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Axioms of Probability

Let S be a finite set called the sample space, and let A be any
subset of S , called an event. The probability P(A) is a real-valued
function that satisfies:

◮ P(A) ≥ 0

◮ P(S) = 1

◮ P(A ∪ B) = P(A) + P(B) if A ∩ B = ∅

For infinite sample space, third axiom is that for an infinite

sequence of disjoint subsets A1,A2, . . .,

P
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∞
⋃
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P(Ai )



Some Theorems

◮ P(A) = 1− P(A)

◮ P(∅) = 0

◮ P(A) ≤ P(B) if A ⊂ B

◮ P(A) ≤ 1

◮ P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

◮ P(A ∪ B) ≤ P(A) + P(B)



Joint & Conditional Probability

◮ If A and B are two events (subsets of S), then call P(A ∩ B)
the joint probability of A and B .

◮ Define the conditional probability of A given B as:

P(A|B) =
P(A ∩ B)

P(B)

◮ A and B are said to be independent if P(A∩B) = P(A)P(B).

◮ If A and B are independent, then P(A|B) = P(A).



Bayes’ Theorem

We have:

◮ P(A|B) = P(A∩B)
P(B)

◮ P(B |A) = P(A∩B)
P(A)

Therefore:

P(A ∩ B) = P(A|B)P(B) = P(B |A)P(A)

And Bayes’ Theorem is:

P(A|B) =
P(B |A)P(A)

P(B)



On the islands of Ste. Frequentiste and Bayesienne...



On the islands of Ste. Frequentiste and Bayesienne...

The king has been poisoned!



On the islands of Ste. Frequentiste and Bayesienne...

The king of Ste. F & B has been poisoned! It’s a conspiracy. An

order goes out to the regional governors of Ste. Frequentiste and

of Isle Bayesienne: find those responsible, and jail them.

Dear Governor: Attached is a blood test for proximity to the
poison that killed the king. It has a 0% rate of false negative
and a 1% rate of false positive. Administer it to everybody on
your island, and if you conclude they’re guilty, jail them.

But remember the nationwide law: We must be 95%
certain of guilt to send a citizen to jail.



On Ste. Frequentiste:

The test has a 0% rate of false negative and a 1% rate of
false positive. We must be 95% certain of guilt to send a
citizen to jail.

◮ P(E+|Guilty) = 1

◮ P(E−|Guilty) = 0

◮ P(E+|Innocent) = 0.01

◮ P(E−|Innocent) = 0.99

How to interpret the law?
“We must be 95% certain of guilt” ⇒ P(Jail|Innocent) ≤ 5%.



On Ste. Frequentiste:

The test has a 0% rate of false negative and a 1% rate of
false positive. We must be 95% certain of guilt to send a
citizen to jail.

◮ P(E+|Guilty) = 1

◮ P(E−|Guilty) = 0

◮ P(E+|Innocent) = 0.01

◮ P(E−|Innocent) = 0.99

How to interpret the law?
“We must be 95% certain of guilt” ⇒ P(Jail|Innocent) ≤ 5%.

Governor F.: Ok, what if I jail everybody with a positive test

result? Then P(Jail|Innocent) = P(E+|Innocent) = 1%.

That’s less than 5%, so we’re obeying the law.”



On Isle Bayesienne:

The test has a 0% rate of false negative and a 1% rate of
false positive. We must be 95% certain of guilt to send a
citizen to jail.

How to interpret the law?
“We must be 95% certain of guilt” ⇒ P(Innocent|Jail) ≤ 5%.



On Isle Bayesienne:

The test has a 0% rate of false negative and a 1% rate of
false positive. We must be 95% certain of guilt to send a
citizen to jail.

How to interpret the law?
“We must be 95% certain of guilt” ⇒ P(Innocent|Jail) ≤ 5%.

Governor B.: Can I jail everyone with a positive result? I’ll apply

Bayes’ theorem...

P(Innocent|E+) = P(E+|Innocent)
P(Innocent)

P(E+)

We need to know P(Innocent).



On Isle Bayesienne:

The test has a 0% rate of false negative and a 1% rate of
false positive. We must be 95% certain of guilt to send a
citizen to jail.

How to interpret the law?
“We must be 95% certain of guilt” ⇒ P(Innocent|Jail) ≤ 5%.

Governor B.: Can I jail everyone with a positive result? I’ll apply

Bayes’ theorem...

P(Innocent|E+) = P(E+|Innocent)
P(Innocent)

P(E+)

We need to know P(Innocent). Governor B.: Hmm, I will

assume that 10% of my subjects were guilty of the conspiracy.

P(Innocent) = 0.9.



On Isle Bayesienne:

Apply Bayes’ theorem

◮ We know the conditional probabilities of the form
P(E+|Guilty).

◮ Governor knows the “overall” probability of each event
Guilty and Innocent. Since this is our estimate of the
chance someone is guilty before a blood test, we call it the
prior probability.

◮ Now calculate: P(Innocent|E+)



On Isle Bayesienne:

Apply Bayes’ theorem

◮ We know the conditional probabilities of the form
P(E+|Guilty).

◮ Governor knows the “overall” probability of each event
Guilty and Innocent. Since this is our estimate of the
chance someone is guilty before a blood test, we call it the
prior probability.

◮ Now calculate: P(Innocent|E+) ≈ 8%. Too high!



On the islands of Ste. Frequentiste and Bayesienne...

Results:

◮ More than 1% of Ste. Frequentiste goes to jail.

◮ On Isle Bayesienne, 10% are guilty, but nobody goes to jail.

◮ The disagreement isn’t about math. It isn’t necessarily about
philosophy. Here, the frequentist and Bayesian used tests that
met different constraints and got different results.



The Constraints

◮ The frequentist cares about the rate of jailings among
innocent people and wants it to be less than 5%. Concern:
overall rate of false positive.

◮ The Bayesian cares about the rate of innocence among jail
inmates and wants it to be less than 5%. Concern: rate of
error among positives.

◮ The Bayesian had to make assumptions about the overall, or
prior, probabilities.



Why Most Published Research Findings Are False, Ioannidis JPA,
PLoS Medicine Vol. 2, No. 8, e124
doi:10.1371/journal.pmed.0020124



Confidence & Credibility

◮ For similar reasons, frequentists and Bayesians express
uncertainty differently.

◮ Both use intervals: a function that maps each possible
observation to a set of parameters.

◮ Frequentists use confidence intervals. A 95% confidence
interval method will output an interval that includes the true
value at least 95% of the time.

◮ Bayesians use credibility intervals. A 95% credibility interval
has 95% probability of including the true value — if drawn
according to the prior.



Jewel’s Cookies

Cookie jars A, B, C, D have the following distribution of cookies
with chocolate chips:

P( chips | jar ) A B C D

0 1 17 14 27
1 1 20 22 70
2 70 22 20 1
3 28 20 22 1
4 0 21 22 1

total 100% 100% 100% 100%

Let’s construct a 70% confidence interval.



70% Confidence Intervals

Cookie jars A, B, C, D have the following distribution of cookies
with chocolate chips:

P( chips | jar ) A B C D

0 1 17 14 27
1 1 [20 22 70]
2 [70 22 20] 1
3 28 [20 22] 1
4 0 [21 22] 1

coverage 70% 83% 86% 70%

The 70% confidence interval has at least 70% coverage for every
value of the parameter.
Now assume a uniform prior and calculate P( jar ∩ chips ).



Joint Probabilities

Cookie jars A, B, C, D have equal chance of being selected, and
the following joint distribution of jar and chips:

P( jar ∩ chips ) A B C D total

0 1/4 17/4 14/4 27/4 14.75%
1 1/4 20/4 22/4 70/4 28.25%
2 70/4 22/4 20/4 1/4 28.25%
3 28/4 20/4 22/4 1/4 17.75%
4 0/4 21/4 22/4 1/4 11.00%

total 25% 25% 25% 25%

Now calculate P( jar | chips ).



P( outcome |θ)

Cookie jars A, B, C, D have the following conditional probability
of each jar given the number of chips:

P( jar | chips ) A B C D total

0 1.7 28.8 23.7 45.8 100%

1 0.9 17.7 19.5 61.9 100%

2 61.9 19.5 17.7 0.9 100%

3 39.4 28.2 31.0 1.4 100%

4 0.0 47.7 50.0 2.3 100%

Now let’s make 70% credibility intervals.



70% Credibility Intervals

Cookie jars A, B, C, D have the following conditional probability
of each jar given the number of chips:

P( jar | chips ) A B C D credibility

0 1.7 [28.8] 23.7 [45.8] 75%

1 0.9 17.7 [19.5 61.9] 81%

2 [61.9 19.5] 17.7 0.9 81%

3 [39.4] 28.2 [31.0] 1.4 70%

4 0.0 [47.7 50.0] 2.3 98%



Confidence & Credible Intervals (uniform prior)

4P( jar ∩ chips ) A B C D credibility

0 1 17 14 27 0%
1 1 [20 22 70] 99%
2 [70 22 20] 1 99%
3 28 [20 22] 1 59%
4 0 [21 22] 1 98%

coverage 70% 83% 86% 70%

4P( jar ∩ chips ) A B C D credibility

0 1 [17] 14 [27] 75%
1 1 20 [22 70] 81%
2 [70 22] 20 1 81%
3 [28] 20 [22] 1 70%
4 0 [21 22] 1 98%

coverage 98% 60% 66% 97%



Disagreement in the real world

◮ Avandia: world’s #1 diabetes drug

◮ Approved in 1999.

◮ Sold by GlaxoSmithKline PLC.

◮ Lowers blood sugar, a lot.

◮ Sales: $3 billion in 2006 alone

◮ In 2004, GSK releases results of many small studies of
Avandia.

◮ This enables inference.



Individually, 42 small studies are pretty lame.

Study Avandia heart attacks Control heart attacks

49632-020 2/391 1/207
49653-211 5/110 2/114
DREAM 15/2635 9/2634
49653-134 0/561 2/276
49653-331 0/706 0/325
...

...
...



In 2007, Dr. Nissen crashes the party



Frequentist inference





GlaxoSmithKline loses $12 billion
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Bayesian inference disagrees, for risk ratio.
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Or does it? Results depend on model. Here, risk
difference.
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The TAXUS ATLAS Experiment

◮ FDA asked manufacturer to show that new heart stent was
not “inferior” to old heart stent, with 95% confidence.

◮ Inferior means three percentage points more “bad” events.

◮ Control 7% vs. Treatment 10.5% ⇒ inferior
◮ Control 7% vs. Treatment 9.5% ⇒ non-inferior.



ATLAS Results (May 2006)

May 16, 2006 — NATICK, Mass. and PARIS, May 16
/PRNewswire-FirstCall/ — Boston Scientific Corporation today
announced nine-month data from its TAXUS ATLAS clinical trial.
[. . . ] The trial met its primary endpoint of nine-month target
vessel revascularization (TVR), a measure of the effectiveness of a
coronary stent in reducing the need for a repeat procedure.



ATLAS Results (April 2007)

Turco et al., Polymer-Based, Paclitaxel-Eluting TAXUS Liberté

Stent in De Novo Lesions, Journal of the American College of
Cardiology, Vol. 49, No. 16, 2007.

Results: The primary non-inferiority end point was met with the
1-sided 95% confidence bound of 2.98% less than the pre-specified
non-inferiority margin of 3% (p = 0.0487).

Statistical methodology. Student t test was used to compare
independent continuous variables, while chi-square or Fisher exact
test was used to compare proportions.



Bayesian Results

◮ Assume I know nothing about πt and πc a priori. Chosen
randomly on [0,1], independently and with uniform probability.

◮ Then we sample: in Treatment, 68 heads in 855 samples In
Control, 67 heads in 956 samples.

◮ For a particular p, Pr(k heads in N flips)

=

(

N

k

)

pk(1− p)N−k

◮ Apply Bayes’ theorem.



Bayesian Results

◮ Likelihood: LNk(π) =
(

N
k

)

πk(1− π)N−k

◮ Probability: Apply Bayes’ theorem. With a uniform prior, just
normalize. Result is called a Beta distribution.

◮

f (x ;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

where α = heads observed plus one, and β = tails observed
plus one.
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Bayesian Results

◮ πc ∼ β(x ; 68, 890)

◮ πt ∼ β(x ; 69, 788)

◮ Calculate probability πt − πc < 0.03:

∫ 1

0

∫ 1

min(x+0.03,1)
β(x ; 68, 890)β(y ; 69, 788) dy dx ≈ 0.050737979 . . .

◮ Result: Just over 5%.



ATLAS Trial Solution

◮ Use a one-sided 95% confidence interval for πt − πc . If its
upper limit is less than 0.03, accept. Otherwise reject.

◮ Confidence interval: approximate each binomial separately

with a normal distribution. Known as Wald interval.

◮ Calculate the distribution of the difference, and see if less
than 5% of the area exceeds 0.03.

◮

p =

∫

∞

0.03
N

(

i

m
−

j

n
,
i(m − i)

m3
+

j(n − j)

n3

)



Published Results

◮ We measure 68/855 events in Treatment (7.95%), and
67/956 events in Control (7.01%).

◮ Procedure: if p < 5%, we reject inferiority.

◮ p =
∫

∞

0.03N
(

i
m
− j

n
,
i(m−i)
m3 + j(n−j)

n3

)

= 0.0487395 . . ..

◮ Accept.



The Ultimate Close Call

Wald’s area (≈ p) with (m, n) = (855, 956)
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The Wald Interval Undercovers

Our confidence interval doesn’t have 95% coverage, so the test
didn’t bound the rate of false positives by 0.05. The approximation
is lousy here.
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One solution: constrained variance
The Wald interval approximated each binomial separately as a
Gaussian, with variance of i(N−i)

N3 . (E.g., 7% and 8%.) But this is
not consistent with H0, which says πt > πc + 0.03.

One improvement is to approximate the variances by finding the
most likely pair consistent with H0 (i.e., separated by 3 percentage
points). E.g., 6% and 9%.
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Every other published interval fails to exclude inferiority.

Method p-value or confidence bound Result
Wald interval p = 0.04874 Pass
z-test, constrained max likelihood standard error p = 0.05151 Fail
z-test with Yates continuity correction c = 0.03095 Fail
Agresti-Caffo I4 interval p = 0.05021 Fail
Wilson score c = 0.03015 Fail
Wilson score with continuity correction c = 0.03094 Fail
Farrington & Manning score p = 0.05151 Fail
Miettinen & Nurminen score p = 0.05156 Fail
Gart & Nam score p = 0.05096 Fail
NCSS’s bootstrap method c = 0.03006 Fail
NCSS’s quasi-exact Chen c = 0.03016 Fail
NCSS’s exact double-binomial test p = 0.05470 Fail
StatXact’s approximate unconditional test of non-inferiority p = 0.05151 Fail
StatXact’s exact unconditional test of non-inferiority p = 0.05138 Fail
StatXact’s exact CI based on difference of observed rates c = 0.03737 Fail
StatXact’s approximate CI from inverted 2-sided test c = 0.03019 Fail
StatXact’s exact CI from inverted 2-sided test c = 0.03032 Fail



Nerdiest chart contender?





World’s most advanced non-inferiority test
The StatXAct 8 software package sells for $1,000 and takes 15
minutes to calculate a single p-value. Made by MIT’s Zoroastrian
chaplain, Cyrus Mehta.
“Other statistical applications often rely on large-scale assumptions for
inferences, risking incorrect conclusions from data sets not normally
distributed. StatXact utilizes Cytel’s own powerful algorithms to make
exact inferences. . . ”



World’s most advanced non-inferiority test
The StatXAct 8 software package sells for $1,000 and takes 15
minutes to calculate a single p-value. Made by MIT’s Zoroastrian
chaplain, Cyrus Mehta.
“Other statistical applications often rely on large-scale assumptions for
inferences, risking incorrect conclusions from data sets not normally
distributed. StatXact utilizes Cytel’s own powerful algorithms to make
exact inferences. . . ”
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Both tests, together

3.5

4

4.5

5

5.5

6

6.5

0 10 20 30 40 50 60 70 80 90

F
al
se

P
os
it
iv
e
R
at
e
(%

)

p1

Wald Test
StatXAct 8

5



Final Thoughts

◮ What’s important: say what you’re trying to infer, how you
get there, and what your criteria are.

◮ Don’t be surprised if frequentist and Bayesian approaches
differ in their results.

◮ Sometimes they will agree numerically but not on what the
numbers mean!

◮ If they disagree starkly, you have bigger problems than your
interpretation of probability.

◮ Same goes if the Bayesian answer depends heavily on the
prior. If two reasonable priors give starkly disagreeing results,
you don’t have a good answer.


