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Abstract

Humans rapidly and reliably learn many kinds of regu-
larities and generalizations. We propose a novel model
of fast learning that exploits the properties of sparse
representations and the constraints imposed by a plau-
sible hardware mechanism. To demonstrate our ap-
proach we describe a computational model of acquisi-
tion in the domain of morphophonology. We encapsu-
late phonological information as bidirectional boolean
constraint relations operating on the classical linguis-
tic representations of speech sounds in term of distinc-
tive features. The performance model is described as a
hardware mechanism that incrementally enforces the
constraints. Phonological behavior arises from the ac-
tion of this mechanism. Constraints are induced from
a corpus of common English nouns and verbs. The
induction algorithm compiles the corpus into increas-
ingly sophisticated constraints. The algorithm yields
one-shot learning from a few examples. Our model has
been implemented as a computer program. The pro-
gram exhibits phonological behavior similar to that of
young children. As a bonus the constraints that are
acquired can be interpreted as classical linguistic rules.

Introduction’

The ability to learn is a hallmark of intelligence. Hu-
mans rapidly and reliably learn many kinds of regu-
larities and generalizations. Any learning theory must
explain the search and representation biases that make
fast and robust learning possible. We propose a model
of incremental one-shot learning that exploits the prop-
erties of sparse representations and the constraints im-
posed by a plausible hardware mechanism.

Our particular system design is consistent with what
you would expect of computer engineers. We think
naturally in terms of buffers, bidirectional constraints,
symbolic differences, and greedy learning algorithms.
As you will see, each of those particular concepts came
to play an important role in our processing and learn-
ing system and in our ultimate conclusions.

We demonstrate our learning model in the domain of
morphophonology—the connection between the struc-
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ture of words and their pronunciation. We attack this
problem partly because it is relevant to the foundation
of cognitive science as evidenced in the controversy be-
tween the supporters of symbolic Al and connectionist
AL?2 Here a key to fast learning is that the phonemes
that are actually used in language are only a few of
the possible phonemes. In each language only a few of
the possible combinations of phonemes may appear in
words. We find that it is the sparseness of these spaces
that makes the acquisition of regularities effective.
The phonemes are equivalence classes of speech
sounds that are distinguished by speakers of a par-
ticular language. A phoneme is a representation of a
range of continuous signals as a discrete symbol. Al-
though one can “morph” one speech sound into another
by a continuous process, the speaker will usually per-
ceive it as a distinct phoneme: the phonemes are the
psychoacoustic equivalent of digital values in a system
implemented with electrical voltages and currents.

Human learning

Almost every child learns how to speak and to under-
stand his native language. At an appropriate stage
of development a child learns vocabulary with amaz-
ing speed: typically a child learns many new words,
and their correct usage, each day. The learning is ef-
ficient, in that a child does not need to hear the same
words repeated over and over again or to be corrected
very often. Thus learning language must be easy, but
we do not have effective theories that explain the phe-
nomenon.

The mystery deepens when we notice that children
learn many new words without ever hearing them. In
a classic experiment by Berko (Berko 1958), a number
of English-speaking children were shown representa-
tions of a fanciful being called a “wug.” When asked
to say something about a situation with more than
one of these beings, the children correctly pluralized
the novel word to make “wugz” (not “wugs”). In an-
other experiment (Marcus et al. 1992), Marcus et. al.

2See (Rumelhart & McClelland 1986; Pinker & Prince
1988; Pinker 1991; Prasada & Pinker 1992; Ling & Marinov
1993).



showed that young children who first use an irregular
verb properly (such as “came”) would later err on the
same verb (by supplementing “came” with “comed”)
before they use the verb correctly again. Thus children
reliably exhibit behavior that indicates that they have
made generalizations that linguists describe with rules.

If children do have knowledge of the generalizations,
what is the form of such knowledge?

Our approach

We focus on the acquisition of inflectional morphology
where developmental data are abundant. We present a
theory of how to make and use phonological generaliza-
tions. Our theory explains how the generalizations can
be learned from a few carelessly chosen examples. For
example, after seeing a dozen common nouns and their
plurals, our mechanism incorporates constraints that
capture English pluralization rules: (1) Nouns ending
in one of the “hissing” sounds ([s], [z], [sh], [ch], [zh]
and [j]) are pluralized by adding an additional syllable
[I.z] to the root word, (2) Nouns ending in a voiced
phoneme (other than the hissing sounds) are plural-
ized by adding a [z] sound, and (3) Nouns ending in
a voiceless consonant (other than the hissing sounds)
are pluralized by adding a [s] sound.

Our theory of acquisition differs significantly from
those based on statistics (such as (Rumelhart & Mec-
Clelland 1986; MacWhinney & Leinbach 1991)). Tt is
a theory of learning — not training. It is incremen-
tal, greedy, and fast. It has almost no parameters to
adjust. It makes falsifiable claims about the learning
of phonological constraints: (1) that learning requires
very few examples — tens of examples in a few steps
as opposed to thousands of examples trained in thou-
sands of epochs (MacWhinney 1993), (2) that the same
target constraints are learned independent of the pre-
sentation order of the corpus, (3) that learning is in-
sensitive to token frequency,® and (4) that learning is
more effective as more constraints are acquired. These
claims are contrary to those made by the statistical
learning theories.

We do not attack the problem of how an acous-
tic waveform is processed. We start with an ab-
straction from linguistics (as developed by Roman
Jakobson, Nikolai Trubetzkoy, Morris Halle, and Noam
Chomsky) (Chomsky & Halle 1968): Speech sounds
(phonemes) are not atomic but are encoded as com-
binations of more primitive structures, called distinc-
tive features. The distinctive features refer to ges-
tures that the speech organs (such as tongue, lips,
and vocal cords) execute during the speaking process.?
The feature system of Chomsky and Halle uses 14

#See the psycholinguistic evidence presented in (Clah-
sen, Rothweiler, & Woest 1992).

*For example, the voicing feature refers to the state of
the vocal cords. If a phoneme (e.g., [z]) is pronounced with
vibration of the vocal cords, the phoneme is said to be
[+voice]. On the contrary, an unvoiced phoneme (e.g., [s])

binary-valued distinctive features. FEach phoneme is
uniquely characterized by its values on the distinctive
features. The distinctive-feature representation is ex-
tremely sparse: English uses only 40 or so phonemes
out of the thousands possible feature combinations,
and no human language uses many more than 100
phonemes.

The representation of a speech sound as a sequence
of discrete phonemes is a crude approximation to what
physically takes place during speech. We make two
idealizations. First, the distinctive features are dis-
cretized to be 0 or 1. Second, the distinctive fea-
tures are assumed to change synchronously. Although
these idealizations are not true—the distinctive fea-
tures are really analog signals and the durations of the
signals need not be aligned perfectly—they are rea-
sonable first approximations for building a mechanis-
tic model to understand how phonological regularities
might be acquired®.

Our use of vectors of distinctive features to repre-
sent the phonemes does not imply that we believe that
the recognition of speech from the acoustic waveform
passes through an intermediate stage where the fea-
tures are recognized and then the phonemes are assem-
bled from them. Perhaps other mechanisms (such as
hidden markov models) are used to obtain the phone-
mic representation from the acoustic waveform, and
the distinctive feature bit representation is a result of
this process, not a stage in it.

A Mechanistic Performance Model

Our performance model is envisioned as a hardware
mechanism. The choice of mechanism limits the range
of behavior that can be developed. Thus a mechanism
that exhibits human-like phonological behavior gives
us an upper limit on the complexity necessary to pro-
duce that behavior. By restricting ourselves to a simple
mechanism limited in the kinds of parts that we may
postulate and in the ways they may be connected, we
construct a robust theory. Our aim is to show that
phonological behavior is a natural consequence of the
organization of the hardware.

The mechanism consists of data registers and con-
straint elements. The data registers hold the state
of the computation as linguistic events are processed.
(See Figure 1.) The linguistic information is described
in terms of boolean features (bits). The constraint ele-
ments embody phonological knowledge relating sound
and meaning patterns.

The constraint elements enforce boolean relations
among the values of the features in the registers.® If

is said to be [—voice]. The plus indicates the presence of
voicing, while the minus indicates its absence.

®Modern phonology postulates more elaborate represen-
tation devices such as multiple tiers and metrical grids. See
(Kenstowicz 1994). These devices describe phonological
phenomena that we do not address.

We do not yet have a complete hardware model for
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Figure 1: The hardware mechanism consists of three
data registers.

there is sufficient match between the features in the
registers and those enforced by a constraint element,
the element fills in the details in the partially assigned
values in the registers. If the information in the reg-
isters is inconsistent with the relation enforced by a
constraint element, this conflict is noted.

A linguistic event might be the hearing or speaking
of a word. An event is described by three types of in-
formation: sound, grammar, and meaning. The sound
pattern of a word, represented as a sequence of dis-
crete phonemes, is stored in a shift register called the
phoneme register. Each time slot of the phoneme reg-
ister holds a vector of 14 binary-valued distinctive fea-
tures representing a particular phoneme. As the speech
sound is heard, the phoneme sequence is shifted. The
grammatical information of the word (such as its part
of speech, number, and gender) is stored as a vector
of grammatical features in the grammar register. The
meaning register contains a set of bits that uniquely
identify the meaning of the word. Our learning theory
does not depend on the details of the meaning bits.

The “bits” in the registers have four possible states
{0, 1,7, *}. The bits can be set by an external linguis-
tic event or by constraint relations. If the value of a bit
is currently unknown it contains an unknown symbol
(7). If a bit is asserted to be both 1 and 0 because of a
disagreement among the constraints it participates in,
it is in the conflict state, which we denote by (*).

The constraint relation enforced by a constraint ele-
ment 1s represented by a bit vector. We refer to these
bit vectors as classifiers. A classifier 1s a finite string
over the three-symbol alphabet 0,1, —. A “1” (or “0”)
typically represents the presence (or absence) of a char-
acteristic. A “—” means don’t care, i.e., the bit’s actual
value does not matter.

There are two types of classifiers: rote-classifier and
rule-classifier. The rote-classifiers capture specific cor-

constraint elements. We are imaging that each constraint
element has thousands of ports that connect to all the slots
of the shift register and the feature bundles within each
slot.

relations among the bit patterns in the data registers.
Rule-classifiers capture the regularities among rote-
classifiers; they can be interpreted as general phono-
logical constraints. Rule-classifiers are the basis for
predicting responses to novel words. If the prediction
is correct, there is no need for rote-learning the partic-
ular correlations in question.

Phonological Behavior From
Competing Constraint Elements

The basic execution cycle of the performance model
consists of three steps implementing a constraint prop-
agation process:

1. Activate the most excited constraint element.

2. Enforce bit patterns in the data registers according
to the relation the constraint element represents.

3. Deactivate previously excited constraint elements
that no longer match the register contents.

The cycle is repeated until the data registers reach a
quiescent state.

A constraint element is excited if its excitation
strength exceeds a certain threshold. The excitation
strength is measured by the Hamming distance be-
tween the classifier of the constraint element and the
bit patterns in the data registers. Multiple compet-
ing constraint elements can be excited at any instant.
When an excited constraint element is activated, it
gains exclusive control over the data registers, pre-
venting other constraint elements from writing over the
register contents. As the register contents change, an
activated constraint element might be deactivated and
relinquish its control.”

The constraint propagation process is not commit-
ted to using any particular classifier in a predetermined
way. A classifier may use partial semantic information
to enforce constraints on the phoneme register. It may
also use partial phonological information to infer se-
mantic information. The propagation process can be
freely intermixed with the addition of new constraints
and modification of the existing ones.

The same mechanism of constraint elements and
shift registers is effective for both production and com-
prehension of a word.

Learning Classifiers

In a full system, there are many classifiers. How are
the classifiers learned?

Let us consider a simple example to illustrate the ba-
sic operations of the learning procedure. Suppose that
to begin with the learner has no classifiers and is pre-
sented four noun pairs and one verb pair in random
order: cat/cats [k.ae.t.s], dog/dogs [d.).g.z],
duck/ducks [d.”.k.s], gun/guns [g.”.n.z], and

"The hardware model assumes the constraint propaga-
tion step is fast compared to the rate of incoming phonemes.



go/went [w.c.n.t]. A rote-classifier is created for
each of the words.

The learning algorithm first finds correlations among
pairs of rote-classifiers that have the same meaning.
The correlation between two rote-classifiers is deter-
mined by the difference in their bit patterns. For exam-
ple, the pair of rote-classifiers “cat” and “cats” differs
in the plural bit and the alignment of the phoneme bits.
The 10 rote-classifiers are divided into two groups: the
first one is related to changes in the plural bit, and the
second to changes in the past-tense bit.

The learning algorithm then attempts to summarize
the rote-classifiers in each correlation group. For ex-
ample, it looks for a general description of the phoneme
bit pattern that covers all the rote-classifiers with the
[+plural] feature (the positive example) and avoids all
the ones with [—plural] feature (the negative exam-
ples). A description is said to cover an example if the
example is consistent with all the conditions in the de-
scription.

Starting with the phoneme bits of a rote-classifier
as the initial description, the generalization algorithm
performs a specific-to-general search in the space of
possible descriptions. For example, an initial descrip-
tion, the seed, might be the phoneme bits for “cats.”
The seed is a bit vector of 56 bits (14 bits for each of
the 4 phonemes [k.ae.t.s]), which can be thought of as
a logical conjunction of boolean features:

01011001000000101001000011000100000111000001000001110101
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The generalization space of possible phoneme bits
for a classifier is O(3"), where n is the number of
phoneme bits. (See Figure 2.) For example the gener-
alization space for classifiers with four phonemes con-
tains O(3°%) instances. To explore this huge space, the
generalization process relies on three search biases:

1. Whenever possible it revises the current best classi-
fiers instead of starting from scratch,

2. It prefers classifiers that contain the most recently
heard phonemes, and

3. It is non-aggressive: the search terminates on the
first few classifiers found to cover a given set of cor-
relations without deliberately looking for the mini-
mal classifiers (i.e., those with the largest number of
don’t cares).

The generalization procedure 1s a beam search with a
simple goodness function. The best k candidate gener-
alizations are retained for further generalizations. The
goodness of a cube is equal to the sum of Pc and N,
where Pc is the number of positive examples the cube
covers, and Nc 1s the number of negative examples it
does not cover. To break ties in the goodness score,
the search prefers larger cubes with higher Pc.

At each iteration the algorithm generates new candi-
date generalizations by raising the phoneme bits (i.e.
changing 0’s and 1’s to don’t cares), one or two bits

Generalization by Cube Growing

digunctiverules

011 111 011 111

number of generalizations= O(3")

Figure 2: Classifier generalization as cube growing.
A relation with n boolean variables defines an n-
dimensional instance space with 3" possible instances.
The positive examples (solid dots) and negative exam-
ples (circles) occupy the vertices of an n-dimensional
cube. Generalization can be thought of as finding a
collection of m-cubes (0 < m < n) covering the pos-
itive ones without overlapping the negative ones. A
O-cube is a point, 1-cube is a line, and so on. There
may be multiple m-cubes that cover the same positive
examples (as shown by the two 2-cubes in the left di-
agram). It may also require more than one m-cube to
cover the positive examples (as shown by the 1-cube
and 2-cube in the right diagram). The generalization
algorithm uses a beam search with inductive biases to
find disjunctive generalizations.

at a time. The phonemes are ordered by recency. The
bits of the least recently heard phoneme are raised first.
The search terminates when either all positive exam-
ples are covered or a negative example is covered.

The search (with beam width & = 2) eventually pro-
duces a description G that covers all four positive ex-
amples and avoids all four negative examples. The
description says that all positive examples end with
either the [s] or [z] phoneme.®

G: [dc.dc.dc.{s,z}]

The next step in the summarization process is to
verify the covering description. The description G is
overly general because applying it to the negative ex-
amples gives not only the correct plural forms (such as
[k.ae.t.s]) but also incorrect ones (such as *[k.ae.t.z]).
The incorrect ones are treated as near misses (i.e., neg-
ative examples that are slightly different from the pos-
itive ones). Basically the learning algorithm assumes a
general uniqueness heuristics: there is only one way to
satisfy the requirements. Since [k.ae.t.s] is the known
positive example, the system-generated [k.ae.t.z] must
be incorrect. Near misses greatly speed up the discov-
ery of correct generalizations.

The generalization algorithm is re-invoked with the
addition of these new negative examples:

8The symbol “dc” abbreviates 14 don’t-care bits.



Seed : [k.ae.t.s]
Positives: [k.ae.t.s] [d.).g.z] [d.".k.s] [g. " .n.z]
Negatives: *[k.ae.t.z] *[d.).g.s] *[d. " .k.z]

*[g.".n.s] [k.ae.t] [d.).g] [d.".k] [g.".n]

This time the search results in a digjunction of three
generalizations G1, G2, and G3:

G1: [dc.dc.[-voice].s]
G2: [dc.dc.[+voice,-strident].z]
G3: [dc.dc.[+voice,-continuant].z]

The generalization G1 covers two positive examples:
“cats” and “ducks.” G1 describes a correlation be-
tween the penultimate voiceless phoneme and a termi-
nal [s] phoneme. The generalizations G2 and G3 over-
lap in their coverings. They both cover the remaining
two positive examples: “dogs” and “guns.” G2 says
that a terminal [z] phoneme is preceded by a phoneme
that has the [+voice] and [—strident] features.® G3 cor-
relates a terminal [z] phoneme with a preceding voiced
non-continuant. The three generalizations are verified
as before. However, this time the generalizations are
consistent: there are not any new exceptions or near
misses. Note that after seeing only 4 positive examples,
the learner is able to acquire constraints on the plural
formation that closely resemble those found in linguis-
tics texts(Akmajian, Demers, & Harnish 1990). These
rule-classifiers are now available for constraint propa-
gation, and are subject to further refinement when new
examples appear.

Experimental Results

The corpus consists of 250 words.'® The words are

common nouns (about 50) and verbs (about 200) that
first-graders might know. The nouns are the singu-
lar and plural forms of common animals and everyday
objects. (e.g., cat, cats, dog, dogs, cup, cups, nose,
noses, man, men) The corpus includes most of the reg-
ular and irregular verbs used in the psycholinguistic
experiments of Marcus et. al. (Marcus et al. 1992) on
English tenses.

Consistent with the observation that a human
learner receives little explicit correction, the corpus
contains only positive examples. However, the lack of
external negative evidence does not rule out the pos-
sibility that the learner can generate internal negative
examples when testing hypotheses. These internal neg-
ative examples, as we have seen, play a significant role
in the rapid learning of classifiers.

The data record for each word in the corpus has
five pieces of information: (1) word identifier, (2) word
spelling, (3) a unique meaning identifier (e.g., “cat”
and “cats” have the same meaning id, but “cat” and

°The strident feature refers to noisy fricatives and
affricates. In  FEnglish there are eight stridents:
[5,2,f,v,ch,j,sh,zh].

1%Tnitially we planned to use a corpus of several thousand
most frequent words. But it soon became apparent that the
learner can do extremely well even with a few dozen words.

“dog” do not), (4) its pronunciation as a sequence of
phonemes, (5) its grammatical status (16 grammatical
bits indicating whether the word is a noun or verb,
singular or plural, present or past, etc.). The spelling
information is not used by the learner; it is only for
human to read.

The data records are pre-processed to produce bit
vector inputs for the performance model and learner.
The output of the performance model and learner is bit
vectors that typically have a straightforward symbolic
interpretation.

In all the experiments below, we use the same pa-
rameter settings for the beam search width (k = 2) in
the generalization algorithm and the excitation thresh-
old for classifiers. The results are not sensitive to the
particular parameter settings.

Experiment 1: Learning regular plurals

The objective of this experiment is to determine what
pluralization rules are acquired by our learner given a
sample of common nouns and their plurals. The forma-
tion of English plurals is unusually regular. There are
very few irregular plural nouns. This property of En-
glish might lead one to propose learning mechanisms
that exploit the statistics of regular plurals by training
on a large number of examples so that any new test
noun is sufficiently similar to a known one to produce
the closest matched plural ending.

But there 1s evidence that the statistical property
may not be essential to the acquisition of regular rules.
For example, Marcus et. al. (Marcus et al. 1992) and
Clahsen (Clahsen, Rothweiler, & Woest 1992) showed
that the German -s plural behaves like a regular rule
despite the fact that the rule applies to fewer than 30
common nouns. This observation raises the question
of how a child can acquire regular rules from very few
examples. The experiment will show that our learner
can acquire generalizations that closely resemble those
described in linguistics texts after seeing on the order
of 10 examples.

The input of this experiment consists of 22 noun-
plural pairs. The particular number and choices of
words are not very important as long as there are
some examples of singular nouns ending in different
phonemes. We pick a few examples for each type of
plural formation:

[s] [z] [T.z] semi-regular or

irregular
cake(s) bottle(s) | box(es) house(s)
cat(s) boy(s) bush(es) leaf/leaves
chief(s) dog(s) church(es) | man/men
cup(s) girl(s) dish(es) foot /feet
fruit(s) gun(s) glass(es)
month(s) horse(s)

nose(s)

The 22 pairs are fed to the learner sequentially in a
random order once. We have experimented with sev-
eral other random collections of plural pairs from the



corpus: 20, 30, 40, and 50 pairs. The learner rapidly
settles down on the correct rule-classifiers after seeing
a dozen or so regular plural pairs. Further examples
may add exceptions but will not interfere with the cor-
rectly learned classifiers. The results presented here
are typical. The final set of rule-classifiers acquired is
not sensitive to either the order of presentation or the
particular choice of examples.

After the presentation of all 22 pairs, the learner has
acquired five rule-classifiers and four exceptions. The
phoneme bits of the classifiers are as follows:

[dc.dc. [+voice,-strident] .z]
[dc.dc.{y,e,I,v}.z]
[dc.dc.[-voice,-strident].s]
[dc.dc.[-voice,-coronal].s]
[dc. [+coronal,+strident] .I.z]

G WN =

Notice that we can almost read off the standard En-
glish pluralization rules from these classifiers.

The learner also exhibits intermediate behaviors
similar to those of young children (Berko 1958). After
rule-classifier 1 and rule-classifier 3 are acquired, the
performance program produces plurals like *foot[s] and
*man[z]. Upon presentation of the nonce word “wug,”
it gives wug[z]. For nonce words ending in a strident
like “tass” or “gutch,” it gives the unaltered singular
forms as plurals.

Although the intermediate result of experiment 1 is
consistent with Berko’s interpretation of the develop-
mental data, the result depends on the higher density
of English plurals ending in non-stridents. Contrary
to Berko’s interpretation, our theory predicts that the
learner would have no difficulty in acquiring the add-
[T.z] rule before the add-[s] or add-[z] rules if it were
given the plurals ending in stridents first.

Experiment 2: Learning plurals in the
presence of noise

In this experiment, we examine the behavior of the
learner when the input contains error. The learner is
given the same 22 noun-pairs from experiment 1 and
an incorrect plural form cat[z].

The incorrect form 1s found not to affect the ac-
quisition of the correct phonological constraints. The
learner acquires the same 5 rule-classifiers as in ex-
periment 1. An additional rule-classifier is created to
account for the incorrect cat|z]:

6. [dc.[-tense,-strident],t,z]

Experiment 3: Learning regular past-tense

The input consists of 21 verbs and their past-tense
forms. The stem-past pairs are presented sequentially
in a random order once. After the presentation of
all the verb pairs, the learner has acquired six rule-
classifiers and three exceptions (the irregulars). The
phoneme bits of the classifiers are as follows:

1. [dc.dc.[+voice,+sonorant].d]
2. [dc.dc.[+voice,-coronall.d]

[dc.dc.[-low,-round,-tense,+continuant] .d]
[dc.dc.[-voice,+strident].t]
[dc.dc.[-voice,-coronal,-continuant].t]
[dec.{d,t}.I.4]
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The experiment shows that even though word stems
ending in [d] or [t] do not form a natural class,
the learner can still acquire correct past-tense rule-
classifiers in the form of disjunctive rules.

Experiment 4: Learning plural and
past-tense rules together

In this experiment, the 22 noun pairs used in exper-
iment 1 and the 21 verb pairs used in experiment 3
are mixed together and presented to the learner in
a random sequential order. In addition to the 11
rule-classifiers obtained in the previous experiments,
the generalization algorithm produces higher-order
correlations relating the plural and past tense rule-
classifiers. The two new higher-order rule-classifier en-
force the constraint that the voicing bits of the ending
phoneme of the stem and the affix must match:

[dc.dc. [-voice]. [-voice]l]
[dc.dc. [+voice]. [+voice]l]

These rule-classifiers can be interpreted as the voic-
ing assimilation rule described in linguistics texts (such
as (Akmajian, Demers, & Harnish 1990)). Voicing
assimilation captures cross-categorical generalizations
governing the formation of not only plural nouns and
past-tense verbs, but also third-person singular verbs,
possessive nouns, and several other morphological cat-
egories.

Linguists explain complicated phonological pro-
cesses in terms of the interactions of nearly indepen-
dent and widely applicable rules. Our learning theory
gives a plausible mechanism to produce this kind of
compact, elegant phonological rules.

Experiment 5: Learning irregular past-tense

The input consists of 55 common irregular verbs (such
as eat, blow, buy, go) and their past forms. The learner
acquires six rule-classifiers that cover 19 of the 55 input
verbs.

Since irregular verb forms are in general idiosyn-
cratic and not productive (such as go/went), we ex-
pect they fall into many sub-classes. The results con-
firm our expectation. The learner is able to find the
more common patterns (such as blew/drew/grew and
bought/caught/taught). The results also suggest that
most irregulars are just learned by rote and the learner
makes few generalizations about these forms.

Discussion/Conclusion

We have demonstrated that a performance model that
can be implemented by simple physical hardware (or
perhaps neural mechanisms?) with a few variety of
parts and a learning algorithm has been successful for
learning a portion of English morphophonology. Our



mechanism yields almost one-shot learning, similar to
that observed in children: It takes only a few carelessly
chosen examples to learn the important rules; there is
no unreasonable repetition of the data; and there is
no requirement to zealously correct erroneous behav-
ior. The mechanism tolerates noise and exceptions. It
learns higher-order constraints as it knows more. Fur-
thermore, the intermediate states of learning produce
errors that are just like the errors produced by children
as they are learning phonology.

Over the past few years there has been a heated de-
bate between advocates of “Connectionism” and ad-
vocates of more traditional “Symbolic Artificial In-
telligence.”  We believe that contemplation of our
mechanism for acquiring and using phonological knowl-
edge can shed considerable light on this question.The
essence here is in understanding the relationship be-
tween the signals in the neural circuits of the brain
and the symbols that they are said to represent.

Consider first an ordinary computer. Are there sym-
bols in the computer? No, there are transistors in the
computer, and capacitors, and wires interconnecting
them, etc. It is a connectionist system. There are
voltages on the nodes and currents in the wires. We as
programmers interpret the patterns of voltages as rep-
resentations of our symbols and symbolic expressions.
We 1impose patterns we call programs that cause the
patterns of data voltages to evolve in a way that we
interpret as the manipulation of symbolic expressions
that we intend. Thus the symbols and symbolic expres-
sions are a compact and useful way of describing the
behavior of the connectionist system. We as engineers
arrange for our connectionist system to exhibit behav-
ior that we can usefully describe as the manipulation
of our symbols.

In much the same way, auditory signals are analog
trajectories through a low-dimensional space—a time-
series of acoustic pressure. By signal processing these
are transformed into trajectories in a high-dimensional
space that linguists abstract, approximate, and de-
scribe in terms of phonemes and their distinctive fea-
tures. This high-dimensional space is very sparsely
populated by linguistic utterances. Because of the
sparsity of this space, we can easily interpret config-
urations in this space as discrete symbolic expressions
and interpret behaviors in this space as symbolic ma-
nipulations.

It may be the case that the linguistic representa-
tion 1s necessarily sparse because that is the key to
making a simple, efficient, one-shot learning algorithm.
Thus sparseness of the representation, and the atten-
dant possibility of symbolic description, is just a con-
sequence of the fact that human language is learnable
and understandable by mechanisms that are evolvable
and implementable in realistic biological systems. In
fact, we believe this model of learning is applicable to
problem areas outside phonology.

So in the case of phonology at least, the Connection-

ist/Symbolic distinction is a matter of level of detail.
Everything is implemented in terms of neurons or tran-
sistors, depending on whether we are building neural
circuits or hardware. However, because the represen-
tation of linguistic information is sparse, we can think
of the data as bits and the mechanisms as shift regis-
ters and boolean constraints. If we were dealing with
the details of muscle control we would probably have a
much denser representation and then we would want to
think in terms of approximations of multivariate func-
tions. But when it is possible to abstract symbols we
obtain a tremendous advantage. We get the power to
express descriptions of mechanisms in a compact form
that is convenient for communication to other scien-
tists, or as part of an engineering design.

So what of signals and symbols? There are signals
in the brain, and when possible, there are symbols in
the mind.
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