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Abstract 

Three approaches to symbolic integration 
in the 1960's are described. The first, from 
Artificial Intelligence, led to Slagle's SAINT 
and to a large degree to Moses' SIN. The 
second, from algebraic manipulation, led to 
Manove's implementation and to Horowitz' and 
Tobey's re-examination of the Hermite algorithm 
for integrating rational functions. The third, 
from mathematics, led to Richardson's proof 
of the unsolvability of the problem for a 
class of functions and for Risch's decision 
procedure for the elementary functions. Gen- 
eralizations of Risch's algorithm to a class 
of special functions and programs for solving 
differential equations and for finding the 
definite integral are also described. 

Introduction 

Symbolic integration led a stormy life in 
the 1960's. In the beginning of the decade 
only humans could determine the indefinite 
integral to all but the most trivial problems. 
The techniques used had not changed materially 
in 200 years. People were satisfied in con- 
sidering the problem as requiring heuristic 
solutions and a good deal of resourcefulness 
and intelligence. There was no hint of the 
tremendous changes that were to take place in 
the decade to come. By the end of the decade 
computer programs were faster and some times 
more powerful than humans, while using tech- 
niques similar to theirs. Advances in the 
theory of integration yielded procedures which 
in a strong sense completely solved the inte- 
gration problem for the usual elementary 
functions. The implementation of subsets of 
such procedures had made computers more power- 
ful than humans or any table for a large class 
of integration problems. 

Three main streams of interest in symbolic 
integration in the 1960's can be discerned. 
One came from Artificial Intelligence and 
accounted for the pioneering work in Slagle's 
SAINT (Symbolic Automatic INtegrator) [14], 
and to a large degree for our own work on SIN 
(Symbolic INtegrator) [ 5 ]. Another came from 
algebraic manipulation and accounts for Manove's 
rational function integration program in the 
MATHLAB system, [ 4] and also for Horowitz' 
[ 3] and Tobey's [15] theoretical analyses of 

that algorithm. The final stream was from 
mathematics and accounts for Richardson's 
proof of the undecidability of integration for 
a certain class of functions [ 9] and Risch's 
decision procedures for determining the exist- 
ence of an integral for elementary functions 
[10,11,12,13]. 

In this paper we shall examine symbolic 
integration from all three points of view. We 
shall first consider a symbolic integration 
program as a prototype of a problem solving 
program. Second, we shall examine the Hermite 
algorithm for integrating rational functions 
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and point out computational improvements to it 
and remaining trouble spots in the algorithm. 
Then we shall introduce the ideas underlying 
the Risch procedure for integration which have 
led to the theoretical solution of the problem. 
Finally, we shall indicate related work on 
closed form solutions to ordinary differential 
equations and definite integration. 

The Problem Solving Approach 

In this section we emphasize the view 
that writing a symbolic integration program 
is an exercise in writing an efficient 
problem solving program. This view can be 
important to other areas of algebraic manipu- 
lation such as definite integration and power 
series expansions. In each case we have a 
well-defined problem which can be solved in a 
variety of ways, some of which are more 
efficient than others. Symbolic integration 
involves a second issue, namely, the form of 
the resulting integral. Integrals of trigono- 
metric functions, in particular, can be 
written in several forms, in terms of sines 
and cosines, in terms of tangents of half- 
angles, and in terms of exponentials with 
complex arguments. We take the view that if 
a user poses a problem in terms of sines and 
cosines, then he would prefer to see the 
answer in those terms, rather than in terms 
of complex exponentials. The reason for such 
a view is that one should provide the user 
with an answer he can comprehend easily. Thus 
one should not attempt to make a radical 
transformation of the integrand unless there 
is no other way to produce the integral. 
Integral tables appear to take this point 
of view also. 

The design of a symbolic integration pro- 
gram will thus have two major goals: i) Find 
a solution efficiently, 2) Find a solution 
whose form does not materially differ form 
that of the integrand. These goals were some 
of the goals of our SIN program. We shall 
spend most of this section in a discussion of 
SIN. SIN was originally written in LISP for 
the IBM 7094 during 1966-67. There are versions 
of it available for PDP-10, IBM 360, and 
CDC 6600 computers. 

The overall strategy of SIN can be viewed 
as follows: 

Stage 1 Attempt to solve the problem by 
a cheap, general method (i.e., a version 
of the derivative~ivides method). 
Stage 2 Attempt to solve the problem by 
one of eleven methods which are specific 
to a certain class of integrals (e.g., 
trigonometric functions, exponentials, 
radicals). 
Stage 3 When the first two stages fail, 
try a general method, (e.g., a heuristic 
integration-by-parts, the Risch algorithm). 
A problem that is solved in stages 1 and 



2 is solved fairly efficiently because stage 1 fx ~2+I dx = ~(l+x2) 3/2 op(u) = u d 
is passed through rather quickly, whether or 
not it succeeds in obtaining the integral. ,u(x) = x~+l, u'(x) = 2x, c = 1/2 
The algorithms in stage 2 are narrow in scope 

and provide efficient solutions to any inte7 This method can integrate some rather 
grand to which they are applicable. Further- trivial problems, (such as the second one 
more, a very quick decision can be made regard- above), as well as some which are much less 
ing the applicability of the set of algorithms trivial such as 
in stage 2. If both stages fail to apply to 
a particular integrand, then we fall through 
to the last stage. Here we are willing to 
attempt a radical transformation of the inte- 
grand in order to obtain an answer. 

Some of the methods in stage 2 and the 
Risch algorithm are known as decision proced- 
ures. That is, they cannot only obtain a 
closed form integral when such an integral 
exists, but they can also decide when an 
integral cannot exist in terms of the usual 
functions. Thus 

2 
e x dx 

is determined by SIN not to be integrable in 
closed form. Some of the methods of SIN's 
second stage are not decision procedures. When 
they fail to obtain an integral, then we still 
do not know whether the integral exists. 

The First Stage of SIN 

The heart of SIN's first stage is a 
simple test to determine whether derivatives 
of a subexpression of the integrand divides 
the rest of the integrand. This test deter- 
mines whether the integral is of the form 

c op(u(x))u' (x) dx, 

where c is a constant, u(x) is some function 
of x, u'(x) is its derivative, and op is an 
elementary function. Op can be a member of 
the set 

[sin,cos,tan,cot,sec,csc,arcsin, 
arctan,arcsec,log}. 

In ad4ition, op(u(x)) can have the forms u(x), 
u(x) -I, u(x) d where d~ -i, and d u(x) , where 
d is a constant. 

The method of solution, once the problem 
has been determined to possess the form above, 
is to search an integral table for the entry 
corresponding to op, and substitute u(x) for 
each occurrence of x in the expression given 
in the table. 

Using this method, the following examples 
can be integrated. 

2 2 
xe x dx = 1/2 e x , op(u) = d u, u(x)=x 2 

, u'(x) = 2x, c = 1/2 

.~ 4 cos(2x+3) dx = 2 sin(2x+3), op = cos 

, u(x) = 2x+3, u' (x) -- 2, c = 2 

f x -i 
dx = log(l+e x) op(u) = u 

1 + e x 

, u(x) = l+e x, u'(x) = e x, c = 1 

1 • 2 
sin x cos x dx = ~sln x, op(u) = u 

, u(x) = sin(x), u' (x) = cos(x), c=l 

1 3 .r c°s2(eX) sin(eX)eX dx = - ~cos (e x) 

, op(u) = u(x) d, u(x) = cos(e x) 

u'(x) = -sin(eX)e x c = -i 

The first stage of SIN also performs two 
transformations which are useful in preparing 
the integrand for the methods available in the 
later stages. The first of these transforma- 
tions applies the sum rule, that is; 

f (Al+A2+'''+An)dX ~ f AldX + f A 2 dx 

+'''+ ~ A n dx. 

For example, ] (sin x + e x) dx is trans- 
formed into 

f sin x dx + ~ e x dx. 

The latter integrals are easily obtained by 
the first stage. 

The second transformation applies multi- 
nomial expansions to an integral which is a 
positive integer power of a sum. Thus 

.~ (x+eX) 2 dx 

becomes 

x 2 dx + ; 2xe x dx + ~ e 2x dx. 

The first and third of the resulting integrals 
are solved in SIN's first stage, the second 
in the second stage. 

One of the experiments which was made 
with SIN was to attempt the 86 problems 
originally attempted by SAINT. SIN's first 
stage was able to solve 45 out of the 86 
problems. The average time on the 7094 was 
0.6 seconds. The comparable times for SAINT 
were, as far as can be determined, about two 
orders of magnitude slower, principally because 
SAINT was run interpretively. 

The Second Stage of SIN 

SIN's second stage contains eleven methods 
which might be applicable to a given problem. 
A routine, called FORM, determines which of 
the methods should be attempted. If, for 
example, FORM were to encounter a subexpression 
sin(x) in an integrand, it would send the 
problem to a method which handles trigonometric 
functions. On the other hand, a subexpression 
of the form e x would cause a call to be made to 
the routine which handles exponentials. In 
effect, FORM uses cues in the integrand to de- 
termine which methods to apply. 

The following table lists the eleven 
methods of integration. Unfortunately, we can 
only present a condensed description of each 
method. The reader is referred to [5 ] for 
a more complete description. As can be seen, 
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very few of these methods produce the integral 
directly. Most cause a transformation to be 
made which simplifies the integrand. The 
transformed problem is then integrated recur- 
sively by starting with stage i. The work 
horse of the eleven methods is the rational 
function integration routine (method 8). This 
routine, which we borrowed from the MATHLAB 
system is described in detail below. Most of 
the problems solved in this stage required 
about 2 seconds of computation on the 7094. 

Many of the patterns used by SIN's 
second stage (e.g., 

Ax2(cl + c2xq)P 
in method 4) were found by using a pattern 
matching language, called SCHATCHEN [5 , chap- 
ter 3]. In SCHATCHEN one can declare a pattern 
for a quadratic expression, such as 

Ax 2 + Bx + C, 

and obtain the following results: 

expression result of match 

2 
x + 2x + 3 A=i, B=2, C=3 

2 
x A=i, B=0, C=0 

2x2+ /2 x2+ 3 A=2+/2, B=0, C=3 

3 + 2x + 2x2y A=2y, B=2, C=3 

x2+ 2x sin(x) no match 

The Third Stage of SIN 

The original implementation of SIN used 
two different general methods in the third 
stage. One was a version of the integration- 
by-parts method (i.e., ~ u dv = uv -~ v du). 
This technique uses some search to determine 
a good partition of the integrand. While the 
method is quite general, it is not very clear 
how to apply it in many cases. 

The second method, which uses the Edge 
(EDucated GuEss) heuristic, relied on concepts 
from the Liouville theory of integration. The 
Edge heuristic generates a guess for the form 
of the integral based On the form of the 
integrand. The guess is differentiated and 
undetermined coefficients in it are obtained 
by matching the derivative with the integrand. 
We devised the Edge heuristic independently of 
Risch's work on the Liouville theory. Risch's 
algorithm is clearly superior to the Edge 
heuristic and later versions of SIN have used 
subsets of the Risch algorithm in the third 
stage. 

Integration of Rational Functions 
The Algebraic Manipulation Approach 

As we mentioned earlier, the most import- 
ant integration routine used by SIN is the 
routine for integrating rational functions 
(i.e., ratios of polynomials). The routine 
used was written by M. Manove for the MATHLAB 
system [ 4]. Integration of rational functions 
is also the main subject of the doctoral dis- 
sertations of Horowitz [ 3 ] and Tobey [15]. 
We shall see that the outline of the method of 
integrating rational functions is also used 
in Risch's algorithm for integrating functions 
containing exponentials and logarithmic terms. 

The algebraic manipulation approach is 
one that emphasizes the need for great effic- 
iency for relatively common operations. 
Rational function integration is probably 
the most common nontrivial integration 
algorithm. Though mathematicians consider 
the algorithm as trivial, its implementation 
offers considerable difficulties which have 
not yet been effectively surmounted. A part 
of the algorithm has been made more efficient 
by the use of special techniques in Horowitz' 
thesis. We shall, however, use the tradition- 
al description of the algorithm which is very 
easy to explain. It should be noted that the 
method to be described is superior to the 
standard calculus text approach to rational 
function integration which involves solution 
of equations. 

Suppose we are given a rational function 
in x. 

Q(x) 
~TYF 

where Q and S are relatively prime polynomials 
with integer coefficients. By division, we 
obtain the following decomposition 

Q(x) R(x) 
s~ = P(x) + ~TYF degree R < degree S 

The polynomial part of the decomposition is 
trivially integrated. This will not be the 
case when we discuss the Risch algorithm. 

We shall assume without loss of generality 
that R and S are relatively prime. The next 
step of the integration algorithm is to obtain 
a square-free decomposition of the denominator 
S of the form 

S = SIS22S33-.-Sk k , 

where each S. and S are relatively prime 
l 3 

polynomials and where each S i has only simple 

roots. The polynomial S i has as its roots 
the roots of S of degree i. This particular 
kind of factorization is easily obtained by 
performing gcd calculations on S(x) and S' (x), 
noting that gcd(S,S') has the same roots as 
S with multiplicity reduced by i. Thus, for 
example, the square-free decomposition of 

4 2 
x - x 

is 

4 2 , k=2 x - x = (x 2- i) (x) 2 

We are in a position to perform a partial- 
fraction decomposition with relative ease. We 
shall indicate the first step of this decomp- 
osition. Since each pair Si and Sj is relative- 
ly prime, 

Skk and SiS22-.-Skkl 1 

will be relatively prime. Thus there exist 
polyn6mials A and B such that 

ASkk+ BSiS22--.Skkl I = 1 

A and B can be easily found by obtaining re- 
mainders as in a gcd calculation. Multiplying 
both sides by R we obtain 
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A R s k k  + B R S l S 2 2 " . - S k k [  1 = R 

Dividing by S we obtain 

AR BR R 

SIS22...Skkil + Sk~ - S 

We have thus performed one step in the decomp- 
osition which, when completed, will have the 
form 

R A 1 (x) A 2 (x) A k (x) 

S - S 1 + ~ + "'" + k ' 
S 2 S k 

where degree Ai< degree s'iz ' gcd(Ai'Si I) = 1 

In fact, the degree of BR in x may be greater 
than that of SkK. We may, however, divide 
and ignore the quotient since it will be 
cancelled by some quotient later on in the 
decomposition. 

Thus far we have the following relation- 
ship 

f 
/R(x) A1 A2 " . +  [~x 
ys~dX= ~dx + dx +-. ySk 

For example 

Our goal now is to obtain a reduction 
procedure for integrals of the form 

The reduction procedure is usually credited 
to Hermite [ 2]. 

The polynomials S i have only simple roots. 
Hence, gcd(S i, Si')=l. Thus there exist poly- 
nomials B and C such that 

BS.+ CS. ' = 1 
i l 

Therefore 

and 

BA.S. + CA.S.' = A. 
1 1 1 1 1 

BA. CA.S.' A. 
1 ll 1 
i-i + i = i 

S. S. S. 
l 1 1 

letting BAi=D and CAi=E, we have 

dx = dx + J S~ dx 

By integration-by-parts we obtain 

f ! 

ES i 

S. 1 
1 

dx = -E l E' 
(i_l)Sii-i + j(i_l)S ii-I dx 

Collecting the results we obtain 
E' 

. dx . . . .  + i-i 
S (i-l)S. I-I S. 

1 1 

That is, the integral becomes a rational 
function plus an integral whose denominator is 
of lower degree in S.. We can continue the 
reduction obtaining ~ore rational terms in 
the integral with a final integrand whose 
denominator is S i. Should the numerator of 
this final term be 0, then we are done and 
the integral is completely rational. Other- 
wise, we shall be forced to obtain logarithmic 
terms. By performing this reduction for all i, 
we obtain 

R T(x) k rV. (x) 
~ dx = U~ + ~ JWj~x) dx , 

j=l 

where W. has only simple roots 
3 

, degree V. < degree W. 
3 3 

Horowitz' thesis describes an alternative 
routine for reaching this point in the algor- 
ithm. He is able to show that one can avoid a 
partial fraction decomposition and obtain the 
rational part of the integral more quickly by 
solving an appropriate system of linear equa- 
tions. 

The next step in the Hermite algorithm is 
to factor the Wj. Unfortunately, there are 
great practical-difficulties in factoring 
arbitrary polynomials, even those with only 
simple roots. Factoring procedures such as 
Berlekamp's [ 1 ] will obtain only those factors 
having integer coefficients and thus will not 
be able to factor x4+ 1 for all its roots. 
Even if one could efficiently factor all poly- 
nomials whose roots involve radicals we would 
still be faced with the problem that polynom- 
ials of degree 5 or greater do not have gen- 
eral solutions in terms of radicals. The 
algorithm written by Manove uses all linear 
and quadratic factors which could be obtained 
by the Kronecker factorization algorithm. In 
many cases, this procedure is able to obtain 
the complete integral. Tobey [15] points out 
that factorization is unavoidable unless 

W.'=cv. 
3 3 

in one of the terms of decomposition where c 
is a constant. In such cases the integral is 
simply 

c log W. 
3 

Zimmer [16] discusses algorithms for factoring 
over Galois extensions of the integers. 

Leaving the practical aspects of the next 
part of the algorithm aside, we continue with 
the integration steps. Suppose we had a 
complete factorization of each Wj as follows 

Wj = (x-~)(x-~ .-.(x-~ , ~ij complex 
algebraic constants 

Then by partial fraction expansion 

=fv v dx x dx +fv j dx + . . . . l  dx 
dx-C~aj d x-c~kj 

4 3 0  



The Vij are, in fact, constants since 
their degree is less than the degree of x-~ij, 
Since 

/ Vii dx = V. • log(x-ccij) 
x-ccij 13 

the complete integral has the form 

jR(x) dx = T(x) ~ Vi j 
J S~ U~ + • • l°g(x-~ij) 

1,3 

Risch's Decision Procedure 
The Approach From Mathematics 

The quest for general results on integra- 
tion goes back to the early nineteenth century. 
Laplace conjectured that the integral of an 
algebraic function (y is algebraic in x if 
there exists a nontrivial polynomial P(x,y)=0, 
where P has integer coefficients) need contain 
only those algebraic functions which are 
present in the integrand. This conjecture 
was proved by Abel. Liouville examined the 
form of the integral of an elementary function 
in a series of papers in the 1830's and 1840's. 
Liouville's main theorem has been the basis 
for most of the later work in this area. 

Before we can present Liouville's theorem 
in its modern formulation due to Risch, we 
shall need a few preliminary definitions. We 
assume that the reader has some understanding 
of the theory of fields. We shall assume 
that the field of rational functions is the 
ground field D in the rest of our discussion. 
The ground field of coefficients will be the 
rational numbers Q. Note that not only do the 
rational functions in x form a field (that is, 
one can add, subtract, multiply, and divide 
in the field), but one can also differentiate 
in this field. We know that one cannot inte- 
grate every rational function without requiring 

with coefficients in F. We shall call a 
transcendental function a monomial if it is 
an exponential or a logarithm of a function 
already in the field. It is well-known that 
e x and log x are monomials over the rational 
functions. We shall be interested in only 
those transcendental extensions which can be 
formed by monomials. An elementary function 
is one which is in a field formed by a finite 
number of algebraic and monomial extensions of 
the rational functions. 

It should be noted that not every expon- 
ential or logarithm of an element in a field F 
is a monomial over that field. Consider the 
field containing 

2 
x e x x+x 2 

e and , then e 

is algebraic over that field. Likewise, if 
log a(x) and log b(x) are in the field, then 
log a(x)b(x) is not a monomial over that field. 
Similarly 

n log x 
e 

is not a monomial. 
Now we are in a position to state 

Liouville's theorem. Suppose a function f is 
in a field of elementary functions F. Then 
if the integral of f is in an extension of F 
formed by elementary functions 

k 

f f dx = V 0 + i~=l= C i log V i 

, where V 0 ¢ F, V i ¢ F, C i are constants. 

The proof of Liouville's theorem is based 
on the differentiation properties of exponen- 
tial and logarithmic monomials and of algebraic 
functions. The derivative of an exponential 
monomial always contains that exponential. If 
lognu is differentiated, then the derivative 
contains log u except when n=l. Likewise, 
derivatives of algebraic functions contain 

logarithmic extensions to the rational functions. 
In fact, the integral of a rational function 
can be represented in the following form 

k 

f R(x) dx = V0(x) + i~=l= C i log Vi(x), 

where V e D, the C. are algebraic numbers 
o l 

and the V. are in D with coefficients 
l 

which are algebraic numbers 

In other words, the integral of a rational 
function is the sum of a function in the same 
field with constant multiples of logarithms of 
functions which are also in that field. The 
statement of Liouville's theorem is similar to 
this except for modifications which allow the 
integral not to exist in closed form. 

Liouville's theorem involves the elemen- 
tary functions. These are obtained by making 
two types of extensions to the rational func- 
tion field D. An algebraic extension of a 
field F is obtained from some function y such 
that there exists a nonzero, irreducible poly- 
nomial P(x,y)=0 whose coefficients are in F. 
For example, the square-root of x can be rep- 
resented by y which is the soluti,>n of y2-x=0. 
A transcendental extension of F is obtainable 
from a function f which satisfies no polynomial 

these algebraic functions. 
For f in F to possess an integral which 

is an elementary function, f must possess 
this integral in some finite extension of F, F* 
say. This integral is representable as a 
rational function of the monomials and alge- 
braic functions which form F*. By partial 
fraction decomposition we can represent the 
potential integral as a polynomial in the 
monomials and algebraic functions plus some 
rational terms in these functions. By the 
differentiation properties it follows that no 
new functions with the exception of new log- 
arithmic terms may arise. The logarithmic 
terms may only be multiplied by constants. 
The arguments of the new logs must also be in 
the original field F for otherwise their der- 
ivative would introduce functions which are 
not in the integrand. 

A key idea in Risch's proof of Liouville's 
theorem is the requirement that the monomials 
be algebraically independent. This allows 
one to perform rational operations such 
as partial fraction decompositions and factor- 
ization on the monomials as if they were dif- 
ferent variables. The partial fraction decomp- 
osition of the integral Allows one to obtain a 
canonical representation of a rational function 
in the monomials and algebraic functions which 
is extremely useful. In terms of a partial 
fraction decomposition, Liouville's theorem 
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gives the following representation of the 
integral, when it exists as an elementary 
function: 

k R. (x, 8i) 
f f(x,@i) dx = P(x,@i) + ~ S~(x,si)j 

j=l 

S 

+ ~ C log Vr(X,@ i) , 
r=l r 

where f is in F, the 8. are the monomials and 
algebraic functions i~ F, and P, Rj and Sj are 
polynomials with the Sj square free. The V r 
are rational functions and the C r are constants. 

Risch's integration algorithm is an 
induction argument on the number of monomial 
and algebraic extensions necessary to build 
up the field in which the integrand lies from 
the ground field of the rational functions. 
The integral of a rational function can be 
obtained in the manner already discussed. To 
make the induction precise for nonrational 
functions we have to choose an ordering of 
the extensions such as 

2 
e x then log x then e x then /x then 
log (/x + I). 

When we examine an integrand, the monomial 
and algebraic extensions are frequently 
obvious. We must, however, be careful to allow 
only monomials which are algebraically indep- 
endent of the previous monomials. When we 
have made some choice of an ordering of the 
monomials and algebraic functions, then the 
last extension is either a)algebraic, b) 
exponential, or c) logarithmic. The integrand 
which is expressible as a rational function 
in the monomial and algebraic extensions can 
be written as a sum of a polynomial part and 
a rational part. The integral of the rational 
part is easily obtained in the exponential 
and logarithmic cases. The integral of the 
polynomial part of the logarithmic case is 
also easily obtained. We shall describe these 
subsets of Risch's algorithm below. 

The Logarithmic Case 
of Risch's Algorithm 

Suppose 8 = log u is the last extension 
used to generate F. We wish to integrate fe F. 

By taking a partial fraction decomposition 
of f we obtain 

f(x) = An(X) e n + An(x) sn-l+'''+A0(x) 

where the Bi's (i>l) do not contain 8 and only 
B 0 may contain new logarithmic extensions. 

The Integral of the Rational Part 

The integration steps here are very 
similar to those in the purely rational case. 
We first attempt to reduce the degree of the 
denominator in those cases where the denomin- 
ator has degree greater than i. Since Si has 
only simple roots, S i and Si' are relatively 
prime polynomials and there exists polynomials 
A(x,8) and B(x,8) (which can be found by re- 
maindering as in agcd operation) such that 

AS. + BS. ' = i. 
1 1 

Therefore, 

AR.S. + BR.S.' = R. 
1 l l 1 1 

, and 

AR. BR.S.' R. 
1 ll 1 

+ i - 
S. S. 

1 1 1 

Letting AR i = C and BR i = D, we have 

S i  i dx  = D dx + J s . i  dx  
1 

By integration by parts we obtain 

E ! 

sii-i + i-i dx 

Continuing in this manner we can reduce the 
rational part of the integral to a denominator 
all of whose roots are simple. The next step 
involves obtaining the logarithmic extension. 
We require that the denominator be factored. 
This operation is more complex than in the 
purely rational case since we are dealing with 
polynomials in several variables, the variables 
other than x representing the monomial and 
algebraic extensions. Let us ignore the prac- 
tical aspects of this problem again, and con- 
tinue with the integration steps. Suppose we 
are left with rational terms of the form 

R.* 
1 

S. 
l 

k Ri(x, @) 

+ ~ i 
i=l S. (x, 8 ) 

l 

where the A i do not contain 8, degree Ri< Si I, 
the S i have only simple roots. Then by 
Liouville's theorem the integral, if it exists, 
has the form 

.~ f(x) dx = Bn+l(X) 8 n+l + Bn(x) on+o..+B0(x) 

A partial fraction decomposition would yield a 
decomposition such as 

* (x) Ri2 (x) R i Ril Rik (x) 
_ _  = + +...+ 
S i @-ail (x) 8-ai2 (x) 8-aik (x) 

The integral of each one of the terms above 
would exist only in the case 

Rij = C(@-aij) '. 

k m (x,@) 

j=l Si3 (x, 8 ) 

The determination can be made easily by differ- 
entiation. If a constant value of C can be 
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found, then the integral is C log(8-a..). 
• 13 Otherwise the integral does not exlst. Thus 

/l~g dx , x 

which already is in the form above with 
@ = log x can not be integrated in terms of 
elementary functions. On the other hand 

/~ dx , 1 
log x 

which must be rewritten as 

/i~ x dx 

to conform with our representation, is inte- 
grable and the integral is log log x. 

The integral of the rational part of the 
exponential case uses the same steps except 
that the logarithmic terms are found in a 
slightly different manner. 

The Integral of the Polynomial Part 

Suppose the polynomial part had the rep- 
resentation 

An @n +...+A 0 

, where 8 = log u. Then the integral, if it 
exists, is a polynomial of degree n+l at most, 
say 

n+l 
Bn+ 1 8 +'''+B 0 

, where the B i, i> lj do not contain new exten- 
sions or 8. 

By differentiating and comparing coeffic- 
ients of powers of 8, we obtain the following. 

0 = B' 
n+l 

, that is 

Bn+ 1 is a constant, say bn+ I. 

U ! 

An= (n+l)bn+ 1 ~- + B n' 

Integrating both sides 

~An(X) dx = (n+l)bn+ 1 @ + B n 

The integral of A_ can be found by the algor- 
II . 

ithm. The integral is less complex than the 
original integral since A n does not involve 2. 
If the integral does not exist, the original 
integral does not exist either. If the 
integral exists, then the only new logarithmic 
term which may be present in it is log u. 
Otherwise, we would violate the condition that 
the B i do not involve 8, i> i. Suppose 

f An(X) dx = C 8 + d(x), C constant 

Then 

C 
bn+l = n+l 

and 

B (x) = d(x) + e, e constant 
n 

We have, in this one step, determined the con- 
stant term of the higher coefficient and the 
current coefficient up to a constant. Sub- 
stituting d(x) + e for Bn(X) we can obtain an 
integral relationship for 

Bn_l (x) 

, etc. If all the Bi's can be determined, 
the integral has been found. If some restric- 
tions on the Bi's has been violated, then the 
integral does not exist. 

Consider the following simple example 

.~ log x dx, 8 = log x 

The integral, if it exists, is of the form 

B202 + B18 + B 0- 

0 = B2', so B2=b2, b 2 a constant 

1 dx = b2@ + B 1 

x + constant = b28 + B 1 

Therefore, 

b 2 = 0 

B 1 = X+bl, b I a constant 

x+ b 1 
0 = x + B0' 

b 1 
-i = --x + B0' 

-i dx = b18 + B 0 

-x + constant = b18 + B 0 

Therefore 

b I = 0 

B 0 = -x+ b 0, b 0 constant 

The integral is 

x log x - x + constant. 

The Remaining Cases 

The polynomial part of the exponential 
case is more complex than that of the logar- 
ithmic case because the derivative of an 
exponential is an exponential of the same de- 
gree. We know that 

A(x) e n dx 

must be 

B (x) 8 n 
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when the integral exists and 

c(x) 
e = e 

Therefore 

B' + nC'B = A 

This differential equation looks more complex 
than the original integral, but in fact it is 
not. The restriction on B is that it must be 
in the same field as A. By performing a part- 
ial fraction decomposition of A, we can deter- 
mine if such a special solution of the differ- 
ential equation exists. For example, consider 

fe x2 dx 

A(x) is a polynomial of degree 0. The degree 
of B(x) is l, at most. Say, B(x) = ax+b, where 
a and b are constants. By differentiation we 
obtain 

2 2 
loe x = (a + 2x(ax+b))e x 

Comparing powers of x we get the following 
equations 

2a = 0 
2b = 0 
a = 1 

Since this system of equations cannot be 
satisfied, there exists no integral in terms 
of elementary functions, as is well known. 

The algebraic case involves very differ- 
ent techniques than the monomial cases. The 
algorithm uses knowledge about the poles of 
the algebraic function to yield a vector 
space of potential solutions by techniques of 
algebraic geometry. The fact that this case 
was shown to be decidable is very surprising 
since the first published conjecture that 
some operation might be undecidable.was 
about the integration of elliptic functions, 
a special case of the algebraic functions. [ 2] 

The integration algorithm is, in fact, 
incomplete at the present time. When one 
deals with exponentials and logarithms in as 
general a manner as Risch does then one en- 
counters a surprising difficulty. There 
exists no known general algorithm for deter- 
mining whether a constant involving exponen- 
tials and logarithms is 0. In [ 6 ] we mention 
that it is not even known whether e+~ is a 
rational number. Risch presents an algorithm 
which uses the algebraic case of the integra- 
tion algorithm to determine if an exponential 
or logarithmic term is a monomial over a 
given field. The solution of the constant 
problem has, however, eluded him as it has 
everyone else. 

Extensions of Risch's Algorithm 

It has been known for some time that 
Liouville's theorem allows one to integrate 
functions other than those obtained through 
logarithmic, exponential and algebraic 
extensions [ 7]. The logarithmic case is, 
in fact, easily generalized to functions 
obtained by integration. Consider the functions 
G obtained by integrating members of a field 
F. That is G'(x) = f(x), where f(x) c F. For 
example, the error function can be defined in 
this manner over the field containing the 

rational functions and 
2 

-x 
e 

since 
2 

2 -x 
erf~x) = ~ e 

If we assume that G(x) is algebraically indep- 
endent of the monomials which are in F, then 
we can consider the field F* which is F 
extended by G(x). The integral of a member 
of F* will, if it exists, be a member of F* 
plus constant multiples of logarithmic exten- 
sions of F*. 

In practice one is interested in finding 
the integral in a larger class of functions 
than the elementary functions. When one deals 
with error functions one would allow the inte- 
gral to contain error functions other than 
those which appeared in the integrand. In 
effect, one wishes to consider a function G 
given as an integral to define a class of 
extensions of fields of elementary functions. 
The argument in Liouville's theorem can be 
modified to show that the integral, when it 
exists in terms of elementary functions and 
the G functions under consideration, will be 
in the same field as the integrand plus constant 
multiples of logarithmic extensions and 
constant multiples of G's whose arguments lie 
in the same field as the integrand. 

The logarithmic case of Risch's algorithm 
can be generalized to handle such special 
functions. In [ 7 ] we discuss an experiment 
in which a table of integrals of error functions 
was checked by a program using this method. 
The program uncovered a number of errors in 
the table. 

Solution of Ordinary Differential Equations 

In [ 5 ] we describe a program called 
SOLDIER (SOLution of Differential Equations 
Routine) which contains eight methods for 
solving first-order differential equations. 
The methods used include most of the common 
techniques for solving first-order differential 
equations, namely the solutions for linear, 
separable, and exact equations. All the 
integration subproblems in SOLDIER use SIN 
to perform the integration. The program 
attempted 76 problems in an introductory text 
on differential equations and succeeded in 
solving 67 and in noticing a misprint in the 
textls solution to one problem. 

SOLDIER's methods which are indicated in 
the Table 2 are similar to SIN's first and 
second stage. There is, at present, no known 
general method for solving nonlinear ordinarv 
differential equations. It is not at all 
clear that one could generalize Risch's 
algorithm to handle a large class of nonlinear 
differential equations. Thus a program for 
solving ordinary differential equations may 
have to be a collection of special methods. 

There are general methods for solving nth 
order linear differential equations with 
constant coefficients. One such method is 
implemented for the MATHLAB system [ 4 ]. The 
method uses Laplace transforms. As a result 
of the work on this method, it was shown that 
an algorithm for obtaining the inverse of a 
Laplace or Fourier transform of a rational 
function is a slight modification of the Hermite 
method for integrating rational functions. 
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Definite Integration 

Wang has implemented in the MACSYMA 
system a number of methods for finding the 
definite integral of elementary functions. 
Since many definite integrations can be made 
by evaluating the indefinite integral at the 
limits, Wang has concentrated on cases 
where such a technique fails. The main method 
for evaluating such integrals is by residues. 
This involves finding an appropriate contour 
in the complex plane, locating the poles of 
the function (usually by factoring the den- 
ominator), and calculating the residues. 
Methods which have so far been implemented are 
described in Table 3. 

15)Tobey,R., "Algorithms for Antidifferentia- 
tion of Rational Functions", PhD dissert, 
Harvard U., Camb. Mass., May 1967. 

16)Zimmer, H., "Computers and Computation in 
Algebraic Number Theory", these proceed- 
ings. 
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number name solution method examples transformed into 

i) exponentials 
X 

substitute y=c 
c a constant 

e x fi . 2x 
f e2 x 

J A+Be 

dx 

dx 

/2+3~ dx , Y =ex 

x 
A+By dy, y=e 

2) integral 
powers of 
variables 

k 
substitute y=x 
where k is related 
to the greatest 
common divisor of 
the exponents 

x 3 sin(x 2) 

x 7 
/ nq dx 

dx 
1 ~ y sin(y) dy, y=x 2 

¼ dy, Y y=x 4 
y3+l 

3) rational 
roots of 
linear 
fractions 

substitute 

.ax+b~i/k 
Y=~c~J 

x4~ dx 

2x+3 

2(y2-1)y 2 dy, y=~/~ 

2[ 2 
dy, Y--4~ X+i 

(2y2_i) 2 ~2x+3 

4) Chebyschev a decision 
procedure for 
expressions of 
the form 

Axr(cl+c2xq) p , 

where p,q,r are 
rational numbers 

1 / x2(l+x) 5/2 dx 

x4(l-x2) -5/2 dx 

-2y6 dy Y=~x 
(y2_l) 5 ' 

f y  -1 dy, y=  i2-2  4 (l+y2) x 

5) arctrigono- 
metric 
substitutions • 

Three arctrigono- 
metric substitu- 
tions for integrals 
with expressions 

~ax2+bx+c . ~/~ 

The dlscrlmlna~/~ ~ 

b2_4ac !:~ 
determines the sub- 
stitution which will 
be made. 

f x4 
(l_x 2) 5/2 dx 

f ~4A2÷B2-~2Y 2 dy l-y 2 

• 4 / san y dy y=arcsin x 
4 

cos y 

/ ~ -  (A2+B2) c°s2z dz 
/ A2+B 2 2~ 
~i- 7 sin 7 

z=arcsin By 

•A 2+B 2 

6) trigono- 
metric 
functions 

Five classes of 
methods 
l) Integrands of 
the form 

sin mx sin nx 
sin mx cos nx 
cos mx cos nx, 

by table look-up 
2) Integrands of 
the form 

m n 
sin x cos x, 

by reduction of 
exponent 

f sin2x cos x dx 

sin2x dx 

cos x cos 3x 
2 6 

1 2x) dx f (½- cos 

TABLE 1 part a 
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number name solution name examples transformed into 

3) Substitution 
of sines and cosines 

~A2+B2sin2x 
S~ ~ dx _f~2+B2 (i-~2) 

J l_y 2 

dy 

,y=cos x 

4) Substitution of 
tangents 

5) Substitution 
for tangent of 
half-angle 

/i sec2---~ 

+sec2t-3tan t 

-!------dx 
l+cos x 

dt 1 dy, y=tan t 
y2-3y+2 

f dy, y=tan }x 

7) Rational 
function 
times an 
exponential 

Decision procedure 
similar to Risch's /(x~l) 2 e x dx 

x 
e 

x+l 

2x6+5x4+x3+4x2+l e x2 
(x2+l) 2 dx 

2x3+2x+l x 2 
e 

2(x2+i) 

2 
e x not integrable 

8) Rational 
function 

Hermite method 
programmed by 
Manove 

dx 
_ _ 1 1 log (x+l) +~log (x2-x+l) 

3 

+ l_ arcta n {2x-l~ 
/3 \ /3 / 

9) Arctrigono- 
metric or 
logarithmic 
function with 
rational 
coefficients 

Uses a reduction 
like integration- 
by-parts 

x2arcsin x dx 

x log x dx 

3 /x3 
5__ arcsin x 
3 

2 x 
~-- log x -~ ~ dx 
2 

dx 

i0) Rational 
functions of 
logarithms 

Attempted when 
method 9 is not 
applicable. Uses 
a logarithmic 
substitution in 
order to reduce the 
problem to a form 
which method 7 
might handle 

log x 

(log x +i) 
dx 

2 
/~ Y e y dy, y=log x 

y+l) 2 

/ ~  dy, y=log x 

ii) Expansion 
of the 
integrand 

Distributes sums 
over products. Is 
applied when other 
methods in stage 2 
fail. 

x(cos x +.sin x) dx 

/(.: x) .x 
(x cos x + x sin x) dx 

(xe-X+l) dx 

TABLE 1 part b 
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Method 

Linear 

Separable 

Form 

y'+ P(x)y + Q(x) = 0 

A(x)B(y)dx +C(x)D(y)dy = 0 

Procedure 

solution is 

yeLP dx + ~ ~P d~dx=C 

solution is 

A (x) fD (y) 
c(x) dx +yB(y)--~ dy=C 

Example 

y'+ y + x = 0 
becomes 

yeX+ xe x- e x = C 

x ( y 2 - 1 ) d x  - y(x2-1)dy=O 
becomes 

Exact 

Bernoulli 

P(x,y)dx + Q(x,y)dy=0 

5P 5Q 
where ~y ~x 

f(x)y'+ g(x)y + h(x)yn=0 

n, a constant, n~l 

solution is 

=C 

This method also contains 
two special cases where 
multipliers are generated 

l-n 
substitute u(x)=y 
to obtain linear 
differential equation 

(4x3y-12x2y2+ 5x2+ 3y)y' 

+6x2y 2- 8xy3+ 10xy + 3y=0 

becomes 
2x3y 2- 4x2y3+ 5x2y + 3xy 

=C 

2 , 2 
x (x-l)y + y - x(x-2)y=0 

becomes 

(x-2) 1 
y,+ x(x~_i y + =0 X2 (x-l) 

Homogeneous 

Almost- 
Linear 

Linear- 
Coefficients 

P(x,y)dx + Q(x,y)dy=0 

where P and Q are 
homogeneous functions 
of degree n. 

f (x) g(y)y'+ k (x) 1 (y)+m(x) =0 

, where I' (y) = g(y) 

F/ax+by+c ) 
Y'+ \a'x+b'x+c' =0 

, where a, b, c, a', b', c' 
are constants, and 
ab' - a'b ~ 0 

substitute u(x)= ~ 
X 

After factoring 
n x from the result 

one obtains a separ- 
able differential 
equation. 

substitute u(y)=l(y) 
to obtain a linear 
differential 
equation 

substitute 

b'c-bc' 
X *= X a'b-ab' 

ac'-a'c 
Y*= Y a'b-ab' 

to obtain a homogeneous 
differential equation 

3x2y '- 7y 2- 3xy - x 2= 0 

becomes 

3 arctan/7 ~ =C log x - ~ x 

xyy'+ 2xy2+ 1 = 0 

becomes 
1 xu'+ 2xu + 1 = 0 

2 
, where u(y) = y 

(4y+llx-ll)y'- 25y-8x+62=0 

becomes I ~+ Y-lx_~_19 ~ 
log (x- ~) -21--1og 2 

(") .~ Y-Y 
+ log 4+ 1 = C 

x- 

Substitution 
for 
n 

xy 

y, + Z H(xny) = 0 
X 

substitute u(x,y)=xny 
resulting in a 
separable equation 

(x-x2y) y '- 

becomes 

du 

u(l+ i_~) 

y = 0 

1 dx = 0 
X 

TABLE 2 
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i) 

2) 

Form 

02~ R(sin x, COS x)dx 

, where R is a rational 
function 

/ ~ F(X) dx where 

F is of the following types 
a) rational 

D(x) b) p~ sinn(mx) 

D(x) C) p(~ COS n(mx) 

D (X) imx 
d) p~ e 

, where D is algebraic, P a 
polynomial, m a constant, 
n=l or n=2, and 

lim D(x) _ 0 
P(x) 

X~co 

Method 

Substitute complex exponen- 
tials for trigonometric 
functions resulting in a 
rational function 

-if R( z<~ z2+l~ 
\2iz ' -~--/ ~ 

C 

, where c is the unit 
circle. Evaluate using 
residues. 

Compute the residues either 
in the upper or in the 
lower semi-circle around 
the complex plane 

Example 

f0 2~ (cos2x - sin x)dx = 

co 

x2+Ax + B 

-- x4+ 10x2+ 9 

/ ~ -a 
C O S  X - -  r r e  

x 2 + a  2 a 
- c o  

/ m s i n  x d x  = rr 
x 

~B + 3~ 
dx 

12 

3 
) a)_f F (x) dx 

, where F is an even 
function, but not one 
of the four cases above 

j l  ° b) F (x) dx 

, where F is an odd 
function 

f0co 
4)a) F(x) dx 

, where F is rational, 
but has no poles at 0 
and no pole of order 
greater than 1 on the 
positive real axis 

b) xk-iR (x) dx 

, where R is rational, 
k a constant and 

lim xkR(x) = 0 
x~0 

lim xkR(x) = 0 
X'~ 

Transform into 

2 f F(x) dx 
0 

and apply method 4 

Answer is 0 

Integrate log(-z)F(z) around 
a contour in the complex 
z-plane cut along the 
negative real axis 

Obtain the contour integral 
of (-z) ~-IF (z) 

f0 co x2+ Ax + B dx 

x4+ 10x2+ 9 

= 61og(3)A + 2~B + 6~ 

48 

co 

fo x ( x ~  d x  = ~ 

TABLE 3 part a 
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Form Method Examples 

5) A class of integrals 
which result in the 
gamma function 

fo ~ xCe AxB a) dx, 

, where Re(A) < 0, B> 0, 
Re (C) > -i 

b) /0 x k-I (x+l) 
-k-c dx 

~/2 

c) sinnx oosmx dx 

0 

m>-i, n>-i 

1 

d) / x n logk(~) dx 

0 

f x n log k x dx 

n~ 0 

These are transformed to 

~ by the change of 

variable -y = log x 

~0 ~ A D-Bx C X e dx 

, where A> -i, B> 0, C> 0 

= r ('A~l~) e D 

B -~- C 

2~ 

0 sinnx cosmx dx m> -I 
n> -1 

r(m~) ~)((-1)m÷.n+(-l)n+(-1) m+l ) 

r 

1 

0 logkx 2 dx -- (-1)k~(k+l) 

T_ABLE 3 part b 

440 


