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Abstract 

Algebraic simplification is examined first 
from the point of view of a user needing to 
comprehend a large expression, and second from 
the point of view of a designer who wants to 
construct a useful and efficient system. 
First we describe various techniques akin to 
substitution. These techniques can be used to 
decrease the size of an expression and make it 
more intelligible to a user. Then we deline- 
ate the spectrum of approaches to the design 
of automatic simplification capabilities in an 
algebraic manipulation system. Systems are 
divided into five types. Each type provides 
different facilities for the manipulation and 
simplification of expressions. Finally we 
discuss some of the theoretical results relat~ 
ed to algebraic simplification. We describe 
several positive results about the existence 
of powerful simplification algorithms and the 
number-theoretic conjectures on which they 
rely. Results about the non-existence of 
algorithms for certain classes of expressions 
are included. 
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1.0 Introduction 

Simplification is the most pervasive pro- 
cess in algebraic manipulation. It is also 
the most controversial. Much of the contro- 
versy is due to the difference between the 
desires of a user and those of a system design- 
er. The user wants expressions which he can 
comprehend, a requirement which usually means 
that the expressions presented to the user 
should be small. The designer wants expres- 
sions which can be manipulated with great ease 

and efficiency, a requirement which translates 
to a desire for a uniform representation of 
expressions utilizing a minimum number of 
functions. Users tolerate, and in fact prefer, 
a certain amount of redundancy in an answer. 
For example, they usually desire to see expres- 
sions containing the twelve trigonometric and 
hyperbolic functions. Designers would prefer 
giving a user only the exponentials, sines and 
cosines, or just exponentials with both real 
and complex arguments, or nothing but rational 
fuDctions. 

There is one property of simplification 
about which both users and designers can agre~ 
That is, that simplification changes only the 
form or representation of an expression, but 
not its value. Changes of representation 
occur in many problem solving domains. In 
fact, in the field of Artificial Intelligence 
one speaks of the Problem of Representation 
which can be stated roughly as "how does one 
transform the statement of the problem into a 
form which is more readily solved." Thus an 
ideal, but not very helpful, way to describe 
simplification is that it is the process which 
transforms expressions into a form with which 
the remaining steps of the problem can be 
taken most efficiently. 

The Problem of Representation for alge- 
braic expressions is especially acute because 
there are so many equivalent ways to represent 
an expression. Frequently one of these 
equivalent forms is much more useful than an- 
other, and just as frequently, it is a non- 
trivial problem to recognize the equivalence. 
For example, it is rare that we do not want to 
recognize that an expression is equivalent to 
0. However, many of us have difficulty in 
recognizing the following identities. 

log(e 2x + 2e x + i) - 2 log(e x + i) = 0 

or 

(21/3 + 41/3) 3 - 6(21/3 + 41/3 ) - 6 = 0 

o r  

log tan(~ + 7) - sinh -I tan x = 0 

Consider how much more difficult the problems 
become when we deal with expressions which are 
several pages long. Yet expressions of such 
size are quite common in algebraic manipula- 
tion! An additional difficulty is that the 
usual manipulatory algorithms can easily 
magnify a bad choice of representation. For 
example, the derivative of a product of n 
factors can be a sum of n terms each of n or 
more factors. Thus a bad representation of 
the product or one of its factors is propaga- 
ted and magnified n-fold. 

Another issue which arises in discussions 
of simplification is related to the local or 
global nature of the problem. If expression 
A is deemed simpler than its equivalent 
expression B in one context, then is A to be 
considered simpler than B in every context? 
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A perfectly strict answer is no. For example, concentrate in section 2 on the users' need 
for comprehension of expressions, and then in 

x 7 section 3 on the designers' facilities for 
12 manipulating expressions. 

x + 1 In discussing simplification for the 
sake of comprehension, we shall describe the 

is a more compact representation of the ration- technique of substituting labels for subexpres- 
al function it represents than sions in simplifying large expressions. We 

i/4(4x3)x 4 

(x4) 3 + 1 

The former is usually easier to manipulate and 
comprehend. However, when integrating, the 
latter expression indicates a p@ttern which 
suggests the substitution y = x ~ which yields 

f dy , 
y3+l  

a much simpler integration problem than that 
which is posed by the first expression. 
Designers would prefer a system in which the 
simplification steps are the same in every 
context. Users clearly would prefer a system 
which could take contextual information into 
account in deriving a simplified expression. 
Designers can take comfort in the fact that 
while the simplified form of an expression is 

shall also describe principles of conventional 
lexicographic ordering of expressions. A 
system can hinder the comprehension of a user 
by displaying expressions in unconventional 
order. Unfortunately, no current system pays 
sufficient heed to this point. 

In section 3 we describe five different 
approaches to the design of simplification 
facilities in algebraic manipulation systems. 
We describe the facilities which are usually 
offered, and indicate the advantages and 
disadvantages in them. The section ends with 
a discussion of very powerful algorithms based 
on formalizations of the concepts of simplifi- 
cation. 

2.0 Simplification for the Sake of Compreq 
hension - The Needs of Users 

One of the most common complaints of 
users of algebraic manipulation systems is that 

not the same in every context, it is so in the expressions obtained as results of a calcu- 
many contexts. Nonetheless, the task of deriv- lation are incomprehensible and therefore 
ing a compromise between the wishes of users essentially useless. In order to understand 
and the requirements of an efficient system is 
likely to keep designers talking to themselves 
and to each other for quite some time. 

A related aspect of simplification is the 
extent to which the concept can be formalized. 
The point that we made above is that the simp- 
lest form of an expression depends on one's 
goals or, in other words, on the context. One 
would be hard put to formalize the goals of 
all potential users. However, one can obtain 
theoretical results for simplification algo- 
rithms which have usef,11 properties. One such 
property is that the algorithm simplifies to 
zero any expression equivalent to 0. A stron- 
ger property is that the simplifier reduces 
all equivalent expressions to a single (canon- 
ical) expression. 

Historically, simplification was required 
in algebraic manipulation systems because the 

the importance of such a complaint we have to 
differentiate between two major classes of 
users. Some users are only interested in the 
value of a calculation. For example, those 
who use symbolic differentiation as a step in 
a numerical calculation do not care very much 
about the form of the symbolic derivative.! 
For such users the problem of simplification 
reduces to keeping the intermediate expressions 
in a calculation in such a form as to optimize 
the use of space and time in the calculation. 
We do not wish to underestimate the difficulties 
in the simplification problem for such users. 
However, in this section we will be mainly 
concerned with the needs of users who do care 
about the form of expressions which result from 
a symbolic calculation. 

The latter class of users include those 
who need to make "physical sense" of an expres- 

manipulatory algorithms produced sloppy results, sion. 
For example, the unsimplified result of 
differentiating 

2 
X 

ax + xe 

with respect to x is an expression such as 
2 2 

0.x + a.l + l.e x + x-e x -2-x 

Simplifying the derivative above would yield 
an expression like 

a + e x2 + 2x 2 e x2 

With the ever growing use of algebraic manipu~ 
lation, it has become increasingly apparent 
that simplification plays a much more complex 

Perhaps such a user is studying a pro- 
cess and wants to learn about some property of 
the process by symbolically manipulating a 
model of it. For example, he might be inter- 
ested in the manner in which the value of an 
expression varies as one of its variables 
increases in value. He could, of course, plot 
the value of the expression for several values 
of the variables, but this method may not be 
very useful if-there are many variables in the 
expression. Other users might need to examine 
an expression in order to know what the next 
manipulatory step should be. A simple instance 
of such a situation occurs when the next step 
in the calculation depends on whether the 
expression is linear or quadratic in a given 
variable. 

It should be clear that a user is likely 
to comprehend and to answer questions about a 

role in the way one solves problems with an small expression a lot better than about an 
algebraic manipulating system. In the remaind- equivalent, but larger one. Thus, a goal of 
er of this paper our discussion of simplifica- I. Such users should care a little about the 
tion will range from mundane topics (such as form of the derivative because some forms of 
whether one writes x+a or a+x) to sublime ones expressions yield a smaller round-off error in 
(whether e+~ is a rational number). We shall a numerical calculation than other forms. 
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simplification should be to produce small 
expressions. In fact, most of the usual 
simplification transformations such as collect- 
ing terms in sums (x + 2x ~ 3x), collecting 
exponents in products 

1 (xy 2 ~ 4 y2) , 

removing 0 terms in sums (x + 0 4 x), and 
factors of 1 in products (l-X ~ x), produce 
smaller expressions. In fact, transformations 
which produce larger expressions (e.g., expand- 
ing integral powers of sums 

(x + 1) 3 4 x 3 + 3x 2 + 3x + i) 

are controversial. Many systems will employ 
such transformations only if the user specif- 
ically demands them. 

Of course the prevalence in algebraic 
manipulation systems of simplification trans- 
formations which produce smaller expressions 
is due mostly to the fact that small expres- 
sions are usually easier to manipulate than 
larger ones. This is an instance where the 
needs of simplification for the sake of improv- 
ed comprehension and simplification for the 
sake of efficient manipulation coincide. 
However, the requirements of simplification 
for the sake of comprehension are more subtle 
than we just indicated. It is not so much the 
small size of the expression which aids in 
comprehension, as the small size of a descrip- 
eion of the expression. For example: 

1 + 2x + 3x 2 + 4x 3 + ... + llx I0 

is a lot less complex for many purposes than 

1 + 3x + 4x 2 + x 3 - 9x 4 + 5x 5 + x 6 + 2x 7 

because one can supply a small description of 
the former (i.e., 

i0 
E (i+l)x I ) , 

i=0 

but not of the latter. The way one usually 
obtains a small description is by recognizing 
a repeated pattern in an expression. Unfortun- 
ately, computer programs nowadays are not as 2 
good as humans at recognizing useful patterns . 
Furthermore, many descriptions which are of 
value to humans are incomplete descriptions 
of an expression (e.g., the expression has f's 
whenever a y occurs except for the first term). 
Most programs are unable to deal with incom- 
plete descriptions. Both of these drawbacks 
mean that we have to depend on the user to 
obtain a description for his own use. The 
process of "massaging an expression" which 
people use in pencil-and-paper calculations, 
can be characterized as a trial-and-error 
attempt to decrease the size of an expression 
and to transform it into a form for which a 
short description is apparent. As we have 
remarked, it is not possible now to fully 
automate this massaging process. Rather, it 
should be the goal of a good system to provide 
machinery which will aid the user in his 
massaging efforts. The remainder of this 

2. An exception to this rule are programs to 
recognize the next number in a sequence [ 1 ]. 
Such programs would, in fact, recognize the 

section will be devoted to describing such 
machinery. 

A major reason why computers are not as 
good as human users in simplifying an expres- 
sion is that they lack knowledge of the con- 
text in which the expression was d~rived. To 
a physicist subexpressions like mc ~ contain a 
good deal of information not apparent to an 
algebraic manipulation system. For example, 
a physicist might be tempted to substitute E 
for mc ~ in order to reduce the size of the 
expression without destroying its information 
content to him. In fact, the major technique 
for simplifying large expressions is the 
substitution of small expressions (preferably 
single literals) for large subexpressions 
which either occur frequently or possess some 
meaning. We shall examine this technique in 
section 2.2. 

Working with an algebraic manipulation 
system can frequently be annoying because such 
systems do not display expressions in the way 
to which the user has become accustomed. A 
user who is presented with a quadratic in x 
written as c + x-a + bx is not only annoyed, 
but is incapable of understanding such 
expressions as well as those written in a more 
conventional form. In section 2.1 we present 
an attempt to model the rules which govern the 
conventional ordering of expressions. 

2.1 Conventional Lexicographic Ordering of 
Expressions 

As noted above, most systems do not make 
a very satisfying attempt to produce expres- 
sions in a conventionally ordered form. 
Fenichel's FAMOUS [ 14], and PL/i FORMAC [ 44] 
make some attempt to supply conventional lexi- 
cographic ordering. However, each system 
provides an incomplete solution to the problem 
We have also not encountered in the mathemati- 
cal literature an analysis of what constitutes 
conventional ordering of expressions. The 
rules that people implicitly use are apparent- 
ly not hard and fast ones. For example, 
x + e x seems not much preferable to e x + x. 
In addition, context plays a role in modifying 
very strongly held views about ordering of 
expressions. One writes am rather than ma 
except in cases like F = ma in which m is 
relatively constant and a varies. 

We believe that systems should make great- 
er effort to avoid highly unconventional and 
therefore confusing ordering of expressions 
such as in sin(-x + 1)/2. The following 
discussion is presented with that goal in mind. 
We do not claim that our discussion of lexico ~ 
graphic ordering is complete, or that a rather 
different set of rules and principles would 
not serve equally well to describe convention- 
al mathematical notation. If we have done our 
job well, the reader will not find many sur- 
prises in our analysis. 

Difficulties in ordering expressions 
arise when one deals with commutative opera- 
tions. The sole commutative operators in most 
algebraic manipulation systems are PLUS and 
TIMES. As a first approximation, the follow- 
ing principles apply to ordering terms in a 
sum and factors in a product. 

Principle for ordering products: Factors 
increase in complexity in a left-to-right 
scan. 

Examples: 2xe x, 2x2y3sin(y) 

pattern in the former expression. 28.4 



Principle for ordering sums: Terms 
decrease in compiexity in a left-to-right scan. 

Examples: 3x 2 + 5x - 6, 2x 2 - 3ax + a + 1 

The principles stated above beg a defin- 
ition of complexity. A handle on such a 
definition is obtained by classifying expres- 
sions into three groups: constants, variables, 
and functions. Constan%s are less complex 
than variables which are in turn less complex 
than functions of variables. Simple constants 
are either numbers or literals, with numbers 
less complex than literals (e.g., 2a, (3/2)~, 
a + 1.4). Functions of simple constants are 
more complex than constants (e.g., 3/2, 3~ea), 
but less complex than variables (e.g., a3/2x). 

The usual convention regarding literal 
constants and variables is that constants 
occur early in the alphabet (e.g., a, b, c) 
and variables late in the alphabet (e.g., x, 

read: any function of a given variable, say x, 
is less complex than any expression containing 
a variable more complex than x. Using the 
latter convention, the above example would be 
written 

2 x 
x e y sin y. 

Expressions which are more involved than 
the ones we have been examining up to now can 
be ranked by a recursive test on their most 
complex subexpressions. We do not wish to 
give a detailed discussion of such a ranking 
procedure because there does not seem to be 
strong feeling about the ordering of very 
large or involved expressions except when 
patterns clearly appear among the subexpres- 
sions (e.g., polynomials, power series, Fourier 
series). Most of the common situations should 
be handled correctly by a recursive ranking 

y, z). Letters in the middle of the alphabet procedure, but the ordering of some expressions 
play many roles, (e.g., f frequently represents would involve global pattern recognition which 
a function, and n an integer) but they can be is beyond the capabilities of existing alge- 

considered, for our purposes, to be intermedi- 
ate between constants and variables. Within 
each class (i.e., constants, intermediates, 
and variables) alphabetic ordering appears to 
determine the complexity. In products, liter- 
als early in the alphabet in each class have 
the lowest complexity rank. This means that 
literals in a product are ordered purely 
alphabetically (e.g., abxz, 2amn). The com- 
plexity rank within each class is reversed in 
sums. Thus we get x + y rather than y + x, 
and x + a + b rather than x + b + a. In sums, 
moreover, the class rank is not adhered to 
very strictly. Thus, we frequently see 
a + b + x rather than x + a + b or 1 + x - y 
rather than x - y + i. Since attitudes about 
ordering of products are more strictly held 
than those about sums, we shall confine most 
of our examples to products. 

Functions of variables are more complex 
than the variables themselves. However, in 
products, positive integral powers of an 
expression A possess the same rank as A (e.g., 

2 2 
x y, x sln x). 

In sums, a term having a higher exponent of 
the most complex factor of an expression is 
ranked higher than that expression, but 
possesses the same rank relative to different 
expressions (e.g., 

3x 2 + 2x, x sin2x + x sin x). 

One could rank the complexity of the usual 
functions 3, but surely any such ranking must 
be somewhat arbitrary. It seems that sin x 
cos x is preferable to cos x sin x, but is 
sin x log x preferable to log x sin x? 

Because of our grouping convention, pos- 
itive integer powers of variables are ranked 
lower than any other functions of variables 
(e.g., 

2 x 
x ye sln y). 

We believe that this is a better model of con- 
ventional notation than an extension of the 
alphabetic ranking of variables which would 

3. In PL/i FORMAC [44], the following ranking 
is employed in products; eX< erf(x)< log(x) < 
sin(x)< cos(x)< atan(x)< sinh(x)< cosh(x) < 
atanh(x) < x! 

braic manipulation systems (e.g., 

1 
(a + b)(a + ½b)(a + ~b)(a + ~b) ). 

There are additional conventions for 
ordering expressions which algebraic manipula- 
tion systems should follow. One rule involves 
eliminating the leading minus sign in a sum. 
Thus given an expression of the form-A + B 
one reverses the terms to eliminate the lead- 
ing minus sign (e.g., 1 - 2x rather than 
-2x + i, y - x rather than -x + y). One 
could conceivably extend the rule to include 
sums with two or more terms, but the force of 
the rule seems to diminish considerably with 
an increase in the number of terms (e.g., 
-3x + 4y + 5z rather than 4y - 3x + 5z or 
5z + 4y - 3x or 4y + 5z - 3x). 

Conventional notation tends to avoid 
the use of parentheses in functions of a single 
argument (e.g., sin x, log 2). As a result of 
this convention and also in order to avoid 
confusion with the scope of special signs such 
as the square-root, integral and summation 
sign, one sometimes reverses the normal order 
(e.g., 2i/2 rather than 2/2 i, 3y sin a rather 
than 3 sin(a)y). This convention is not 
crucial for algebraic manipulation systems 
since such systems rarely display expressions 
with ambiguous scopes of functions or signs. 

The constant ~ has lower rank in prod- 
ucts than literals which represent angles 
(e.g., 2~8 rather than 28~). However, expres- 
sions which evaluate to integers or rational 
numbers rank lower than ~ (e.g., 

3n+l. ,3n+l, 
--~---~ rather than ~t-~---) ). 

Few constants lead the charmed life of ~ as 
exemplified by the expression 2n~i8. 

Frequently, certain literals are used 
as implicit functions of other variables. 
Such literals should be ranked as functions. 
This convention accounts for the subexpression 
y + x + 1 in y' + y + x + 1 = 0. 

Some systems allow users to declare 
dependencies such as that of y on x in the 
expression above. One should extend this 
machinery to allow users to override the 
conventional classification of literals. By 
declaring m constant and a variable, one would 
be able to--obtain the usual formula F=ma. 

Our final remark about conventional 
ordering regards instances of general patterns. 
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If one is given a general pattern of certain 
expressions, such as a + bi for complex 
numbers, then instances of that pattern will 
follow the order given in the pattern, rather 
than the usual rules (e.g., -i + i rather than 
i - i). Systems should accommodate definitions 
of such patterns. 

2.2 Substitution as an Aid to Comprehension 

Many symbolic calculations take the 
following form: One starts with some equations 
such as 

y = g (x) 
z = h(x) 

f = x 2 + y2 + z 2 

and expressions such as 
5 

i 
E: ~ c.x 

i=0 

Later one substitutes such equations and 
expressions into another expression such as 

51~ 2 + 2E 2 

f3 

Then one attempts to simplify the expres- 
sion which results. In this section we are 
interested in the process of making intellig- 
ible large expressions such as the one which 
would result if we performed the substitutions 
and carried out the derivatives and expansions 
in the expression above. 

Frequently, the process of simplifying 
large expressions involves a reversal of the 
process which led to the expression above. 
That is, one substitutes small expressions 
(usually literals) for large subexpressions 
which occur more than once in the expression. 
The literals being substituted into the 
expression act as names or labels for the 
expressions that they replace. This is the 
same function that f, y, and z had in forming 
the expression above. 

An artificial example which points out 
the value of substitution to the comprehension 
of an expression occurs in [ 41]. The example 
shows how to obtain a compact description of 
the matrix in figure i. We obtain a hierarchi- 
cal description by recognizing patterns in the 
matrix and patterns in the matrix of literals 
that we substituted, etc. We finally reduce 
the 64 characters in the original matrix to 
35 characters in the final matrix and all the 
associated equations. However, the hierarchi- 
cal description seems to make the simplified 
result much clearer than is implied by the 
ratio 35/64. 

The process of finding those subexpres- 
sions which are good to replace usually 
involves some trial and error. It is useful 
to replace subexpressions which have some 
meaning in the context of the problem. In 
such cases we need not require that the sub- 
expressions being replaced occur more than 
once in the expression. Beyond such general- 
ities, there does not seem to be much one can 
say at present which is frequently useful in 
the massaging process for large expressions. 
We should note that one often combines sub- 
stitution with other manipulations (e.g., 
carrying out expansions or differentiations 

which have been delayed). 
A non-artificial example of the use of 

substitutions which is borrowed from Hearn 
[19 ] is given in figure 2. 

A technical problem arises when one 
makes substitutions for expressions other than 
atomic or literal ones. Consider the problem 
of substituting a for xy 2 in the expression 

23 
x y . 

Some possible results of this substitution are 

23 
i) xy 
2 ) axy 

3) a2/y. 

One cannot say that there is a "correct" 
answer, because what is appropriate in one 
context need not be appropriate in another. 
However, no system, until recently, gave the 
user much choice in the result of substitution. 
The REDUCE system of Hearn [18 ], has a good 
deal of machinery for making substitutions, 
but it does not give the user much control 
over the effects of its substitutions. 
Fateman [26 ] has recently arrived at the 
following analysis of the problem. For simp- 
licity, we shall make the analysis for poly- 
nomials, but it can be easily extended to more 
complex expressions. 

Let us suppose we are trying to substi- 
tute A for B in C. We shall consider C to be 
represented as 

n Bi 

i=0 

Thus the substitution will yield 

n i 
c~iA 

i=0 

This representation of C is nonunique. We 
can make the representation precise by impos- 
ing constraints on the coefficients ~i. Let 
us assume that the variables in B are ranked 
in some way. Fateman's substitution programs 
usually provide that the degree of the main 
variable of B is lower in each ~i than in B 
itself. In addition, one can restrict the 
coefficients to i) not contain a sum, 2) be 
polynomials (and not rational), and 3) have 
lower degree in all of the variables of B than 
the degree of those variables in B. 

By varying these and other conditions, 
and by modifying the ranking of the variables, 
one can get a variety of results. One can 
then choose that result which seems most use- 
ful in the computation. 

Some examples of substitution made with 
Fateman's routines are given in figure 3. In 
each case we substitute A for B in C. 

The ability of Fateman's routines to 
obtain the results in the last four examples 
is due to the technique of continually divid- 
ing C by B. The last two examples indicate 
how this substitution mechanism provides for 
the application of the oft-discussed trans- 
formation 

sin2(x) + cos2(x) -- I. 
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One of the most popular uses of substitu- 
tion occurs in the differentiation of products. 
This kind of substitution really addresses 
itself to the problem of decreasing the size 
of an expression during a computation. How- 
ever, the techniques used can effect an in- 
crease in the intelligibility of the final ex- 
pression. Moreover, these techniques are of 
a fairly general nature, and can be used to 
improve intelligibility in other cases. 

Consider the general form of the first 
derivative of a product of four factors f, g, 
h, k: 

(fghk)' = f'ghk + fg'hk + fgh'k + fghk' 

In the general form f, g, h, and k each appear 
three times. In certain cases the general 
form will simplify because f', g', h' or k' 
may be 0. Frequently this situation will not 
occur. In cases where f, g, h, and k are 
complex expressions, considerable savings in 
space will result if we use labels for the 
factors which would appear in the derivative. 
A disadvantage of labelling the factors is 
that some simplifications which would occur 
due to the presence of the factor in the ex- 
pression would not occur when its label is 
used. For example, the difference of a label 
and the expression it is labelling is not 
zero. 

Problems arise when we have to take der- 
ivatives of labelled expressions. We can use 
the strategy of not evaluating all derivatives 
of labels until some later time. We might 
wish to evaluate certain derivatives of labels 
whenever they occur by replacing the labels 
by the expressions they represent. Clearly, 
several strategies are possible. A technical 
problem here involves the ability of a 
system to produce the labelled expressions on 
demand. This can be done by substitutions. 
However, the following statement in MACSYMA 
[ 26] avoids making eyplicit substitutions and 
is very selective in its effect. The state- 
ment has the general form 

WHEN conditional DO label = expression 

An instance of such a WHEN statement is 

WHEN SHOWF DO F = SIN(X/CCOS(X) + i). 

As a result of executing such a statement, the 
variable F will appear as F inside expressions 
as long as the variable SHOWF is FALSE. When 
SHOWF is changed to TRUE then F will be re- 
placed by the expression SIN(X)/(COS(X) + i) 
when it is encountered in a computation. When 
SHOWF is changed back to FALSE all remaining 
F's will appear as F once again. 

In summary, the technique of labelling 
can be used whenever an algorithm tends to 
duplicate expressions. The labelled expres- 
sion yields to structural analysis more easily 
than the expression it replaces. However, the 
technique has its drawbacks since it prevents 
certain simplifications from taking place. 

Another situation where labelling can be 
used occurs when one is unable to display an 
expression on one page. Suppose the expres- 
sion is a sum. Then one could replace as many 
of the terms in the sum by labels as are need- 
ed to allow the labelled expression to be dis- 
played in one page. The labelled terms can 
be displayed independently. This technique 

does not decrease the size of an expression. 
However, it affords a simple way of breaking 
up the large problem of analyzing the whole 
expression into a number of smaller problems. 
Success with this technique depends on clever 
decompositions of an expression. Automatic 
routines for introducing labels into expres- 
sions by Baker [43 ] and Martin [ 24 ] cannot 
be considered great successes. At the present 
time, we require an interacting user to break 
the expression up into chunks which he can 
conveniently manage and usefully comprehend. 

3.0 Simplification for the Sake of Manipula- 
tion - What Designers Provide 

3.1.0 The Politics of Simplification 

Simplification is such a central issue in 
algebraic manipulation that when a designer 
has decided how he will represent expressions, 
what changes of representation his system will 
perform automatically, which of these auto- 
matic transformations he will let the user 
override and modify, and what additional 
facilities for simplifying expressions his 
system will have, there are few major decis- 
ions remaining. As a result~ one can classify 
algebraic manipulation systems by their 
approach to simplification. 

Four years ago, when we last surveyed the 
scene [29 ], we classified algebraic manipula- 
tion systems into three categories: conserva- 
tives, liberals, and radicals. In the mean- 
time, there has been a slight change in the 
characteristics of some systems, and the 
characteristics of other systems have stabil- 
ized sufficiently so that we now claim the 
entry of two new parties, namely, the new left 
and the catholics. 

The classification that we make of sys- 
tems is based on a single criterion - the 
degree to which a system insists on making 
a change of representation of an expression 
given by a user. A system which insists on 
radically altering the form of an expression 
in order to get it into its internal form is 
called a radical one in our scheme. A system 
which is so u~lling to make an inappropriate 
transformation that it essentially forces a 
user to program his own simplification rules 
is called a conservative system. A system 
which will make certain transformations 
automatically, but will leave others to the 
discretion of a user is called a liberal 
system. The new le~t is mainly composed of 
variations of old radical systems which give 
certain additional choices to a user. Design- 
ers of catholic systems see the merit of each 
of the other approaches for some contexts. 
They design systems which offer several sub- 
systems using different simplification tech- 
niques, and let the user switch among them as 
he pleases. 

In the remainder of this section we shall 
describe the facilities offered by the differ- 
ent systems. We shall then consider a major 
problem in the manipulation of expressions, 
that is, the tremendous growth in the size of 
intermediate expressions in a computation. 
Finally, we shall consider the design of simp- 
lification algorithms based on canonical forms 
which is the most theoretical topic in alge- 
braic simplification. 

In reading an essay such as this, the 
reader should bear in mind that the author, 
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as an interested party, will tend to bias the 
discussion toward his point of view. Our 
attitude is best described as a catholic one. 
Such a position means that we see the merit 
in the other approaches for some situations. 
However, it is probable that our discussion 
of any view other than our own will be less 
positive than that of a strong adherent to 
that view. 

3.1.1 The Radicals 

Radical systems can handle a single, 
well-defined class of expressions (e.g., poly- 
nomials, rational functions, truncated power 
series, truncated Poisson series). The ex- 
pressions in this class are represented in a 
canonical form. That is, any two equivalent 
expressions in the class are represented in 
a unique way internally. This means that the 
system stands ready to make a major change 
in the representation of an expression written 
by a user in order to get that expression into 
the internal canonical form. The advantage 
of this approach is that the task of the man- 
ipulatory algorithms is well-defined and lends 
itself to efficient implementation. Such 
systems do not appear to have specialized 
simplification machinery since the process of 
generating expressions in canonical form 
which is automatically employed by the man- 
ipulatory algorithms (e.g., addition, multi- 
plication, differentiation) is akin to simp- 
lification. An expression written in its 
canonical form is considered simplified, once 
and for all time. Any attempt to allow the 
user to modify the representation of an ex- 
pression for his problem will likely cause a 
decrease in the efficiency of the manipulatory 
algorithms and is therefore eschewed or highly 
discouraged by radical designers. 

Excellent examples of radical systems are 
polynomial manipulation systems. One canon- 
ical representation of polynomials is the 
recursive representation used in Collins' PM 
and SAC-I systems [ 9, i0 ]. One assumes a 
ranking of the variables such as x>y > z. 
The polynomial is considered as a polynomial 
in the major variable with coefficients which 
are polynomials in the other variables and 
which are themselves represented in this re- 
cursive form. Thus 

3x2y 2 - 2x2yz 3 + 5x2z 2 + 4x - 6y3z + y3 

+ 3y 2 + z 4 + 1 

would be represented as 

(3y 2 - (2z3)y + 5z2)x 2 + (4)x 

+ ((-6z + l)y 3 + 3y 2 + z 4 + I) 

The other major representation of poly- 
nomials, popularized in the ALPAK system of 
Brown [ 3 ], is the expanded representation. 
The first polynomial is written in expanded 
form. 

Situations in which there is wide-spread 
disagreement with the radical approach usually 
concern expressions which oontain powers of 
sums. The radical systems would automatically 
expand such expressions in order to put them 
into the canonical form. Other designers 
would complain that 

(x + i) I000 

should almost never be expanded. 
the integral of 

(x + i) I000 

For example, 

with respect to x is trivially found if the 
integrand is not expanded. However, the 
integral of the expanded expression requires 
more time and space, and the final result 
appears atrocious to the human eye unless the 
pattern is recognized. 

A similar situation occurs in radical 
rational function systems. The canonical rep- 
resentation in such systems is a quotient of 
a numerator written as a polynomial in canon- 
ical form and a denominator which is likewise 
written in canonical form. One must, for the 
sake of canonicalness, combine sums of quoti- 
ents into a single quotient and divide the 
resulting numerator and denominator by their 
greatest common divisor. Suppose we wanted 
the partial fraction decomposition of 

2x + 3 1 3x 

+ x 2 x2 + 2x + 5 3x + 2 + 2x + 6 

The problem is straight-forward (in fact, 
solved) if one leaves the expression as it 
stands. However, a radical system would first 
combine the quotients and proceed to rederive 
the expression above. 

One can claim that radical systems can 
handle only a small subset of the expressions 
that are commonly found in applied mathematic~ 
However, theoreticians have been chipping 
away at this problem so that radical systems 
can now handle a wide variety of expressions 
which include exponentials, trigonometric 
functions, roots of polynomials, etc. The 
idea is to introduce labels for a minimal 
number of nonrational expressions in such a 
way that the labelled expression is in canon- 
ical form. (See section 3.3). For example, 
in order to deal with rational functions of 
trigonometric functions in x one can repres- 
ent sin x and cos x in the complex exponential 
form (e.g., 

ix -ix 
sin X - e - e ). 

2i 

Then substitute y = e ix in the expression to 
obtain a rational expression in y. Now con- 
sider integrating sin x cosl0x with respect 
to x. This becomes, after appropriate trans- 
lation, 

/ i  1 1 1 i0 1 7  TdY 

The original problem is trivial to integrate, 
and produces a concise integral. The trans- 
lated problem is more expensive to solve and 
the solution is not very comprehensible. This 
technique (or the similar technique of sub- 
stituting 

1 
y = tan ~x) 

fits eminently into the radical way of solving 
problems. It has the advantage that it will 
work and give some result when less general, 
more heuristic techniques will fail. 
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Because the expressions and the manipula- 
tory algorithms of radical systems are so well 
defined, there is a great likelihood that 
theoretical research will find ways to improve 
the algorithms. This has, in fact, been the 
case. Most of the major advances in algorithm 
design in the field of algebraic manipulation 
such as in the greatest common divisor algor- 
ithm, polynomial factorization, and integra- 
tion, have assumed expressions represented in 
canonical form. As a result, systems which 
do not transform expressions into a canonical 
form do not boast algorithms as powerful or 
efficient as those of radical systems. 

A radical system, in effect, forces a 
user to tailor the problem to fit the system. 
When such tailoring is clearly out of the 
question, the radical solution is to build a 
new system expressly for the problem or class 
of problems that the user has. This accounts 
for the number of distinctly different radical 
systems which have been written for different 
problem areas. 

3.1.2 The New Left 

The new left arose in response to some of 
the difficulties experienced with radical 
systems such as those caused by the automatic 
expansion of expressions. A new left system 
is usually a rational function system which 
does not necessarily expand products or inte- 
ger powers of sums. A new left system will 
have all the usual machinery of a radical 
system, but the algorithms will be generalized 
to handle unexpanded expressions. The new 
left thus sacrifices canonicalness and some 
of the well-definedness of the manipulatory 
algorithms for the ability to solve some 
problems more efficiently than a radical sys- 
tem would. The user of a new left system is 
given the ability to decide when expansion is 
most appropriate, a facility which is, of 
course, not present i~ a radical system. 

Systems which allow unexpanded terms in 
an expression are Hearn's latest version of 
Reduce [20 ], and the latest version of 
ALTRAN [16 ]. 

A new left system can usually handle a 
wide variety of expressions with greater ease, 
though with less power, than a radical system 
using a canonical form. The idea, once again, 
is to use labels for non-rational expressions. 
Thus 

x 2 
xe + x 

might be rewritten as 

xy + x2z, where y = e x, and z = sin x. 

The expression 

2x e x e + 
x 

e 

would probably be expressed as 

~ + z 2x x 
z , y = e , z = e 

since no attempt probably would be made to 
write the expression in canonical form. 

Some systems permit one to represent non- 
rational expressions in a way similar 

to that indicated above, but force expansions 
to be made once the translation pass is over. 
Such systems should probably be considered to 
be more canonical than new leftish. Examples 
of these systems are Hearn's early versions 
of Reduce [ 18 ], MATHLAB's rational function 
subsystem [ 23 ], and MACSYMA's rational func- 
tion subsystem [ 26 ]. 

3.1.3 The Liberals 

Liberal systems rely on a very general 
represenhation of expressions and use simpli- 
fication transformations which are close in 
spirit to the ones used in paper-and-pencil 
calculations. Liberal simplifiers perform 
the usual simplifications of collecting terms 
in sums and exponents in products, applying 
the rules regarding 0 and i, and removing 
redundant operators (e.g., a+(b+c)-~a + b + c). 
Frequently such systems will also know simp- 
lification rules for certain arguments of non- 
rational functions. Thus sin 2~ might simp- 
lify to 0, 

e21Og y+x 

2 x 
might simplify to y e , and cos(arcsin x) to 

/i-7. 
Liberal systems differ from radical and 
new left systems in several important ways. ' 
i) Expansions are carried out only if 
the user so demands (new left systems, 
of course, offer this feature also). 
2) Sums of quotients are never put over 
a common denominator unless the user 
forces such a transformation, but even 
if they were, the gcd cancellations are 
likely to be missed. 
3) Expressions can usually be represent- 
ed in "unsimplified" form. That is, 
l-sin(x) + 0.cos(x) can be represented in 
such systems. This allows patterns to be 
represented. Most manipulatory algorithms 
will, however, require that all their 
arguments be simplified, thus destroying 
the patterns. 
4) Nonrational terms can be expressed 
with great ease. Terms such as e x, x!, 
and 

n i 
c . x  

i=0 i 

would be explicitly present in the expres- 
sion, and would not be replaced by a label 
whenever they occurred. 
5) The representation is local in the 
sense that a term sin(x) appearing in one 
part of the expression can be modified 
without affecting a sin(x) appearing in 
another part of the expression. 
The major disadvantage a liberal system 

has relative to a radical or new left system 
is its inefficiency. The representation of 
information in a liberal system might require 
two or three times as much space as in a 
radical system, and manipulations can be a 
factor of ten slower (of course such figures 
might increase or decreasedepending on the 
situation). 

The advantage claimed for liberal systems 
is that one can express problems more natura~y 
for them than for radical or new left systems. 
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As was indicated in our discussion of radical 
systems, certain problems can be solved more 
efficiently in the flexible environment provid r 
ed in liberal systems. A liberal designer 
wants to minimize the transition from the 
user's usual techniques. He would pay rela- 
tively great attention to making his displayed 
expressions intelligible to a user. Radical 
designers are usually interested in solving 
large computational problems of a specialized 
nature. New left designers can be said to aim 
for a large proportion of the users of both 
liberal and radical systems. Such competition 
should benefit all users. 

Most liberal systems will reorder terms 
in sums and factors in products based on 
some lexicographic ordering scheme. As was 
mentioned in 2.2, such schemes frequently pro- 
duce rather unnatural orderings. Thus a user 
writing x + y + z + w can expect to get any 
permutation of the terms as a response, depend- 
ing on the nature of the ordering being used. 
Some systems, such as MATHLAB, minimize the 
use of simplification of expressions partly 
in order to avoid an unnatural ordering as 
much as possible. Other liberal systems do 
not use a lexicographic ordering at all, and 
prefer to use the ordering originally present- 
ed by the user. Such an ordering will, of 
course, be modified when the expression is 
manipulated. Martin [ 25] used a unique hash- 
coding scheme with which to tag expressions in 
order to be able to recognize when to collect 
terms or factors. Martin's hash-code was 
powerful enough to recognize many identities. 
However, the cost of hash-coding, and the fact 
that ordered expressions can be manipulated 
more efficiently than unordered ones, probably 
led to some inefficiency in his system. 

Martin's hash code assigned to an alge- 
braic expression an element in the finite 
field formed by the integers modulo some large 
prime. The prime was chosen so that certain 
elements in the field had useful properties. 
For example, one element acted like i since 
its square was -i. Given random values for 
the variables, the hash code assigned numbers 
to expressions so that equivalent expressions 
usually had the same code. Due to the finite- 
ness of the field#non-equivalent expressions 
could be assigned the same code, but the 
probability of this event is extremely low. 

Martin's hash code was utilized in an 
experimental program designed to teach 
freshmen how to integrate symbolically [ 31 ]. 
Another technique due to Oldehoeft [ 33 ], was 
also intended for a CAI environment. Oldehoeft 
examined the problems associated with deter- 
mining the equivalence of expressions by eval- 
uating them at random points. He discusses 
problems due to round-oft overflow, accidental 
coincidence and the effects of dealing with 
non-analytic functions (e.g., absolute value). 

Simplification in liberal systems is per- 
formed by a program usually called the simp- 
lifier. Some of the earliest projects in 
algebraic manipulation involved the design of 
liberal simplifiers. The earliest simplifier 
was written in the LISP Assembly Program by 
Goldberg in 1959 [ 15 ], and was used in Slagle% 
Symbolic Automatic Integrator (SAINT) [ 42 ]. 
Other LiSP-based simplifiers were written by 
Hart (1961) [ 17 ], Russell and Wooldridge 
(1963) [ 47 ], and Korsvold (1965) [ 22 ]. The 
Korsvold simplifier is used in MATHLAB and in 
SCRATCHPAD [ 2 ] • A highly modified version 

of it is also used in MACSYMA. The FORMAC 
system's simplifier is called AUTSIM. The 
philosophy behind AUTSIM is given in [ 45]. 

Liberal systems offer a user the ability 
to affect the representation of expressions 
through two kinds of mechanisms. One way of 
changing the expression is by using commands 
(such as EXPAND in FORMAC or MACSYMA) to per- 
form the transformation. Another way is to 
modify certain switches whose value the simp- 
lifier checks to guide its operation. A 
switch might determine if a function such as 
log should evaluate to a floating point number 
if its argument is a number. Another switch 
might determine if certain indicated opera- 
tions such as differentiation should, in fact, 
be carried out. This last example is not 
strictly an example of simplification; however, 
it does point out the fact that a simplifier 
is close to being the heart of a system. 

3.1.4 The Conservatives 

Designers of conservative systems claim 
that one cannot design simplification rules 
which will be best for all occassions. There- 
fore, conservative systems provide little 
automatic simplification capabilities. RatheD 
they provide machinery whereby a user can 
build his own simplifier and change it when 
necessary. A simplifier written in such a 
way is far slower than a liberal simplifier, 
and this fact presents a distinct disadvantage 
for conservative systems. In fact, one can 
point to only two major conservative systems, 
Fenichel's FAMOUS [ 14 ], and FORMULA ALGOL [34]. 

The importance of conservative systems 
lies in the philosophy they represent, which 
is most clearly given by Fenichel [14 ], and 
in the technique which they champion of using 
rules and advice to describe simplification 
transformations. Their philosophy presents 
an indictment of all the other systems which 
perform many simplification transformations 
automatically, without seriously considering 
the context. Designers of conservative 
systems emphasize that the simplified form of 
an expression is determined by context. They 
will point to situations where even the most 
obvious transformations 0"x ~ 0 and l'x 4 x 
will destroy useful informa%ion as in the 
pattern 

0-sin x + l'cos x + 2-tan x + 3-cot x 
+ 4.sec x + 5.csc x 

Therefore, they claim that one must be able to 
tune the system to the particular nature of 
the problem. The preferred technique of 
"tuning" is based on the theoretical concept 
of Markov algorithms. In a Markov algorithm 
one is given an ordered set of rules to apply 
to an expression. Each rule has the form: 

Pattern 4 Replacement. 

For example, one such rule applied to algebraic 
expressions mightbe 

A'X + B'X ~ (A + B)-X 

To make such a rule correspond to the usual 
notion of "collecting like terms," one would 
want to restrict A and B to be numbers, while 
X could represent any product of factors 
other than numbers. The rule just given does 
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not necessarily yield a simplified result in 
cases such as 2-X + (-i)-X ~ 1-X. One should 
apply a whole set of rules to the replaced 
expression. Only when no rule is applicable 
to a given expression is the algorithm compete. 

Conservative systems offer variations of 
the Markov algorithm technique with which a 
user can generate his own simplification and 
manipulatory algorithms. Such rules are most 
easily written when making local transforma- 
tions of an expression 4. One would not wish 
to write a factoring program as a Markov 
algorithm. Conservative systems have tended 
to model liberal systems rather than radical 
ones, since the latter specialize in global 
transformation of an expression. 

Several designers have added a capability 
for writing Markov algorithms to their systems, 
thus allowing their systems to take on various 
degrees of conservatism. The main use of 
rules in such systems has been to add new 
simplification transformations (e.g., 
cos n~ ~ (-l)n), rather than to override old 
transformations. Thus a user of REDUCE can 
define the simplification rules relating to 
general exponentiation (e.g., 

xY.x z ~ x y+z ), 

although he cannot override x 0 4 i. Korsvold's 
simplifier and MACSYMA's pattern matching sub- 
system [ 13] also allow one to define simplif- 
ication rules. The latter allows one to over- 
ride many of the built-in rules. It also 
provides for the compilation of new rules 
which should yield a relatively efficient 
simplifier. 

3.1.5 The Catholics 

Catholic systems use more than one repres- 
entation for expressions, and have more than 
one approach to simplification. The basic 
idea underlying catholicism is that if one 
technique does not work, another might, and 
the user should be able to switch from one 
representation and its related simplification 
facilities to another with ease. A catholic 
system might use a liberal simplifier for 
most calculations, and have a radical sub- 
system in reserve for performing special cal- 
culations such as combining quotients, solving 
linear equations with rational coefficients, 
and factorization. The MATHLAB system is best 
described in this fashion. The MACSYMA 
system goes further in that it allows the user 
to manipulate entirely with a radical rational 
function subsystem, as well as with a liberal- 
radical combination as just described. In 
addition, MACSYMA, as pointed out in 3.1.4, 
has a rule-defining facility which allows it 
to closely approximate a conservative system. 
The SCRATCHPAD system is a conglomerate made 
up of several LISP-based systems. It has a 
total of four simplifiers. 

Catholic systems emphasize the range of 
problems that can be solved by them. They 
would like to give a user the ease of working 
with a liberal system, the efficiency and 
power of a radical system, and the attention 
to context of a conservative system. The 

4. The author begs for forgiveness of the 
reader for not defining "local". That concept 
tends to be as context dependent as the con- 
cept of simplification. However, see [ 27 ]. 

disadvantage of a catholic organization is iS 
size. A catholic system is necessarily larger 
than any other type of svstem. The variety of 
the services provided by the system may force 
users to learn a larger number of conventions 
than in other systems. A catholic designer 
may also impose a number of system-wide con- 
ventions (e.g., on the data representation) 
which would not be present in a smaller system. 
Such conventions might slow down all of the 
component systems. 

A catholic organization is only one way 
to obtain the advantages of the conservative, 
liberal, and radical approaches to simplifica- 
tion. A system such as REDUCE, can be viewed 
as a compromise system offering many of these 
advantages. REDUCE, however, uses only a 
single representation. Radical systems, as 
we noted earlier, use different representations 
for expressions which occur in different prob- 
lem areas (e.g., polynomials and truncated 
Poisson series). While it is advisable to 
limit the number of distinct representations 
as much as possible, it appears likely that a 
system which tries to handle a large number of 
applications efficiently will require several 
representations. ~ designer of a catholic 
system is willing to accept such a situation. 
Other designers might not be so willing. 

3.2 Intermediate Expression Swell 

Users of numerical analysis programs have 
learned to anticipate problems due to round- 
off errors. Users of symbolic manipulation 
programs have encountered a corresponding 
problem in the tremendous growth of intermed- 
iate expressions in some calculations. Such 
growth has caused many calculations to be 
aborted because the expressions filled the 
available computer memory. Tobey has describ- 
ed this phenomenon with the colorful phrase 
"intermediate expression swell" [43 ]. In 
many cases the final result of a symbolic cal- 
culation is quite small, but in order to get 
that result one finds oneself generating very 
large intermediate expressions. For example, 
the eigenvalue of a matrix with polynomial 
entries can be as simple as a single number. 
However, in order to obtain that number, one 
is forced to factor a polynomial with polynom- 
ials as coefficients. These coefficients might 
be obtained from the determinant of the matrix, 
which can be several pages long. 

Intermediate expressions swell can be 
caused by several different phenomena. In 
some cases, the problem the user is trying to 
solve is inherently explosive, and it is 
likely that no general method will decrease 
the size of the intermediate expressions. We 
claim that such a situation exists when one 
tries to solve systems of simultaneous polynom- 
ial equations by eliminating variables [28 ]. 
The number of solutions to such systems can 
be as high as the product of the degrees of 
each polynomial. If the intermediate equations 
do not factor, as is likely to be the case, 
one is forced to generate a polynomial of very 
high degree which would be very hard to solve 
numerically for all its roots. 

In certain other cases, the particular 
algorithm that the user, in combination with 
the system, has chosen for solving a problem, 
is bad and a radically different approach is 
necessary. For example, the recently develop- 
ed modular algorithm for computing the greatest 

291 



common divisor of two polynomials [ 3 ] is a 
radically different and much more efficient 
algorithm than any of the previous algorithms. 
Major changes in algorithm design usually re- 
quire extensive analysis so that one cannot 
make such modifications on a regular basis. 
Certainly it is not very fruitful to consider 
such modifications as a task of algebraic 
simplification. 

The final set of cases which we shall 
consider is when small changes in the sequence 
of steps cause a nontrivial improvement in the 
utilization of space and time. We have al- 
ready mentioned the idea of labelling subex- 
pressions which would tend to be repeated in 
a calculation. Sometimes one can apply one's 
knowledge of subsequent steps in a calculation 
in order to keep expressions in a form which 
will maximize utilization of space and time. 
At the heart of Collins' first improvement 
to the Euclidean GCD algorithm [ ll] was the 
idea that one could predict how certain terms 
were automatically introduced into the inter- 
mediate expressions, and therefore these terms 
could be cancelled without affecting the final 
result. Before the appearance of this algor- 
ithm, several people, including this author, 
thought that the size of the coefficients in 
the intermediate steps of the algorithm had 
to grow exponentially. Collins showed that 
they need grow only linearly! 

Of course, results such as Collins' would 
not be expected from the average user; how- 
ever, improvements of a similar nature can be 
made in many applications of algebraic manipu- 
lation. For example, consider 

n i 
y = ~ x , 

i=l 

x 
which is an approximation for i-~ " 
you wanted 

Suppose 

n 
E yJ 

j=0 

The straight-forward application of expansion 
in the l~tter sum would yield a polynomial of 
degree n ~. However, since y is only accurate 
to degree n, all powers of x greater than n 
are worthless. What is called for is a 
truncation in the expansion of powers greater 
than n. Systems which allow the user to 
specify truncation (e.g., by declaring x m = 0 
for m > n), can probably save factors of i00 
or I000 in speed for n = 20 [ 12]. 

3.3 Canonical Simplification and Theoretical 
Results - The Radicals Revisited 

In this section we shall discuss most of 
the theoretical results related to algebraic 
simplification. The algorithms we shall des- 
cribe are either canonical or else possess a 
strong property, namely that they can deter- 
mine if an expression is equivalent to zero. 
Almost all of the algorithms are incomplete in 
the sense that they depend on, as yet, unprov- 
ed conjectures about expressions involving 
constants. For example, the conjecture by 
Brown [ 4 ] has, as a special case, the state- 
ment that e + n is not a rational number. 
That statement is almost certainly true, but 
no proof of it exists, and certainly none 
exists of the full conjecture. Even if the 

conjecture were false, the average user will 
probably never obtain incorrect results from 
these algorithms. 

All of the results deal with well-defined 
classes of expressions which are extensions of 
polynomials or rational functions. Some deal 
with exponentials, others with both exponen- 
tials and logarithms, and still others with 
roots of polynomials. We shall also discuss 
a negative result, due to Richardson, which 
says that when one deals with expressions in- 
volving the exponential and absolute value 
functions, then one cannot, in general, tell 
whether such expressions are equivalent to 
zero. 

3.3.1 Simplification Al~orithms for Expres- 
sions with Nested Exponentials 

In [ 4 ] Brown describes a simplification 
algorithm for a class of expressions he calls 
Rational EXponential (REX) expressions. REX 
expressions are obtained recursively from the 
rational numbers, i, and n, and the variables 
Xl,X2, ... ,x n by the rational operations of 
addition, subtraction, multiplication and 
division and by forming exponentials of exist- 
ing REX. Thus the expression 

e ~ 

5x 3e2X 4el+l 
e + + xe 

is a REX expression if we agree to write x for 
x I when only one variable occurs. Brown's 
algorithm makes use of the technique frequent- 
ly mentioned in this paper of substituting 
labels for exponentials in order to reduce an 
REX expression to a rational expression in 
the variables and the labels. The major simp- 
lification work in the algorithm occurs when 
the resulting rational expression is trans- 
formed into a canonical form. We shall see, 
however, that Brown's algorithm is not canon- 
ical (i.e., it does not always reduce equiva- 
lent expressions into the same form). It is 
powerful, though, since if we assume a certain 
conjecture, then we can prove that the algor- 
ithm simplifies any REX expression equivalent 
to 0 into 0. Thus the algorithm can determine 
if any two REX expressions are equivalent. It 
should be noted that since the constants i and 

are included, the REX expressions contain 
the trigonometric and hyperbolic functions in 
exponential form. 

In generating labels for the algorithms 
one must pay great attention not to allow 
algebraically dependent exponentials to be 
assigned to different labels. Two expressions 
are algebraically dependent (over the rational~ 
if there exists a nonzero polynomial with 
rational coefficients in these expressions 
which is equivalent to 0. Thus, 

2x x 
e and e 

are algebraically dependent since 

(eX) 2 - e 2x = 0. 

Likewise, 
2 x+x 2 

e x e x , , and e 

taken together are algebraically dependent. 
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Our labelling scheme must be such that if we 
assign 

x 
y = e , 

2x . 2 
then e is assigned y . 

The algorithm proceeds by replacing inner- 
most exponentials in the expressions by labels, 
if such exponentials are not algebraically 
dependent on previously replaced exponentials. 
The algebraic dependency is determined with 
the help of the conjecture by testing whether 
the argument (of the exponential function) 
being examined is linearly dependent on pre- 
vious arguments. The following is a simple 
example of the procedure, and incidentally 
shows its simplifying power. 

Suppose we are given the REX expression 

x 
e + x 

2x x 2 e + 2xe x + 

Traversing the numerator from left to right, 
we first encounter e x. Let 

ql x 
ql = x and r I = e = e . 

Thus our first label is r i. By substituting 
it into the expression we obtain 

r I + x 

2x 2 
e + 2xr I + x 

By treating e 2x as an independent variable 
in the expression above, we can try for a 
simplification by determining the greatest 
common divisor of both numerator and denomin- 
ator. However, that attempt is unsuccessful 
in reducing the expression and we continue 
generating labels. We next encounter the 
exponential e 2x. Let 

q2 2x 
q2 = 2x, r 2 = e = e 

Now check to see if a linear dependence exists 
between ql and q2 (and also with i~, it turns 
out). Such a relation does exist, since 

ql - 2q2 = 0. 

Therefore, redefine 

2 
r 2 = r 1 

and by substitution obtain 

r I + x 

2 2 
r I + 2xr I + x 

Simplifying the above as a rational 
function reduces it to 

1 

r I + x 

Since no more exponentials are to be 
found, replace the labels by the exponentials. 
The result is 

X 
e + x 

which is indeed simpler than the expression 

we had originally. 
Brown's conjecture is that if 

{ql'q2 ..... qk' i~} 

is linearly independent over the rational 
numbers, 

[ e q l , e q 2  qk 
, ... ,e ,Xl,X2, ... ,Xn,~ } 

is algebraically independent over the ration- 
al numbers. Using the conjecture, Brown can 
easily prove that the only simplified REX 
expression equivalent to 0 is 0 itself. Note 
that since 1 and i~ are linearly independent, 
the conjecture states that e I and 17 are 
algebraically independent, a statement which 
is stronger than the statement "e + ~ is not 
a rational number." 

An important aspect of the algorithm is 
the retracing of steps one must go through 
in some cases. 

Consider 

2x x 
e + e 

X 
e 

ql 2x 
Let ql = 2x, r I = e = e 

Now q2 = x, r 2 = e x, and q2 = 1/2 ql" 

We cannot let r^ = r. I/2 since we want to 
obtaln ratlonal results. So we redefine r I as 

2 
r 2 

and obtain 

2 
r 2 + r 2 

- r + 1 = eX + 1 
r 2 2 

Brown's algorithm is not canonical because 
the algorithm does not make an optimal choice 
for labels. 

Consider 

x+x 2 
e 

X 
e 

2 
2 x+x x 

Let ql = x + x , r I = e ' q2 = x, r 2 = e . 

Note that {ql' qo, i~} is linearly independent 
over the rational numbers. Thus {rl, r2, x,~] 
is a l g e b r a i c a l l y  i n d e p e n d e n t  by the  c o n 3 e c t u r ~ .  
Furthermore, 

r 1 

r 2 

is simplified as a rational expression. Hence, 
the simplified result is 

2 
x+x 

e 
x 

e 

which differs from the equivalent expression 
2 

e x 

which is also simplified. So the algorithm is 
not canonical. 
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Brown's algorithm produces different re- 
sults when the expressions are reordered. In 

1 
1 1 

x+x 2 x x+l 
e + e e 

1 
X 

e 

we can get 
1 

x+x 2 
2 e 

1 
x 

e 

using one order of assigning labels, and 

1 
-x+l 

2e 

using a different order. 
The last two examples are intended to 

show the difficulties that a canonical simpli- 
fier for REX expressions has to surmount. 
There is a simple proof that such a simplifier 
exists, using Brown's conjecture. A little 
reflection will show that we can produce a 
function of a single integer which for in- 
creasing values of its input will yield syn- 
tactically valid REX expressions, and which 
will yield each REX expression for some input. 
The canonical simplifier will, given a REX 
expression, get the function to generate REX 
expressions until one is found which Brown's 
algorithm determines is equivalent to the 
expression to be simplified. The first expres- 
sion found in this manner is considered the 
simplified result. The algorithm is canonical, 
assuming Brown's conjecture, since all equiva- 
lent REX expressions would result in the same 
simplified expression. However, the scheme is 
utterly inefficient. It also suffers from 
the fact that the simplified expressions are 
not describable by some simple pattern. For 
example, the simplified form of 1 might be 
quite different from 1 in this scheme. The 
next algorithm produces expressions which do 
satisfy general patterns. Such simplifiers 
are exceedingly useful since they can help us 
determine answers to global questions about 
an expression (e.g., Is it a constant? Is it 
linear in x?). 

In [ 7 ], Caviness describes a canonical 
simplification algorithm for a class of expres- 
sions related to REX expressions. His expres- 
siQns admit only one real variable, say x, but 
no n, and no division at all. Because divis- 
ion is not allowed, Caviness' expressions are 
exponential polynomials. By assuming a con- 
jecture similar to Brown's, Caviness shows how 
exponential polynomials (other than pure poly- 
nomials) can be transformed into the form 

S 1 S 2 S k 
Pl(X)e + P2(x)e + "'" + Pk(X)e , 

where the S i are distinct exponential polynom- 
ials which are also in this form, and the Pi 
are non-zero, canonically ordered polynomials. 
To get exponential polynomials into this form 
one has to apply the usual algebraic trans- 
formations (including expansion), and collect 
the exponentials via 

a b a+b 
e e 4 e 
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The following exponential polynomial is 
in Caviness' form 

5e 0 + ( - 3 + x 2 ) e  x + ( 5 + x ) e  l + x  + 3e 3eO+xex 

In order to guarantee that putting an 
expression into his form yields a canonical 
simplifier, Caviness must decide how terms are 
to be ordered in sums. This can be done by 
some lexical ordering scheme. Given some 
ordering scheme, Caviness requires that the Si 
in his form be in increasing order. To prove 
canonicalness, Caviness assumes that if 

Ci,C 2, ... ,C k 

are different constant exponential polynomials 
written in his form (e.g., 

3e0+e 5 
e ), 

then 

{eCl C2, ... ,e ,e Ck } 

is linearly independent over the rational 
numbers. The proof makes use of the idea that 
equivalent expressions are equal for each 
value of the variable x. The conjecture im- 
plies, among other things, that the set 

e 

[ e ,  e e ,  e e . . . .  } 

contains only transcendental numbers which, 
like the e + ~ conjecture, is unknown at 
present. 

While Caviness' algorithm is quite power- 
rul, it suffers from the weakness that it does 
not permit division. Brown's algorithm, 
while it does permit division, does not yield 
canonical results. In [30 ] we describe a 
canonical simplifier for first order exponen- 
tial expressions (i.e., no nesting of expon- 
entials) which are REX expressions, but do not 
involve i or ~. The proof of canonicalness of 
our simplification algorithm also depends on 
a conjecture which is very similar to Brown's 
and Caviness' conjectures. 

The novel idea in our algorithm is to 
use a partial fraction decomposition of the 
exponents. The left-hand-side of the equation 
below is in the usual canonical form for 
rational functions and the right-hand-side 
represents a partial fraction expansion of it. 

1 1 
x5+x3+l -i -7 

4 2 - x +--~+ 
+ -- 

x -x x x+l x-i 

We require that the terms of the partial frac- 
tion decomposition be linearly independent 
(over the rational numbers) of each other. 
Such partial fraction decompositions lead to 
yet another canonical representation of ration- 
al functions. The simplification algorithm 
breaks up an exponential of a sum into a pro- 
duct of exponentials which are replaced by 
labels in a manner similar to that of Brown's 
algorithm. 

Thus, 

x2+x 
e 
x 

e 



is decomposed into 

2 
X X 

e e 
X 

e 

With proper relabelling and simplification of 
the resulting rational expression we obtained 
the simplified result 

2 
X 

e 

Note that 

1 -i 1 
2 x 

x + x x + 1 

Therefore 
1 

1 -i 
x2+x e ~ x+l 

e + e 
1 
X 

e 

is transformed into 

-I 1 1 -i 
x+l e x e x x + l  e + e 

1 
X 

e 

Then if 
1 -i 

1 e x -i x+l 
ql = ~' rl= ' q2 = x~' r2= e 

we can determine that q2 is linearly independ- 
ent of ql" In fact, we need not check for a 
full linear dependence in our algorithm, but 
only for the possibility that a new exponent 
is a rational number multiple of some previous 
exponent. This is a consequence of the linear 
independence of our partial fraction decomp- 
osition. Our example, therefore, reduces to 

-i 
r2rl + rlr2 x+l 

rl = 2r 2 = 2e 

Unfortunately, partial fraction decomp- 
osition must be used with great care in higher 
order exponentials; for example, 

1 1 ~x 2 
1 ~ -~e + ~- 

eX+l el~+l e 2/3x- el/3x+ 1 
e = e e 

Therefore, if we let r I e x = , a partial frac- 
tion decomposition of 

1 
rl+l 

is simply 

1 
rl+l , 

thus missing the possibility for a decomposi- 
tion in terms of 

1/3 
r 1 

which might be crucial in some expresion. We 

are confident, however, that a fairly efficient 
exptension of our algorithm to higher order 
exponentials will, in fact, be found. 

3.3.2 Expressions Involving Exponentials and 
Logarithms 

The functions of the calculus include log- 
arithms as well as rational functions and 
exponentials. Therefore, there is much inter- 
est in results involving the logarithm function. 
A result close in spirit to those of 3.3.1 was 
obtained by Richardson [37 ] for a class of 
expressions which differs from the REX expres- 
sions in that it involves no i, only a single 
variable x, but allows the functions sine, 
cosine and loglxl. The three functions in 
addition to the exponential function of REX 
expressions can be nested to any depth. 
Richardson was interested in the problem of 
determining whether an expression was equiva- 
lent to 0 on some interval of the real line. 

His algorithm for determining the equiva- 
lence involves a reduction process in which 
one asks whether progressively less complex 
expressions are equivalent to 0. The algorithm 
is incomplete in that it relies, in some cases, 
on knowing whether a reduced expression which 
involves only constants is equal to 0. This 
requirement is, of course, similar to the need 
for conjectures in the algorithms of 3.3.1. 
Richardson's algorithm is, furthermore, only 
applicable when the expression being examined 
is totally defined everywhere in the interval. 
In essence, this requirement is that no sub- 
expression could become unbounded in value at 
some finite point on the interval being 
examined. 

Richardson's measure of the complexity of 
an expression is very lexicographic in nature 
and relies on very little knowledge of the 
algebraic properties of the functions involved. 
For example, 

X 
e 

e 

is considered more complex than e x because of 
the greater depth of nesting of the exponen- 
tial function, and 

(e x) 2 

is more comples than e x because it is of high- 
er degree. The complexity measure does not 
presume that 

2x e and (eX) 2 

are algebraically related. In fact, it does 
not matter very much which expression is con- 
sidered more complex as long as the ranking is 
used consistently. 

The reduction procedure of the algorithm 
assumes that the equivalence problem for 
rational functions is trivial. A more complex 
expression will force the algorithm to gener- 
ate subproblems which will either end up as 
rational functions or constant problems. 

Let us suppose that we wish to determine 
whether an expression E is equivalent to 0. 
Let y be the most complex exponential or 
logarithmic term in E. Let us further suppose 
that y is a logarithmic term. By multiplying 
out denominators, expanding products of sums, 
and collecting like terms, we can get a poly- 
nomial expression E* in y of the form 
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an(x)yn + an_l(x)y n-I + ... + a0(x) 

which is equivalent to 0 if the original ex- 
pression E is equivalent to 0. Since an(X) 
does not contain y, it is less complex than 
E or E* and we can apply the algorithm recur- 
sively in order to determine if it is equiva- 
lent to 0. If a n is equivalent to 0 then 
since the expression E1 

an_l(x)y n-I + ... + a0(x) 

is of lower degree in y than E*, we can test 
to check if it is equivalent to 0. If it is, 
E* and therefore E are also equivalent to 0. 
If it is not, E* and E are not equivalent to 0. 

If a n is not equivalent to 0, divide E* 
by it resulting in the expression E2 

n an-i (x) n-i a0(x) 
y + y + ... + - -  

a (x) a (x) 
n n 

Now differentiate, resulting in an expression, 
say E3, of the form 

ana 0 ' - a0a n' n-ly, 
ny + "'" + 2 

a 
n 

E3 is of lower degree in y than E* since the 
derivative of a logarithmic term is of lower 
complexity than the term itself. (Note that 
this is essentially the only fact we need to 
know about logarithms except for cases where 
the constant problem arises.) If E3 is not 
equivalent to 0, then E2 and therefore E* and 
E are not equivalent to 0. If E3 is equivalent 
to 0, then E2 is equivalent to a constant. To 
complete the algorithm we must determine if 
the constant is 0. This is the way in which 
the constant problem arises in Richardson's 
algorithm. One could attempt to evaluate the 
expression at a point as Oldehoeft does [ 33 ]. 
The situation here is simpler than in Olde- 
hoeft's cases since if the function is equiva- 
lent to a constant we need not worry about 
accidental values of 0 arising in the evalu- 
ation. 

If the most complex term y is an expon- 
ential, then Richardson's algorithm involves 
division by a 0. Differentiation will then 
yield a low order term equal to 0. Since the 
derivative of y~ is of degree k in y, the 
rest of the derivative can be divided by y to 
yield an expression similar to E3 which is of 
lower degree than E*. 

At the heart of Richardson's reduction 
procedure is the idea that through differen- 
tiation we can obtain expressions which can 
be transformed in such a way as to yield 
simpler problems whose solution will determine 
the answer to the original equivalence problem. 
It turns out that this idea can be used to 
test expressions which involve functions other 
than exponentials and logarithms. As we point- 
ed out earlier, the logarithmic case of the 
algorithm hinges on the fact that the deriva- 
tive of a logarithmic term is of'lower rank in 
complexity than the term itself. Thus func- 
tions which are defined by integrals such as 
the error function 

2 
2 -x 

erf' (x) = 7~ e 

and the exponential integral 
X 

E ' (X) _ e 
l x 

can be included in the expressions to be tested 
for equivalence to 0. The key property of the 
exponential function used in the algorithm is 
that the derivative of an exponential of de- 
gree k is also of degree k in that exponential. 
Consider rational roots of polynomials which 
have the form 

P (x) n/m, 
where P is a polynomial and n and m are inte- 
gers. (E.g., 

/x, (x2+2) 2/3) . 

In general, 

[P(x)n/m] , = ~ p(x)n/m - 1 p, (x) 
m 

Since 

n P'(x) [p(x)n/m] 
= ~ 

n P' 
m P 

is a rational function and of lowest complexity 
in Richardson's ranking, we can say that 
rational roots of polynomials will behave like 
exponentials in Richardson's algorithms. 

Johnson [21 ], using a somewhat different 
approach at deciding equivalence, is also able 
to handle a large class of expressions like 
the one we have just indicated. 

It can further be shown [32 ] that 
Richardson's algorithm can be extended to 
accept any function defined by a differential 
equation of the form y' = P(x,y), where P is 
a polynomial in y. When P is linear in y 
the extension is straightforward. P's which 
are quadratic in y are of great importance 
in applied mathematics. Unfortunately, when 
a function is defined by a quadratic P, then 
its derivative is more complex than itself. 
Thus if we are testing E(x,y(x)) for equiva- 
lence to 0, we shall usually find that 
E'(x,y(x)) has a higher degree in y than E 
does. If E E 0, then E' ~ 0, and therefore, 
the greatest common divisor of E and E' is also 
equivalent to 0. Conversely, if the gcd of 
E and E' is equivalent to 0, so is E. Hence, 
we may use the result of the equivalence test 
for the gcd. The gcd may, however, not be of 
lower degree in y than E itself is. In such 
cases it must possess the same degree in y as 
E does. Therefore, we may properly speak of 
E dividing E' Let us say that 

m ! 
E - Q(x,y) . 

Therefore, integrating both sides 

log E = ~Q(x,y) dx + C 1 

E = C2efQ(x'Y) dx where Ci, C 2 are constants. 

Exponentials usually cannot have a zero 
value. In such cases E can only have a zero 
value if C 2 is identically zero. This deter- 
mination is another constant problem of a 
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special nature in that we are dealing with a 
function that is either always 0 or never 0. 
An exponential can have a zero value when the 
argument goes to -~. Such cases would be 
disallowed by Richardson's requirement that 
expressions be totally defined. 

The canonical simplification algorithms 
represent an extreme in the use of explicit 
knowledge of the simplification rules of a 
class of expressions. Equivalence matching 
algorithms need not explicitly know these 
rules. For example, Richardson's alqorithm 
does not explicitly know that loglab] = log lal 
+ log Ibl. As a result, equivalence matching 
algorithms are usually poor simplification 
algorithms. It is clear that in many situa- 
tions explicit knowledge of general simplifi- 
cation rules is valuable in reducing the size 
of an expression. In fact, we would also like 
to know that a given set of simplification 
rules for a class of expressions is complete 
in the sense that no other general rules can 
be found which cannot be derived from the set 
by rational operations. Risch tackled these 
questions for a class of expressions similar 
to Richardson's [40 ]. His results, in effect, 
state that no general rules exist cther than 
the familiar ones (e.g., 

a+b em/n log a am/n ca= e = eae b, = , log a, 

log ab = log a + log b + 2k~i, 

where k, m, and n are integers). The method 
of attack he uses is to ask what relationship 
must exist between an exponential or a logar- 
ithmic term and a set of other exponentials 
and logarithmics for the former to be 
algebraically dependent on the latter. The 
proof relies on much of the machinery used in 
Risch's previous work on integration. As 
before, Risch's results require the solution 
of constant problems. 

Thus we may speak of three varieties of 
theoretical algorithms. Zero-equivalence 
algorithms will guarantee that expressions 
equivalent to 0 will be identified. Re@ular 
algorithms guarantee that the exponential and 
logarithmic terms in an expression are alge- 
braically independent of each other. Regular 
algorithms are zero-equivalence algorithms. 
Canonical algorithms which reduce equivalent 
expressions to a single form are always zero- 
equivalence and are usually regular. Caviness' 
algorithm is an exception to this rule in that 
it is not regular. 

3.3.3 Roots of Polynomials 

In [ 6 ], Caviness discusses a class of 
expressions which is obtained from the ration- 
al numbers, the variable x, the rational opera- 
tions and the operation of exponentiating to 
a rational number. The exponentiation in this 
class may not be nested. The following 
expressions are in this class; 

1 

x I/2 + x I/3 

(4 - x) 5/3 

(x 2 + 2)2/3 

The expression 

(x + 31/2 ) 1/3 

is not in this class because it involves 
nested exponentiation by non-integers. Caviness 
shows that there exists a zero-equivalence 
simplification algorithm for this class of 
expressions. The algorithm is not canonical. 
Unfortunately, it is also very time-consuming 
since it can easily force one to factor poly- 
nomials (over the integers) having a high 
degree, and factorization is still a very 
expensive operation. 

Recently, Fateman [26 ] showed that factor- 
ization is usually not necessary if we modify 
the meaning of a radical expression. What 
Caviness means by a radical expression such 
as /x is a symbol which represents the general 
root of a polynomial having polynomial coef- 
ficients (i.e., y~ - x). That is, /x can be 
either one of the roots normally written as 
+/x and -/x. Fateman's algorithm assumes that 
the symbol /x represents exactly one of the 
roots, and that -/x represents the other. 

Fateman's algorithm, except for even roots 
of unity, has the same strong property as 
Caviness', namely the zero-equivalence property. 
However, all he needs to test is whether the 
integers and polynomials which occur inside 
the radicals are relatively prime to each 
other. He would decompose 

x -l 
into  47=r , ~ r  

if ~ or 4~ occurred elsewhere in the 
expression. However, 

would be left unchanged since no other simp- 
lified radical expression could combine with 
it under the rational operations. In both 
Caviness' and Fateman's algorithms the proof 
that the simplification algorithm has zero- 
equivalence property is obtained without resort- 
ing to additional conjectures. Fateman's 
algorithm will simplify 

to 

and 
The 
ing radicals from denominators in quotients 
through a generalization of the process of 
"rationalizing the denominator." Thus 

incidentally, it will convert j~ to 7/2. 
algorithm can be made canonical by remov- 

x + /2 

could be converted to 

x-/2 
2 

x - 2 

in order to achieve a canonical form. 
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3.3.4 Unsolvability Results 

The earliest of the theoretical results 
which we discuss in this section, and probably 
the best known one in the field of algebraic 
manipulation, is a negative result due to 
Richardson [35 ]. In 1965 Richardson, Risch 
and Moses were all working on integration. 
Richardson and Moses were pursuing theorems 
stating that integration was unsolvable (i.e., 
that no algorithm existed for determining 
whether the integral did or did not exist in 
closed form), and Risch was examining algorithms 
for solving the problem [38,39]. Richardson 
succeeded in obtaining an unsolvability result 
for integration by showing that there exists 
a class E of expressions for which no algorithm 
exists for deciding whether each expression in 
E was equivalent to 0. If we consider the 
class of integrals 

2 
Re x dx, 

where R is some specially chosen member of E, 
then if R is equivalent to 0, the integral 
exists in closed form (in fact, it is a con- 
stant). If R is not equivalent to 0, then the 
integral cannot be expressed in closed form 
due to the well-known properties of 

2 
x 

e 

and those of the chosen members of E. As it 
turns out, Richardson's major result was the 
demonstration of the existence of the class E, 
rather than the application of this result 
to integration. 

The starting point for most unsolvability 
results in algebraic manipulation is Hilbert's 
Tenth Problem. This problem, which is also 
known as the Diophantine Problem, asks whether 
there exists an algorithm for telling whether 
polynomials in several variables with integer 
coefficients have solutions which are integers. 
This problem has been recently shown to be 
recursively unsolvable. In 1965, it was known 
that a version of the problem, called the 
Exponential Diophantine Problem, was unsolvable. 
Today, one can use the unsolvability of 
Hilbert's Tenth Problem to claim that there 
exists a polynomial P(Y,Xl,X2, ... ,x n) 
such that the question of whether P = 0 had 
integer solutions for Xl,X 2, ... ,x n for 
varying integral values of y could not be 
solved by an algorithm. One can generalize 
this problem to determine whether P had real 
roots by asking whether 

n 2 
sin nx i + p2(y,xl,x2, ... ,x n) 

i=l 
= 0 

since sinTrxi= 0 forces each x i to be an integer. 

By manipulating the equation above, Richardson 
was able to show that there exists a function 
G(y,x) such that as y varies over the integers 
one can not tell whether there exist real 
values of x such that G(y,x) < 0. 

At this point we have an undecidability 
result for the class of expressions formed by 
the rational numbers and n, the variable x, 
the operations of addition and multiplication, 
and the sine function (which can be nested). 

By adding the absolute value function to this 
class Richardson was able to modify G to a 
function F(y,x) such that F(y,x) m 0 could not 
be determined by an algorithm as y varied over 
the integers. This is Richardson's major 
unsolvability result. 

Several corollaries of Richardson's 
theorem were derived by Fenichel [14 ] to show 
that, among other things, one could not deter- 
mine the limit of every expression which 
possessed a limit. 

Risch [ 38 ] used the fact that 

log(e x) = x + 2kni , 

for some integer k, to generate an unsolvable 
integration problem by using Hilbert's Tenth 
Problem and Richardson's device of integrating 
a multiple of 

2 
x 

e 

In [29 ], we used the fact that the differ- 
ential equation 

y, + y2 = 1 + ( ~ 2  I) , p a constant, 
x 

has a solution which is a rational function in 
x if and only if p is an integer. Thus we 
were able to generate systems of ordinary 
differential equations for which one cannot 
decide whether they possess rational functions 
as solutions. 

4.0 Prospects for the Future 

Although the field of algebraic manipula- 
tion can already claim a number of important 
advances in the design of algorithms, and a 
significant number of important applications, 
one cannot yet say that the field has stabil- 
ized. Designers have made substantial improve- 
ments to their systems just in the last year. 
Much of what we discussed in this paper, the 
conventional lexicographic ordering of expres- 
sions, the variety of substitution techniques, 
and canonical simplifiers, is only available 
in systems in an experimental nature. There- 
fore, any predictions about the future state 
of algebraic simplification are made on 
shaky grounds. Nonetheless, we shall attempt 
some predictions, albeit fairly consegvative 
ones. 

Practitioners in the field of algebraic 
manipulation, just as in much of computer 
science, can be divided into three major cate- 
gories: theoreticians, systems designers, and 
users. Theoreticians tend to design radical 
and new left systems since the algorithms in 
such systems are most easily defined. Users 
with substantial problems to solve also tend 
to design radical and new left systems since 
the needs of such users are very special and 
frequently do not require the flexibility 
offered by liberal, conservative, or catholic 
systems. Systems designers expect a great 
variety of users and therefore tend to build 
systems with liberal or conservative components. 
We have already witnessed the demise of purely 
conservative systems. In the next few years 
we may witness the demise of purely liberal 
systems. The reason for the diminished import- 
ance of such systems is the efficiency of the 
algorithms provided in radical systems or 
subsystems. It would not be surprising if 
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many radical systems mature into new left sys- 9) Collins, G., "PM, A System for Polynomial 
tems when the disadvantages of canonical forms Manipulation," Comm. ACM, vol.9, no.8, 
become unbearable. This would leave the new Aug. 1966, pp.578-589. 
left systems with a single representation 
which is a compromise between the radical and 10) Collins, G., "The SAC-I System: An Intro- 
liberal representations, and the catholic duction and Survey," these proceedings. 
systems with their multiple representations. 
We believe that the theoreticians and the major ii) Collins, G., "Subresultants and Reduced 
users will tend to gravitate to the new left Polynomial Remainder Sequences, " 
systems and the systems designers to the 
catholic ones. 

We expect to see theoretical results 
about simplification algorithms encompass in- 
creasingly larger classes of expressions. 
Risch's results about relationships of expon- 
entials and logs of different arguments will 
probably be extended to a number of other 
functions. 

The generality of the extensions which 
can be made to Richardson's zero-equivalence 
algorithm lead one to expect that in the next 
few years it will be possible for a user to 
define a function as a solution to a differen- 
tial equation and then employ that function 
immediately in a calculation. 

One thing that we do not expect is that 
the difficulties of using algebraic manipula- 
tion systems will disappear completely. Users 
will continue to complain, and designers will, 
hopefully, continue to improve their creations. 
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A B M N R S H I 

C D O P T U J K 

M N A B H I R S 

O P C D J K T U 

R S H I A B M N 

T U J K C D O P 

H I R S M NAB 

J K T U O P C D 

IABI IMN I m, the 
Let us call the array CD a, the array |OP| 

IRSI I HII h. Let us call the array TU r, and the array JK array 
ff I W ~ 

l am I w, and the array I rhl ma hr x. Then the entire array is 

lwx I While the consisted of 64 simply xw original structure 

symbols, it requires only 35 to write down its description: 

WX 
S = 

XW 

am rh 
w = ma x = h r  

AB MN RS HI 
a = CD m = OP r = TU h = JK 

FIGURE i. 
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PQ = M**2 - PROPI/2, 

PR = QI~ + RT - RS, 

PS = QS + RT - PROPI/2, 

l°T = QS - PR + RT, 

QS = M**2 - PROP3/2, 

QT = PS - QR - RT, 

PROP2 = PROPi - 2*RT + 2*RS 

(b.) Relations Between Variables 

( ( 4 , ~ , 4  - ( P R O P I + P R O P S ) * * 2 ) * ( -  2*IY~**g*QR - 4*QR*RT 

+ 2 * R T * * 2  - RT*(PROPI+PROP3)+(PR*PROPI+RS*PROP3) 

+ 2 * ~ * 2 * P R , R S / R T )  

+ 4*IYI~*2*QR*(PR + R S ) * ( 2 . ~ . 2  + RT + (PROPI+PROPS)) 

+ 2 * ~ * 2 * P R * R S * ( 2 * Q R  - 6*RT - 5* (PROPI+PROP3))  

+ 2*(QR - R T ) * ( ( P R * P R O P I + R S , P R O P $ ) * ( M * * 2  - (PROPI+PROP3)) 

+ 2*QR*RT* (PROP I +PROP3 ) )  

+ 2 * ( Q R * * 2 +  R T * * 2 ) * ( 2 * Q R * R T  - (PR*PROPI+RS*PROP3) 

+ RT*(PROPI+PROP~)) + 6 * I ~ * 2 * R T * * 2 * ( P R O P I + P R O P S ) )  

/ (4 *PROPI*PROP3*RT*PR*RS)  

(e.)  F i n a l  R e s u l t  P r o d u c e d  by  Man and  M a c h i n e  

F i g u r e  2 
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( IY), • 4 * 

(2  * PROPI  * PR * RS 
- 4 * P R * * 2  * RT 

2 * PR * RS * PROPg 
4 * PR * RS • QT 

i 0  * PR * R T * * 2  
4 * PR * RT * PT 

4 * PR * RT * QR 
RS * RT * QR - 

- g • PROPI  • PR • RT - 4 * P R * * 2  • RS 
- 4 • PR • R S * * 2  + 14  • PR • RS • RT + 

- 4 • PR • RS * PS - 4 * PR * RS * PT  - 
- 4 * PR * RS * GIS - 4 * PR * R$  * Q.R. - 

- 2 * PR * RT * PROP2 + 4 * PR * RT * PS + 
+ 4 • PR • RT • QT + 4 • PR • RT * QS - 

- 6 * R S * * 2  * RT - 4 * RS * R T * * 2  - 6 , 
6 * R T * * 5  + 6 * R T * * 2  * QR)  

+ Y~*2 * 

( - PROPI  * PR * RS • RT + PROPI  * PR * R T * * 2  + PROPI  * P 
R * RT * PROP2 + PROPI  * R S * * 2  * RT + 2 * PROPI  * RS * R T * * 2  

- 2 * PROP1 * RS * RT * PT + PROPI  * R T * * $  + 2 * PROPI  * R l  
• * 2  ~: PS + 6 * PR~c.~ * RT * QT - 2 * P R * * 2  * RT * QS + 4 * 

P R * * 2  * RT * QR - 4 • PR * RS • RT * PROP2 + 4 * PR * RS • h~ 
PS + 8 * PR * RS ~ RT • PT + 4 * PR * RS * RT • QT + 2 

, PR * RS * RT * QS - 4 • PR * RS * RT * QR + 8 * PR * RS • PS 
• QT + B * PR * RS * PS • QR - 4 * PR * R T * * 5  + 2 * PR * 

R T * * g  * PROP2 + 4 * PR * R T * * 2  * PT + 6 * PR * R T * * 2  * QT - 
4 * PR * R T * * 2  * QS + PR * RT * P R O P g * * 2  - 2 * PR * RT * PEO 

P 2  * PS - 2 * PR * RT * PROP2 * PT - 2 * PR * RT * PROP2 * QT 
- 2 * PR * RT * PROP2 * QS - 8 * PR • RT • PS * QT - 2 * P 

R * RT * PS • QR - g * PR * RT * PT • QR + 2 * RS*~*2  * RT • QI 
+ 4 * R S * * 2  * RT * QR - 4 * RS * R T * * 5  - 2 * RS * R T * * 2  * 

PROPg + 4 • RS * R T * * 2  * PS - 4 * RS * R T * * 2  * PT + 6 * R 
S * R T * * 2  * QT - 2 * RS * R T * * g  * QS - g * RS * RT * PROPg * P 

T + RS * RT * PROP2 * QR + 4 * RS * RT * PS * PT + 2 * RS 
• RT * PS * QR + 4 * RS * RT * P T * * 2  + 4 * RS * RT * PT * QT 

+ 4 * RS * RT * PT * QS + 4 * R T * * 3  * PS - 2 * R T * * 3  * QS 
+ 4 * R T * * 3  • QR + 2 * R T * * 2  * PROPg * PS - R T * * 2  * PROP2 * 
QR .-  4 * R T * * 2  * P S * * 2  - 4 * R T * * 2  • PS • PT - 4 * R T * * 2  

• PS • QT - 4 • R T * * 2  • PS • QS + 4 • R T * * 2  • PS • QR + 2 
• R T * * 2  • PT • QR)  

- 2 * PROPI  * RS * R T * * 2  * PS - 2 * P R * * 2  * RT * PROP2 * QT 
+ 8 * PR * RS • RT**2 • QT + 2 * PR • RS • RT * PROP2 • QT - 

B * PR * RS • RT • PS • QT - 8 * PR * RS • RT • PS • QR - 4 
• PR • RS • RT • PT • QT - ,4 • PR * RT**2 • PS * QT + 4 * PR 

• RT**2 • PS • QS + ,,4 • PR * RT * PROP2 • PS • QT + 2 * PR * R 
T * PROP2 * PS • QR + 4 • RS**2 • RT • PT • QT - ,,4 • RS • RT** 
2 * PS • QT - 8 * RS * RT • PS • PT • QT - 4 • RS • RT • PS * 
P T * QR + 8 * R T * * 2  * P S * * 2  • Q T )  / 

4 * PROPI • PR * RS * R T * * 2  * P R O P 3 )  

(a.) E x p r e s s i o n  I n i t i a l l y  P r o d u c e d  by  C o m p u t e r  

F i g u r e  2, E x a m p l e  of R e d u c i n g  the  S ize  of Output  E x p r e s s i o n s  by  S u b s t i t u t i o n  
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