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A Note on the Convolution Scandal
Irwin W. Sandberg

Abstract—A recent proposed example of a discrete-time linear
time-invariant system that has no convolution representation is dis-
cussed in relation to a certain two-term representation for linear
systems that are continuous and take bounded inputs into bounded
outputs. It is observed that the example lacks a key property, but
that the example can be transformed into one that possesses the
property.

Index Terms—BIBO systems, convolution sums, linear systems.

I. TWO-TERM REPRESENTATION AND THEEXAMPLE

I N THIS LETTER, a recent proposed example of a linear
time-invariant system that has no convolution representation

is discussed in relation to a certain two-term representation for
linear systems that are continuous and take bounded inputs into
bounded outputs. It is observed that the example lacks a key
property, but that the example can be transformed into one that
possesses the property. We begin with background material and
a description of the two-term representation.

The most important single proposition in the theory of dis-
crete-time single-input single-output linear systems, with real-
valued inputs and outputs, is the idea that every such system has
an input-output map that can be represented by an expression
of the form

(1)

in which takes values in the set of integers,is the input, and
is the system function associated within a certain familiar

way. It is widely known that this, and a corresponding represen-
tation for time-invariant systems in which is replaced
with , are discussed in many books (see for example
[1], pp. 267–269), ([2], pp. 77–79), or ([3], pp. 66–71). Almost
always it is emphasized that these representations holdfor all
linear input-output maps . In [4]1 we direct attention to the
fact that such statements are in error and we give a correct repre-
sentation in which an additional term is added to the right side of
(1). This writer does not claim that s for which the additional
term is needed are necessarily of importance in applications, but
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1A conference version appears in Appendix G of [5]. [5] contains selected
papers given at the4th Bayona Workshop on Intelligent Methods for Signal Pro-
cessing and Communications, Bayona, Spain, June 1996.

he does feel that their existence shows that the analytical ideas
in the books are flawed.2

More specifically, it is shown in [4] that

(2)

for each , in which has the same meaning as in (1), and
denotes the function given by for and

otherwise. This holds whenever the input set is
the set of bounded functions, the outputs are bounded, andis
continuous (with respect to the usual sup norm). In particular,
we see that in this setting, an has a representation of the form
given by (1) if and only if

for all and .3 Since this is typically a very reasonable con-
dition for a system map to satisfy, it is clear that the s that
cannot be represented using just (1) are rather special.

It is an interesting fact that at the present time, the known
examples of s for which the additional term is not always zero
are not simple, in that they have been shown to exist, but have
not been explicitly exhibited.4 On the other hand, the map
given by

(3)

is cited in [16] as an example of a linear time-invariant system
that cannot be represented by a convolution, the point being that

s impulse response is the zero function, while the (constant
function) output need not be the zero function for all in-
puts . As indicated in [16], a closely related earlier proposed
example is given in [12].

There are many other examples of linear time-invariant maps
whose impulse response is the zero function, and whose re-

2The oversight in the books is due to the lack of validity of the interchange of
the order of performing a certain infinite sum and then applying(H�)(n). The
infinite sum at issue clearly converges pointwise, but that is not enough to jus-
tify the interchange. From another viewpoint, the oversight is due to the invalid
conclusion (see [6]) that superposition always holds in the case of a countably
infinite number of excitations.

3The main result in [4] is actually more general in thatHs are addressed for
which inputs and outputs depend on an arbitrary finite number of variables. As
is well known, that case is of interest in connection with, for instance, image
processing. A recent paper [15] contains a result corresponding to (2) for the
case of linear discrete-space systems with stochastic inputs.

4A result in ([8, p. 58]) provides such an example. This is observed in [9].
See also [4] or [5], and for related studies, see [10]–[12]. It appears that as early
as 1932, Banach was aware of the lack of existence of generalized-convolution
representations for certain linear system maps (see [13, pp. 158–159]). For re-
lated material in the context of the theory of conjugate spaces, see e.g., [14, p.
228, Table I and p. 229, Exercise 9].
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sponse need not be the zero function for all inputs. For example,
given by

(4)

will do. However, note that one does not obtain an example of
an for which the additional term in (2) is not always zero by
just taking to be the of (3) or (4), because in neither case is

even defined on the set of all bounded inputs. Thus, (3) and
(4) do not illustrate the important fact that the extra term in (2)
can be nonzero, because (2) addresses the much more familiar
case of linear systems that take the set of all bounded inputs
into bounded outputs, with outputs depending continuously on
inputs.

But this does not mean that the observations concerning (3)
and (4) are not useful in the context ofs. In fact, with de-
noting the map of either (3) or (4), using a result concerning
the extension of maps given in the Appendix, it follows directly
that there exists a linear shift-invariant mapthat extends
to the set of all bounded inputs, and which provides an example
of an for which the additional term is not always zero. By
extending , we mean that for all bounded for
which is defined. The result in the Appendix is applicable
because of the following.

i) The set of boundeds for which is defined can be
seen to be a linear manifold in the space of all
bounded inputs with the usual sup norm .5

ii) The linear manifold is closed under translation (in
the sense described in the Appendix), andis shift in-
variant.6

iii) The map is bounded in the sense that
for , implying (by a standard result concerning
the relation between continuity and boundedness) that
is continuous as a map from to .

APPENDIX

THE EXTENSION PROPOSITION

Let be the normed linear space mentioned toward the end
of Section I. Let denote a linear manifold in that is closed
under translation in the sense that for each ,
where is the set of integers and is the usual shift map
defined on for each by . We
do not rule out the possibility that .

Let be a linear map of into . Such an is shift-in-
variant if

5Recall that a linear manifold iǹ is just a subset of̀ that is a linear
space.

6With regard to ii) andK =M of (3), one can check that for each integerp

and each boundedx for which lim (2m+1) x(k) exists, the
limit lim (2m+ 1) x(k + p) also exists, and the two limits
are equal.

for each and . It is boundedif
, in which (as before)

is the norm in . Our result is the following.
Proposition: Let be shift invariant and bounded. Then

there exists a bounded (and thus continuous) linear shift-in-
variant map from into itself that extends in the sense
that .

The proof of the proposition is similar to a proof in [4], and
by the shift invariance of , we have
for all and all . The map is a bounded linear
functional on , because

for . By the Hahn-Banach theorem ([14, p. 178]) there is
a bounded linear functional that extends to all of .
Define on by . It is easy to check that

is a linear shift-invariant bounded map into , and that
extends to . This completes the proof.
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