Proceedings of Fourth IEEE International Symposium on High Performance Distributed Computing,
Washington D.C., USA 1995

Parallel Simulation of Subsonic Fluid Dynamics
on a Cluster of Workstations

Panayotis A. Skordos

Massachusetts Institute of Technology
545 Technology Square NE43-432, Cambridge, MA 02139 USA
pas@ai.mit.edu

Abstract

An effective approach of simulating subsonic fluid
dynamics on a cluster of non-dedicated workstations
is presented. The approach is applied to simulate the
flow of air in wind instruments. The use of local-
interaction methods and coarse-grain decompositions
lead to small communication requirements. The au-
tomatic migration of processes from busy hosts to
free hosts enables the use of non-dedicated worksta-
tions. Simulations of 2D flow achieve 80% paral-
lel efficiency (speedup/processors) using 20 HP-Apollo
workstations. Detailed measurements of the paral-
lel efficiency of 2D and 3D simulations are pre-
sented, and a theoretical model of efficiency is devel-
oped and compared against the measurements. Two
numerical methods of fluid dynamics are tested: ex-
plicit finite differences, and the lattice Boltzmann
method.

1 Introduction

An effective approach of exploiting a cluster of non-
dedicated workstations to simulate subsonic fluid dy-
namics is presented. Concurrency is achieved by de-
composing the problem into rectangular subregions,
and by assigning the subregions to parallel subpro-
cesses on different workstations. The use of local-
interaction methods and coarse-grain decompositions
lead to small communication requirements which can
be satisfied on a cluster of workstations. The parallel
subprocesses automatically migrate from busy hosts
to free hosts in order to exploit the unused cycles of
non-dedicated workstations, and to avoid disturbing
the regular users of the workstations. The system is
implemented directly on top of UNIX and TCP/IP
communication routines.

Simulations of 2D flow achieve 80% parallel effi-
ciency (speedup/processors) using 20 non-dedicated
HP-Apollo workstations. Detailed measurements of
the parallel efficiency of 2D and 3D simulations are

presented, and a theoretical model of parallel efficiency
is developed and compared against the measurements.
It is shown that the shared-bus Ethernet network is
adequate for 2D simulations, but limited for 3D ones.

Figure 1: Simulation of a flue pipe using 20 worksta-
tions. The dashed lines show the 5x4 decomposition.
The grid is 800 x 500. Equi-vorticity contours are plot-
ted (curl of velocity). The gray areas are walls, and
the resonant pipe is located at the bottom. A jet of
air enters through an opening on the left wall, and
impinges the sharp edge in front of it. Air exits from
the simulation through the opening on the right.

The success of the present approach depends criti-
cally on the use of local-interaction methods (explicit
numerical methods [1]) because the communication
capability of the Ethernet network is small. Explicit
methods are inherently parallel, have small commu-
nication requirements and small cost per integration
step, but require small integration time steps for nu-
merical stability. By contrast, implicit methods [1]
are challenging to parallelize, have large communica-
tion requirements and large cost per integration step,
but they can use much larger integration time steps

than explicit methods. Therefore, in general, one has
to weigh the advantages and disadvantages of explicit
and implicit methods in the context of the particular
problem at hand and the available computer system.

In the case of time-dependent subsonic flow, the
time steps are usually chosen very small in order to
model accurately the acoustic waves. Thus, explicit
methods that require small time steps anyway for nu-
merical stability, are well recommended in this case.
To give specific numbers for the problem of air flow
in wind instruments, the flow speed is 1000 cm/s and
the acoustic speed ¢, is 30 times larger than that. If
we wish to model the passage of acoustic waves at the
finest grid resolution Az, then we must choose the
time step At ~ Az/cs which is very small and also
turns out to be sufficient for the numerical stability
of explicit methods for the present problem (see [1]
and section 6). On the other hand, if we do not insist
on modeling acoustic waves at the finest grid resolu-
tion, then we can use larger time steps with implicit
methods. However, the time step is still constrained
for modeling reasons by the hydrodynamic flow speed
and by the high acoustic frequencies such as 20 kHz for
wind instruments. Thus, it turns out that the maxi-
mum time step of an implicit method is at most 10—30
times larger than the time step of an explicit method
for this problem. If we consider the different costs per
integration step, explicit methods may be competitive
with implicit methods for this problem even on serial
computers. If we also consider parallel computing, ex-
plicit methods are a very good choice for this problem.

With the above introduction and clarification on
explicit versus implicit numerical methods, we proceed
below to describe our distributed computing approach.
In section 2 we present examples of distributed sim-
ulations, and in section 3 we review local-interaction
problems in general. Sections 4 and 5 describe the im-
plementation of the parallel simulation system includ-
ing the automatic migration of processes from busy
hosts to free hosts. Section 7 presents experimental
measurements of the performance of our system, and
section 8 develops a theoretical model of parallel ef-
ficiency of local-interaction problems. Most ideas are
discussed as generally as possible within the context
of local-interaction problems, and the specifics of fluid
dynamics are limited to sections 2 and 6.

1.1 Comparison with other work

The suitability of local-interaction algorithms for
parallel computing on a cluster of workstations has
been demonstrated in previous works such as [2], [3]
and elsewhere. Cap&Strumpen [2] present the
PARFORM system and simulate the unsteady heat

equation using explicit finite differences. Chase&et
al. [3] present the AMBER parallel system, and solve
Laplace’s equation using Successive Over-Relaxation.
The present work clarifies further the importance of
local-interaction methods for parallel systems with
small communication capacity. Furthermore, a real
application problem is solved using the present ap-
proach: the simulation of subsonic flow with acoustic
waves in wind musical instruments.

In the area of fluid dynamics, little attention has
been given until recently to simulations of hydrody-
namics and acoustic waves because such simulations
are very compute-intensive and can be performed only
when parallel systems such as the one described here
are available. Furthermore, the use of explicit meth-
ods has generally been shunned because explicit meth-
ods require small integration time steps for numeri-
cal stability. With the increasing availability of paral-
lel systems, explicit methods are now attracting more
and more attention in all areas of computational fluid
dynamics. The present work illustrates the power of
explicit methods in one particular area (subsonic com-
pressible flow), and should motivate further work on
explicit methods in other areas as well.

Regarding the experimental measurements of paral-
lel efficiency which are presented in section 7, they are
more detailed than any other reference known to the
author especially for the case of a shared-bus Ethernet
network. The model of parallel efficiency which is de-
veloped in section 8 is based on ideas which have been
discussed previously, for example in Fox et al. [4] and
elsewhere. Here, the model is derived in a clear way,
and the predictions of the model are compared against
experimental measurements of parallel efficiency.

Regarding the problem of using non-dedicated
workstations, this problem is handled by employing
automatic process migration from busy hosts to free
hosts. An alternative approach that has been used
elsewhere is the dynamic allocation of processor work-
load. In the present context, dynamic allocation
means to enlarge and to shrink the subregions which
are assigned to each workstation depending on the
CPU load of the workstation (Cap&Strumpen [2]).
Although this approach is important in various appli-
cations (Blumofe&Park [5]), it seems unnecessary for
simulating fluid flow problems with static geometry
and may lead to large overhead. For such problems,
it may be more effective to use large fixed-size subre-
gions per processor, and to apply automatic migration
of processes from busy hosts to free hosts. This ap-
proach has worked very well in the parallel simulations
presented here.

Regarding the design of parallel simulation systems,
the present work aims for simplicity. In particular,
the special constraints of local-interaction problems
and static decomposition have guided the design of
the parallel system. The present approach does not
address the issues of high-level programming, paral-
lel languages, inhomogeneous clusters of workstations,
and distributed computing of general problems. Ef-
forts along these directions are the PVM system [6],
the Linda system [7], the packages of Kohné&Baden [8]
and Chesshire&Naik [9] that facilitate parallel decom-
position, the Orca language for distributed comput-
ing [10], etc.

2 Examples of flow simulations

The present distributed system has been applied to
simulate the flow of air and the generation of tones
in wind instruments such as the recorder and the flute
(flue pipes). When a jet of air impinges a sharp obsta-
cle in the vicinity of a resonant cavity, the jet begins
to oscillate strongly, and it produces audible tones.
The oscillations are reenforced by a nonlinear feedback
from the acoustic waves to the jet of air. The mecha-
nism of flow-generated sound in wind instruments is a
100-year-old problem whose details are still a subject
of active research [11].

Figure 2: Simulation of a flue pipe using 15 worksta-
tions in a 6x4 decomposition with 9 subregions inac-
tive. The air passes through a long channel before
impinging the sharp edge. The outlet of the simula-
tion is located at the top of the picture.

The present parallel system can simulate the flow
of air inside flue pipes using uniform orthogonal grids
as large as 1200 x 1200 in two dimensions (1.5 million
nodes) and even larger. We typically employ smaller
grids, however, in order to reduce the computing time.
For example, if we divide a 800 x 500 grid (0.38 million

nodes) into twenty subregions and assign each subre-
gion to a different HP9000/700 workstation, we can
compute 70,000 integration steps in 12 hours of run
time. This produces about 12 milliseconds of simu-
lated time, which is long enough to observe the initial
response of a flue pipe and a jet of air that oscillates
at 1000 cycles per second.

Figures 1 and 2 show snapshots from simulations
of flue pipes. The geometry of figure 2 is particu-
larly interesting because there are subregions that are
entirely gray, i.e. they are entirely solid walls. Conse-
quently, we do not need to assign these subregions to
any workstation. Thus, although the decomposition
is 6 x 4 = 24 |, we only employ 15 workstations for
this problem. In terms of the number of grid nodes,
the full rectangular grid is 1107 x 700 or 0.7 million
nodes, but we only simulate 15/24 of the total nodes
or 0.48 million nodes. This example shows that an
appropriate decomposition of the problem can reduce
the computational effort in some cases, as well as pro-
vide opportunities for parallelism.

3 Local-interaction computations

Here we review local-interaction problems in gen-
eral. We define a local-interaction problem as a set
of “parallel nodes” that can be positioned in space so
that the nodes interact only with neighboring nodes.
For example, figure 3 shows a two-dimensional space
of parallel nodes connected with solid lines which rep-
resent the local interactions. In this example, the in-
teractions extend to a distance of one neighbor and
have the shape of a 4-star (cross) stencil, but other
patterns of local interactions are also possible.

The parallel nodes of a local-interaction problem
are the finest grain of parallelism that is available
in the problem; namely, they are the finest decom-
position of the problem into units that can evolve in
parallel after communication of information with their
neighbors. In practice however, the parallel nodes are
usually grouped into subregions of nodes, as shown
in figure 3 by the dashed lines. The subregions are
assigned to different processors, and the problem is
solved in parallel as follows,

e Calculate the new state of the interior of the sub-
region using the previous history of the interior
as well as the current boundary information from
the neighboring subregions.

e Communicate boundary information with the
neighboring subregions in order to prepare for the
next local calculation.

The boundary which is communicated between neigh-
boring subregions is the outer surface of the subre-

1
1
o o o oL o o o
1 1@ A\ q N N N N T T Q! 1
o [[
[! 1 o
[o 4 a LY N a o o b
1
1 1 I g I TP I I I D 1
1 1 I 1 I 1
[Yo b
1 |(& Vi a8 & L2\ & & &)' !
P I g T PT ¥ I I I [
[Yo b
P (- [
I |(P2 4 o ol 1 P2 a a)' 1
N g T P N4 N N4 $)
"I P S (. G, [Ny (U R (S g 1
| 1
[T I S T L e) |
B N L P! 1
1 N g I I I I N N
o [[
1 1 I 1 I 1
" L o
q o 4 o o a a o oD Di
o I g I TP I I I 1
1 1 I 1 I 1
" [o
Y N L r)' !
P I g N PT ¥ I I N [
" [o
| 1 1 1 1 1
I '(_/ o 4 P2 ol 1 o a a \)' 1
< =4 < < < < < <)
1
1

Figure 3: A problem of local interactions in two di-
mensions, and its decomposition 2x2 into four subre-
gions.

gions. Thus, the amount of communication relative to
computation is proportional to the surface-to-volume
ratio of the subregions. This is very important be-
cause by coarse-graining the subregions (increasing
their size), we can reduce the time spent on communi-
cation versus computation and achieve good processor
utilization. This is the reason why local-interaction
problems are very flexible and highly desirable for par-
allel computing.

4 The distributed system

The implementation of the distributed system is
now described. It is based on UNIX and TCP/IP
communication routines, and it also exploits the com-
mon file system of the workstations. For the sake of
programming modularity, the system is organized into
the following four modules:

e The initialization program produces the initial
state of the problem to be solved as if there was
only one workstation.

e The decomposition program decomposes the ini-
tial state into subregions, generates local states
for each subregion, and saves them in separate
files called “dump files”. These files contain all
the information that is needed by a workstation
to participate in a distributed computation.

e The job-submit program finds free workstations
in the cluster (the 5-minute average CPU load
must be less than 0.5 where 1.0 means there is
one process running full-time), and begins a par-
allel subprocess on each workstation. It provides

each process with a dump file that specifies one
subregion of the problem. The processes execute
the same program on different data.

e The monitoring program checks every few min-
utes whether the parallel processes are progress-
ing correctly. If an unrecoverable error occurs,
the distributed simulation is stopped, and a new
simulation is started from the last state which is
saved automatically every 20 minutes. If a work-
station becomes too busy, automatic migration of
the affected process takes place.

All of the above programs (initialization, decompo-
sition, submit, and monitoring) are executed by one
designated workstation in the cluster. In addition to
the above programs, there is the parallel program that
is executed by all the workstations and consists of
two parts: “compute locally”, and “communicate with
neighbors”. Below, we discuss the communication.
4.1 Communication

The communication between parallel processes syn-
chronizes the processes because it encourages the pro-
cesses to begin each computational cycle together with
their neighbors as soon as they receive data from their
neighbors. Also, two neighbors are always less than
one time step apart because a process must receive
the new boundary data from its neighbors before it
can proceed to the next integration step. Our mea-
surements show that during normal execution, all the
parallel processes are very close in time, starting and
ending each computational cycle almost at the same
time.

The communication of data between processes is
organized using a well-known programming technique
which is called “padding” or “ghost cells” (Fox [4],
Camp [12]). Specifically, we pad each subregion with
one or more layers of extra nodes on the outside de-
pending on how far the local-interaction rule extends
to (for example, one layer in the present fluid flow
simulations). Once we copy the data from one subre-
gion onto the padded area of a neighboring subregion,
the boundary values are available locally during the
current cycle of the computation.

Padding leads to programming modularity in the
sense that the computation does not need to know
anything about the communication of the boundary.
As long as we compute within the interior of each sub-
region, the computation can proceed as if there was no
communication at all. Because of this, we can develop
a parallel code for fluid dynamics by extending a se-
rial code with a few subroutines that communicate
the padded areas between neighboring subregions.

Our communication subroutines are implemented us-
ing sockets (see UNIX manual) and the TCP/IP pro-
tocol which provides first-in-first-out channels for writ-
ing data in each direction between two processes on
different workstations.

Finally, it should be noted that the current system
does not overlap communication with computation.
A new implementation of the system is in progress
which overlaps communication with computation, and
the results of the new system will be described in a
forthcoming article.

5 Transparency to other users

We now discuss the issues that arise when sharing
the workstations with other users. The utilization of
a workstation can be distinguished into three basic
categories:

o (i) The workstation is idle.

e (ii) The workstation is running an interactive pro-
gram that requires fast CPU response and few
CPU cycles.

e (iii) The workstation is running another full-time
process in addition to a parallel process.

In the first two cases, it is appropriate to time-share
the workstation with another user. We make the dis-
tributed computation transparent to the regular user
of the workstation by assigning a low runtime priority
to the parallel subprocesses (UNIX command “nice”).
Because the user’s tasks run at normal priority, they
receive the full attention of the processor immediately,
and there is no loss of interactiveness. After the user’s
tasks are serviced, there are enough CPU cycles left for
the distributed computation. However, when a work-
station is running another full-time process in addition
to a parallel process, the parallel process must migrate
to a new host that is free. This is because the parallel
process interferes with the regular user, and further,
the distributed computation slows down because of
one busy workstation. Clearly, such a situation must
be avoided.

The distributed system detects the need for migra-
tion using the monitoring program mentioned in the
previous section. The monitoring program checks the
CPU load of every workstation via the UNIX com-
mand “uptime”, and signals a request for migration if
the five-minute-average load exceeds a pre-set value,
typically 1.5. The intent is to migrate only if a second
full-time process is running on the same host, and to
avoid migrating too often. During 24 hours, there is
about one migration every 45 minutes on-the-average

for a distributed computation that uses 20 worksta-
tions from a pool of 25 workstations. Each migration
lasts between 10 — 30 seconds which is slow (this will
be improved in a future implementation), but the mi-
grations do not happen often. A typical migration is
as follows,

e Process A receives the signal to migrate.
e All the processes get synchronized.
e Process A saves its state into a file and exits.

e Process A is restarted on a free host, and the
distributed computation continues.

Signals for migration are sent through an interrupt
mechanism, “kill -USR2” (see UNIX manual). In this
way, both the regular user of a workstation and our
monitoring program can request a parallel subprocess
to migrate at any time. The reason for synchroniz-
ing all the processes prior to migration, is to simplify
the restarting of the processes after the migration has
completed. In our system, we use a synchronization
scheme which instructs all the processes to continue
running until a chosen synchronization time step, and
then to pause for the migration to take place.

When all the processes reach the synchronization
time step, the processes that need to migrate save
their state and exit, while they notify the monitor-
ing program to select free workstations for them. The
other parallel processes suspend execution and close
their TCP/IP communication channels. When the
monitoring program finds free hosts for all the mi-
grating processes, it sends a CONT signal to the wait-
ing processes. In response, all the processes re-open
their communication channels, and the distributed
computation continues normally. Overall, the migra-
tion mechanism amounts to stopping the computa-
tion, saving the state of the migrating process on disk,
and then restarting. It is straightforward because the
processes are programmed to deal with the migration
themselves. By contrast, process migration in a gen-
eral computing environment such as a distributed op-
erating system [13] can be a very challenging task.
5.1 Sharing the network

A related issue to sharing the workstations with
other users, is sharing the network and the file server.
Our distributed system does not monopolize the net-
work because it includes a time delay between suc-
cessive send-operations, during which the parallel pro-
cesses are calculating locally. Moreover, the time delay
increases with the network traffic because the parallel
processes must wait to receive data before they can

start the next integration step. Thus, there is an au-
tomatic feedback mechanism that slows down the dis-
tributed computation, and allows other users to access
the network at the same time.

Another situation is when the parallel processes
are writing data to the common file system. Specifi-
cally, when all the parallel processes save their state
on disk at approximately the same time (a couple of
megabytes per process), it is very easy to saturate
both the network and the file server. In order to avoid
this situation, we impose the constraint that the par-
allel processes must save their state one after the other
in an orderly fashion, allowing sufficient time gaps be-
tween, so that other programs can use the network
and the file system.

6 Numerical algorithms

In our simulations of subsonic flow, we solve nu-
merically the compressible Navier Stokes equations (in
the adiabatic form [14]). Three fluid variables are in-
volved: the fluid density p, and the components of
the fluid velocity V,,V, in the x,y directions respec-
tively. We employ a uniform grid of fluid nodes which
looks very much like the grid of nodes in figure 3. The
fluid nodes are discrete locations where the fluid vari-
ables density and velocity are calculated at discrete
times. We use explicit numerical methods (explicit fi-
nite differences and the lattice Boltzmann method) to
calculate the future values of density and velocity at
each fluid node using the present values of density and
velocity at this node and at neighboring nodes. The
finite difference method [1] has the following form:

e Calculate V;,V, (inner)

e Communicate: send/recv V,,V, (boundary)
e Calculate p (inner)

e Communicate: send/recv p (boundary)

e Filter p,V,, V), (inner)

For numerical stability reasons, the density is up-
dated using the values of velocity at time ¢ + At;
namely, the velocity is computed first, and then the
density is computed as a separate step. A filter is also
included (fourth-order numerical viscosity [15, 16, 1])
in order to mitigate the nonlinear instabilities of com-
pressible flow at high Reynolds number. The same
filter is used both for the finite difference method and
for the lattice Boltzmann method.

The lattice Boltzmann method is a recently-
developed method for simulating subsonic flow which

is competitive with finite differences in terms of nu-
merical accuracy [17, 15] and has slightly better sta-
bility properties. The lattice Boltzmann method uses
two kinds of variables to represent the fluid: the tra-
ditional fluid variables p,V,,V, and another set of
variables called populations F;. During each cycle of
the computation, the fluid variables p, V,, V}, are com-
puted from the F;, and then the p,V,,V, are used to
relax the F;. Subsequently, the relaxed populations
are shifted to the nearest neighbors of each fluid node,
and the cycle repeats. The precise sequence of com-
putational steps for the lattice Boltzmann method is
as follows,

e Relax F; (inner)

o Shift F; (inner)

e Communicate: send/recv F; (boundary)
e Calculate p,V,,V, from F; (inner)

e Filter p,V,,V}, (inner)

Regarding the communication of boundary values
for the finite difference method (FD) and the lattice
Boltzmann method (LB), there are some differences
that should be noted. The first difference is that FD
sends two messages per computational cycle as op-
posed to LB which sends all the boundary data in one
message. This results in slower communication for
FD when the messages are small because each mes-
sage has a significant overhead in a local-area net-
work. The second difference is that LB communicates
5 variables (double precision floating-point numbers)
per fluid node in three dimensional problems, while
FD communicates only 4 variables per fluid node. In
two dimensional problems, both methods communi-
cate 3 variables per fluid node.

7 Performance measurements

We measure the performance of the distributed
system when using the finite difference method and
the lattice Boltzmann method to simulate Hagen-
Poiseuille flow through a rectangular channel [17]. The
goal of testing both methods is to examine the per-
formance of the parallel system on two similar, but
slightly different parallel algorithms. It should be
noted that the two methods produce comparable re-
sults for the same resolution, and that both methods
converge quadratically with increased spatial resolu-
tion to the exact solution of the Hagen-Poiseuille flow
problem.

o efficiency

0.6

0.4

0.2

100 200 300
parallel grain size 1/2
Figure 4: Parallel efficiency in 2D simulations using
the lattice Boltzmann method and 2x2, 3x3, 4x4, 5x4
decompositions (triangles, crosses, squares, circles).
The horizontal axis plots the square root of the num-
ber of nodes per subregion.

Below, we present measurements of the parallel ef-
ficiency f and the speedup S defined as follows,
S

f:F_PT,,

(1)

where T}, is the elapsed time for integrating a problem
using P processors, and 77 is the elapsed time for inte-
grating the same problem using a single processor. We
measure the times T}, and T} for integrating a problem
by averaging over 20 consecutive integration steps, and
also by averaging over each processor that participates
in the parallel computation. The resulting average is
the time interval it takes to perform one integration
step. We use the UNIX system call “gettimeofday”
to obtain accurate timings. To avoid situations where
the Ethernet network is overloaded by a large FTP
or something else, we repeat each measurement twice
and select the best performance.

We use twenty-five HP9000/700 workstations that
are connected together by a shared-bus Ethernet net-
work. Sixteen of the workstations are 715/50 models,
six are 720 models, and three are 710 models. The
715/50 workstations are based on a Risk processor
running at 50 MHz, and have an estimated perfor-
mance of 62 MIPS and 13 MFLOPS, while the 720 and
710 workstations have a slightly lower performance.

For analysis purposes, we define the speed of a

1 ‘ 1 1 ‘ 1
500 1000

problem size 1/2

Figure 5: Parallel speedup in 2D simulations using lat-
tice Boltzmann. The horizontal axis plots the square
root of the total number of nodes in the problem.

workstation as the number of fluid nodes integrated
per second, where the number of fluid nodes does not
include the padded areas discussed in section 4.1. The
table below presents the speed of the workstations for
2D and 3D simulations using the lattice Boltzmann
method (LB) and the finite difference method (FD).
We have calculated these numbers by averaging over
simulations of different size grids that range from 1002
to 3002 fluid nodes in 2D, and from 10° to 442 in 3D.
Also, we have normalized the speeds relative to the
speed of the 715/50 workstation,

715/50 710 720
ILB2D | 1.0+ .04 | .84+ .02 | .86 £ .08
LB3D | .51+.01 .40+ .01 | .42+£.02

FD2D |1.24+.1|1.08+.1|1.17+.1
FD3D| 1.0+£.1 | 8+.1 | 94+.1

The relative speed of 1.0 corresponds to 39132 fluid
nodes integrated per second.

In our graphs of parallel speedup and efficiency, we
use the the 715/50 workstation to represent the sin-
gle processor performance. We do not use the perfor-
mance of the slowest workstation (the 710 model) for
normalization purposes because it would over-estimate
the performance of our system. In particular, most of
the workstations are 715 models, and our strategy is
to choose 715 models first before choosing the slightly
slower 710 and 720 models. We have tested that the
speedup achieved by sixteen workstations, which are

o efficiency

0.6

0.4

0.2

100 200 300
parallel grain size 1/2
Figure 6: Parallel efficiency in 2D simulations using
finite differences.

all 715 models, does not change if one or two work-
stations are replaced with 710 models. Thus, it makes
sense to normalize our results using the performance
of the 715 model.

Figure 4 plots the efficiency as a function of parallel
grain size (the size of the subregion that is assigned
to each processor) in 2D simulations using the lattice
Boltzmann method. We see that good performance
is achieved when the subregion per processor is larger
than 1002 fluid nodes. Figure 5 shows the speedup
for the lattice Boltzmann method (LB), and figure 6
shows the efficiency for the finite difference method
(FD).

We notice one difference between the FD and LB
efficiency curves: the efficiency decreases more rapidly
for FD than LB as the parallel grain size decreases. To
understand this difference, we quote a general formula
for the parallel efficiency, which is derived in the next
section (see equation 8),

Tcom -t

f (1 + Tcalc) (2)
where T,,,, and T,,. are the communication and the
computation time it takes to perform one integration
step. It turns out that T, is smaller for FD than
LB, and that T,,,, becomes larger for FD than LB
as the parallel grain size decreases. The latter is true
because each message in a local-area network incurs
an overhead, and FD communicates two messages per
integration step as opposed to LB which communi-

—_

efficiency

e
o

0.6

0.4

0 5 10 15 20 25

number of processors

Figure 7: Parallel efficiency of 2D and 3D simulations
(triangles, crosses) as a function of the number of pro-
cessors on a shared-bus network. The lattice Boltz-
mann method is used. The problem grows linearly
with the number of processors P and is decomposed
as Px1 in 2D and as Px1x1 in 3D. The subregion per
processor is held fixed at 1202 nodes in 2D, and 253
nodes in 3D, which are comparable sizes and equal to
about 14, 500 fluid nodes per processor.

cates only one message per integration step. Because
of these differences between FD and LB, the efficiency
decreases more rapidly for FD than LB as the parallel
grain size decreases.

Next, we compare the efficiency of 2D versus 3D
simulations by plotting the efficiency as a function
of the number of processors (see figure 7). We see
that the efficiency remains high in 2D, and decreases
quickly in 3D as the number of processors increases.
This is because 3D requires much more data to be
communicated per step than 2D, and the total traffic
through the shared-bus network increases in propor-
tion to the number of processors. Thus, T, increases
faster for 3D than 2D, and the efficiency decreases
faster in the case of 3D simulations.

Another way of examining the efficiency of 3D sim-
ulations is shown in figures 8 and 9. Figure 8 plots
the efficiency against the parallel grain size for dif-
ferent decompositions 2x2x2, 2x2x2, etc. We can see
that the efficiency is rather poor. Figure 9 plots the
speedup against the total size of the problem. We can
see that the speedup does not improve when finer de-
compositions are employed because the network is the

\ \
oL i
@)
gl & 2X2X2 m
RN x X2 7
3 [o 4x2x2 i
08 L 0 4x3%2 B
0.6 —
0.4 — —
0.2 —
L1 L]

parallel grain size 1/3

Figure 8: Parallel efficiency in 3D simulations using
the lattice Boltzmann method. The horizontal axis
plots the cubic root of the number of nodes per sub-
region.

bottleneck of the computation.

The results shown in figures 8 and 9 have been ob-
tained using the lattice Boltzmann method. The par-
allel efficiency of the finite difference method (FD) in
3D simulations is worse than the lattice Boltzmann
method (LB), and is not shown here. The FD ef-
ficiency is worse than LB because the FD computes
twice as fast as LB per integration step (see earlier ta-
ble of speeds), which makes the ratio Tiom /Teaic larger
for FD than LB, and leads to lower efficiency accord-
ing to equation 2.

Another point is that the low efficiency of 3D simu-
lations is accompanied by frequent network errors be-
cause of excessive network traffic. In particular, the
TCP/IP protocol fails to deliver messages after exces-
sive retransmissions. Both the low efficiency and the
network errors indicate the need for a faster network,
or dedicated connections between neighboring proces-
sors in order to perform 3D simulations efficiently.

8 Theoretical analysis

In order to understand better the experimental re-
sults of the previous section, we develop a theoreti-
cal model of the parallel efficiency of local-interaction
problems. In particular, we derive a formula for the
parallel efficiency in terms of the parallel grain size
(the size of the subregion that is assigned to each pro-
cessor), the speed of the processors, and the speed of

\\\‘\\\ 1T T 1T T T
a L i
3
S 8- a 2X2x%2 I
2 I x BX2x2 7
“or 0 4x2x2 7
6; 0 4x3%2 B
47 |
27 |
Oi |
I R B L]

|
20 40 60 80 100
problem size 1/3
Figure 9: Parallel speedup in 3D simulations using the
lattice Boltzmann method.

the communication network. The analysis is based on
two assumptions: (i) the computation is completely
parallelizable, and (ii) the communication does not
overlap in time with the computation. The first as-
sumption is valid for local-interaction problems, and
the second assumption is valid for the distributed sys-
tem that we have implemented.

We first examine the relationship between the ef-
ficiency and the processor utilization. We define the
efficiency f as the speedup S divided by the number
of processors P. Further, we define the speedup S as
the ratio T1 /T, of the total time it takes to solve a
problem using one processor, denoted T3, divided by
the total time it takes to solve the same problem using
P processors, denoted T},. In other words, we have the
following expression,

T
PT

f=2 =)

=

We define the processor utilization g as the fraction of
time spent for computing, denoted T4, divided by
the total time spent for solving a problem which in-
cludes both computing and waiting for communication
to complete. Also, we use the simplifying assumption
that the communication and the computation do not
overlap in time, so that we define T,,,, as the time
spent for communication without any computation oc-
curring during this time. Thus, we have the following

expression,

Tcalc —
Tcalc + Tcom

g = o) R

1

(+ Tcalc

To compare f and g, we note that the values of both
f and g range between the following limits,

0<g<1
0<f<1 5)
We expect that high utilization g corresponds to high
parallel efficiency f. However, this depends on the
problem that we are trying to compute in parallel.

In the special case of a problem that is completely
parallelizable, the processor utilization g is exactly
equal to the parallel efficiency f. To show this, we
use the following relation as the definition of a prob-
lem being completely parallelizable,

Ty
T = = 6

calc P ()
Then, we also use the assumption that communication
and computation do not overlap in time, so that we
can obtain a second relation,

(Tcalc + Tcom) = Tp (7)

By substituting equations 6 and 7 into equation 3, and
comparing with equation 4, we arrive at the desired
result that the parallel efficiency is exactly equal to

the processor utilization,
-1
(1 + Tcom)
Tcalc

The above equation has been derived under the as-
sumption that communication and computation do
not overlap in time. If this assumption is violated,
then the communication time 7,,, should be replaced
with a smaller time interval, the effective communi-
cation time. This modification does not change the
conclusion f = g, it simply gives higher values of effi-
ciency and utilization.

To proceed further, we need to find how the ratio
Teom/Teaic depends on the size of the subregion. First,
we observe that T, is proportional to the size of the
subregion. If N is the size of the subregion (the num-
ber of parallel nodes that constitute one subregion),
we can write,

f=9= (8)

N
Ucalc (9)

where U,y is a constant, the computational speed of
the processors for the specific problem at hand. In a

Teate =

10

similar way, we seek to find a formula for the commu-
nication time T,,,, in terms of the size of the subregion
that is assigned to each processor. As a first model,
we write the following simple expression,

Ne
Ucom

where N, is the number of communicating nodes in
each subregion, namely the outer surface of each sub-
region. The factor U,,,, represents the speed of the
communication network.

For analysis purposes, we want to know exactly
how N, varies with the size N of the subregion. We
consider the geometry of a subregion in two dimen-
sions. We can see that the boundary of a subregion
is one power smaller than the volume expressed in
terms of the number of nodes. For example, if we
consider square subregions of size L2 nodes, the en-
closing boundary contains 4L nodes, and the ratio of
communicating nodes to the total number of nodes per
subregion can be as large as 4/L. In general, we have
the following relations,

Teom =

(10)

N. = m N'/? (11)

N, = mN?/3 (12)

in two and three dimensions respectively, where the
constant m depends on the geometry of the decompo-
sition. For example, if the decomposition of a problem
is Px1, then m = 2 because each subregion commu-
nicates with its left and right neighbors only. The
following table gives m for different decompositions
which are used in the performance measurements of
section 7,

|Px1]2x2[3x3|4x4]|5x4
m| 2 | 2 | 3 | 4 | 4

If we introduce the above formulas for N, and m into
equation 8, we obtain the following expressions for the
parallel efficiency of a local-interaction problem in two
and three dimensions respectively,

1
(1 + N_1/2 mUcalc)

com

f

(13)

-1
mUcalc) (14)

f (1 + N3
com
The above equations show that if IV is sufficiently large
compared to the term mUcqic/Ucom, then high parallel
efficiency can be achieved.
A few comments are in order. First, we must re-
member that in practice we can not increase arbitrar-

ily the size of the subregion per processor in order to

achieve high efficiency. This is because the compu-
tation may take too long to complete, and because
the memory of each workstation is limited. In the
present system, each workstation has maximum mem-
ory 48 megabytes, and a large part of this memory
is taken by other programs, and other users. In the
measurements of section 7, we consider simulations
that take up to 15 megabytes per workstation, corre-
sponding to 3002 fluid nodes in 2D simulations and
403 fluid nodes in 3D simulations.

In 2D simulations, the size of 3002 fluid nodes per
subregion is large enough to achieve high efficiency.
As we saw in figure 4, high efficiency is achieved when
the subregion per processor is larger than 100? fluid
nodes. By contrast, in 3D simulations the upper limit
of 40® fluid nodes per subregion is too small to achieve
high efficiency. Further, the efficiency depends on the
size of the subregion as N~'/3 in 3D versus N~'/2 in
2D, as can be seen from equations 13 and 14. This
means that the size of the subregion N must increase
much faster in 3D than in 2D to achieve similar im-
provements in efficiency. Because of this fact, achiev-
ing high efficiency in 3D simulations is much more
difficult than in 2D simulations.

o efficiency

0.6

0.4

0.2 — —

1 ‘ 1 1 ‘ 1 1 ‘
100 200

parallel grain size 1/2

Figure 10: Theoretical model of parallel efficiency for
two-dimensional subregions of size N.

Having described the basics of the model of parallel
efficiency, we now discuss a small improvement of the
model. We observe that in the case of a shared-bus
network the communication time T,,,, must depend
on the number of processors that are using the net-

11

work. In particular, if we assume that all the proces-
sors access the shared-bus network at the same time,
then the communication time 7.,,, must increase lin-
early with the number of processors. Based on this
assumption, we rewrite equation 10 for T,,,, as fol-
lows,

mN'Y2 (P —1)

%om

for the case of two dimensional problems. The con-
stant V.., is the speed of communication when there
are only two processors sharing the network. Using
the new expression for T.,nm,, the equation of parallel
efficiency in two dimensions becomes as follows,

1
mUcalc> (16)

com

Teom = (15)

f = (1 + N7Y2(P—1)

This model is tested below by comparing the efficiency
which is predicted by the model against the experi-
mentally measured efficiency of section 7.

Figure 10 plots the efficiency f versus N'/2 accord-
ing to formula 16, using Ucaic/Veom = 2/3. The
four curves marked with triangle, cross, square, cir-
cle correspond to different numbers of processors P =
4,9,16,20 and also different values of m = 2,3,4,4
which depends on the geometry of the decomposition
as explained earlier. A comparison between the pre-
dicted efficiency shown in figure 10 and the experi-
mentally measured efficiency shown in figure 4 reveals
good agreement when the subregion per processor is
larger than N > 1002. However, for small subregions,
N < 1002, the predicted efficiency is too high com-
pared to the experimental efficiency. The reason for
this is that messages in a local-area network have a
large overhead which becomes important when the
messages are small, namely, when the subregion per
processor is smaller than N < 1002 fluid nodes. The
overhead of small messages leads to a smaller com-
munication speed V., and a corresponding decrease
of efficiency f. We have not attempted to model the
overhead of small messages here.

Another way of examining equation 16 is to plot the
efficiency f versus the number of processors P while
keeping all other parameters constant. This is done in
figure 11 using N = 125%. We set Ucaic/Veom = 2/3
as we did in figure 10, and we set m = 2 because
each subregion communicates with its left and right
neighbors only. For comparison purposes, we also plot
the efficiency of 3D simulations using N = 25% and
m = 2. The computational speed is half as large in
3D than in 2D, and the communication of each fluid
node in 3D requires 5/3 as much data as in 2D. Taking

T 1T T T T T T 11 T T T
o 1 —
@)
o _
@)
8 i
g |
0.8 —
0.6 —
0.4 — —
I | ‘ I ‘ I ‘ I | ‘ I ‘ 1
0 5 10 15 20 25
number of processors
Figure 11: Theoretical model of parallel efficiency

which assumes that the communication time increases
linearly with the number of processors.

these numbers into account, we can write the following
expression for the parallel efficiency of 3D simulations,

-1
(1 + g ﬁfﬁﬂZﬂﬁ) (17)

com

where the factor 5/6 arises because the 2D values of
Ucatc and Veonm are used which give Ueaic/Veom = 2/3.

The theoretical efficiency of figure 11 is to be com-
pared against the experimentally measured efficiency
of figure 7. We note that the overhead of small mes-
sages, mentioned earlier, does not affect the predicted
efficiency in this case because the subregion per pro-
cessor is large, N = 1252 in 2D, and 25° in 3D. Overall,
there is reasonable agreement between the theoretical
model and the experimental measurement of paral-
lel efficiency. The model can be improved further by
employing more sophisticated expressions for the com-
munication time Ty, in equation 15 which describes
the behavior of the shared-bus Ethernet network.

f= N3 (P-1)

9 Conclusion

An effective approach of simulating subsonic fluid
dynamics on a cluster of non-dedicated workstations
has been presented. The approach is well-suited for
problems that favor the use of explicit methods: for
example, time-dependent flow with acoustic waves. A
parallel distributed system has been developed and ap-
plied to simulate the flow of air in wind instruments.
The system achieves concurrency by decomposing the

12

flow problem into coarse-grain subregions, and by as-
signing the subregions to parallel subprocesses on dif-
ferent workstations. The use of explicit methods and
coarse-grain decompositions lead to small communi-
cation requirements. The parallel processes automat-
ically migrate from busy hosts to free hosts in order
to exploit the unused cycles of non-dedicated worksta-
tions, and to avoid disturbing the regular users.

Simulations of 2D flow achieve 80% parallel ef-
ficiency (speedup/processors) using 20 HP-Apollo
workstations. Detailed measurements of the parallel
efficiency of 2D and 3D simulations have been pre-
sented which show that a shared-bus Ethernet network
with 10Mbps peak bandwidth is sufficient for 2D sim-
ulations, but is limited for 3D simulations. Finally, a
theoretical model of efficiency has been developed and
compared against the measurements.
Acknowledgements

The author thanks the members of the MAC
project at MIT for allowing the shared-use of their
workstations. The work is supported by ARPA con-
tract N00014-92-J-4097 and NSF grant 9001651-MIP.

References
[1] R. Peyret and T. D. Taylor, Computational Meth-
ods For Fluid Flow. Springer-Verlag, New York,
N.Y., 1990.

[2] C. H. Cap and V. Strumpen, “Efficient paral-
lel computing in distributed workstation envi-
ronments,” Parallel Computing, vol. 19, no. 11,
pp. 1221-1234, 1993.

J. Chase, F. Amador, E. Lazowska, H. Levy,
and R. Littlefield, “The Amber system: Paral-
lel programming on a network of multiproces-
sors,” ACM SIGOPS Operating Systems Review,
vol. 23, no. 5, pp. 147-158, 1989.

[3]

[4] G. Fox, M. Johnson, G. Lyzenga, S. Otto,
J. Salmon, and D. Walker, Solving Problems on
Concurrent Processors, vol. 1. Prentice-Hall Inc.,
1988.

[5] R. Blumofe and D. Park, “Scheduling large-scale
parallel computations on networks of worksta-
tions,” in Proceedings of High Performance Dis-
tributed Computing 94, San Franscisco, Califor-
nia, pp. 96-105, 1994.

[6] V. S. Sunderam, “A framework for parallel dis-
tributed computing,” Concurrency: Practice and
FEzxperience, vol. 2, no. 4, pp. 315-339, December
1990.

[7]

[10]

[13]

[16]

[17]

N. Carriero, D. Gelernter, D. Kaminsky, and
J. Westbrook, Adaptive Parallelism with Piranha.
Report No. YALEU/DCS/RR-954, Department
of Computer Science, Yale University, February
1993.

S. Kohn and S. Baden, A robust parallel program-
ming model for dynamic non-uniform scientific
computations. Report CS94-354, University of
California, San Diego, 1994.

G. Chesshire and V. Naik, “An environment for
parallel and distributed computation with appli-
cation to overlapping grids,” IBM Journal Re-
search and Development, vol. 38, no. 3, pp. 285—
300, May 1994.

H. Bal, F. Kaashoek, and A. Tanenbaum, “Orca:
A languate for parallel programming of dis-
tributed systems,” IEEE Transactions on Soft-
ware Engineering, vol. 18, no. 3, pp. 190-205,
March 1992.

A. Hirschberg, Wind Instruments. Eindhoven In-
stitute of Technology, Report R-1290-D, 1994.

W. Camp, S. Plimpton, B. Hendrickson, and
R. Leland, “Massively parallel methods for engi-
neering and science problems,” Communications
of the ACM, vol. 37, no. 4, pp. 31-41, April 1994.

F. Douglis, Transparent Process Migration in the
Sprite Operating System. Report No. UCB/CSD
90/598, Computer Science Division (EECS), Uni-
versity of California Berkeley, September 1990.

G. Batchelor, An Introduction to Fluid Dynamics.
Cambridge University Press, 1967.

P. Skordos, Modeling flue pipes: subsonic flow,
lattice Boltzmann, and parallel distributed com-
puters. Department of Electrical Engineering and
Computer Science, MIT, Ph.D. Dissertation, Jan-
uary 1995.

P. Skordos and G. Sussman, “Comparison be-
tween subsonic flow simulation and physical
measurements of flue pipes,” in Proceedings of
ISMA 95, International Symposium on Musical
Acoustics, Le Normont, France, July, 1995.

P. Skordos, “Initial and boundary conditions for
the lattice Boltzmann method,” Physical Review
E, vol. 48, no. 6, pp. 4823-4842, December 1993.

13

