
The SDF Software Manager
2019-07-14

Chris Hanson
Gerald Jay Sussman

This manual is for the SDF Software Manager.

Copyright c© 2019 Chris Hanson and Gerald Jay Sussman.

This work is licensed under the Creative Commons Attribution-ShareAlike
4.0 International License. To view a copy of this license, visit http: / /

creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative
Commons, PO Box 1866, Mountain View, CA 94042, USA.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

1

1 Introduction

This manual documents the software management program included with the software for
the book Software Design for Flexibility. The manager is a tool to help one use the associ-
ated software. For example, it simplifies the job of loading the software needed to reproduce
the examples in the book and to support the solution of the book’s exercises. The book
contains an appendix Supporting Software that explains where the software can be obtained
and an overview of how it is used.

Both the management software and the book’s software is designed to be run using
the MIT/GNU Scheme (http://www.gnu.org/software/mit-scheme) implementation,
version 10.1.9 or later. The Scheme system must be separately downloaded and installed.

To use the manager, start up the Scheme system and evaluate the following expression:

(load "foo/sdf/manager/load")

where foo/ is the path to the directory in which the software archive was unpacked. The
manager creates a single definition in the global environment, called manage. Once loaded,
it’s not necessary to reload the manager unless a new instance of Scheme is started.

[Procedure]manage command arg . . .
This procedure is the entry point for all of the operations that can be performed
by the manager. The command argument is a symbol that specifies the operation
to be performed. The args, if any, are command-specific and documented for each
command in the following sections.

As a convenience, command can be a string (or symbol) that is a substring of the
desired command’s name. If so, the manager finds all of the command names that
contain the given substring; if there is exactly one, the manager runs that command.
Otherwise, it prints an error message.

The description of each command is of the form:

[Manager Command]command-name args
where command-name is the name of the command (a symbol), and args are the ar-

guments required by the command. Any args surrounded by square brackets (‘[]’) are
optional, while a trailing . . . indicates that any number of arguments may be provided. To
invoke a command, call the manage procedure like this:

(manage ’new-environment ’checkers-new)

This specifies the new-environment command and provides it with a single argument,
the symbol checkers-new.

The most important command is help:

[Manager Command]help
The help command prints out all of the supported commands and brief documenta-
tion for each.

Usage: ‘(manage ’help)’.

Another useful command is command-apropos:

http://www.gnu.org/software/mit-scheme

2 SDF Software Manager

[Manager command]command-apropos string
Returns a list of the command names containing STRING. This is useful for finding a
minimal string that specifies a unique command, as well as finding related command
names.

2 Working Environments

The primary purpose of the manager is to create working environments that contain the
code necessary to explore a specific section of the book. The book’s software is organized
into flavors, which roughly correspond to individual sections of the book. The specific rela-
tionships between the book sections and the flavors are spelled out in the book’s Supporting
Software appendix.

A working environment as defined here is a Scheme environment that inherits all of
Scheme’s global definitions and into which all of the necessary program code has been
loaded. To use a working environment, one “selects” it by changing the Scheme REPL

(Read-Eval-Print Loop) to use that environment. After doing so, any expressions evaluated
by the REPL will be interpreted in that environment. For convenience, manage provides
high-level commands for switching between working environments, so it’s not necessary to
know the details about how to change the environment of the REPL.

When we say that a “flavor is loaded”, that means the files for the flavor are retrieved
from the file system and loaded into the environment. If you have made changes to those
files, your changes will be visible in the environment.

As with specification of command names, a flavor name passed as an argument to one
of these commands may be specified by a substring that matches exactly one flavor name.

The most basic working environment command is new-environment.

[Manager Command]new-environment flavor . . .
This command creates a new working environment, loads all of the software specified
by the flavor arguments, and changes the REPL to be in the new environment. The
previous environment, if any, is dropped and will be inaccessible unless it has been
given a name.

Examples: ‘(manage ’new-environment)’ creates a new working environment with-
out loading any software. ‘(manage ’new-environment ’combinators)’ creates a
new working environment and loads the software for flavor combinators.

Note to advanced users: if the REPL is nested, such as that resulting from an error,
this command will abort the nested REPL and return to the top-level REPL.

[Manager Command]add-flavor flavor
This command modifies the current working environment by loading the software for
flavor into it. add-flavor is useful when some work has been done in a working
environment and one decides that another section provides useful functionality for
continuing the work. If instead the flavors to be used are known in advance, the
new-environment command is sufficient.

Some examples:

(manage ’new-environment)

3

(manage ’add-flavor flavor1)

;; is equivalent to:

(manage ’new-environment flavor1)

;; Likewise

(manage ’new-environment flavor1)

(manage ’add-flavor flavor2)

;; is equivalent to:

(manage ’new-environment flavor1 flavor2)

It might be useful to know what flavors are available to be used:

[Manager Command]list-flavors
Returns a list of the known flavors.

[Manager command]flavor-apropos string
Returns a list of the flavor names containing STRING. This is useful for finding a
minimal string that specifies a unique flavor, as well as finding related flavor names.

By giving names to working environments, we can have more than one and switch among
them. The following commands manage named environments. The name arguments that
they accept can be any object, but they must be comparable using the eqv? procedures.
Consequently the most useful names are things like symbols or numbers, and not strings or
lists.

[Manager Command]name-current-environment name
Gives the current working environment the name name. The name must not be a
known working environment name.

As with specification of command names and flavor names, an environment name passed
as an argument to one of the following commands may be specified by a substring that
matches exactly one environment name.

[Manager Command]use-environment name
Selects the environment named name by changing the REPL to be in that environ-
ment.

Note to advanced users: if the REPL is nested, such as that resulting from an error,
this command will abort the nested REPL and return to the top-level REPL.

[Manager Command]remove-environment-name name
Removes the name name from whatever working environment it identifies. The name
must be a known environment name. If the named environment has no other names
and is not the current working environment, then it becomes inaccessible and will be
garbage collected.

[Manager Command]environment-names
Returns a list of the known environment names.

[Manager command]environment-apropos string
Returns a list of the environment names containing STRING. This is useful for find-
ing a minimal string that specifies a unique environment, as well as finding related
environment names.

4 SDF Software Manager

3 Analyzing the Software

Reading software is complicated, especially when it is spread over many files. Professional
programmers often use tools like grep and Integrated Development Environments to help
them understand how the parts are connected to one another.

The software manager maintains an index of definitions and references showing where
a symbol is given a definition and where it is used. The commands in this section can be
used to explore that index. The name arguments to these commands must be symbols. The
filename arguments must be filenames that refer to specific files in the tree.

[Manager Command]defining-files name
Returns a list of the filenames that contain a definition of name. There may be more
than one such file, but those files are rarely loaded together.

[Manager Command]referring-files name
Returns a list of the filenames that contain one or more free references to name.

[Manager Command]defined-in-file filename
Returns a list of the symbols that are defined in the file specified by filename.

[Manager Command]references-in-file filename
Returns a list of the symbols that are free references in the file specified by filename.

[Manager Command]check-file-analysis
Checks the analyzed-file index for potential problems. For example, some names are
defined in multiple files, which may or may not be a problem.

[Manager Command]refresh-file-analysis
This command rebuilds the index used by the other commands in this section. It is not
needed unless changes have been made to the software tree. refresh-file-analysis
takes a while to run.

4 Running Tests

All of the book’s software contains tests that checks that its behavior is as expected. The
manager provides several commands to run those tests. Generally these commands do not
affect the current working environment nor any named working environment.

[Manager Command]run-tests
Runs all tests for the current working environment. This is all of the tests for all
of the loaded flavors. The working environment is not modified by the tests, but
the current contents of the working environment, including all changes made since
loading, will be used when running the tests.

[Manager Command]run-all-tests flavor . . .
Runs the tests for the specified flavors. If no flavors are specified, runs the tests for
all flavors.

These tests are run in hermetic environments: for each flavor, a new working envi-
ronment is created, that flavor is loaded into it, and that flavor’s tests are run. Since
the tests all run in independent environments, they don’t affect one another, nor do
they affect any other working environment.

5

[Manager Command]show-individual-tests boolean
Normally when running tests, the individual tests are not shown as they run. Instead
only the test files are shown, along with summaries of the test results.

The ability to see the individual tests is managed by a flag this command sets to
the value of boolean. If boolean is true, then individual tests are shown, otherwise
they are not. After running this command, the flag remains set to boolean until it is
changed by a subsequent invocation.

5 Miscellaneous

The remaining commands are for special situations and are best suited to experienced users
of MIT/GNU Scheme.

[Manager Command]manager-environment
Returns the environment in which the software manager is loaded. This is useful for
debugging or modifying the manager itself.

[Manager Command]working-environment
Returns the current working environment, which can then be manipulated using
MIT/GNU Scheme’s environment procedures.

[Manager Command]debug-internal-errors boolean
Controls support for debugging the manager’s internal errors. If boolean is false
(the default), any error in the manager is caught, its message printed out, and then
manage returns normally. If boolean is true, an internal error throws an exception
that stops the manager’s evaluation and enters a nested REPL in which the error can
be debugged.

This command changes an internal flag in the manager, which remains set to boolean
until a subsequent use of the command.

[Manager Command]load-test-only-files
Loads the test-only files into the current working environment. Useful for debugging
tests.

6 SDF Software Manager

Command Index

A
add-flavor . 2

C
check-file-analysis . 4
command-apropos . 2
command-name . 1

D
debug-internal-errors . 5
defined-in-file . 4
defining-files . 4

E
environment-apropos . 3
environment-names . 3

F
flavor-apropos . 3

H
help . 1

L
list-flavors . 3
load-test-only-files . 5

M
manage . 1
manager-environment . 5

N
name-current-environment . 3
new-environment . 2

R
references-in-file . 4
referring-files . 4
refresh-file-analysis . 4
remove-environment-name . 3
run-all-tests . 4
run-tests . 4

S
show-individual-tests . 5

U
use-environment . 3

W
working-environment . 5

