
ALGEBRAIC SIMPLIFICATION
A GUIDE FOR THE PERPLEXED

by
Joel Moses

Project MAC, MIT

Abstract

Algebraic simplification is examined first
from the point of view of a user needing to
comprehend a large expression, and second from
the point of view of a designer who wants to
construct a useful and efficient system.
First we describe various techniques akin to
substitution. These techniques can be used to
decrease the size of an expression and make it
more intelligible to a user. Then we deline-
ate the spectrum of approaches to the design
of automatic simplification capabilities in an
algebraic manipulation system. Systems are
divided into five types. Each type provides
different facilities for the manipulation and
simplification of expressions. Finally we
discuss some of the theoretical results relat~
ed to algebraic simplification. We describe
several positive results about the existence
of powerful simplification algorithms and the
number-theoretic conjectures on which they
rely. Results about the non-existence of
algorithms for certain classes of expressions
are included.

Table of Contents

1.0 Introduction
2.0 Simplification for the Sake of

Comprehension - The Needs of Users
2.1 Conventional Lexicographic Ordering
of Expressions
2.2 Substitution as an Aid to Comprehen-
sion

3.0 Simplification for the Sake of Effic-
ient Manipulation - What Designers Provide
3.1 The Politics of Simplification

3.1.1 The Radicals
3.1.2 The New Left
3.1.3 The Liberals
3.1.4 The Conservatives
3.1.5 The Catholics

3.2 Intermediate Expression Swell
3.3 Canonical Simplifiers and Theoretical
Results - The Radicals Revisited

3.3.1 Simplification Algorithms for
Expressions with Nested Exponentials
3.3.2 Expressions involving Exponen-
tials and Logarithms
3.3.3 Roots of Polynomials
3.3.4 Unsolvability Results

4.0 Prospects for the Future
References
Figures

1.0 Introduction

Simplification is the most pervasive pro-
cess in algebraic manipulation. It is also
the most controversial. Much of the contro-
versy is due to the difference between the
desires of a user and those of a system design-
er. The user wants expressions which he can
comprehend, a requirement which usually means
that the expressions presented to the user
should be small. The designer wants expres-
sions which can be manipulated with great ease

and efficiency, a requirement which translates
to a desire for a uniform representation of
expressions utilizing a minimum number of
functions. Users tolerate, and in fact prefer,
a certain amount of redundancy in an answer.
For example, they usually desire to see expres-
sions containing the twelve trigonometric and
hyperbolic functions. Designers would prefer
giving a user only the exponentials, sines and
cosines, or just exponentials with both real
and complex arguments, or nothing but rational
fuDctions.

There is one property of simplification
about which both users and designers can agre~
That is, that simplification changes only the
form or representation of an expression, but
not its value. Changes of representation
occur in many problem solving domains. In
fact, in the field of Artificial Intelligence
one speaks of the Problem of Representation
which can be stated roughly as "how does one
transform the statement of the problem into a
form which is more readily solved." Thus an
ideal, but not very helpful, way to describe
simplification is that it is the process which
transforms expressions into a form with which
the remaining steps of the problem can be
taken most efficiently.

The Problem of Representation for alge-
braic expressions is especially acute because
there are so many equivalent ways to represent
an expression. Frequently one of these
equivalent forms is much more useful than an-
other, and just as frequently, it is a non-
trivial problem to recognize the equivalence.
For example, it is rare that we do not want to
recognize that an expression is equivalent to
0. However, many of us have difficulty in
recognizing the following identities.

log(e 2x + 2e x + i) - 2 log(e x + i) = 0

or

(21/3 + 41/3) 3 - 6(21/3 + 41/3) - 6 = 0

o r

log tan(~ + 7) - sinh -I tan x = 0

Consider how much more difficult the problems
become when we deal with expressions which are
several pages long. Yet expressions of such
size are quite common in algebraic manipula-
tion! An additional difficulty is that the
usual manipulatory algorithms can easily
magnify a bad choice of representation. For
example, the derivative of a product of n
factors can be a sum of n terms each of n or
more factors. Thus a bad representation of
the product or one of its factors is propaga-
ted and magnified n-fold.

Another issue which arises in discussions
of simplification is related to the local or
global nature of the problem. If expression
A is deemed simpler than its equivalent
expression B in one context, then is A to be
considered simpler than B in every context?

Z82

A perfectly strict answer is no. For example, concentrate in section 2 on the users' need
for comprehension of expressions, and then in

x 7 section 3 on the designers' facilities for
12 manipulating expressions.

x + 1 In discussing simplification for the
sake of comprehension, we shall describe the

is a more compact representation of the ration- technique of substituting labels for subexpres-
al function it represents than sions in simplifying large expressions. We

i/4(4x3)x 4

(x4) 3 + 1

The former is usually easier to manipulate and
comprehend. However, when integrating, the
latter expression indicates a p@ttern which
suggests the substitution y = x ~ which yields

f dy ,
y3+l

a much simpler integration problem than that
which is posed by the first expression.
Designers would prefer a system in which the
simplification steps are the same in every
context. Users clearly would prefer a system
which could take contextual information into
account in deriving a simplified expression.
Designers can take comfort in the fact that
while the simplified form of an expression is

shall also describe principles of conventional
lexicographic ordering of expressions. A
system can hinder the comprehension of a user
by displaying expressions in unconventional
order. Unfortunately, no current system pays
sufficient heed to this point.

In section 3 we describe five different
approaches to the design of simplification
facilities in algebraic manipulation systems.
We describe the facilities which are usually
offered, and indicate the advantages and
disadvantages in them. The section ends with
a discussion of very powerful algorithms based
on formalizations of the concepts of simplifi-
cation.

2.0 Simplification for the Sake of Compreq
hension - The Needs of Users

One of the most common complaints of
users of algebraic manipulation systems is that

not the same in every context, it is so in the expressions obtained as results of a calcu-
many contexts. Nonetheless, the task of deriv- lation are incomprehensible and therefore
ing a compromise between the wishes of users essentially useless. In order to understand
and the requirements of an efficient system is
likely to keep designers talking to themselves
and to each other for quite some time.

A related aspect of simplification is the
extent to which the concept can be formalized.
The point that we made above is that the simp-
lest form of an expression depends on one's
goals or, in other words, on the context. One
would be hard put to formalize the goals of
all potential users. However, one can obtain
theoretical results for simplification algo-
rithms which have usef,11 properties. One such
property is that the algorithm simplifies to
zero any expression equivalent to 0. A stron-
ger property is that the simplifier reduces
all equivalent expressions to a single (canon-
ical) expression.

Historically, simplification was required
in algebraic manipulation systems because the

the importance of such a complaint we have to
differentiate between two major classes of
users. Some users are only interested in the
value of a calculation. For example, those
who use symbolic differentiation as a step in
a numerical calculation do not care very much
about the form of the symbolic derivative.!
For such users the problem of simplification
reduces to keeping the intermediate expressions
in a calculation in such a form as to optimize
the use of space and time in the calculation.
We do not wish to underestimate the difficulties
in the simplification problem for such users.
However, in this section we will be mainly
concerned with the needs of users who do care
about the form of expressions which result from
a symbolic calculation.

The latter class of users include those
who need to make "physical sense" of an expres-

manipulatory algorithms produced sloppy results, sion.
For example, the unsimplified result of
differentiating

2
X

ax + xe

with respect to x is an expression such as
2 2

0.x + a.l + l.e x + x-e x -2-x

Simplifying the derivative above would yield
an expression like

a + e x2 + 2x 2 e x2

With the ever growing use of algebraic manipu~
lation, it has become increasingly apparent
that simplification plays a much more complex

Perhaps such a user is studying a pro-
cess and wants to learn about some property of
the process by symbolically manipulating a
model of it. For example, he might be inter-
ested in the manner in which the value of an
expression varies as one of its variables
increases in value. He could, of course, plot
the value of the expression for several values
of the variables, but this method may not be
very useful if-there are many variables in the
expression. Other users might need to examine
an expression in order to know what the next
manipulatory step should be. A simple instance
of such a situation occurs when the next step
in the calculation depends on whether the
expression is linear or quadratic in a given
variable.

It should be clear that a user is likely
to comprehend and to answer questions about a

role in the way one solves problems with an small expression a lot better than about an
algebraic manipulating system. In the remaind- equivalent, but larger one. Thus, a goal of
er of this paper our discussion of simplifica- I. Such users should care a little about the
tion will range from mundane topics (such as form of the derivative because some forms of
whether one writes x+a or a+x) to sublime ones expressions yield a smaller round-off error in
(whether e+~ is a rational number). We shall a numerical calculation than other forms.

283

simplification should be to produce small
expressions. In fact, most of the usual
simplification transformations such as collect-
ing terms in sums (x + 2x ~ 3x), collecting
exponents in products

1 (xy 2 ~ 4 y2) ,

removing 0 terms in sums (x + 0 4 x), and
factors of 1 in products (l-X ~ x), produce
smaller expressions. In fact, transformations
which produce larger expressions (e.g., expand-
ing integral powers of sums

(x + 1) 3 4 x 3 + 3x 2 + 3x + i)

are controversial. Many systems will employ
such transformations only if the user specif-
ically demands them.

Of course the prevalence in algebraic
manipulation systems of simplification trans-
formations which produce smaller expressions
is due mostly to the fact that small expres-
sions are usually easier to manipulate than
larger ones. This is an instance where the
needs of simplification for the sake of improv-
ed comprehension and simplification for the
sake of efficient manipulation coincide.
However, the requirements of simplification
for the sake of comprehension are more subtle
than we just indicated. It is not so much the
small size of the expression which aids in
comprehension, as the small size of a descrip-
eion of the expression. For example:

1 + 2x + 3x 2 + 4x 3 + ... + llx I0

is a lot less complex for many purposes than

1 + 3x + 4x 2 + x 3 - 9x 4 + 5x 5 + x 6 + 2x 7

because one can supply a small description of
the former (i.e.,

i0
E (i+l)x I) ,

i=0

but not of the latter. The way one usually
obtains a small description is by recognizing
a repeated pattern in an expression. Unfortun-
ately, computer programs nowadays are not as 2
good as humans at recognizing useful patterns .
Furthermore, many descriptions which are of
value to humans are incomplete descriptions
of an expression (e.g., the expression has f's
whenever a y occurs except for the first term).
Most programs are unable to deal with incom-
plete descriptions. Both of these drawbacks
mean that we have to depend on the user to
obtain a description for his own use. The
process of "massaging an expression" which
people use in pencil-and-paper calculations,
can be characterized as a trial-and-error
attempt to decrease the size of an expression
and to transform it into a form for which a
short description is apparent. As we have
remarked, it is not possible now to fully
automate this massaging process. Rather, it
should be the goal of a good system to provide
machinery which will aid the user in his
massaging efforts. The remainder of this

2. An exception to this rule are programs to
recognize the next number in a sequence [1].
Such programs would, in fact, recognize the

section will be devoted to describing such
machinery.

A major reason why computers are not as
good as human users in simplifying an expres-
sion is that they lack knowledge of the con-
text in which the expression was d~rived. To
a physicist subexpressions like mc ~ contain a
good deal of information not apparent to an
algebraic manipulation system. For example,
a physicist might be tempted to substitute E
for mc ~ in order to reduce the size of the
expression without destroying its information
content to him. In fact, the major technique
for simplifying large expressions is the
substitution of small expressions (preferably
single literals) for large subexpressions
which either occur frequently or possess some
meaning. We shall examine this technique in
section 2.2.

Working with an algebraic manipulation
system can frequently be annoying because such
systems do not display expressions in the way
to which the user has become accustomed. A
user who is presented with a quadratic in x
written as c + x-a + bx is not only annoyed,
but is incapable of understanding such
expressions as well as those written in a more
conventional form. In section 2.1 we present
an attempt to model the rules which govern the
conventional ordering of expressions.

2.1 Conventional Lexicographic Ordering of
Expressions

As noted above, most systems do not make
a very satisfying attempt to produce expres-
sions in a conventionally ordered form.
Fenichel's FAMOUS [14], and PL/i FORMAC [44]
make some attempt to supply conventional lexi-
cographic ordering. However, each system
provides an incomplete solution to the problem
We have also not encountered in the mathemati-
cal literature an analysis of what constitutes
conventional ordering of expressions. The
rules that people implicitly use are apparent-
ly not hard and fast ones. For example,
x + e x seems not much preferable to e x + x.
In addition, context plays a role in modifying
very strongly held views about ordering of
expressions. One writes am rather than ma
except in cases like F = ma in which m is
relatively constant and a varies.

We believe that systems should make great-
er effort to avoid highly unconventional and
therefore confusing ordering of expressions
such as in sin(-x + 1)/2. The following
discussion is presented with that goal in mind.
We do not claim that our discussion of lexico ~
graphic ordering is complete, or that a rather
different set of rules and principles would
not serve equally well to describe convention-
al mathematical notation. If we have done our
job well, the reader will not find many sur-
prises in our analysis.

Difficulties in ordering expressions
arise when one deals with commutative opera-
tions. The sole commutative operators in most
algebraic manipulation systems are PLUS and
TIMES. As a first approximation, the follow-
ing principles apply to ordering terms in a
sum and factors in a product.

Principle for ordering products: Factors
increase in complexity in a left-to-right
scan.

Examples: 2xe x, 2x2y3sin(y)

pattern in the former expression. 28.4

Principle for ordering sums: Terms
decrease in compiexity in a left-to-right scan.

Examples: 3x 2 + 5x - 6, 2x 2 - 3ax + a + 1

The principles stated above beg a defin-
ition of complexity. A handle on such a
definition is obtained by classifying expres-
sions into three groups: constants, variables,
and functions. Constan%s are less complex
than variables which are in turn less complex
than functions of variables. Simple constants
are either numbers or literals, with numbers
less complex than literals (e.g., 2a, (3/2)~,
a + 1.4). Functions of simple constants are
more complex than constants (e.g., 3/2, 3~ea),
but less complex than variables (e.g., a3/2x).

The usual convention regarding literal
constants and variables is that constants
occur early in the alphabet (e.g., a, b, c)
and variables late in the alphabet (e.g., x,

read: any function of a given variable, say x,
is less complex than any expression containing
a variable more complex than x. Using the
latter convention, the above example would be
written

2 x
x e y sin y.

Expressions which are more involved than
the ones we have been examining up to now can
be ranked by a recursive test on their most
complex subexpressions. We do not wish to
give a detailed discussion of such a ranking
procedure because there does not seem to be
strong feeling about the ordering of very
large or involved expressions except when
patterns clearly appear among the subexpres-
sions (e.g., polynomials, power series, Fourier
series). Most of the common situations should
be handled correctly by a recursive ranking

y, z). Letters in the middle of the alphabet procedure, but the ordering of some expressions
play many roles, (e.g., f frequently represents would involve global pattern recognition which
a function, and n an integer) but they can be is beyond the capabilities of existing alge-

considered, for our purposes, to be intermedi-
ate between constants and variables. Within
each class (i.e., constants, intermediates,
and variables) alphabetic ordering appears to
determine the complexity. In products, liter-
als early in the alphabet in each class have
the lowest complexity rank. This means that
literals in a product are ordered purely
alphabetically (e.g., abxz, 2amn). The com-
plexity rank within each class is reversed in
sums. Thus we get x + y rather than y + x,
and x + a + b rather than x + b + a. In sums,
moreover, the class rank is not adhered to
very strictly. Thus, we frequently see
a + b + x rather than x + a + b or 1 + x - y
rather than x - y + i. Since attitudes about
ordering of products are more strictly held
than those about sums, we shall confine most
of our examples to products.

Functions of variables are more complex
than the variables themselves. However, in
products, positive integral powers of an
expression A possess the same rank as A (e.g.,

2 2
x y, x sln x).

In sums, a term having a higher exponent of
the most complex factor of an expression is
ranked higher than that expression, but
possesses the same rank relative to different
expressions (e.g.,

3x 2 + 2x, x sin2x + x sin x).

One could rank the complexity of the usual
functions 3, but surely any such ranking must
be somewhat arbitrary. It seems that sin x
cos x is preferable to cos x sin x, but is
sin x log x preferable to log x sin x?

Because of our grouping convention, pos-
itive integer powers of variables are ranked
lower than any other functions of variables
(e.g.,

2 x
x ye sln y).

We believe that this is a better model of con-
ventional notation than an extension of the
alphabetic ranking of variables which would

3. In PL/i FORMAC [44], the following ranking
is employed in products; eX< erf(x)< log(x) <
sin(x)< cos(x)< atan(x)< sinh(x)< cosh(x) <
atanh(x) < x!

braic manipulation systems (e.g.,

1
(a + b)(a + ½b)(a + ~b)(a + ~b)).

There are additional conventions for
ordering expressions which algebraic manipula-
tion systems should follow. One rule involves
eliminating the leading minus sign in a sum.
Thus given an expression of the form-A + B
one reverses the terms to eliminate the lead-
ing minus sign (e.g., 1 - 2x rather than
-2x + i, y - x rather than -x + y). One
could conceivably extend the rule to include
sums with two or more terms, but the force of
the rule seems to diminish considerably with
an increase in the number of terms (e.g.,
-3x + 4y + 5z rather than 4y - 3x + 5z or
5z + 4y - 3x or 4y + 5z - 3x).

Conventional notation tends to avoid
the use of parentheses in functions of a single
argument (e.g., sin x, log 2). As a result of
this convention and also in order to avoid
confusion with the scope of special signs such
as the square-root, integral and summation
sign, one sometimes reverses the normal order
(e.g., 2i/2 rather than 2/2 i, 3y sin a rather
than 3 sin(a)y). This convention is not
crucial for algebraic manipulation systems
since such systems rarely display expressions
with ambiguous scopes of functions or signs.

The constant ~ has lower rank in prod-
ucts than literals which represent angles
(e.g., 2~8 rather than 28~). However, expres-
sions which evaluate to integers or rational
numbers rank lower than ~ (e.g.,

3n+l. ,3n+l,
--~---~ rather than ~t-~---)).

Few constants lead the charmed life of ~ as
exemplified by the expression 2n~i8.

Frequently, certain literals are used
as implicit functions of other variables.
Such literals should be ranked as functions.
This convention accounts for the subexpression
y + x + 1 in y' + y + x + 1 = 0.

Some systems allow users to declare
dependencies such as that of y on x in the
expression above. One should extend this
machinery to allow users to override the
conventional classification of literals. By
declaring m constant and a variable, one would
be able to--obtain the usual formula F=ma.

Our final remark about conventional
ordering regards instances of general patterns.

285

If one is given a general pattern of certain
expressions, such as a + bi for complex
numbers, then instances of that pattern will
follow the order given in the pattern, rather
than the usual rules (e.g., -i + i rather than
i - i). Systems should accommodate definitions
of such patterns.

2.2 Substitution as an Aid to Comprehension

Many symbolic calculations take the
following form: One starts with some equations
such as

y = g (x)
z = h(x)

f = x 2 + y2 + z 2

and expressions such as
5

i
E: ~ c.x

i=0

Later one substitutes such equations and
expressions into another expression such as

51~ 2 + 2E 2

f3

Then one attempts to simplify the expres-
sion which results. In this section we are
interested in the process of making intellig-
ible large expressions such as the one which
would result if we performed the substitutions
and carried out the derivatives and expansions
in the expression above.

Frequently, the process of simplifying
large expressions involves a reversal of the
process which led to the expression above.
That is, one substitutes small expressions
(usually literals) for large subexpressions
which occur more than once in the expression.
The literals being substituted into the
expression act as names or labels for the
expressions that they replace. This is the
same function that f, y, and z had in forming
the expression above.

An artificial example which points out
the value of substitution to the comprehension
of an expression occurs in [41]. The example
shows how to obtain a compact description of
the matrix in figure i. We obtain a hierarchi-
cal description by recognizing patterns in the
matrix and patterns in the matrix of literals
that we substituted, etc. We finally reduce
the 64 characters in the original matrix to
35 characters in the final matrix and all the
associated equations. However, the hierarchi-
cal description seems to make the simplified
result much clearer than is implied by the
ratio 35/64.

The process of finding those subexpres-
sions which are good to replace usually
involves some trial and error. It is useful
to replace subexpressions which have some
meaning in the context of the problem. In
such cases we need not require that the sub-
expressions being replaced occur more than
once in the expression. Beyond such general-
ities, there does not seem to be much one can
say at present which is frequently useful in
the massaging process for large expressions.
We should note that one often combines sub-
stitution with other manipulations (e.g.,
carrying out expansions or differentiations

which have been delayed).
A non-artificial example of the use of

substitutions which is borrowed from Hearn
[19] is given in figure 2.

A technical problem arises when one
makes substitutions for expressions other than
atomic or literal ones. Consider the problem
of substituting a for xy 2 in the expression

23
x y .

Some possible results of this substitution are

23
i) xy
2) axy

3) a2/y.

One cannot say that there is a "correct"
answer, because what is appropriate in one
context need not be appropriate in another.
However, no system, until recently, gave the
user much choice in the result of substitution.
The REDUCE system of Hearn [18], has a good
deal of machinery for making substitutions,
but it does not give the user much control
over the effects of its substitutions.
Fateman [26] has recently arrived at the
following analysis of the problem. For simp-
licity, we shall make the analysis for poly-
nomials, but it can be easily extended to more
complex expressions.

Let us suppose we are trying to substi-
tute A for B in C. We shall consider C to be
represented as

n Bi

i=0

Thus the substitution will yield

n i
c~iA

i=0

This representation of C is nonunique. We
can make the representation precise by impos-
ing constraints on the coefficients ~i. Let
us assume that the variables in B are ranked
in some way. Fateman's substitution programs
usually provide that the degree of the main
variable of B is lower in each ~i than in B
itself. In addition, one can restrict the
coefficients to i) not contain a sum, 2) be
polynomials (and not rational), and 3) have
lower degree in all of the variables of B than
the degree of those variables in B.

By varying these and other conditions,
and by modifying the ranking of the variables,
one can get a variety of results. One can
then choose that result which seems most use-
ful in the computation.

Some examples of substitution made with
Fateman's routines are given in figure 3. In
each case we substitute A for B in C.

The ability of Fateman's routines to
obtain the results in the last four examples
is due to the technique of continually divid-
ing C by B. The last two examples indicate
how this substitution mechanism provides for
the application of the oft-discussed trans-
formation

sin2(x) + cos2(x) -- I.

z86

One of the most popular uses of substitu-
tion occurs in the differentiation of products.
This kind of substitution really addresses
itself to the problem of decreasing the size
of an expression during a computation. How-
ever, the techniques used can effect an in-
crease in the intelligibility of the final ex-
pression. Moreover, these techniques are of
a fairly general nature, and can be used to
improve intelligibility in other cases.

Consider the general form of the first
derivative of a product of four factors f, g,
h, k:

(fghk)' = f'ghk + fg'hk + fgh'k + fghk'

In the general form f, g, h, and k each appear
three times. In certain cases the general
form will simplify because f', g', h' or k'
may be 0. Frequently this situation will not
occur. In cases where f, g, h, and k are
complex expressions, considerable savings in
space will result if we use labels for the
factors which would appear in the derivative.
A disadvantage of labelling the factors is
that some simplifications which would occur
due to the presence of the factor in the ex-
pression would not occur when its label is
used. For example, the difference of a label
and the expression it is labelling is not
zero.

Problems arise when we have to take der-
ivatives of labelled expressions. We can use
the strategy of not evaluating all derivatives
of labels until some later time. We might
wish to evaluate certain derivatives of labels
whenever they occur by replacing the labels
by the expressions they represent. Clearly,
several strategies are possible. A technical
problem here involves the ability of a
system to produce the labelled expressions on
demand. This can be done by substitutions.
However, the following statement in MACSYMA
[26] avoids making eyplicit substitutions and
is very selective in its effect. The state-
ment has the general form

WHEN conditional DO label = expression

An instance of such a WHEN statement is

WHEN SHOWF DO F = SIN(X/CCOS(X) + i).

As a result of executing such a statement, the
variable F will appear as F inside expressions
as long as the variable SHOWF is FALSE. When
SHOWF is changed to TRUE then F will be re-
placed by the expression SIN(X)/(COS(X) + i)
when it is encountered in a computation. When
SHOWF is changed back to FALSE all remaining
F's will appear as F once again.

In summary, the technique of labelling
can be used whenever an algorithm tends to
duplicate expressions. The labelled expres-
sion yields to structural analysis more easily
than the expression it replaces. However, the
technique has its drawbacks since it prevents
certain simplifications from taking place.

Another situation where labelling can be
used occurs when one is unable to display an
expression on one page. Suppose the expres-
sion is a sum. Then one could replace as many
of the terms in the sum by labels as are need-
ed to allow the labelled expression to be dis-
played in one page. The labelled terms can
be displayed independently. This technique

does not decrease the size of an expression.
However, it affords a simple way of breaking
up the large problem of analyzing the whole
expression into a number of smaller problems.
Success with this technique depends on clever
decompositions of an expression. Automatic
routines for introducing labels into expres-
sions by Baker [43] and Martin [24] cannot
be considered great successes. At the present
time, we require an interacting user to break
the expression up into chunks which he can
conveniently manage and usefully comprehend.

3.0 Simplification for the Sake of Manipula-
tion - What Designers Provide

3.1.0 The Politics of Simplification

Simplification is such a central issue in
algebraic manipulation that when a designer
has decided how he will represent expressions,
what changes of representation his system will
perform automatically, which of these auto-
matic transformations he will let the user
override and modify, and what additional
facilities for simplifying expressions his
system will have, there are few major decis-
ions remaining. As a result~ one can classify
algebraic manipulation systems by their
approach to simplification.

Four years ago, when we last surveyed the
scene [29], we classified algebraic manipula-
tion systems into three categories: conserva-
tives, liberals, and radicals. In the mean-
time, there has been a slight change in the
characteristics of some systems, and the
characteristics of other systems have stabil-
ized sufficiently so that we now claim the
entry of two new parties, namely, the new left
and the catholics.

The classification that we make of sys-
tems is based on a single criterion - the
degree to which a system insists on making
a change of representation of an expression
given by a user. A system which insists on
radically altering the form of an expression
in order to get it into its internal form is
called a radical one in our scheme. A system
which is so u~lling to make an inappropriate
transformation that it essentially forces a
user to program his own simplification rules
is called a conservative system. A system
which will make certain transformations
automatically, but will leave others to the
discretion of a user is called a liberal
system. The new le~t is mainly composed of
variations of old radical systems which give
certain additional choices to a user. Design-
ers of catholic systems see the merit of each
of the other approaches for some contexts.
They design systems which offer several sub-
systems using different simplification tech-
niques, and let the user switch among them as
he pleases.

In the remainder of this section we shall
describe the facilities offered by the differ-
ent systems. We shall then consider a major
problem in the manipulation of expressions,
that is, the tremendous growth in the size of
intermediate expressions in a computation.
Finally, we shall consider the design of simp-
lification algorithms based on canonical forms
which is the most theoretical topic in alge-
braic simplification.

In reading an essay such as this, the
reader should bear in mind that the author,

287

as an interested party, will tend to bias the
discussion toward his point of view. Our
attitude is best described as a catholic one.
Such a position means that we see the merit
in the other approaches for some situations.
However, it is probable that our discussion
of any view other than our own will be less
positive than that of a strong adherent to
that view.

3.1.1 The Radicals

Radical systems can handle a single,
well-defined class of expressions (e.g., poly-
nomials, rational functions, truncated power
series, truncated Poisson series). The ex-
pressions in this class are represented in a
canonical form. That is, any two equivalent
expressions in the class are represented in
a unique way internally. This means that the
system stands ready to make a major change
in the representation of an expression written
by a user in order to get that expression into
the internal canonical form. The advantage
of this approach is that the task of the man-
ipulatory algorithms is well-defined and lends
itself to efficient implementation. Such
systems do not appear to have specialized
simplification machinery since the process of
generating expressions in canonical form
which is automatically employed by the man-
ipulatory algorithms (e.g., addition, multi-
plication, differentiation) is akin to simp-
lification. An expression written in its
canonical form is considered simplified, once
and for all time. Any attempt to allow the
user to modify the representation of an ex-
pression for his problem will likely cause a
decrease in the efficiency of the manipulatory
algorithms and is therefore eschewed or highly
discouraged by radical designers.

Excellent examples of radical systems are
polynomial manipulation systems. One canon-
ical representation of polynomials is the
recursive representation used in Collins' PM
and SAC-I systems [9, i0]. One assumes a
ranking of the variables such as x>y > z.
The polynomial is considered as a polynomial
in the major variable with coefficients which
are polynomials in the other variables and
which are themselves represented in this re-
cursive form. Thus

3x2y 2 - 2x2yz 3 + 5x2z 2 + 4x - 6y3z + y3

+ 3y 2 + z 4 + 1

would be represented as

(3y 2 - (2z3)y + 5z2)x 2 + (4)x

+ ((-6z + l)y 3 + 3y 2 + z 4 + I)

The other major representation of poly-
nomials, popularized in the ALPAK system of
Brown [3], is the expanded representation.
The first polynomial is written in expanded
form.

Situations in which there is wide-spread
disagreement with the radical approach usually
concern expressions which oontain powers of
sums. The radical systems would automatically
expand such expressions in order to put them
into the canonical form. Other designers
would complain that

(x + i) I000

should almost never be expanded.
the integral of

(x + i) I000

For example,

with respect to x is trivially found if the
integrand is not expanded. However, the
integral of the expanded expression requires
more time and space, and the final result
appears atrocious to the human eye unless the
pattern is recognized.

A similar situation occurs in radical
rational function systems. The canonical rep-
resentation in such systems is a quotient of
a numerator written as a polynomial in canon-
ical form and a denominator which is likewise
written in canonical form. One must, for the
sake of canonicalness, combine sums of quoti-
ents into a single quotient and divide the
resulting numerator and denominator by their
greatest common divisor. Suppose we wanted
the partial fraction decomposition of

2x + 3 1 3x

+ x 2 x2 + 2x + 5 3x + 2 + 2x + 6

The problem is straight-forward (in fact,
solved) if one leaves the expression as it
stands. However, a radical system would first
combine the quotients and proceed to rederive
the expression above.

One can claim that radical systems can
handle only a small subset of the expressions
that are commonly found in applied mathematic~
However, theoreticians have been chipping
away at this problem so that radical systems
can now handle a wide variety of expressions
which include exponentials, trigonometric
functions, roots of polynomials, etc. The
idea is to introduce labels for a minimal
number of nonrational expressions in such a
way that the labelled expression is in canon-
ical form. (See section 3.3). For example,
in order to deal with rational functions of
trigonometric functions in x one can repres-
ent sin x and cos x in the complex exponential
form (e.g.,

ix -ix
sin X - e - e).

2i

Then substitute y = e ix in the expression to
obtain a rational expression in y. Now con-
sider integrating sin x cosl0x with respect
to x. This becomes, after appropriate trans-
lation,

/ i 1 1 1 i0 1 7 TdY

The original problem is trivial to integrate,
and produces a concise integral. The trans-
lated problem is more expensive to solve and
the solution is not very comprehensible. This
technique (or the similar technique of sub-
stituting

1
y = tan ~x)

fits eminently into the radical way of solving
problems. It has the advantage that it will
work and give some result when less general,
more heuristic techniques will fail.

288

Because the expressions and the manipula-
tory algorithms of radical systems are so well
defined, there is a great likelihood that
theoretical research will find ways to improve
the algorithms. This has, in fact, been the
case. Most of the major advances in algorithm
design in the field of algebraic manipulation
such as in the greatest common divisor algor-
ithm, polynomial factorization, and integra-
tion, have assumed expressions represented in
canonical form. As a result, systems which
do not transform expressions into a canonical
form do not boast algorithms as powerful or
efficient as those of radical systems.

A radical system, in effect, forces a
user to tailor the problem to fit the system.
When such tailoring is clearly out of the
question, the radical solution is to build a
new system expressly for the problem or class
of problems that the user has. This accounts
for the number of distinctly different radical
systems which have been written for different
problem areas.

3.1.2 The New Left

The new left arose in response to some of
the difficulties experienced with radical
systems such as those caused by the automatic
expansion of expressions. A new left system
is usually a rational function system which
does not necessarily expand products or inte-
ger powers of sums. A new left system will
have all the usual machinery of a radical
system, but the algorithms will be generalized
to handle unexpanded expressions. The new
left thus sacrifices canonicalness and some
of the well-definedness of the manipulatory
algorithms for the ability to solve some
problems more efficiently than a radical sys-
tem would. The user of a new left system is
given the ability to decide when expansion is
most appropriate, a facility which is, of
course, not present i~ a radical system.

Systems which allow unexpanded terms in
an expression are Hearn's latest version of
Reduce [20], and the latest version of
ALTRAN [16].

A new left system can usually handle a
wide variety of expressions with greater ease,
though with less power, than a radical system
using a canonical form. The idea, once again,
is to use labels for non-rational expressions.
Thus

x 2
xe + x

might be rewritten as

xy + x2z, where y = e x, and z = sin x.

The expression

2x e x e +
x

e

would probably be expressed as

~ + z 2x x
z , y = e , z = e

since no attempt probably would be made to
write the expression in canonical form.

Some systems permit one to represent non-
rational expressions in a way similar

to that indicated above, but force expansions
to be made once the translation pass is over.
Such systems should probably be considered to
be more canonical than new leftish. Examples
of these systems are Hearn's early versions
of Reduce [18], MATHLAB's rational function
subsystem [23], and MACSYMA's rational func-
tion subsystem [26].

3.1.3 The Liberals

Liberal systems rely on a very general
represenhation of expressions and use simpli-
fication transformations which are close in
spirit to the ones used in paper-and-pencil
calculations. Liberal simplifiers perform
the usual simplifications of collecting terms
in sums and exponents in products, applying
the rules regarding 0 and i, and removing
redundant operators (e.g., a+(b+c)-~a + b + c).
Frequently such systems will also know simp-
lification rules for certain arguments of non-
rational functions. Thus sin 2~ might simp-
lify to 0,

e21Og y+x

2 x
might simplify to y e , and cos(arcsin x) to

/i-7.
Liberal systems differ from radical and
new left systems in several important ways. '
i) Expansions are carried out only if
the user so demands (new left systems,
of course, offer this feature also).
2) Sums of quotients are never put over
a common denominator unless the user
forces such a transformation, but even
if they were, the gcd cancellations are
likely to be missed.
3) Expressions can usually be represent-
ed in "unsimplified" form. That is,
l-sin(x) + 0.cos(x) can be represented in
such systems. This allows patterns to be
represented. Most manipulatory algorithms
will, however, require that all their
arguments be simplified, thus destroying
the patterns.
4) Nonrational terms can be expressed
with great ease. Terms such as e x, x!,
and

n i
c . x

i=0 i

would be explicitly present in the expres-
sion, and would not be replaced by a label
whenever they occurred.
5) The representation is local in the
sense that a term sin(x) appearing in one
part of the expression can be modified
without affecting a sin(x) appearing in
another part of the expression.
The major disadvantage a liberal system

has relative to a radical or new left system
is its inefficiency. The representation of
information in a liberal system might require
two or three times as much space as in a
radical system, and manipulations can be a
factor of ten slower (of course such figures
might increase or decreasedepending on the
situation).

The advantage claimed for liberal systems
is that one can express problems more natura~y
for them than for radical or new left systems.

289

As was indicated in our discussion of radical
systems, certain problems can be solved more
efficiently in the flexible environment provid r
ed in liberal systems. A liberal designer
wants to minimize the transition from the
user's usual techniques. He would pay rela-
tively great attention to making his displayed
expressions intelligible to a user. Radical
designers are usually interested in solving
large computational problems of a specialized
nature. New left designers can be said to aim
for a large proportion of the users of both
liberal and radical systems. Such competition
should benefit all users.

Most liberal systems will reorder terms
in sums and factors in products based on
some lexicographic ordering scheme. As was
mentioned in 2.2, such schemes frequently pro-
duce rather unnatural orderings. Thus a user
writing x + y + z + w can expect to get any
permutation of the terms as a response, depend-
ing on the nature of the ordering being used.
Some systems, such as MATHLAB, minimize the
use of simplification of expressions partly
in order to avoid an unnatural ordering as
much as possible. Other liberal systems do
not use a lexicographic ordering at all, and
prefer to use the ordering originally present-
ed by the user. Such an ordering will, of
course, be modified when the expression is
manipulated. Martin [25] used a unique hash-
coding scheme with which to tag expressions in
order to be able to recognize when to collect
terms or factors. Martin's hash-code was
powerful enough to recognize many identities.
However, the cost of hash-coding, and the fact
that ordered expressions can be manipulated
more efficiently than unordered ones, probably
led to some inefficiency in his system.

Martin's hash code assigned to an alge-
braic expression an element in the finite
field formed by the integers modulo some large
prime. The prime was chosen so that certain
elements in the field had useful properties.
For example, one element acted like i since
its square was -i. Given random values for
the variables, the hash code assigned numbers
to expressions so that equivalent expressions
usually had the same code. Due to the finite-
ness of the field#non-equivalent expressions
could be assigned the same code, but the
probability of this event is extremely low.

Martin's hash code was utilized in an
experimental program designed to teach
freshmen how to integrate symbolically [31].
Another technique due to Oldehoeft [33], was
also intended for a CAI environment. Oldehoeft
examined the problems associated with deter-
mining the equivalence of expressions by eval-
uating them at random points. He discusses
problems due to round-oft overflow, accidental
coincidence and the effects of dealing with
non-analytic functions (e.g., absolute value).

Simplification in liberal systems is per-
formed by a program usually called the simp-
lifier. Some of the earliest projects in
algebraic manipulation involved the design of
liberal simplifiers. The earliest simplifier
was written in the LISP Assembly Program by
Goldberg in 1959 [15], and was used in Slagle%
Symbolic Automatic Integrator (SAINT) [42].
Other LiSP-based simplifiers were written by
Hart (1961) [17], Russell and Wooldridge
(1963) [47], and Korsvold (1965) [22]. The
Korsvold simplifier is used in MATHLAB and in
SCRATCHPAD [2] • A highly modified version

of it is also used in MACSYMA. The FORMAC
system's simplifier is called AUTSIM. The
philosophy behind AUTSIM is given in [45].

Liberal systems offer a user the ability
to affect the representation of expressions
through two kinds of mechanisms. One way of
changing the expression is by using commands
(such as EXPAND in FORMAC or MACSYMA) to per-
form the transformation. Another way is to
modify certain switches whose value the simp-
lifier checks to guide its operation. A
switch might determine if a function such as
log should evaluate to a floating point number
if its argument is a number. Another switch
might determine if certain indicated opera-
tions such as differentiation should, in fact,
be carried out. This last example is not
strictly an example of simplification; however,
it does point out the fact that a simplifier
is close to being the heart of a system.

3.1.4 The Conservatives

Designers of conservative systems claim
that one cannot design simplification rules
which will be best for all occassions. There-
fore, conservative systems provide little
automatic simplification capabilities. RatheD
they provide machinery whereby a user can
build his own simplifier and change it when
necessary. A simplifier written in such a
way is far slower than a liberal simplifier,
and this fact presents a distinct disadvantage
for conservative systems. In fact, one can
point to only two major conservative systems,
Fenichel's FAMOUS [14], and FORMULA ALGOL [34].

The importance of conservative systems
lies in the philosophy they represent, which
is most clearly given by Fenichel [14], and
in the technique which they champion of using
rules and advice to describe simplification
transformations. Their philosophy presents
an indictment of all the other systems which
perform many simplification transformations
automatically, without seriously considering
the context. Designers of conservative
systems emphasize that the simplified form of
an expression is determined by context. They
will point to situations where even the most
obvious transformations 0"x ~ 0 and l'x 4 x
will destroy useful informa%ion as in the
pattern

0-sin x + l'cos x + 2-tan x + 3-cot x
+ 4.sec x + 5.csc x

Therefore, they claim that one must be able to
tune the system to the particular nature of
the problem. The preferred technique of
"tuning" is based on the theoretical concept
of Markov algorithms. In a Markov algorithm
one is given an ordered set of rules to apply
to an expression. Each rule has the form:

Pattern 4 Replacement.

For example, one such rule applied to algebraic
expressions mightbe

A'X + B'X ~ (A + B)-X

To make such a rule correspond to the usual
notion of "collecting like terms," one would
want to restrict A and B to be numbers, while
X could represent any product of factors
other than numbers. The rule just given does

z9o

not necessarily yield a simplified result in
cases such as 2-X + (-i)-X ~ 1-X. One should
apply a whole set of rules to the replaced
expression. Only when no rule is applicable
to a given expression is the algorithm compete.

Conservative systems offer variations of
the Markov algorithm technique with which a
user can generate his own simplification and
manipulatory algorithms. Such rules are most
easily written when making local transforma-
tions of an expression 4. One would not wish
to write a factoring program as a Markov
algorithm. Conservative systems have tended
to model liberal systems rather than radical
ones, since the latter specialize in global
transformation of an expression.

Several designers have added a capability
for writing Markov algorithms to their systems,
thus allowing their systems to take on various
degrees of conservatism. The main use of
rules in such systems has been to add new
simplification transformations (e.g.,
cos n~ ~ (-l)n), rather than to override old
transformations. Thus a user of REDUCE can
define the simplification rules relating to
general exponentiation (e.g.,

xY.x z ~ x y+z),

although he cannot override x 0 4 i. Korsvold's
simplifier and MACSYMA's pattern matching sub-
system [13] also allow one to define simplif-
ication rules. The latter allows one to over-
ride many of the built-in rules. It also
provides for the compilation of new rules
which should yield a relatively efficient
simplifier.

3.1.5 The Catholics

Catholic systems use more than one repres-
entation for expressions, and have more than
one approach to simplification. The basic
idea underlying catholicism is that if one
technique does not work, another might, and
the user should be able to switch from one
representation and its related simplification
facilities to another with ease. A catholic
system might use a liberal simplifier for
most calculations, and have a radical sub-
system in reserve for performing special cal-
culations such as combining quotients, solving
linear equations with rational coefficients,
and factorization. The MATHLAB system is best
described in this fashion. The MACSYMA
system goes further in that it allows the user
to manipulate entirely with a radical rational
function subsystem, as well as with a liberal-
radical combination as just described. In
addition, MACSYMA, as pointed out in 3.1.4,
has a rule-defining facility which allows it
to closely approximate a conservative system.
The SCRATCHPAD system is a conglomerate made
up of several LISP-based systems. It has a
total of four simplifiers.

Catholic systems emphasize the range of
problems that can be solved by them. They
would like to give a user the ease of working
with a liberal system, the efficiency and
power of a radical system, and the attention
to context of a conservative system. The

4. The author begs for forgiveness of the
reader for not defining "local". That concept
tends to be as context dependent as the con-
cept of simplification. However, see [27].

disadvantage of a catholic organization is iS
size. A catholic system is necessarily larger
than any other type of svstem. The variety of
the services provided by the system may force
users to learn a larger number of conventions
than in other systems. A catholic designer
may also impose a number of system-wide con-
ventions (e.g., on the data representation)
which would not be present in a smaller system.
Such conventions might slow down all of the
component systems.

A catholic organization is only one way
to obtain the advantages of the conservative,
liberal, and radical approaches to simplifica-
tion. A system such as REDUCE, can be viewed
as a compromise system offering many of these
advantages. REDUCE, however, uses only a
single representation. Radical systems, as
we noted earlier, use different representations
for expressions which occur in different prob-
lem areas (e.g., polynomials and truncated
Poisson series). While it is advisable to
limit the number of distinct representations
as much as possible, it appears likely that a
system which tries to handle a large number of
applications efficiently will require several
representations. ~ designer of a catholic
system is willing to accept such a situation.
Other designers might not be so willing.

3.2 Intermediate Expression Swell

Users of numerical analysis programs have
learned to anticipate problems due to round-
off errors. Users of symbolic manipulation
programs have encountered a corresponding
problem in the tremendous growth of intermed-
iate expressions in some calculations. Such
growth has caused many calculations to be
aborted because the expressions filled the
available computer memory. Tobey has describ-
ed this phenomenon with the colorful phrase
"intermediate expression swell" [43]. In
many cases the final result of a symbolic cal-
culation is quite small, but in order to get
that result one finds oneself generating very
large intermediate expressions. For example,
the eigenvalue of a matrix with polynomial
entries can be as simple as a single number.
However, in order to obtain that number, one
is forced to factor a polynomial with polynom-
ials as coefficients. These coefficients might
be obtained from the determinant of the matrix,
which can be several pages long.

Intermediate expressions swell can be
caused by several different phenomena. In
some cases, the problem the user is trying to
solve is inherently explosive, and it is
likely that no general method will decrease
the size of the intermediate expressions. We
claim that such a situation exists when one
tries to solve systems of simultaneous polynom-
ial equations by eliminating variables [28].
The number of solutions to such systems can
be as high as the product of the degrees of
each polynomial. If the intermediate equations
do not factor, as is likely to be the case,
one is forced to generate a polynomial of very
high degree which would be very hard to solve
numerically for all its roots.

In certain other cases, the particular
algorithm that the user, in combination with
the system, has chosen for solving a problem,
is bad and a radically different approach is
necessary. For example, the recently develop-
ed modular algorithm for computing the greatest

291

common divisor of two polynomials [3] is a
radically different and much more efficient
algorithm than any of the previous algorithms.
Major changes in algorithm design usually re-
quire extensive analysis so that one cannot
make such modifications on a regular basis.
Certainly it is not very fruitful to consider
such modifications as a task of algebraic
simplification.

The final set of cases which we shall
consider is when small changes in the sequence
of steps cause a nontrivial improvement in the
utilization of space and time. We have al-
ready mentioned the idea of labelling subex-
pressions which would tend to be repeated in
a calculation. Sometimes one can apply one's
knowledge of subsequent steps in a calculation
in order to keep expressions in a form which
will maximize utilization of space and time.
At the heart of Collins' first improvement
to the Euclidean GCD algorithm [ll] was the
idea that one could predict how certain terms
were automatically introduced into the inter-
mediate expressions, and therefore these terms
could be cancelled without affecting the final
result. Before the appearance of this algor-
ithm, several people, including this author,
thought that the size of the coefficients in
the intermediate steps of the algorithm had
to grow exponentially. Collins showed that
they need grow only linearly!

Of course, results such as Collins' would
not be expected from the average user; how-
ever, improvements of a similar nature can be
made in many applications of algebraic manipu-
lation. For example, consider

n i
y = ~ x ,

i=l

x
which is an approximation for i-~ "
you wanted

Suppose

n
E yJ

j=0

The straight-forward application of expansion
in the l~tter sum would yield a polynomial of
degree n ~. However, since y is only accurate
to degree n, all powers of x greater than n
are worthless. What is called for is a
truncation in the expansion of powers greater
than n. Systems which allow the user to
specify truncation (e.g., by declaring x m = 0
for m > n), can probably save factors of i00
or I000 in speed for n = 20 [12].

3.3 Canonical Simplification and Theoretical
Results - The Radicals Revisited

In this section we shall discuss most of
the theoretical results related to algebraic
simplification. The algorithms we shall des-
cribe are either canonical or else possess a
strong property, namely that they can deter-
mine if an expression is equivalent to zero.
Almost all of the algorithms are incomplete in
the sense that they depend on, as yet, unprov-
ed conjectures about expressions involving
constants. For example, the conjecture by
Brown [4] has, as a special case, the state-
ment that e + n is not a rational number.
That statement is almost certainly true, but
no proof of it exists, and certainly none
exists of the full conjecture. Even if the

conjecture were false, the average user will
probably never obtain incorrect results from
these algorithms.

All of the results deal with well-defined
classes of expressions which are extensions of
polynomials or rational functions. Some deal
with exponentials, others with both exponen-
tials and logarithms, and still others with
roots of polynomials. We shall also discuss
a negative result, due to Richardson, which
says that when one deals with expressions in-
volving the exponential and absolute value
functions, then one cannot, in general, tell
whether such expressions are equivalent to
zero.

3.3.1 Simplification Al~orithms for Expres-
sions with Nested Exponentials

In [4] Brown describes a simplification
algorithm for a class of expressions he calls
Rational EXponential (REX) expressions. REX
expressions are obtained recursively from the
rational numbers, i, and n, and the variables
Xl,X2, ... ,x n by the rational operations of
addition, subtraction, multiplication and
division and by forming exponentials of exist-
ing REX. Thus the expression

e ~

5x 3e2X 4el+l
e + + xe

is a REX expression if we agree to write x for
x I when only one variable occurs. Brown's
algorithm makes use of the technique frequent-
ly mentioned in this paper of substituting
labels for exponentials in order to reduce an
REX expression to a rational expression in
the variables and the labels. The major simp-
lification work in the algorithm occurs when
the resulting rational expression is trans-
formed into a canonical form. We shall see,
however, that Brown's algorithm is not canon-
ical (i.e., it does not always reduce equiva-
lent expressions into the same form). It is
powerful, though, since if we assume a certain
conjecture, then we can prove that the algor-
ithm simplifies any REX expression equivalent
to 0 into 0. Thus the algorithm can determine
if any two REX expressions are equivalent. It
should be noted that since the constants i and

are included, the REX expressions contain
the trigonometric and hyperbolic functions in
exponential form.

In generating labels for the algorithms
one must pay great attention not to allow
algebraically dependent exponentials to be
assigned to different labels. Two expressions
are algebraically dependent (over the rational~
if there exists a nonzero polynomial with
rational coefficients in these expressions
which is equivalent to 0. Thus,

2x x
e and e

are algebraically dependent since

(eX) 2 - e 2x = 0.

Likewise,
2 x+x 2

e x e x , , and e

taken together are algebraically dependent.

292

Our labelling scheme must be such that if we
assign

x
y = e ,

2x . 2
then e is assigned y .

The algorithm proceeds by replacing inner-
most exponentials in the expressions by labels,
if such exponentials are not algebraically
dependent on previously replaced exponentials.
The algebraic dependency is determined with
the help of the conjecture by testing whether
the argument (of the exponential function)
being examined is linearly dependent on pre-
vious arguments. The following is a simple
example of the procedure, and incidentally
shows its simplifying power.

Suppose we are given the REX expression

x
e + x

2x x 2 e + 2xe x +

Traversing the numerator from left to right,
we first encounter e x. Let

ql x
ql = x and r I = e = e .

Thus our first label is r i. By substituting
it into the expression we obtain

r I + x

2x 2
e + 2xr I + x

By treating e 2x as an independent variable
in the expression above, we can try for a
simplification by determining the greatest
common divisor of both numerator and denomin-
ator. However, that attempt is unsuccessful
in reducing the expression and we continue
generating labels. We next encounter the
exponential e 2x. Let

q2 2x
q2 = 2x, r 2 = e = e

Now check to see if a linear dependence exists
between ql and q2 (and also with i~, it turns
out). Such a relation does exist, since

ql - 2q2 = 0.

Therefore, redefine

2
r 2 = r 1

and by substitution obtain

r I + x

2 2
r I + 2xr I + x

Simplifying the above as a rational
function reduces it to

1

r I + x

Since no more exponentials are to be
found, replace the labels by the exponentials.
The result is

X
e + x

which is indeed simpler than the expression

we had originally.
Brown's conjecture is that if

{ql'q2 qk' i~}

is linearly independent over the rational
numbers,

[e q l , e q 2 qk
, ... ,e ,Xl,X2, ... ,Xn,~ }

is algebraically independent over the ration-
al numbers. Using the conjecture, Brown can
easily prove that the only simplified REX
expression equivalent to 0 is 0 itself. Note
that since 1 and i~ are linearly independent,
the conjecture states that e I and 17 are
algebraically independent, a statement which
is stronger than the statement "e + ~ is not
a rational number."

An important aspect of the algorithm is
the retracing of steps one must go through
in some cases.

Consider

2x x
e + e

X
e

ql 2x
Let ql = 2x, r I = e = e

Now q2 = x, r 2 = e x, and q2 = 1/2 ql"

We cannot let r^ = r. I/2 since we want to
obtaln ratlonal results. So we redefine r I as

2
r 2

and obtain

2
r 2 + r 2

- r + 1 = eX + 1
r 2 2

Brown's algorithm is not canonical because
the algorithm does not make an optimal choice
for labels.

Consider

x+x 2
e

X
e

2
2 x+x x

Let ql = x + x , r I = e ' q2 = x, r 2 = e .

Note that {ql' qo, i~} is linearly independent
over the rational numbers. Thus {rl, r2, x,~]
is a l g e b r a i c a l l y i n d e p e n d e n t by the c o n 3 e c t u r ~ .
Furthermore,

r 1

r 2

is simplified as a rational expression. Hence,
the simplified result is

2
x+x

e
x

e

which differs from the equivalent expression
2

e x

which is also simplified. So the algorithm is
not canonical.

Z93

Brown's algorithm produces different re-
sults when the expressions are reordered. In

1
1 1

x+x 2 x x+l
e + e e

1
X

e

we can get
1

x+x 2
2 e

1
x

e

using one order of assigning labels, and

1
-x+l

2e

using a different order.
The last two examples are intended to

show the difficulties that a canonical simpli-
fier for REX expressions has to surmount.
There is a simple proof that such a simplifier
exists, using Brown's conjecture. A little
reflection will show that we can produce a
function of a single integer which for in-
creasing values of its input will yield syn-
tactically valid REX expressions, and which
will yield each REX expression for some input.
The canonical simplifier will, given a REX
expression, get the function to generate REX
expressions until one is found which Brown's
algorithm determines is equivalent to the
expression to be simplified. The first expres-
sion found in this manner is considered the
simplified result. The algorithm is canonical,
assuming Brown's conjecture, since all equiva-
lent REX expressions would result in the same
simplified expression. However, the scheme is
utterly inefficient. It also suffers from
the fact that the simplified expressions are
not describable by some simple pattern. For
example, the simplified form of 1 might be
quite different from 1 in this scheme. The
next algorithm produces expressions which do
satisfy general patterns. Such simplifiers
are exceedingly useful since they can help us
determine answers to global questions about
an expression (e.g., Is it a constant? Is it
linear in x?).

In [7], Caviness describes a canonical
simplification algorithm for a class of expres-
sions related to REX expressions. His expres-
siQns admit only one real variable, say x, but
no n, and no division at all. Because divis-
ion is not allowed, Caviness' expressions are
exponential polynomials. By assuming a con-
jecture similar to Brown's, Caviness shows how
exponential polynomials (other than pure poly-
nomials) can be transformed into the form

S 1 S 2 S k
Pl(X)e + P2(x)e + "'" + Pk(X)e ,

where the S i are distinct exponential polynom-
ials which are also in this form, and the Pi
are non-zero, canonically ordered polynomials.
To get exponential polynomials into this form
one has to apply the usual algebraic trans-
formations (including expansion), and collect
the exponentials via

a b a+b
e e 4 e

294

The following exponential polynomial is
in Caviness' form

5e 0 + (- 3 + x 2) e x + (5 + x) e l + x + 3e 3eO+xex

In order to guarantee that putting an
expression into his form yields a canonical
simplifier, Caviness must decide how terms are
to be ordered in sums. This can be done by
some lexical ordering scheme. Given some
ordering scheme, Caviness requires that the Si
in his form be in increasing order. To prove
canonicalness, Caviness assumes that if

Ci,C 2, ... ,C k

are different constant exponential polynomials
written in his form (e.g.,

3e0+e 5
e),

then

{eCl C2, ... ,e ,e Ck }

is linearly independent over the rational
numbers. The proof makes use of the idea that
equivalent expressions are equal for each
value of the variable x. The conjecture im-
plies, among other things, that the set

e

[e , e e , e e }

contains only transcendental numbers which,
like the e + ~ conjecture, is unknown at
present.

While Caviness' algorithm is quite power-
rul, it suffers from the weakness that it does
not permit division. Brown's algorithm,
while it does permit division, does not yield
canonical results. In [30] we describe a
canonical simplifier for first order exponen-
tial expressions (i.e., no nesting of expon-
entials) which are REX expressions, but do not
involve i or ~. The proof of canonicalness of
our simplification algorithm also depends on
a conjecture which is very similar to Brown's
and Caviness' conjectures.

The novel idea in our algorithm is to
use a partial fraction decomposition of the
exponents. The left-hand-side of the equation
below is in the usual canonical form for
rational functions and the right-hand-side
represents a partial fraction expansion of it.

1 1
x5+x3+l -i -7

4 2 - x +--~+
+ --

x -x x x+l x-i

We require that the terms of the partial frac-
tion decomposition be linearly independent
(over the rational numbers) of each other.
Such partial fraction decompositions lead to
yet another canonical representation of ration-
al functions. The simplification algorithm
breaks up an exponential of a sum into a pro-
duct of exponentials which are replaced by
labels in a manner similar to that of Brown's
algorithm.

Thus,

x2+x
e
x

e

is decomposed into

2
X X

e e
X

e

With proper relabelling and simplification of
the resulting rational expression we obtained
the simplified result

2
X

e

Note that

1 -i 1
2 x

x + x x + 1

Therefore
1

1 -i
x2+x e ~ x+l

e + e
1
X

e

is transformed into

-I 1 1 -i
x+l e x e x x + l e + e

1
X

e

Then if
1 -i

1 e x -i x+l
ql = ~' rl= ' q2 = x~' r2= e

we can determine that q2 is linearly independ-
ent of ql" In fact, we need not check for a
full linear dependence in our algorithm, but
only for the possibility that a new exponent
is a rational number multiple of some previous
exponent. This is a consequence of the linear
independence of our partial fraction decomp-
osition. Our example, therefore, reduces to

-i
r2rl + rlr2 x+l

rl = 2r 2 = 2e

Unfortunately, partial fraction decomp-
osition must be used with great care in higher
order exponentials; for example,

1 1 ~x 2
1 ~ -~e + ~-

eX+l el~+l e 2/3x- el/3x+ 1
e = e e

Therefore, if we let r I e x = , a partial frac-
tion decomposition of

1
rl+l

is simply

1
rl+l ,

thus missing the possibility for a decomposi-
tion in terms of

1/3
r 1

which might be crucial in some expresion. We

are confident, however, that a fairly efficient
exptension of our algorithm to higher order
exponentials will, in fact, be found.

3.3.2 Expressions Involving Exponentials and
Logarithms

The functions of the calculus include log-
arithms as well as rational functions and
exponentials. Therefore, there is much inter-
est in results involving the logarithm function.
A result close in spirit to those of 3.3.1 was
obtained by Richardson [37] for a class of
expressions which differs from the REX expres-
sions in that it involves no i, only a single
variable x, but allows the functions sine,
cosine and loglxl. The three functions in
addition to the exponential function of REX
expressions can be nested to any depth.
Richardson was interested in the problem of
determining whether an expression was equiva-
lent to 0 on some interval of the real line.

His algorithm for determining the equiva-
lence involves a reduction process in which
one asks whether progressively less complex
expressions are equivalent to 0. The algorithm
is incomplete in that it relies, in some cases,
on knowing whether a reduced expression which
involves only constants is equal to 0. This
requirement is, of course, similar to the need
for conjectures in the algorithms of 3.3.1.
Richardson's algorithm is, furthermore, only
applicable when the expression being examined
is totally defined everywhere in the interval.
In essence, this requirement is that no sub-
expression could become unbounded in value at
some finite point on the interval being
examined.

Richardson's measure of the complexity of
an expression is very lexicographic in nature
and relies on very little knowledge of the
algebraic properties of the functions involved.
For example,

X
e

e

is considered more complex than e x because of
the greater depth of nesting of the exponen-
tial function, and

(e x) 2

is more comples than e x because it is of high-
er degree. The complexity measure does not
presume that

2x e and (eX) 2

are algebraically related. In fact, it does
not matter very much which expression is con-
sidered more complex as long as the ranking is
used consistently.

The reduction procedure of the algorithm
assumes that the equivalence problem for
rational functions is trivial. A more complex
expression will force the algorithm to gener-
ate subproblems which will either end up as
rational functions or constant problems.

Let us suppose that we wish to determine
whether an expression E is equivalent to 0.
Let y be the most complex exponential or
logarithmic term in E. Let us further suppose
that y is a logarithmic term. By multiplying
out denominators, expanding products of sums,
and collecting like terms, we can get a poly-
nomial expression E* in y of the form

• B95

an(x)yn + an_l(x)y n-I + ... + a0(x)

which is equivalent to 0 if the original ex-
pression E is equivalent to 0. Since an(X)
does not contain y, it is less complex than
E or E* and we can apply the algorithm recur-
sively in order to determine if it is equiva-
lent to 0. If a n is equivalent to 0 then
since the expression E1

an_l(x)y n-I + ... + a0(x)

is of lower degree in y than E*, we can test
to check if it is equivalent to 0. If it is,
E* and therefore E are also equivalent to 0.
If it is not, E* and E are not equivalent to 0.

If a n is not equivalent to 0, divide E*
by it resulting in the expression E2

n an-i (x) n-i a0(x)
y + y + ... + - -

a (x) a (x)
n n

Now differentiate, resulting in an expression,
say E3, of the form

ana 0 ' - a0a n' n-ly,
ny + "'" + 2

a
n

E3 is of lower degree in y than E* since the
derivative of a logarithmic term is of lower
complexity than the term itself. (Note that
this is essentially the only fact we need to
know about logarithms except for cases where
the constant problem arises.) If E3 is not
equivalent to 0, then E2 and therefore E* and
E are not equivalent to 0. If E3 is equivalent
to 0, then E2 is equivalent to a constant. To
complete the algorithm we must determine if
the constant is 0. This is the way in which
the constant problem arises in Richardson's
algorithm. One could attempt to evaluate the
expression at a point as Oldehoeft does [33].
The situation here is simpler than in Olde-
hoeft's cases since if the function is equiva-
lent to a constant we need not worry about
accidental values of 0 arising in the evalu-
ation.

If the most complex term y is an expon-
ential, then Richardson's algorithm involves
division by a 0. Differentiation will then
yield a low order term equal to 0. Since the
derivative of y~ is of degree k in y, the
rest of the derivative can be divided by y to
yield an expression similar to E3 which is of
lower degree than E*.

At the heart of Richardson's reduction
procedure is the idea that through differen-
tiation we can obtain expressions which can
be transformed in such a way as to yield
simpler problems whose solution will determine
the answer to the original equivalence problem.
It turns out that this idea can be used to
test expressions which involve functions other
than exponentials and logarithms. As we point-
ed out earlier, the logarithmic case of the
algorithm hinges on the fact that the deriva-
tive of a logarithmic term is of'lower rank in
complexity than the term itself. Thus func-
tions which are defined by integrals such as
the error function

2
2 -x

erf' (x) = 7~ e

and the exponential integral
X

E ' (X) _ e
l x

can be included in the expressions to be tested
for equivalence to 0. The key property of the
exponential function used in the algorithm is
that the derivative of an exponential of de-
gree k is also of degree k in that exponential.
Consider rational roots of polynomials which
have the form

P (x) n/m,
where P is a polynomial and n and m are inte-
gers. (E.g.,

/x, (x2+2) 2/3) .

In general,

[P(x)n/m] , = ~ p(x)n/m - 1 p, (x)
m

Since

n P'(x) [p(x)n/m]
= ~

n P'
m P

is a rational function and of lowest complexity
in Richardson's ranking, we can say that
rational roots of polynomials will behave like
exponentials in Richardson's algorithms.

Johnson [21], using a somewhat different
approach at deciding equivalence, is also able
to handle a large class of expressions like
the one we have just indicated.

It can further be shown [32] that
Richardson's algorithm can be extended to
accept any function defined by a differential
equation of the form y' = P(x,y), where P is
a polynomial in y. When P is linear in y
the extension is straightforward. P's which
are quadratic in y are of great importance
in applied mathematics. Unfortunately, when
a function is defined by a quadratic P, then
its derivative is more complex than itself.
Thus if we are testing E(x,y(x)) for equiva-
lence to 0, we shall usually find that
E'(x,y(x)) has a higher degree in y than E
does. If E E 0, then E' ~ 0, and therefore,
the greatest common divisor of E and E' is also
equivalent to 0. Conversely, if the gcd of
E and E' is equivalent to 0, so is E. Hence,
we may use the result of the equivalence test
for the gcd. The gcd may, however, not be of
lower degree in y than E itself is. In such
cases it must possess the same degree in y as
E does. Therefore, we may properly speak of
E dividing E' Let us say that

m !
E - Q(x,y) .

Therefore, integrating both sides

log E = ~Q(x,y) dx + C 1

E = C2efQ(x'Y) dx where Ci, C 2 are constants.

Exponentials usually cannot have a zero
value. In such cases E can only have a zero
value if C 2 is identically zero. This deter-
mination is another constant problem of a

296

special nature in that we are dealing with a
function that is either always 0 or never 0.
An exponential can have a zero value when the
argument goes to -~. Such cases would be
disallowed by Richardson's requirement that
expressions be totally defined.

The canonical simplification algorithms
represent an extreme in the use of explicit
knowledge of the simplification rules of a
class of expressions. Equivalence matching
algorithms need not explicitly know these
rules. For example, Richardson's alqorithm
does not explicitly know that loglab] = log lal
+ log Ibl. As a result, equivalence matching
algorithms are usually poor simplification
algorithms. It is clear that in many situa-
tions explicit knowledge of general simplifi-
cation rules is valuable in reducing the size
of an expression. In fact, we would also like
to know that a given set of simplification
rules for a class of expressions is complete
in the sense that no other general rules can
be found which cannot be derived from the set
by rational operations. Risch tackled these
questions for a class of expressions similar
to Richardson's [40]. His results, in effect,
state that no general rules exist cther than
the familiar ones (e.g.,

a+b em/n log a am/n ca= e = eae b, = , log a,

log ab = log a + log b + 2k~i,

where k, m, and n are integers). The method
of attack he uses is to ask what relationship
must exist between an exponential or a logar-
ithmic term and a set of other exponentials
and logarithmics for the former to be
algebraically dependent on the latter. The
proof relies on much of the machinery used in
Risch's previous work on integration. As
before, Risch's results require the solution
of constant problems.

Thus we may speak of three varieties of
theoretical algorithms. Zero-equivalence
algorithms will guarantee that expressions
equivalent to 0 will be identified. Re@ular
algorithms guarantee that the exponential and
logarithmic terms in an expression are alge-
braically independent of each other. Regular
algorithms are zero-equivalence algorithms.
Canonical algorithms which reduce equivalent
expressions to a single form are always zero-
equivalence and are usually regular. Caviness'
algorithm is an exception to this rule in that
it is not regular.

3.3.3 Roots of Polynomials

In [6], Caviness discusses a class of
expressions which is obtained from the ration-
al numbers, the variable x, the rational opera-
tions and the operation of exponentiating to
a rational number. The exponentiation in this
class may not be nested. The following
expressions are in this class;

1

x I/2 + x I/3

(4 - x) 5/3

(x 2 + 2)2/3

The expression

(x + 31/2) 1/3

is not in this class because it involves
nested exponentiation by non-integers. Caviness
shows that there exists a zero-equivalence
simplification algorithm for this class of
expressions. The algorithm is not canonical.
Unfortunately, it is also very time-consuming
since it can easily force one to factor poly-
nomials (over the integers) having a high
degree, and factorization is still a very
expensive operation.

Recently, Fateman [26] showed that factor-
ization is usually not necessary if we modify
the meaning of a radical expression. What
Caviness means by a radical expression such
as /x is a symbol which represents the general
root of a polynomial having polynomial coef-
ficients (i.e., y~ - x). That is, /x can be
either one of the roots normally written as
+/x and -/x. Fateman's algorithm assumes that
the symbol /x represents exactly one of the
roots, and that -/x represents the other.

Fateman's algorithm, except for even roots
of unity, has the same strong property as
Caviness', namely the zero-equivalence property.
However, all he needs to test is whether the
integers and polynomials which occur inside
the radicals are relatively prime to each
other. He would decompose

x -l
into 47=r , ~ r

if ~ or 4~ occurred elsewhere in the
expression. However,

would be left unchanged since no other simp-
lified radical expression could combine with
it under the rational operations. In both
Caviness' and Fateman's algorithms the proof
that the simplification algorithm has zero-
equivalence property is obtained without resort-
ing to additional conjectures. Fateman's
algorithm will simplify

to

and
The
ing radicals from denominators in quotients
through a generalization of the process of
"rationalizing the denominator." Thus

incidentally, it will convert j~ to 7/2.
algorithm can be made canonical by remov-

x + /2

could be converted to

x-/2
2

x - 2

in order to achieve a canonical form.

297

3.3.4 Unsolvability Results

The earliest of the theoretical results
which we discuss in this section, and probably
the best known one in the field of algebraic
manipulation, is a negative result due to
Richardson [35]. In 1965 Richardson, Risch
and Moses were all working on integration.
Richardson and Moses were pursuing theorems
stating that integration was unsolvable (i.e.,
that no algorithm existed for determining
whether the integral did or did not exist in
closed form), and Risch was examining algorithms
for solving the problem [38,39]. Richardson
succeeded in obtaining an unsolvability result
for integration by showing that there exists
a class E of expressions for which no algorithm
exists for deciding whether each expression in
E was equivalent to 0. If we consider the
class of integrals

2
Re x dx,

where R is some specially chosen member of E,
then if R is equivalent to 0, the integral
exists in closed form (in fact, it is a con-
stant). If R is not equivalent to 0, then the
integral cannot be expressed in closed form
due to the well-known properties of

2
x

e

and those of the chosen members of E. As it
turns out, Richardson's major result was the
demonstration of the existence of the class E,
rather than the application of this result
to integration.

The starting point for most unsolvability
results in algebraic manipulation is Hilbert's
Tenth Problem. This problem, which is also
known as the Diophantine Problem, asks whether
there exists an algorithm for telling whether
polynomials in several variables with integer
coefficients have solutions which are integers.
This problem has been recently shown to be
recursively unsolvable. In 1965, it was known
that a version of the problem, called the
Exponential Diophantine Problem, was unsolvable.
Today, one can use the unsolvability of
Hilbert's Tenth Problem to claim that there
exists a polynomial P(Y,Xl,X2, ... ,x n)
such that the question of whether P = 0 had
integer solutions for Xl,X 2, ... ,x n for
varying integral values of y could not be
solved by an algorithm. One can generalize
this problem to determine whether P had real
roots by asking whether

n 2
sin nx i + p2(y,xl,x2, ... ,x n)

i=l
= 0

since sinTrxi= 0 forces each x i to be an integer.

By manipulating the equation above, Richardson
was able to show that there exists a function
G(y,x) such that as y varies over the integers
one can not tell whether there exist real
values of x such that G(y,x) < 0.

At this point we have an undecidability
result for the class of expressions formed by
the rational numbers and n, the variable x,
the operations of addition and multiplication,
and the sine function (which can be nested).

By adding the absolute value function to this
class Richardson was able to modify G to a
function F(y,x) such that F(y,x) m 0 could not
be determined by an algorithm as y varied over
the integers. This is Richardson's major
unsolvability result.

Several corollaries of Richardson's
theorem were derived by Fenichel [14] to show
that, among other things, one could not deter-
mine the limit of every expression which
possessed a limit.

Risch [38] used the fact that

log(e x) = x + 2kni ,

for some integer k, to generate an unsolvable
integration problem by using Hilbert's Tenth
Problem and Richardson's device of integrating
a multiple of

2
x

e

In [29], we used the fact that the differ-
ential equation

y, + y2 = 1 + (~ 2 I) , p a constant,
x

has a solution which is a rational function in
x if and only if p is an integer. Thus we
were able to generate systems of ordinary
differential equations for which one cannot
decide whether they possess rational functions
as solutions.

4.0 Prospects for the Future

Although the field of algebraic manipula-
tion can already claim a number of important
advances in the design of algorithms, and a
significant number of important applications,
one cannot yet say that the field has stabil-
ized. Designers have made substantial improve-
ments to their systems just in the last year.
Much of what we discussed in this paper, the
conventional lexicographic ordering of expres-
sions, the variety of substitution techniques,
and canonical simplifiers, is only available
in systems in an experimental nature. There-
fore, any predictions about the future state
of algebraic simplification are made on
shaky grounds. Nonetheless, we shall attempt
some predictions, albeit fairly consegvative
ones.

Practitioners in the field of algebraic
manipulation, just as in much of computer
science, can be divided into three major cate-
gories: theoreticians, systems designers, and
users. Theoreticians tend to design radical
and new left systems since the algorithms in
such systems are most easily defined. Users
with substantial problems to solve also tend
to design radical and new left systems since
the needs of such users are very special and
frequently do not require the flexibility
offered by liberal, conservative, or catholic
systems. Systems designers expect a great
variety of users and therefore tend to build
systems with liberal or conservative components.
We have already witnessed the demise of purely
conservative systems. In the next few years
we may witness the demise of purely liberal
systems. The reason for the diminished import-
ance of such systems is the efficiency of the
algorithms provided in radical systems or
subsystems. It would not be surprising if

Z98

many radical systems mature into new left sys- 9) Collins, G., "PM, A System for Polynomial
tems when the disadvantages of canonical forms Manipulation," Comm. ACM, vol.9, no.8,
become unbearable. This would leave the new Aug. 1966, pp.578-589.
left systems with a single representation
which is a compromise between the radical and 10) Collins, G., "The SAC-I System: An Intro-
liberal representations, and the catholic duction and Survey," these proceedings.
systems with their multiple representations.
We believe that the theoreticians and the major ii) Collins, G., "Subresultants and Reduced
users will tend to gravitate to the new left Polynomial Remainder Sequences, "
systems and the systems designers to the
catholic ones.

We expect to see theoretical results
about simplification algorithms encompass in-
creasingly larger classes of expressions.
Risch's results about relationships of expon-
entials and logs of different arguments will
probably be extended to a number of other
functions.

The generality of the extensions which
can be made to Richardson's zero-equivalence
algorithm lead one to expect that in the next
few years it will be possible for a user to
define a function as a solution to a differen-
tial equation and then employ that function
immediately in a calculation.

One thing that we do not expect is that
the difficulties of using algebraic manipula-
tion systems will disappear completely. Users
will continue to complain, and designers will,
hopefully, continue to improve their creations.

Acknowledgements

Work reported herein was supported in
part by Project MAC, an M.I.T. research
project sponsored by the Advanced Research
Projects Agency, Department of Defense, under

Journal of the ACM, vol.14, Jan. 1967,
pp.128-142.

12) Engeli, M., "User's Manual for the Formula
Manipulation Language SYMBAL," Univer-
sity of Texas at Austin, Computer
Center, 1968.

13) Fateman, R., "The User-Level Semantic
Matching Capability in MACSYMA," these
proceedings.

14) Fenichel, R., "An On-Line System for
Algebraic Manipulation," PhD. dissert.,
Harvard U., Cambridge, Mass., 1966.

15) Goldberg, S.H., "Solution of an Electrical
Network Using a Digital Computer,"
M.S. Thesis, MIT, Cambridge, Mass.,1959.

16) Hall, A., "The ALTRAN System for Rational
Function Manipulation - A Survey,"
these proceedings.

17) Hart, T., "Simplify," Memo.27, Artificial
Intelligence Group, Project MAC, MIT,
Cambridge, Mass., 1961.

Office of Naval Research Contract Nonr-4102(01). 18) Hearn, A., "REDUCE: A User-Oriented Inter-
active System for Algebraic Simplifica-

References tion," In Interactive Systems for
Experimental Applied Mathematics,

i) Academic Press, New York, pp.79-90.

2)

Abrahams, P.W., "Applications of LISP to
Sequence Prediction," CACM, vol.9, no.8,
p.551, Aug. 1966. 19) Hearn, A., "The Problem of Substitution,"

in Proceedings of the 1968 Summer
Blair, F. et al., "SCRATCHPAD/i: An Inter- Institute on Symbolic Mathematical

active Facility for Symbolic Mathematics," Computation, IBM, Cambridge, Mass.,
these proceedings.

3) Brown, W.S., et al., "The ALPAK System for
Non-Numerical Algebra on a Digital
Computer-II," Bell System Technical
Journal, vol. XLIII, no.2, pp.785-804,
March, 1964.

4) Brown, W.S., "Rational Exponential Expres-
sions and a Conjecture Concerning
and e," Amer. Math. Monthly, voi.76,
pp.28-34, Jan. 1969.

5) Brown, W.S., "On Euclid's Algorithm and
the Computation of Polynomial Greatest
Common Divisors," these proceedings.

6) Caviness, B.F., "On Canonical Forms and
Simplification," PhD disser., Carnegie-
Mellon U., Pitts. Pa., Aug. 1967.

7) Caviness, B.F., "On Canonical Forms and
Simplification," Journal of the ACM,
vol.17, no.2, April 1970, pp.385-396.

8) Christensen, C., and Karr, M., "IAM, A
System for Interactive Algebraic
Manipulation," these proceedings.

pp.3-19.

20) Hearn, A., "REDUCE 2: A System and Language
for Algebraic Manipulation," these
proceedings.

21) Johnson, S., "On the Problem of Recognizing
Zero," these proceedings.

22) Korsvold, K., "An On-Line Algebraic Simp-
lification Program," Artificial Intel-
ligence Project Memo. no.37, Stanford
University, Stanford, California,
Nov. 1965.

23) Manove, M. et al., "Ratfonal Functions in
MATHLAB," in Symbol Manipulation Lan-
guages and Techniques, North-Holland,
Amsterdam, pp.86-102.

24) Martin, W., "Symbolic Mathematical Labor-
atory, "Report MAC-TR-36. Project MAC,
MIT, Cambridge, Mass., Jan. 1967.

25) Martin, W., "Determining the Equivalence
of Algebraic Expressions by Hash Coding,"
these proceedings.

299

26) Martin, W., and Fateman, R., "The MACSYMA
System," these proceedings.

27) Minsky, M., and Papert, S., Perceptrons,
MIT Press, Cambridge, Mass., 1969.

28) Moses, J., "Solutions of Systems of Poly-
nomial Equations by Elimination," Comm.
of the ACM, vol.9, no.8, Aug. 1966,
pp.634-637.

29) Moses, J., "Symbolic Integration," Report
MAC-TR-47, Project MAC, MIT, Cambridge,
Mass., Dec. 1967.

30) Moses, J., "A Canonical Form for First
Order Exponential Expressions," in
preparation.

31) Moses, J., "Sarge - A Program for Drilling
Students in Freshman Calculus Integra-
tion Problems," Project MAC memo.,
March 1968.

43) Tobey, R., "Experience with FORMAC Algor-
ithm Design," Comm. of the ACM, vol.9,
no.8, Aug. 1966, pp.589-597.

44) Tobey, R., et al. "PL/I-FORMAC Symbolic
Mathematics Interpreter," IBM,
Cambridge, Mass., 1969.

45) Tobey, R., et al., "Automatic Simplifica-
tion in FORMAC," in Proc of Fall Joint
Computer Conference, voi.27, 1965,
pp.37-52.

46) van der Waerden, B., Modern Algebra, vol. I,
F. Ungar, New York, pp.77-78.

47) Wooldridge, D., "An Algebraic Simplify
Program in LISP," Art. Intell. Project
Memo. no.ll, Stanford Univ., Stanford,
Calif., Dec. 1963.

32) Moses, J., Rothschild, L.P., and Schroeppel,
R., "A Zero Equivalence Algorithm for
Expressions Formed by Functions Defin-
able by First Order Differential Equa-
tions," in preparation.

33) Oldehoeft, A., "Analysis of Constructed
Mathematical Responses by Numeric Tests
for Equivalence," ACM National Confer-
ence Proceedings, pp.i17-124, Aug. 1969.

34) Perlis, A., et al., "A Definition of
Formula Algol," Computation Center,
Carnegie-Mellon Univ., Pitts., Pa.,
March 1966.

35) Richardson, D., "Some Unsolvable Problems
Involving Functions of a Real Variable,"
PhD dissert., Univ. of Bristol, Bristol,
England, 1966.

36) Richardson, R., "Some Unsolvable Problems
Involving Elementary Functions of a
Real Variable," Journal of Symbolic
Logic, voi.33, 1968, pp.511-520.

37) Richardson, R., "A Solution of the Identity
Problem for Integral Exponential Func-
tions," Z. Math Logik u. Grundlagen
Math, to appear.

38) Risch, R., "The Problem of Integration in
Finite Terms," Trans. of the AMS,
voi.139, May 1969, pp.167-189.

39) Risch, R., "On the Integration of Elemen-
tary Functions Which are Built up Using

Algebraic Operations," Report SP-2801-
002, Systems Develop. Corp., Santa
Monica, Calif., June 1968.

40) Risch, R., "Further Results on Elementary
Functions,"Report RC 2402, IBM Corp.,
Yorktown Heights, NY, March 1969.

41) Simon, H., The Sciences of the Artificial,
MIT Press, Cambridge, Mass., 1969.

42) Slagle, J., "A Heuristic Program that
Solves Symbolic Integration Problems
in Freshman Calculus," PhD dissert.,
MIT, May 1961.

300

A B M N R S H I

C D O P T U J K

M N A B H I R S

O P C D J K T U

R S H I A B M N

T U J K C D O P

H I R S M NAB

J K T U O P C D

IABI IMN I m, the
Let us call the array CD a, the array |OP|

IRSI I HII h. Let us call the array TU r, and the array JK array
ff I W ~

l am I w, and the array I rhl ma hr x. Then the entire array is

lwx I While the consisted of 64 simply xw original structure

symbols, it requires only 35 to write down its description:

WX
S =

XW

am rh
w = ma x = h r

AB MN RS HI
a = CD m = OP r = TU h = JK

FIGURE i.

301

PQ = M**2 - PROPI/2,

PR = QI~ + RT - RS,

PS = QS + RT - PROPI/2,

l°T = QS - PR + RT,

QS = M**2 - PROP3/2,

QT = PS - QR - RT,

PROP2 = PROPi - 2*RT + 2*RS

(b.) Relations Between Variables

((4 , ~ , 4 - (P R O P I + P R O P S) * * 2) * (- 2*IY~**g*QR - 4*QR*RT

+ 2 * R T * * 2 - RT*(PROPI+PROP3)+(PR*PROPI+RS*PROP3)

+ 2 * ~ * 2 * P R , R S / R T)

+ 4*IYI~*2*QR*(PR + R S) * (2 . ~ . 2 + RT + (PROPI+PROPS))

+ 2 * ~ * 2 * P R * R S * (2 * Q R - 6*RT - 5* (PROPI+PROP3))

+ 2*(QR - R T) * ((P R * P R O P I + R S , P R O P $) * (M * * 2 - (PROPI+PROP3))

+ 2*QR*RT* (PROP I +PROP3))

+ 2 * (Q R * * 2 + R T * * 2) * (2 * Q R * R T - (PR*PROPI+RS*PROP3)

+ RT*(PROPI+PROP~)) + 6 * I ~ * 2 * R T * * 2 * (P R O P I + P R O P S))

/ (4 *PROPI*PROP3*RT*PR*RS)

(e.) F i n a l R e s u l t P r o d u c e d by Man and M a c h i n e

F i g u r e 2

302

(IY), • 4 *

(2 * PROPI * PR * RS
- 4 * P R * * 2 * RT

2 * PR * RS * PROPg
4 * PR * RS • QT

i 0 * PR * R T * * 2
4 * PR * RT * PT

4 * PR * RT * QR
RS * RT * QR -

- g • PROPI • PR • RT - 4 * P R * * 2 • RS
- 4 • PR • R S * * 2 + 14 • PR • RS • RT +

- 4 • PR • RS * PS - 4 * PR * RS * PT -
- 4 * PR * RS * GIS - 4 * PR * R$ * Q.R. -

- 2 * PR * RT * PROP2 + 4 * PR * RT * PS +
+ 4 • PR • RT • QT + 4 • PR • RT * QS -

- 6 * R S * * 2 * RT - 4 * RS * R T * * 2 - 6 ,
6 * R T * * 5 + 6 * R T * * 2 * QR)

+ Y~*2 *

(- PROPI * PR * RS • RT + PROPI * PR * R T * * 2 + PROPI * P
R * RT * PROP2 + PROPI * R S * * 2 * RT + 2 * PROPI * RS * R T * * 2

- 2 * PROP1 * RS * RT * PT + PROPI * R T * * $ + 2 * PROPI * R l
• * 2 ~: PS + 6 * PR~c.~ * RT * QT - 2 * P R * * 2 * RT * QS + 4 *

P R * * 2 * RT * QR - 4 • PR * RS • RT * PROP2 + 4 * PR * RS • h~
PS + 8 * PR * RS ~ RT • PT + 4 * PR * RS * RT • QT + 2

, PR * RS * RT * QS - 4 • PR * RS * RT * QR + 8 * PR * RS • PS
• QT + B * PR * RS * PS • QR - 4 * PR * R T * * 5 + 2 * PR *

R T * * g * PROP2 + 4 * PR * R T * * 2 * PT + 6 * PR * R T * * 2 * QT -
4 * PR * R T * * 2 * QS + PR * RT * P R O P g * * 2 - 2 * PR * RT * PEO

P 2 * PS - 2 * PR * RT * PROP2 * PT - 2 * PR * RT * PROP2 * QT
- 2 * PR * RT * PROP2 * QS - 8 * PR • RT • PS * QT - 2 * P

R * RT * PS • QR - g * PR * RT * PT • QR + 2 * RS*~*2 * RT • QI
+ 4 * R S * * 2 * RT * QR - 4 * RS * R T * * 5 - 2 * RS * R T * * 2 *

PROPg + 4 • RS * R T * * 2 * PS - 4 * RS * R T * * 2 * PT + 6 * R
S * R T * * 2 * QT - 2 * RS * R T * * g * QS - g * RS * RT * PROPg * P

T + RS * RT * PROP2 * QR + 4 * RS * RT * PS * PT + 2 * RS
• RT * PS * QR + 4 * RS * RT * P T * * 2 + 4 * RS * RT * PT * QT

+ 4 * RS * RT * PT * QS + 4 * R T * * 3 * PS - 2 * R T * * 3 * QS
+ 4 * R T * * 3 • QR + 2 * R T * * 2 * PROPg * PS - R T * * 2 * PROP2 *
QR .- 4 * R T * * 2 * P S * * 2 - 4 * R T * * 2 • PS • PT - 4 * R T * * 2

• PS • QT - 4 • R T * * 2 • PS • QS + 4 • R T * * 2 • PS • QR + 2
• R T * * 2 • PT • QR)

- 2 * PROPI * RS * R T * * 2 * PS - 2 * P R * * 2 * RT * PROP2 * QT
+ 8 * PR * RS • RT**2 • QT + 2 * PR • RS • RT * PROP2 • QT -

B * PR * RS • RT • PS • QT - 8 * PR * RS • RT • PS • QR - 4
• PR • RS • RT • PT • QT - ,4 • PR * RT**2 • PS * QT + 4 * PR

• RT**2 • PS • QS + ,,4 • PR * RT * PROP2 • PS • QT + 2 * PR * R
T * PROP2 * PS • QR + 4 • RS**2 • RT • PT • QT - ,,4 • RS • RT**
2 * PS • QT - 8 * RS * RT • PS • PT • QT - 4 • RS • RT • PS *
P T * QR + 8 * R T * * 2 * P S * * 2 • Q T) /

4 * PROPI • PR * RS * R T * * 2 * P R O P 3)

(a.) E x p r e s s i o n I n i t i a l l y P r o d u c e d by C o m p u t e r

F i g u r e 2, E x a m p l e of R e d u c i n g the S ize of Output E x p r e s s i o n s by S u b s t i t u t i o n

303

a

a

a

-i

1

A B

2
xy

2x + 3y

x + y

.2
1

2 2
S + C

2 2
s + c

C

2 3
x y

3x + 4y + 1

bx + by + 1

.4
1 + 1

4 4 s + 2s2c 2 + c

3
S - S

2
c

Alternative
Results

axy,

a2/y,

2 3
x y

3x + 4y + i,

x 4
i,

_y + 3
~a + 1

ab + 1

-S

Figure 3.

304

