants when they first arise; it increases monotonically with
t. However, Fig. 2b shows R�t� for all pathogens, aver-
aged over time. It peaks at the evolutionarily stable value.
Thus, selection favors high-t mutants initially, consistent
with the spatially homogeneous case. The difference be-
tween these two plots shows that selection against high-t
mutants acts only on longer time scales; evolutionary dy-
namics are different at different time scales.
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FIG. 2. (a) R (the net reproduction ratio) as a function of t
for mutants, showing the expected number of offspring of a
mutant one generation after it arises. The dominant phenotype
has reached its evolutionarily stable value of t � 0.3. (b) As
above, but for all pathogens, averaged over time; R peaks at the
evolutionarily stable value of 0.3 and is below one when t is
significantly greater or less than the evolutionarily stable value.
In order to collect data for all t, mutants’ transmissibility is set
to a random value between 0.2 and 1 rather than being a small
increment. The virulence y is 0.2, host reproduction rate g is
0.05, mutation rate m is 0.15, and the lattice size L is 175. These
parameters will be used in subsequent figures unless otherwise
noted.
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In order to explicitly contrast the fitness at different time
scales, we must consider the reproductive success not only
of the mutant, but also of its descendants, which can vary
as a function of time since the beginning of the strain. For
a general evolving system, we define the time-dependent
invasion fitness Fi�T , p� to be the expected number of de-
scendants at time t0 1 T of a mutant of type p introduced
at time t0. T can be measured as time or in generations;
here we use the number of generations. Note that Fi�1, p�
is the net reproduction ratio R for mutants. In general,
Fi should include environmental factors in its arguments.
When, however, the local environment of type p is shaped
by p itself, as in the model [20], one may write it as a
function of only time and type. In order to make a more
explicit comparison with the reproduction ratio R, one can
calculate the normalized reproduction ratio as a function
of time R�T , p� � Fi�T , p�1�T . The evolutionarily stable
types pes are given by p such that limT!`Fi�T , p� . 0.
No other value of p can successfully invade in the long
term.

In our model, the type p of the evolving species corre-
sponds to the transmissibility t. Figure 3 shows Fi�T ,t�,
obtained numerically for the host-pathogen model. Strains
where t is less than the evolutionarily stable value tes have
both a short-term and long-term disadvantage, and decline
immediately. Strains with t . tes, by contrast, initially
grow much more quickly than those of the evolutionarily
stable type, but begin declining after an average of about
30 generations. Nevertheless, they remain more success-
ful than the evolutionarily stable type for a large number
of generations. Selection begins to act against strains of a
given non-evolutionarily stable type when its curve drops
below that of the evolutionarily stable type.

Using time-dependent fitness, one can determine which
types dominate at each time scale. For a given time scale
T, the most successful type for that time scale popt�T� is
the value of p such that R�T , p� is maximized �popt�T� �
arg maxp ���R�T , p�����. Systems for which pes � popt�1�
have the same short- and long-term fitness. Figure 4a
shows that, for the model, one type dominates for short
time scales, and another dominates for long time scales,
with a sharp transition between the two scales. This curve
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FIG. 3. The time-dependent invasion fitness Fi�T , t� for the
host-pathogen system. (a) As a function of time T, with curves
for various transmissibilities t. (b) The same data as a function
of t, with curves for various time scales T. The lattice size L
is 250.
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determines the meaning of “short-term” and “long-term”
as we have been using them.

Since selection acts differently on a given type at dif-
ferent time scales, one can determine the relevant time
scales for a particular type. For all p fi pes we can de-
fine the time scale Ts�p� at which selection acts against p
as Ts�p� � min�T j; t . T , Fi�t, p� , Fi�t,pes ��. Thus
for some T , Ts�p�, mutants of phenotype p have more
descendants than those of pes. The time scale at which the
evolutionarily stable type begins to dominate is given by
TL � min�T jpopt�T� [ pes�. For the host-pathogen sys-
tem �p � t�, Fig. 4b shows Ts�t�. For t , tes, Ts�t� �
0 since these low-transmissibility types have a disadvan-
tage on all time scales. For t . tes, Ts�t� approaches
a constant number of generations (about 200 for the pa-
rameters used in Fig. 4b) but is larger when t is close to
tes. Thus, for t . tes, on time scales significantly shorter
than Ts, the dynamics of the relative frequencies of differ-
ent types can be determined from their values of the net
reproduction ratio R; on longer time scales, other mecha-
nisms are essential to the dynamics, such as the feedback
between the population and the environment. In general,
when a type has a short-term advantage, Ts�p� is a quan-
titative measure of the time scale in which instantaneous
change in frequency dominates the evolutionary dynamics
for that type.

Because some of the individuals in the population can be
of rapidly reproducing types that have high short- but low
long-term fitness, the long-term composition of types in the
population is not necessarily given by the types with high
long-term fitness plus mutation-selection balance. Instead,
the distribution P�p� of types, p fi pes, is given for low
mutation rates by:

P�p� �
n�p�

R`
T�0 Fi�T , p�

nes 1
P

p0fipes
n�p 0� �

R`

T�0 Fi�T, p0��
(3)

where n�p� is the rate at which mutants of type p arise,
and nes is the average number of individuals of the
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FIG. 4. Time scale of selection. (a) The most successful type
topt�T � as a function of time since the beginning of the strain.
Types of high transmissibility (those with high values of R in
Fig. 2a) dominate for time scales shorter than about T � 175,
while types close to the evolutionarily stable type (those with
high values of time-averaged R in Fig. 2b) dominating on time
scales longer than T � 250. (b) The time scale Ts�t� at which
selection acts against strains of pathogens with transmissibility
t. Ts�t� is 0 for t , tes, indicating that selection acts instan-
taneously. For t . tes, the time scale is very long for values
close to tes, converging on Ts � 180 for high t.
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evolutionarily stable type. P�t� for the model measured
numerically agrees with the above (except for types which
are within 0.1 of the evolutionarily stable type, since these
strains take a long time to decline and were not tracked
longer than 1000 generations).

The tendency to spatial segregation of different strains
can be seen in Fig. 5. Although different strains are al-
ways coming in contact, pathogens tend to be surrounded
by those of a similar type. This results from local repro-
duction and local extinction of higher-R strains. Mutation
causes individuals of a range of types to arise for selec-
tion to act on; since these types are segregated spatially,
selection can be viewed as acting on clusters of organisms
associated by spatial proximity.

A connection has been made between spatially inho-
mogeneous models and group selection and/or “altruism.”
Such a connection can be loosely justified; however, while
strict individual selection is a restrictive limit of evolving
systems, the dichotomy of group and individual selection
also does not capture the richness of spatial populations.
Typically, in our model, neither the spatial groups nor the
genetically related groups nor structures of spatial patterns
(e.g., spiral waves in Ref. [21]) are clearly determinable.
Rather than focusing on the distinction or balance between
group and individual selection, we have focused on the
multigenerational fitness of strains as a dynamic property
of organisms in spatially inhomogeneous environments.

Since organisms often greatly affect their own envi-
ronment, the feedback between the environmental change
caused by the organism and selection may be substantial
[5]. The model demonstrates one possible mechanism for
this feedback: the local depletion of the resource by or-
ganisms is ultimately detrimental to their survival. The
contrast between long-term and short-term fitness may
characterize other systems which have the general prop-
erty that a population depends on, and can deplete, a re-
source that grows locally, and where reproduction is local.
If mutations are frequent, such a system observed in nature
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FIG. 5. A mutant strain. In this snapshot of the lattice, black
indicates a high-transmissibility mutant strain that arose 50 gen-
erations ago. Because of the wider range of t, a different color
scale is used from that of Fig. 1a.
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may contain a significantly different distribution of organ-
ism types than would be expected if selection acts only at
one time scale. It is more appropriate to view the compo-
sition of types in such systems as a mixture of types, each
of which is adapted to a particular time scale.
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