
An amorphous algorithm for learning ordered sequences:
memorizing the multiplication table

Panayotis A. Skordos pas@ai.mit.edu

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge MA 02139 USA

Abstract

An amorphous algorithm is presented that memorizes ordered sequences of tokens such
as the multiplication table, telephone numbers, and arbitrary alphanumeric strings. The
amorphous model consists of a set of information-processing nodes which are identical,
independent, asynchronous, message-passing between neighbors, and in unspecified physical
locations. For simplicity communication between neighbors is assumed to occur via wires
and not via radio. The nodes absorb incoming tokens of information using time-controlled
accepting and rejecting rules of behavior, and during this absorbing process the nodes
make logical connections between them that have the structure of a tree. Retrieval occurs
by matching all parts of a stored sequence. The amorphous program is presented, and
a simulator is developed to test the program. Future plans are given how to extend the
present approach to other memory tasks and more complex computations.

1. Introduction

The phenomenon of emerging computation from an underlying set of independent agents
is an important topic in many diverse areas of science and engineering. In particular in
Computer Science the topic is very promising because processors will continue to become
smaller and cheaper to produce; while at the same time the task of programming and
organizing a great multitude of processors will remain a difficult task. One approach of
handling an immense multitude of processors is the approach of emerging computation
with independent information-processing units that are asynchronous and whose physical
locations are unspecified. This is the field of amorphous computing (Abelson, Allen, Coore,
Hanson, Homsy, Jr., Nagpal, Rauch, Sussman, & Weiss, 2001; Weiss, Knight, & Sussman,
2004).

Another area which is at the forefront of science, and is related somewhat to amorphous
computing is understanding the human brain. In the brain a great multitude of individual
neurons are involved to produce a global computation, and the cells operate asynchronously
with each other. Also the locations of the neurons are not on a regular grid, but instead
they are flexible, moving slightly and growing, and making new connections. Of course,
the brain is much more complex than an analogy with amorphous computing, but there is
an overlap between the two fields that can be useful. By developing amorphous algorithms
for simple memory tasks, we will understand better the general principles involved. And
in combination with other disciplines, this may help some day to understand better certain
aspects of the brain’s memory. In addition, the amorphous algorithms will have interesting
applications on amorphous computing hardware. This is the motivation of the present
study.

1

The task of storing and retrieving ordered sequences of names and numbers such as
the multiplication table is explored. An amorphous program is presented that memorizes
sequences of single-digit numbers or characters, and composite objects such as multi-digit
numbers and alphanumeric strings. The task is simple and useful both on its own and as a
subpart of more complex memory tasks.

Section 2 introduces the high-level amorphous model used here, and then presents the
algorithm. The main ideas are how to form a tree in an amorphous manner, how to make
parent-child connections between nodes, and how to exploit time-controlled accepting and
rejecting rules of behavior. Section 3 describes a serial simulator that is used to test the
amorphous algorithm. Sections 4 and 5 present examples of storing and retrieving ordered
sequences. Section 6 discusses the connectivity between nodes, and presents the results of
simulation experiments. The last section 7 presents ideas for extending the present approach
to other memory tasks and more complex computations.

Figure 1: Twenty nodes store the sequences “(* 2 2 4)”, “(* 2 3 6)”, “(* 2 4 8)”.

2. High-level amorphous model

The present amorphous model is more abstract than the typical amorphous computer in
recent works such as (Coore, 1999; Nagpal, 2001; Weiss, 2001; Rauch, 2004). In particular it
is assumed that communication between amorphous processors occurs via wires and not via
radio waves. This simplifies the model and the programming. However, it may be possible
to build the equivalent of communication via wires on an amorphous computer that uses
radio communication, by using the techniques in (Nagpal & Coore, 1998; Nagpal, 1999) to

2

Figure 2: Tree of sequences “(* 2 2 4)”, “(* 2 3 6)”, “(* 2 4 8)” of figure 1.

assign unique local identifiers to nearby amorphous processors or group of processors. Also,
the techniques in (Nagpal & Coore, 1998) for grouping a set of processors into one node
can give robustness against processor failure.

We start with a set of independent nodes that execute locally the same program without
global synchronization. The nodes communicate asynchronously with each other via mes-
sages sent over wires, but the precise location of the nodes is left unspecified. Every node
has a fixed set of neighbors that it communicates with, and together all the nodes constitute
a graph. Information enters and exits the graph through one boundary node, which has an
extra connection to the outside world. A node typically sends the same message to all its
neighbors, but it can also communicate selectively with one neighbor if needed, such as its
parent. The assumption of communication via wires implies that a node can talk selectively
with a neighbor if needed, and also that there are no issues of message collision.

Neighboring nodes make logical connections between them in order to store information.
When two nodes make a connection, one node becomes the parent (upstream) and the other
node becomes the child (downstream). A typical scenario is as follows. If a node has already
stored a token of information in its memory, and receives a new token from its parent, then
it tries to make a connection with one of its free neighbors. The neighbor that accepts the
connection, becomes its child and absorbs the new token. If a node has used all of its free
neighbors and can not make a connection, then there is a bottleneck (section 6), and the
information can be lost. Therefore the total number of nodes and the number of neighbors
per node must be large enough so that there are always free nodes to connect to.

3

Figure 3: Forty nodes store the sequences “(dog barks)” and “(bird sings)”.

In a different version of the model, we could try to include dynamic creation of new
neighbors in order to achieve a better utilization of the nodes and the connectivity of
each node. Connectivity is how many free neighbors a node has available to form new
connections. Dynamic creation of new neighbors would be useful if some nodes require
many more neighbors than the average node. Also, another addition to the model would
be the migration of nodes and their connections in order to relieve congestion from busy
areas. For simplicity we have chosen to avoid these features in the present study. And it
turns out that good results are achieved in the task of storing and retrieving sequences such
as the multiplication table by using a large number of simple nodes with a large number of
available neighbors for each node. Specific simulation numbers are given in section 6.

2.1 Trees created by amorphous program

To store and to retrieve ordered sequences of tokens, it is convenient to use the structure of
a tree. The challenge is to program the creation and the searching of a tree in an amorphous
manner. The basic idea that makes this possible in the following amorphous program, is
the time-controlled accepting and rejecting of messages by the nodes in order to absorb
incoming tokens appropriately and to direct the tokens to the correct paths. In addition,
the connection between two nodes distinguishes the nodes into a parent and a child, and
this leads naturally to the structure of a tree.

4

Figure 4: A graph of 175 nodes with connectivity 52 neighbors per node stores the complete
multiplication table of 36 sequences from “(* 2 2 4)”, “(* 2 3 6)” up to “(* 9 9
81)”.

Consider a graph of nodes where initially all the nodes are blank. Information enters
the graph through a boundary node. When the blank boundary node receives a token, the
node stores the token in its local memory and becomes “open” to receive a second token
for a limited amount of time and pass it downstream to other nodes. When a second token
arrives, the open node makes a connection with a free neighbor which becomes its child,
and passes to this child the token. Step by step, the nodes form a tree where each node
has one parent upstream and possibly multiple children downstream. The basic rules of
behavior can be summarized as follows.

• If a node with empty memory receives a token from upstream, it absorbs the token
and it becomes open for a time interval long enough for the next token of an incoming
sequence of tokens to arrive. An open-state counter is used to count down a certain
number of cycles, specified below. After this time has elapsed, the node is no longer
open, and is closed.

5

• If a node is open and receives a token, it tries to send the token downstream to its
children, and it also resets the open-state counter so that it will remain open until the
next incoming token. In addition it sends an acknowledgment message to its parent
who gave the token. If there are no children or if none of the children accept the
token, then the current node makes a new connection with one of its free neighbors
in order to pass to it the incoming token.

• If a node is closed and receives a new token from upstream, then it compares the
new token to its own token. If the tokens are the same, then the node absorbs
the token, becomes open, and sends an acknowledgment upstream to its parent. If
the tokens differ, then the node rejects the new token, it sends no acknowledgement
upstream, and it becomes closed-non-accepting for some cycles. The time duration
is proportional to the length of sequences that can be safely distinguished. However
there are also alternative rules of behavior that can handle sequences of unlimited
length as explained in section 4.

Finally there are some additional rules of behavior that are used when the nodes perform
a retrieval operation, and they are discussed later below.

2.2 The rate of processing

As stated earlier, there is no global synchronization between the nodes. But there is the
constraint that the time interval spent by each node to finish its own computational cycle
is limited, say not larger than T . And further, all the nodes know this intrinsic value T ,
and have local clocks so they can wait at most T for messages to be communicated with
their connections. In other words, the nodes operate in parallel and asynchronously doing
computational steps of duration T .

The asynchronous operation of the nodes is similar to the case of workstations doing
a parallel distributed computation of fluid dynamics (Skordos, 1995; Skordos & Sussman,
1995) with one exception. The workstations must wait in locked-mode at the end of each
cycle, until they receive messages from all of their neighbors before they can continue to
compute the next cycle. In contrast, the nodes of the amorphous model simply proceed to
the next cycle after a duration T assuming that no message is coming if no message has
arrived within the time interval T .

Consider the following scenario. Node A is open and sees it has received a new token from
its parent. In response A sends an acknowledgment to its parent, and sends downstream
the new token to its children. These actions are completed in one cycle, a time interval T .
Next, A waits for an interval T before proceeding further. During this second interval T ,
any child has enough time to receive the message and to respond with an acknowledgement
if it accepts the new token. At the start of third cycle, node A checks for messages from its
children, and if it finds an acknowledgement, it has finished its obligations with regard to
this token. Otherwise, node A must make a new connection with one of its free neighbors,
say B, and pass the token to B.

For simplicity, it is assumed that node A makes a connection with a neighbor B and
passes to B the new token in one cycle T , namely by the end of the third cycle. This means
that node A becomes free and is ready to process a new token at the start of the fourth
cycle, and the rate of processing is one token every three cycles in this scenario.

6

One can always increase the interval T to make possible the formation of a new connec-
tion in one cycle. Or alternatively, one can use more cycles for the processing of each token.
There is freedom in the model to do so. And it may be necessary in order to accommodate a
particular hardware implementation, or to model additional interactions between the nodes
as discussed in sections 4 and 6.

Finally note that the rate of processing is an important global parameter of the whole
system. First, it determines the duration of the open-state counter. Second, a sequence of
tokens must arrive at the boundary node of the graph at the same rate as the processing
rate, namely one token every three cycles in the above scenario. And third, two different
sequences that are sent to the graph must have a time gap between them which is larger
than the duration of the open-state counter, namely three cycles. In this way the two
sequences will not be mixed together.

3. The simulator

In order to test the amorphous algorithm, a serial simulator is used which has its own timing
considerations. To avoid any timing side-effects between the nodes, two copies of the graph
of nodes are used, the old and the new. A node reads the state from the old graph, namely
its own local state and messages, and applies its actions to the new graph. Thus, there is a
time interval between the old and the new graph, which is the local time step or one cycle.

In addition, the nodes are processed in random serial order, to enforce the constraint
that one must not depend on the serial simulation order between nodes for messages and
computation to complete. And likewise, when a node accesses the list of its neighbors, a
random permutation list is used to randomize the accessing order.

The default processing rate in the simulator is one token every three cycles as above.
In particular, if an open node A receives a new token, during cycle-1 A reads the token
from the old graph, and sends messages to its parent and children, applying them to the
new graph. During cycle-2 the parent and the children read the messages and respond
accordingly, while node A waits doing nothing. During cycle-3 node A reads the responses
of the children, and if necessary, A makes a new connection with some neighbor B.

3.1 The implementation of tokens

The token is the basic unit of information. The beginning or end of an ordered sequence
of tokens is denoted with special tokens which act as markers: the left-parenthesis “(“ and
the right-parenthesis “)”. For example the sequence of numbers “(1 4 7 2)” enters the
boundary node of a graph first with “(“, then “1”, then “4”, and so on, and finishes with
the token “)”.

The value of a token is a one byte character. A two-digit number such as “81” is a
composite of two tokens, and thus, the tokens must have an extra type field to indicate
the continuation of a composite object. The type is atom-continued for the first token “8”
and type atom for the second token “1”. The type field is implemented as a bit-flag, so
that different combinations of bit-flags can be turned on and off easily. The token is very
versatile, and it is used both as the message sent between the nodes and also as the memory
stored by the nodes locally.

7

The use of a pair quantity, a type field and a value field, is a programming convenience.
It is easy to see that the pair could be replaced with a single scalar by using an extended
encoding. For example, an “atom-continued 2” could be encoded as the integer 12 meaning
a “second octave 2” in contrast to an “atom 2” which would be simply 2 meaning a “first
octave 2”. Other types could be encoded as third octave, fourth octave, and so on.

Finally another design aspect is the use of a memory register and a transit register
for each node. The latter one is used temporarily when a node is pushing downstream
an incoming token, and keeps the token in the transit register while waiting to hear from
its children. The transit register is also used during a retrieval operation as explained in
section 5.

4. Storing a sequence

Let us store a sequence that illustrates the challenge of directing the tokens to the correct
path. The sequence “(2 6 3)” is to be stored in a graph that has stored already the sequence
“(2 3 4)”. The top node “(“ opens first, and then the node “2” opens under the node “(“.
If there is a node containing a “6” underneath the “2”, it opens next; otherwise, the node
“2” makes a new connection with one of its free neighbors and passes to this child the token
“6”. The interesting event occurs when the next token “3” of the sequence “(2 6 3)” arrives.
The graph already has a sequence “(2 3 4)” so it is possible that the incoming token “3”
will match the “3” under the “2” and this would be incorrect. Instead, the incoming token
“3” must be stored under the node “6” to represent correctly the incoming sequence. There
are at least three approaches to deal with this problem, as follows.

• The closed-non-accepting behavior: the node “3” of the already stored sequence “(2 3
4)” becomes closed-non-accepting for a few cycles after the token “6” of the sequence
“(2 6 3)” is tried. And thus, the next incoming token “3” is stored under the node
“6” to represent correctly the incoming sequence.

• An additional interaction between parent and children: node “2” first tries to find
an open path by sending out a tentative token “3” to be accepted only if a child is
already open. If there are no replies, then it tries to open a path by sending again
the token “3” to all its children to be accepted if a child matches the token. Finally
if there are no replies again, then node “3” makes a new connection.

• The remember-my-path approach: node “2” remembers which child absorbed the
previous token that passed (during the duration that node “2” is open only), and
sends the next token selectively only to this child. In this case “3” is sent only to
node “6”.

The first approach is the default in the simulator. It is appealing because the nodes interact
with each other in a simple way. However, it has the drawback that it can not handle se-
quences of unlimited length. In particular, the number of cycles of the closed-non-accepting
behavior is proportional to the length of sequences that can be safely distinguished. In
the case of a multiplication table where the longest sequence is 7 tokens “(* 9 9 81)”, the
closed-non-accepting behavior must be 21 cycles assuming the rate of processing is 3 cycles

8

per token. Then, the minimum gap between two different incoming sequences must also be
21 cycles.

To deal with sequences of unlimited length, the second and third approaches can be
used. The only drawback of the second approach is that it uses an additional interaction
between parent and child, and adds two more cycles to the rate of processing. In particular,
the rate would change from 3 cycles to 5 cycles per token. Finally, the only drawback of the
third approach of “remembering-my-path” is that the nodes can not send the same message
to all the children without distinction. It requires nodes to remember, while they are open,
which child absorbed the previous token that passed through them, and to communicate
selectively with this child only.

5. Retrieving a sequence

To retrieve a sequence, a special token is used which acts as a variable and matches every
token. We refer to it as baladeur or jockey token, and we denote it with the special character
“?”. When a node compares two tokens, it also checks if the token type is baladeur which
means a match always. The following additional rules of behavior are used to handle a
baladeur.

• If a baladeur opens a node that has an atom-continued token, then the baladeur is sent
automatically further downstream to open the continuation of the composite object.

• After a baladeur opens a path, the subsequent tokens that pass downstream from that
node are marked opened-by-baladeur so the nodes will not make new connections to
store a sequence that contains a baladeur.

• If the incoming sequence has tokens before the baladeur and these get stored in the
graph, then we have an unfinished sequence; namely, a sequence that lacks the end-
marker “)”. Unfinished sequences are automatically deleted as follows. If a node has
stored a value, and is not open, and has no children, and is not itself an end-marker
“)”, then it is a loose node and must free itself on the next cycle. It becomes empty,
and it also deletes the upstream connection with its parent, so that successively the
unfinished sequence is deleted completely.

The above rules for baladeur are somewhat complex, and a simpler approach might be
to operate the graph of nodes in two distinct modes: the learning mode, and the retrieval
mode. In the latter one, incoming sequences are only matched, and not stored. Such an
arrangement might also provide capability to learn sequences that contain themselves a
variable; for example, the sequence “(* ? 1 ?)” could be learned. But this is a topic
for future work. In the present algorithm the ordered sequences do not contain variables
themselves. The above rules for baladeur make it possible for the nodes to learn or to
retrieve based on the incoming sequence only. If the sequence contains no baladeur and is
a new sequence, it is automatically learned; otherwise it is matched for retrieval.

A typical scenario for retrieval is as follows. The multiplication sequence “(* 2 3 6)”
has been stored, and the questioning sequence “(* 2 ? 6)” comes in. A conduit of nodes
opens successively starting with the node “(“, then “*”, then “2”, then all the nodes under

9

“2” such as 2-3, 2-4, 2-5, etc. Subsequently only one of these paths matches the next token
“6”, and finally the end-mark token “)” matches the end of the stored sequence.

When the end-marker “)” of a stored sequence is matched, the reverse flow of the
retrieval operation begins that sends upstream all the tokens of the matched sequence to the
boundary node. The end-marker node first sends an empty retrieval-marked token upstream
to its parent, and then enters a retrieval mode where it will send its own token upstream
in the next cycle. A node that receives an empty retrieval-marked token from downstream
does the same: it sends an empty retrieval-marked token upstream, and prepares to send its
own token upstream in the next cycle. A node remains in retrieval mode and keep sending
upstream any tokens coming from downstream as long as there are retrieval-marked tokens
coming. If there are none, then the node exits the retrieval mode and becomes idle.

We notice that this retrieval operation creates a sequence of tokens that arrive one token
after another. This is done for simplicity, and is different from the incoming sequence which
enters the graph at the rate of one token every three cycles. But it is possible to change the
retrieval into a frequency of 1 token every 3 cycles if desired. In particular, the nodes must
use another counter, say the retrieval-open counter, that counts down 3 cycles. At every
third cycle, a node which is in retrieval mode sends upstream the token which is waiting
in its transit register, and checks to see if there is another retrieval token coming from its
children downstream. If there is one, the new token is placed in the transit register and
waits another 3 cycles until it is sent further upstream.

The tables of figures 5 and 6 show the retrieval timing for the sequence “(a b c)” in
the two different frequencies: 1 token every cycle and 1 token every 3 cycles. The retrieval
starts from the rightmost part of the figure which corresponds to the end-marker node “)”
and the tokens move from right to left. The outgoing boundary is at the leftmost part of
the figure. The columns labeled with a dash correspond to the links between the nodes.
Time increases from top to bottom, one line for every cycle. The symbol “@” is used
to denote an empty retrieval-marked message. The superscript notation a3, a2, . . . shows
the retrieval-open counter that counts down 3 cycles before a token can be sent further
upstream.

6. Physical space and connectivity

Figure 1 shows a graph of 20 nodes that store the sequences “(* 2 2 4)”, “(* 2 3 6)” and “(* 2
4 8)” of the multiplication table. In this example, each node has 10 neighbors. For simplicity,
the underlying physical space of the nodes is assumed to be one-dimensional periodic, and
the neighbors are chosen 5 to the left and 5 to the right of each node. Thus, the space is
conveniently drawn as a circle. But for the purposes of the amorphous algorithm, only the
connectivity of the nodes matters, and the precise location of the nodes is unspecified.

During the time evolution of a graph of nodes, an important question is how to choose
a free neighbor to form a connection. As the nodes absorb incoming information and form
a tree, it is desirable to spread-out thinly among the nodes in order to avoid a bottleneck.
A bottleneck occurs if a node tries to make a connection, but it has no free neighbors
even though the graph of nodes has many free nodes far away from this node. Thus, the
algorithm must try to spread the connections among the nodes. There are at least four
approaches to consider.

10

Figure 5: Retrieval timing with 1 token every cycle.

− (− a − b − c −)
. @)
. @ c) .

. . . . @ b c) . .

. . @ a b c) . . .

@ (a b c)

(a b c)

a b c)

b c)

c)

)

Figure 6: Retrieval timing with 1 token every 3 cycles for the sequence “(a b c)”. Time
increases from top to bottom and tokens move right to left. The columns labeled
with dashes correspond to the links between nodes. The symbol “@” denotes an
empty retrieval-marked message. The superscript numbers show the retrieval-
open counter. The retrieval is shown below only until “b” for brevity.

− (− a − b − c −)
. @)3

. @ c3 .)2

. . . . @ b3 . c2 .)1

. . @ a3 . b2 . c1) .

@ (3 . a2 . b1 c)3 . .

. (2 . a1 b c3 .)2 . .

. (1 a b3 . c2 .)1 . .

(a3 . b2 . c1) . . .

. a2 . b1 c)3

. a1 b c3 .)2

a b3 . c2 .)1

. b2 . c1)

. b1 c)3

b c3 .)2

11

• Choose a free neighbor that has the highest connectivity: first-order connectivity
criterion.

• Choose a free neighbor using a second-order connectivity criterion.

• Choose randomly a free neighbor to connect to.

• Choose a free neighbor that is furthest away from the node.

The first criterion chooses the neighbor that has the largest number of free neighbors. This
is the default approach used in the simulator and in all the examples of this paper. If the
connectivity of node i is Con(i) and the index i runs over the free neighbors of a node,
then the first-order connectivity criterion can be written as

max
i

Con(i) (1)

The second-order connectivity criterion improves a little over the first-order criterion but is
more complex, and the gain is not worth the cost in complexity. If the free neighbors of node
i are denoted FreeNj(i) where j runs over the free neighbors of node i, the second-order
density criterion can be written as

max
i

∑
j

Con(FreeNj(i)) (2)

which means to choose the neighbor i whose possible connections all together have the
largest sum of connectivities.

The third approach of randomly choosing a free neighbor is not great, but is not too
bad either, as can be seen in figures 7-10.

In considering the fourth approach, it is interesting that the exact opposite approach
of choosing a free neighbor closest to the current node, guarantees to reach a bottleneck
as soon as possible. Indeed, the fourth approach of choosing a free neighbor furthest away
from the current node tends to spread-out the connections, and provides good results but
introduces a physical dependency. It assumes that the nodes can compare relative distances
between them in order to choose the neighbor furthest away from the current node. Thus
this approach is not as general as the others, and should be avoided.

The first-order connectivity criterion is implemented in the simulator by having all the
nodes keep track of how many free neighbors they have at any given time. And when a node
is looking for a neighbor to connect to, it chooses the neighbor with highest connectivity. For
simplicity, the choosing is done automatically by the underlying system, and is not simulated
directly. However, it is possible to simulate directly: when a node seeks a connection, it
first polls its neighbors to read their connectivity. Then it chooses a node with the highest
connectivity, and makes the chosen node its child.

Note that this important step, where a node is making a new connection with a chosen
child, is an example of selective communication between nodes. The initiating node only
communicates with the neighbor that is going to become its child. The other occasion we
have seen where selective communication takes place between nodes, is when a node sends
a message upstream to its parent.

12

Figure 7: Simulations that try to store the full multiplication table of 36 sequences. The
horizontal axis shows different connectivities, and the vertical axis shows different
number of nodes. A table entry of “0” means success that all 36 sequences are
stored, “1” means one sequence is left out, and so on. In the first table, we choose
a free neighbor that has the highest connectivity.

. 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70
150 5 9 6 8 6 7 5 7 5 5 4 4 3 4 2 4
175 7 5 5 4 6 1 0 2 2 0 0 2 0 0 0 0
200 6 7 4 3 1 1 0 1 0 0 0 0 0 0 0 0
300 7 6 3 5 2 1 0 0 0 0 0 0 0 0 0 0

Figure 8: Choose a free neighbor using the second-order connectivity criterion.

. 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70
150 5 5 4 3 5 4 3 6 3 5 2 4 3 4 2 2
175 3 0 3 0 1 0 0 0 1 0 0 0 1 0 0 0
200 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9: Choose randomly a free neighbor to connect to.

. 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70
150 15 12 12 11 10 10 7 6 5 3 3 3 6 3 1 1
175 15 16 14 10 13 13 6 7 3 1 6 3 2 1 1 1
200 13 18 8 10 15 6 7 11 6 3 3 1 3 3 1 1
300 15 15 13 13 6 11 7 6 3 5 1 0 8 1 7 3

Figure 10: Choose a free neighbor that is furthest away.

. 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70
150 5 5 6 6 4 4 2 1 1 2 1 3 3 2 2 1
175 3 3 5 4 1 2 0 2 0 0 0 0 0 0 0 0
200 0 3 4 3 0 1 0 0 0 0 0 0 0 0 0 0
300 0 3 4 3 0 0 0 0 0 0 0 0 0 0 0 0

13

6.1 Simulation experiments

In order to test the different approaches of choosing a neighbor, experiments were done
on the task of storing the full multiplication table of 36 sequences from “(* 2 2 4)”, “(*
2 3 6)” up to “(* 9 9 81)”. Figures 7-10 tabulate the results of these experiments by
showing the smallest initial connectivity and the fewer nodes that are needed to store
all the multiplication sequences without a bottleneck. The initial connectivity is uniform
among the nodes in all cases. The horizontal axes show connectivity and the vertical axes
show number of nodes. A table entry of “0” means success that all 36 sequences are stored,
“1” means one sequence is left out, and so on. We can see that the first-order connectivity
criterion performs very well.

Figure 1 shows one of the smallest possible graphs that can store the full multiplication
table of 36 sequences from “(* 2 2 4)”, “(* 2 3 6)” up to “(* 9 9 81)”. This graph has 175
nodes and initial uniform connectivity of 52 neighbors per node. After all the sequences have
been stored, there are only 25 nodes left out of 175, which corresponds to node utilization
of 85 per cent.

7. Conclusion and future directions

We have seen an amorphous program that organizes a set of independent processing nodes
to store and to retrieve ordered sequences of names and numbers. This includes simple
tokens such as one-byte characters and one-digit numbers, and composite objects such as
multi-digit numbers and general alphanumeric strings.

The basic idea is the time-controlled accepting and rejecting rules of behavior, and the
fact that a connection between two nodes distinguishes the nodes into parent and child
which gives rise to the structure of a tree. As information enters the graph, the nodes make
logical connections between them to direct the information down the correct paths. To
retrieve a stored sequence, a special variable token is used that matches every token. Also
the end-marker of a stored sequence is used in a special way to initiate the sending of the
retrieved sequence upstream to the boundary node. It is possible to retrieve a sequence of
the multiplication table by trying any of the following combinations “(* 2 3 ?)”, “(* 2 ?
6)”, “(* ? 3 6)”, and even “(? 2 3 6)”.

One limitation of the present program that is left for future work, is how to handle
non-unique or multiple retrievals. For example, in the case of the multiplication table the
pattern “(* ? ? 12)” matches more than one sequence. Also, if the stored data has multiple
branches such as “(dog runs)” and “(dog barks)”, then the pattern “(dog ?)” produces
multiple results. The present system garbles the multiple results on retrieval because it has
no mechanism for choosing one of the multiple sequences and blocking the others, or for
being able to produce all matched sequences at the output one after the other.

Some applications of the present approach include the following. One can generalize the
memorization of ordered sequences to memorization of arbitrary nested LISP lists using the
discrimination network described in the appendix of (de Kleer, Doyle, Rich, Jr., & Sussman,
1978). This is because a discrimination network produces an unwrapped representation of
an arbitrary nested LISP list as an ordered sequence. For example, the LISP list that prints
as “(3 (2 . 1))” becomes “down 3 down 2 up 1 up nil” and can be stored easily as an ordered
sequence in the present system.

14

Another application of the present approach is to lookup name-value pairs. For example,
one can use sequences of the form “(lookup name object)” where object is another sequence,
perhaps the discrimination network “down 3 down 2 up 1 up nil”. Then, a lookup request
“(lookup name ?)” matches the whole object associated with the given name. The matching
could be done in an analogous way to the composite token of section 3.1. We group the
sequence “down 3 down 2 up 1 up nil” using markers such as left-right parentheses, and we
use a new flag, an object-continuation flag, to indicate that the baladeur “?” must be sent
automatically further down to match all the parts of a continued object until the object
finishes.

Finally another application may be the semantic thread memory of Vaina and Green-
blatt (Vaina & Greenblatt, 1979) which is popular in many systems such as (Stamatoiu,
2004) to learn commonsense knowledge about the world. A semantic memory contains
symbols linked together in a way that captures their meaning, and the basic idea of thread
memory is to organize the symbols into ordered sequences of names that have an ordering
from general to more specific. It is easy to see that such ordered sequences of names can be
stored and retrieved using the present amorphous program. However, this is not the end of
the story.

Thread memory includes techniques for manipulating and retrieving the thread memory.
Storage by itself is passive, while the benefits of thread memory arise from the operations
described in (Vaina & Greenblatt, 1979) that thread memory facilitates. To apply the
present approach to thread memory, we must first enhance the amorphous system to provide
more utilities at the node level that can serve the operations of thread memory. And in
addition we must design a planning unit that interacts with the amorphous memory by
reading and writing into the memory. The planning unit could also be an amorphous
program. It is a challenging topic for future work to build interacting graphs of different
types of nodes: one set of nodes for the memory, and another set of nodes for the planner.

Acknowledgements

The author wishes to thank Professor Gerald Jay Sussman for many important suggestions,
ideas, and comments on this paper.

References

Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Jr., T. F. K., Nagpal, R., Rauch,
E., Sussman, G. J., & Weiss, R. (2001). Amorphous computing. Communications of
the ACM (also MIT Artificial Intelligence Memo 1665, August 1999), 43 (5).

Butera, W. J. (2002). Programming a Paintable Computer. Media Lab, Ph.D. Thesis,
Department of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology.

Coore, D. (1999). Botanical Computing: A Developmental Approach to Generating Intercon-
nect Topologies on an Amorphous Computer. Ph.D. Thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology.

15

de Kleer, J., Doyle, J., Rich, C., Jr., G. L. S., & Sussman, G. J. (1978). AMORD A Deductive
Procedure System. MIT Artificial Intelligence Memo 435, Massachusetts Institute of
Technology.

Nagpal, R. (1999). Organizing a Global Coordinate System for Local Information on an
Amorphous Computer. MIT Artificial Intelligence Memo 1666, Massachusetts Insti-
tute of Technology.

Nagpal, R. (2001). Programmable Self-Assembly: Constructing Global Shape using
Biologically-inspired Local Interactions and Origami Mathematics. Ph.D. Thesis, De-
partment of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology.

Nagpal, R., & Coore, D. (1998). An Algorithm for Group Formation and Maximal In-
dependent Set in an Amorphous Computer. MIT Artificial Intelligence Memo 1626,
Massachusetts Institute of Technology.

Newell, A., & Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, N.J.:
Prentice-Hall.

Rauch, E. (2004). Diversity in Evolving Systems: Scaling and Dynamics of Genealogical
Trees. Ph.D. Thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology.

Skordos, P. A. (1995). Parallel simulation of subsonic fluid dynamics on a cluster of worksta-
tions. In Proceedings of High Performance Distributed Computing 95, 4th IEEE Int’l
Symposium, Pentagon City, Virginia (also MIT Artificial Intelligence Memo 1485,
November 1994).

Skordos, P. A., & Sussman, G. J. (1995). Comparison between subsonic flow simulation and
physical measurements of flue pipes. In Proceedings of ISMA 95, International Sym-
posium on Musical Acoustics, Le Normont, France (also MIT Artificial Intelligence
Memo 1535, April 1995).

Stamatoiu, O. L. (2004). Learning Commonsense Categorical Knowledge in a Thread Mem-
ory System. M.S. Thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology.

Sussman, G. J., Abelson, H., & Sussman, J. (1985, second edition 1996). Structure and
Interpretation of Computer Programs. MIT Press and McGraw-Hill.

Vaina, L. M., & Greenblatt, R. D. (1979). The Use of Thread Memory in Amnesic Aphasia
and Concept Learning. MIT Artificial Intelligence Working Paper 195, Massachusetts
Institute of Technology.

Weiss, R. (2001). Cellular Computation and Communications using Engineered Genetic
Regulatory Networks. Ph.D. Thesis, Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology.

Weiss, R., Knight, T. F., & Sussman, G. J. (2004). Genetic Process Engineering. Cellular
Computing, Martyn Amos editor, pp.43–73, Oxford University Press.

Yip, K., & Sussman, G. J. (1996). A Computational Model for the Acquisition and Use
of Phonological Knowledge. MIT Artificial Intelligence Memo 1575, Massachusetts
Institute of Technology.

16

