
Self-Reconfiguration Using Directed Growth

K. Støy1 and R. Nagpal2

1 The Maersk Mc-Kinney Moller Institute for Production Technology, University of
Southern Denmark, Denmark,kaspers@mip.sdu.dk

2 Division of Engineering and Applied Sciences, Harvard University, USA
rad@eecs.harvard.edu

Abstract

Self-reconfigurable robots are built from modules which are autonomously able to
change the way they are connected, thus changing the overall shape of the robot.
This process is difficult to control, because it involves the distributed coordination of
large numbers of identical modules connected in time-varying ways.

We present an approach to self-reconfiguration where the desired configuration is
grown from an initial seed module. Seeds produce growth by creating a recruitment
gradient, using local communication, which spare modules climb to locate the seed.
The growth is guided by a novel representation of the desired configuration, which
is automatically generated from a 3D CAD model. This approach has two salient
features: (1) the representation is concise, with a size proportional to the global shape
rather than the number of modules and (2) there is a clean separation between the
goal and the local rules used by the modules which are independent of the goal.
We demonstrate three implementations of the local rules for recruitment, and show
how one can trade-off the number of moves and messages, against time taken to
reconfigure.

1 Introduction

Reconfigurable robots are built from modules and can be reconfigured by chang-
ing the way the modules are connected. If a robot is able autonomously to change
the way the modules are connected, the robot is a self-reconfigurable robot. Self-
reconfigurable robots are versatile because they can adapt their shape to fit the task.
They are also robust because if a module fails it can be ejected and replaced by a
spare module. Potential applications for such robots include search and rescue mis-
sions, planetary exploration, building and maintaining structures in space, and enter-
tainment. Challenges exist both in the development of the hardware for the modules,
as well as their control. This paper focuses on the challenge of controlling reconfig-
uration in a robot with many identical modules.



2 K. Støy and R. Nagpal

1 2 3

4 5 6

Fig. 1. 1: A brick based representation (grey) is generated based on a CAD model (light grey).
2-6: This representation is used to control a reconfiguration process.

In this paper we present an approach for reconfiguration that consists of two
steps. First, a 3D CAD model representing the desired configuration is transformed
into a geometric representation based on overlapping bricks of different sizes. The
representation is supplemented with a scaffold structure which removes local min-
ima, hollow, or solid sub-configurations from the configuration. The second step is
the actual reconfiguration process. The desired configuration is grown by choosing
an arbitrary initial seed module. The seed module uses the bricks representation to
determine if a neighbour module is needed at an unfilled neighbour position, and if
so creates a recruitment gradient in the system. Spare modules climb this gradient to
reach the unfilled position and may become seeds themselves if further construction
is needed. Figure 1 shows an example of this self-configuration approach.

This approach has several salient features. The representation is automatically
generated, is independent of initial configuration, and is concise with a size propor-
tional to the global shape rather than the number of modules. The local rules for the
module remain the same, irrespective of the goal shape. This separation, between
goal and local rules, allows one to easily optimise or retarget the representation and
explore alternate local rules. We demonstrate and compare three different implemen-
tations of recruitment that trade-off the extent of the gradient. The general method
for recruitment using gradients was first introduced in [11], which used global gradi-
ents that cover the entire robot. Two alternate implementations introduced here are:



Self-Reconfiguration Using Directed Growth 3

1) the range of the gradient is increased linearly until the unfilled neighbour posi-
tion is filled and 2) the range is increased exponentially. We compare the number
of moves, messages and time steps taken to complete reconfiguration. The simple
global recruitment gradient is more time efficient than the two new approaches, but
the linear strategy uses fewer moves.

2 Related Work

The self-reconfiguration problem is: given a start configuration, possibly a random
one, how to move the modules in order to arrive at the desired final configura-
tion. It is computational intractable to find the optimal solution (see [3] for a dis-
cussion). Therefore, self-reconfiguration planning and control are open to heuristic-
based methods.

One type of approach is planning based, where a path is determined for each
module in the original configuration. Chirikjian and others have proposed heuristic
methods based on finding a suboptimal sequence of moves from initial to final con-
figuration, which is then optimised by using local searches [3, 9]. Rus et al. simplify
the planning problem by using an intermediate chain configuration, which is easy
to configure into and out of [10]. Several papers have proposed hierarchical plan-
ners, where at the high level some of the hardware motion constraints are abstracted
away to facilitate efficient planning. Based on the high-level plans, the lower level
then produces the detailed sequence of actions [5, 14]. Another approach is to use
meta-modules consisting of a small number of modules [5]. By planning at the meta-
module level there are no or few motion constraints; on the other hand, meta-modules
make the granularity of the robot larger. A related approach is to maintain a uniform
scaffolding structure, facilitating planning [13]. Butler implemented the distributed
Pacman algorithm on the Crystalline robot, which has very few motion constraints
making the planning problem easier [2, 15]. The advantage of the planning approach
is that it can accommodate motion constraints and minimise unnecessary moves; the
disadvantage is that plans are often comparable in size to the number of modules and
depend on knowing the initial configuration.

A different approach is to rely on common local rules as far as possible and
then add randomness to deal with the problems that could not be solved using local
rules. This was true in early work such as the work on Fracta [6] and also later work
[17, 12]. The problem tended to be that even though the robot often ended up in the
desired configuration, it did not always converge. This problem was also present in
the work of Yim et al [16], however local communication was used to increase the
probability of converging to the final shape. One solution to convergence, proposed
by Bojinov et al. [1], is not to focus on a specific configuration. Instead, the idea is
to build something with the right functionality. Using this approach it is acceptable
if a few modules are stuck as long as the structure maintains its functionality. Alter-
natively, Jones et al. insist on a specific configuration, but achieve convergence by
enforcing a specific sequence of construction [4]. In the work presented here, scaf-
folding is used to guarantee convergence by making sure that the configurations do
not contain local minima, hollow, or solid sub-configurations.



4 K. Støy and R. Nagpal

Our system can be thought of as combining the two approaches: the global rep-
resentation is a plan for constructing a shape from simpler shapes (bricks), while the
local rules allow modules to recruit nearby modules to form bricks. This approach
is similar to approaches for self-assembly used in Amorphous Computing, such as
[7, 8]. There a global goal is specified as a construction which is then compiled into
biologically-inspired local rules for agents, resulting in self-assembly that is scale-
independent, robust and space efficient. The representation we use is inspired by the
circle-network proposed by Kondacs for 2D self-assembly, however the agent model
and local rules are completely different [8]. Instead we use local rules proposed by
Støy [11] to control module movement.

3 Simulated Robot Model

In our simulation, we use modules which are more powerful than any existing hard-
ware platforms but do fall within the definition of a Proteo module put forward by
Yim et al. [16]. The modules are cubical and when connected they form a lattice
structure. They have six hermaphrodite connectors and can connect to six other mod-
ules in the directions: east, west, north, south, up, and down. Modules directly con-
nected to a module are referred to as neighbours. A module can sense whether there
are modules in neighbouring lattice cells. In this implementation we do not control
the actuator of the connection mechanism, but assume that neighbour modules are
connected and disconnected appropriately. A module can only communicate with
its neighbours. It is able to rotate around neighbours and to slide along the surface
of a layer of modules. Finally, we assume that coordinate systems can transformed
uniquely from one module to another. This is necessary to propagate the gradients
and the coordinates used to guide the growth process.

The simulator is programmed in Java3D. The simulation uses discrete time steps.
In each time step all the modules are picked in a random sequence and are allowed: 1)
to process the messages they have received since last time step, 2) to send messages
to neighbours (but not wait for reply), and 3) to move if possible.

4 From CAD Model to Representation

It is difficult and time consuming to hand-code local rules which result in a desired
configuration being assembled. Therefore, we need an automatic way of transform-
ing a human-understandable description of a desired configuration into a representa-
tion we can use for control.

In our system, the desired configuration is specified using a connected three-
dimensional volume in the VRML 1997 or Wavefront .obj file format, which are in-
dustry standards produced by most CAD programs. In earlier work we transformed
the model into a cellular automaton, which represents relationships between neigh-
bour modules in the desired configuration [11]. This representation has the disadvan-
tage that it scales linearly in the number modules and has to be completely recom-
piled if the number of modules is changed.



Self-Reconfiguration Using Directed Growth 5

Here we introduce a representation whose size instead scales with the complexity
of the three-dimensional model and does not require recompilation if the number of
modules changes. We approximate the input shape using a set of overlapping bricks
of different sizes. This choice is fairly arbitrary and other basic geometric shapes,
such as spheres or cones, could be used as well. The set of bricks is generated by
starting at a user specified point inside the CAD model. The algorithm then fits as
large a brick as possible which contains this point and does not intersect the CAD
model. This is done recursively for all points just outside this brick, but inside the
CAD model. This process continues until the volume has been filled with overlapping
bricks. Figure 2 shows a simple example of a shape and its brick representation. The
fewer bricks needed, the more concise the representation.

AB

A: (0,0,1)→ (3,1,2)
B: (0,0,0)→ (2,2,2)

Fig. 2.This figure shows how a volume can be approximated with two overlapping bricks and
how we represent this.

In order to control the resolution of the approximation a parameterr is supplied.
The points and the corners of the bricks are then constrained to be positioned at co-
ordinates equalling an integer timesr. Table 1 shows the number of bricks needed
to approximate a model of a Boing 747 at different resolutions. The size of repre-
sentation scales with the complexity of the input shape and the resolution of the ap-
proximation. Furthermore, the bricks based representation can at run-time be scaled
to match a specific number of modules.

Resolution low medium high
Modules 32 4512 34493
Bricks 3 168 1152

Table 1. This table shows the number of modules and bricks needed to approximate a CAD
model of a Boing 747 at three different resolutions.



6 K. Støy and R. Nagpal

5 From Representation to Self-Reconfiguration Algorithm

Starting from a random configuration the robot needs to reconfigure into the desired
configuration as described by the representation. The self-reconfiguration algorithm
consists of three components: a coordinate propagation mechanism, a mechanism to
create gradients in the system, and a mechanism the modules use to move without
disconnecting from the structure. We will look at these in turn.

5.1 Coordinate Propagation

All the modules are initially connected in a random configuration, have a copy of
the representation of the desired configuration, a scale parameter, and start in the
wandering state. An arbitrary module is given a random coordinate contained in the
representation. The idea is to grow the configuration from this seed module. The
seed can detect whether a module is needed in a neighbour position based on its
coordinate and the representation. If this is the case, the seed attracts a wandering
module to the unfilled position. When a module has reached an unfilled position and
is given its coordinate it also may act as a seed if further construction is needed at
this position. A module stops acting as a seed when all neighbour modules, specified
by the representation and the seed’s coordinate, are in place.

In order to simplify the reconfiguration problem a scaffold structure is enforced
on the desired configuration; neighbour modules are only needed at positions which
are contained in the brick representation and belong to the scaffold. The introduction
of the scaffold sub-structure into the desired configuration simplifies the reconfigura-
tion problem, because during reconfiguration it can be assumed that the configuration
does not contain local minima, hollow, or solid sub-configurations. This simplifica-
tion means that the system is convergent by design as described in [11].

5.2 Creating a Recruitment Gradient Using Local Communication

In this section we will describe how seed modules attract wandering modules by
creating a gradient in the system. A seed module acts as a source and sends out an
integer, representing the concentration of an artificial chemical, to all its neighbours.
A non-source module calculates the concentration of the artificial chemical at its
position by taking the maximum received value and subtracting one. This value is
then propagated to all neighbours and so on. When the concentration reaches zero
the gradient is not propagated further. This means that the source can decide the
range of the gradient. We will explore different strategies for deciding this range
in the experimentation section. Also, since messages take one time step to travel
between neighbours, it can take many time steps for gradients to be propagated in
the system.

If wandering modules have to rely on the basic integer based gradient to locate
the source, they would have to move around randomly for a while to detect the di-
rection of the gradient. Instead we introduce a vector gradient which makes direction



Self-Reconfiguration Using Directed Growth 7

information available locally, thereby eliminating unnecessary moves. The basic gra-
dient implementation is extended with a vector indicating the local direction of the
gradient. This vector is updated by taking the vector from the neighbour with the
highest concentration, adding a unit vector in the direction of this neighbour and
renormalising the result. The paths to the unfilled positions always go through or on
the surface of the structure. The structure does not contain local minima, because of
the scaffold structure. Therefore, the paths to unfilled positions never contain local
minima.

5.3 Staying Connected

Wandering modules climb the vector gradient to reach unfilled positions. Unfortu-
nately, the wandering modules cannot move independently of each other, because
they depend on each other for connection to the robot. The problem is then to keep
the system connected while allowing wandering modules to move. In our solution
finalised modules in the configuration emits aconnection gradientand wandering
modules only move if they do not perturb the gradient. Detailed rules for movement
and proofs were presented in [11].

6 Experiments

In this section we investigate and compare three different strategies for implementing
the recruitment gradient. In global recruitment a module needing a neighbour creates
a gradient throughout the entire configuration. This, in effect, means that wandering
modules always go toward the closest unfilled position even though other wandering
modules may already be on their way there. This may result in three problems: 1)
poor performance, because many modules are attracted to the same unfilled position
and therefore many move in vain; 2) interference between modules because of over-
crowding - a well known problem in literature, see for instance [16]; 3) the amount
of communication needed to maintain global gradients increases with the size of the
configuration and limits the system’s scalability.

We address these problems by investigating two alternative recruitment strate-
gies. In the first strategy a source linearly increases its concentration and therefore
the range of the recruitment gradient. In the second strategy the source increase its
concentration exponentially. The motivation behind these two recruitment strategies
is that they recruit as locally as possible and therefore address the three problems
mentioned above. We compare the strategies based on three criteria: time taken to
reconfigure, number of module moves, and number of messages.

The task is to self-reconfigure from a random connected configuration of 618
modules to one which resembles a Boing 747 aeroplane. The representation of the
configuration is built by the generator based on a CAD model. The representation
is then downloaded into the modules of the simulation and the self-reconfiguration
process is started.



8 K. Støy and R. Nagpal

0

10000

20000

30000

Linear Exponential Global
T

im
e

st
ep

s

0

20000

40000

Linear Exponential Global

M
ov

es

400000
800000
1.2e+06
1.6e+06

2e+06

Linear Exponential Global

M
es

sa
ge

s

Fig. 3. This figure shows how the total number of time steps (top), moves (middle), and mes-
sages (bottom) depend on the recruitment strategy. Mean and standard deviation of 20 trials
are shown.

In Figure 3, we can see that the global recruitment strategy outperforms the lin-
ear and exponential strategies in terms of the number of time steps and messages
needed to reach the desired configuration. It can also be seen that the linear strategy
outperforms the other two in terms of moves needed to complete a configuration.
Therefore, the choice of strategy depends on which constraint is the most important.

Communication, in our system, is time consuming and as can also be seen in
Figure 3 the global strategy uses significantly fewer messages than the other two
strategies. This could lead one to conclude that the poor time efficiency of the lin-
ear strategy relies on the fact that it uses more messages. However, this is not the
entire explanation. Figure 4 shows in more detail how the three strategies use their
moves during construction. The global strategy recruits aggressively, making many
modules move in parallel. Aggressive recruitment seems to improve time efficiency
without increasing the number of moves significantly, because it takes advantage of
a heuristic: if one module is needed more will be needed later. Where the global
strategy is a parallel process, the linear essentially is a sequential process: instead of
recruitingn modules in parallel,n modules are recruited one at a time. This makes
the linear approach inefficient in terms of time even without factoring in the cost of
communication.



Self-Reconfiguration Using Directed Growth 9

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000 20000 25000 30000W
an

de
rin

g
m

od
ul

es
(%

)

Moves

global
exponential

linear

Fig. 4. This figure shows how moves for each strategy are distributed over a reconfiguration
process.

The exponential strategy uses many more moves compared to the other two
strategies. This is the case because sources tend to compete for the same modules.
This causes the wandering modules to be trapped in the middle causing many unnec-
essary moves. Therefore, the global strategy is always preferable compared to the
exponential.

7 Conclusion

We have explored an approach to the control of self-reconfiguration which consists
of two steps. In the first step a generator takes as input a 3D CAD model of a desired
configuration and outputs a set of overlapping bricks which represent this configu-
ration. In the second step this representation is combined with a control algorithm
to produce the final self-reconfiguration algorithm. This algorithm controls the self-
reconfiguration process through a growth process: seed modules create recruitment
gradients in the configuration that wandering modules climb to locate the seed.

In this paper we demonstrate that a representation based on geometric shapes is
efficient in terms of space and is independent of the number of modules. We also
show that a global recruitment strategy is more efficient in terms of time and mes-
sages while a linear strategy is more efficient in the number of moves. This highlights
a key feature of our approach, which is that one can separately optimise (or even
change) the global representation and the local rules for module movement. Over-
all, the proposed system represents a step toward systematic and efficient control of
self-reconfigurable robots.

8 Acknowledgements

This research is in part funded by the EU contract IST-2001-33060, the Danish Tech-
nical Research Council contract 26-01-0088, and NSF grant EIA-0130391.



10 K. Støy and R. Nagpal

References

1. H. Bojinov, A. Casal, and T. Hogg. Emergent structures in modular self-reconfigurable
robots. InProc., IEEE Int. Conf. on Robotics & Automation (ICRA’00), volume 2, pages
1734 –1741, San Francisco, California, USA, 2000.

2. Z. Butler, S. Byrnes, and D. Rus. Distributed motion planning for modular robots with
unit-compressible modules. InProc., IEEE/RSJ Int. Conf. on Intelligent Robots and Sys-
tems (IROS’01), volume 2, pages 790–796, Maui, Hawaii, USA, 2001.

3. G. Chirikjian, A. Pamecha, and I. Ebert-Uphoff. Evaluating efficiency of self-
reconfiguration in a class of modular robots.Robotics Systems, 13:317–338, 1996.

4. C. Jones and Maja J. Matarić. From local to global behavior in intelligent self-assembly.
In Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA’03), pages 721–726,
Taipei, Taiwan, 2003.

5. K. Kotay and D. Rus. Algorithms for self-reconfiguring molecule motion planning. In
Proc., IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS’00, volume 3, pages
2184–2193, Maui, Hawaii, USA, 2000.

6. S. Murata, H. Kurokawa, and S. Kokaji. Self-assembling machine. InProc., IEEE Int.
Conf. on Robotics & Automation (ICRA’94), pages 441–448, San Diego, California, USA,
1994.

7. R. Nagpal. Programmable self-assembly using biologically-inspired multiagent control.
In Proc., 1st Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS),
pages 418–425, Bologna, Italy, 2002.

8. R. Nagpal, A. Kondacs, and C. Chang. Programming methodology for biologically-
inspired self-assembling systems. InProc., AAAI Spring Symposium on Computational
Synthesis: From Basic Building Blocks to High Level Functionality, 2003.

9. A. Pamecha, I. Ebert-Uphoff, and G.S. Chirikjian. Useful metrics for modular robot
motion planning.IEEE Transactions on Robotics and Automation, 13(4):531–545, 1997.

10. D. Rus and M. Vona. Self-reconfiguration planning with compressible unit modules. In
Proc., IEEE Int. Conf. on Robotics and Automation (ICRA’99), volume 4, pages 2513–
2530, Detroit, Michigan, USA, 1999.

11. K. Støy. Controlling self-reconfiguration using cellular automata and gradients. InProc.,
8th int. conf. on intelligent autonomous systems (IAS-8) (to appear), Amsterdam, The
Netherlands, 2004.

12. K. Tomita, S. Murata, H. Kurokawa, E. Yoshida, and S. Kokaji. A self-assembly and
self-repair method for a distributed mechanical system.IEEE Transactions on Robotics
and Automation, 15(6):1035–1045, Dec 1999.

13. C.Ünsal and P.K. Khosla. A multi-layered planner for self-reconfiguration of a uniform
group of i-cube modules. InProc., IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS’01), volume 1, pages 598–605, Maui, Hawaii, USA, 2001.

14. C.Ünsal, H. Kiliccote, and P.K. Khosla. A modular self-reconfigurable bipartite robotic
system: Implementation and motion planning.Autonomous Robots, 10(1):23–40, 2001.

15. S. Vassilvitskii, M. Yim, and J. Suh. A complete, local and parallel reconfiguration algo-
rithm for cube style modular robots. InProc., IEEE Int. Conf. on Robotics and Automation
(ICRA’02), volume 1, pages 117–122, Washington, DC, USA, 2002.

16. M. Yim, Y. Zhang, J. Lamping, and E. Mao. Distributed control for 3d metamorphosis.
Autonomous Robots, 10(1):41–56, 2001.

17. E. Yoshida, S. Murata, H. Kurokawa, K. Tomita, and S. Kokaji. A distributed reconfigura-
tion method for 3-d homogeneous structure. InProc., IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS’98), volume 2, pages 852–859, Victoria, B.C., Canada, 1998.


