MASSACHVSETTS INSTITVTE OF TECHNOLOGY
6.5150/6.5151

Adventures in Advanced Symbolic Programming

Request for Proposals—Spring 2025

Overview

As advertised in the Red Tape Memo, you will do a significant term project for 6.5150/6.5151.

You should form teams of two or three to work on a project. The project will be due near
the end of the term.

In your project you will construct a substantial piece of software that illustrates some
of the ideas we have examined in this subject.

Your system should address an interesting class of related problems, by building a library
of pin-compatible mix-and-match pieces that can be assembled in a variety of ways to
cover your intended domain. The main consideration is that incremental changes to the
specification of your problem should require only small changes to the construction of a
solution.

One way to build in flexibility is to organize your project so that the major subsystems
are made of a family of interchangeable parts. For example, each major subsystem of your
system should admit more than one implementation. You should be able to demonstrate
that your system works when constructed by arbitrarily choosing an implementation for
each part from a redundant library.

As part of the project you will present a document describing the domain that your
system addresses, the primitive pieces, the means of combination, and the means of ab-
straction by which you construct solutions in your domain. Every good engineer should be
able to teach other engineers how to attack similar problems, or to maintain your software,
so you will produce clear, readable code and associated documentation that you could use
to instruct your future students in the tools and techniques that you employed.

This Assignment

By the end of next week you must have assembled your team, decide on goals, and hand
in a project proposal that allows us to consider the value of your project as a learning
experience and the feasibility of your implementation plan. We will try to provide you with
useful feedback within a week. Your proposal should include

e A description of the approximate domain of your proposal.
e A plausible decomposition of your system into major components.

e A plausible plan for implementation and documentation, with assignments of parts
to team members.

You should make a rough stab at a proposal first, and then a more complete one. Please
submit your draft proposal in lecture on Monday, March 31, and a more complete proposal
in on Friday, April 4.



Considerations

Your system should be Free Software! (free as in “free speech,” not as in “free beer”), so
that it can be shared with, used by, and extended by other students in the future. It should
run in MIT/GNU Scheme. You may incorporate and build on any software that we have
examined in class or on problem sets, or any other Scheme software that you can legally
obtain and use. You may also use Scmutils software, if needed, but that is old and difficult
code. You may use any Scheme code that is in the public domain or is labeled as Free
Software.

Suggestions for Projects

We present the following list just to stimulate ideas, but you may choose to build any-
thing that both you and we find interesting, and that we believe provides a good learning
experience.

e A special-purpose compiler for a domain-specific language that makes it easy to de-
scribe a limited class of interesting applications. The compiler should produce code
for some specified hardware or virtual-machine targets.

e An extension of the type-inference program that we used to illustrate the use of
unification matching. Perhaps your extension can be used to extract useful type
information for programs with union types, parametric types, and (ugh!) side effects.
(See Exercises 4.14, 4.15, 4.16, and 4.17.)

e A suite of analysis and synthesis tools for a limited domain of engineering applications.
This tool should incorporate dependencies and be able to present them on demand,
showing how any part of the result was derived from the parts of the user input and
the rules/programs used in constructing this result.

e A tool that could be used to help teach some technical subject, such as mechanism
design. Such a tool should do more than illustrate an idea: it should be able to
answer reasonable questions about the illustrations that it provides, with appropriate
justifications for its answers, if pressed.

e A “semantic search” for programs, electrical circuits, or (much harder) for some re-
stricted natural language text, that can allow one to find all of the places in the source
that need to be examined or modified, based on matching patterns that respect se-
mantically invariant transformations.

!See http://www.fsf.org/licensing/essays/free-sw.html to find out what is meant by “Free Software.”



