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Summary 

MACSYMA is a system for symbolic 
manipulation of algebraic expressions which is 
being developed at Project MAC, M.I.T. This 
paper discusses its philosophy, goals, and 
current achievements. 

Drawing on the past work of Martin [6], 
Moses [9], and Engelman [I], it extends the 
capabilities of automated algebraic manipula- 
tion systems in several areas, including 
a) limit calculations 
b) symbolic integration 
c) solution of equations 
d) canonical simplification 
e) user-level pattern matching 
f) user-specified expression manipulation 
g) programming and bookkeeping assistance 

MACSYMA makes extensive use of the power 
of its rational function subsystem. The 
facilities derived from this are discussed in 
considerable detail. 

An appendix briefly notes some 
highlights of the overall system. 
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I -Introduction and Goals 

Computers have an important role to play 
in applied mathematics. Their ability to 
accurately carry out large numbers of 
computational steps has revolutionized the 
field of numerical analysis. Many classical 
methods for hand calculation of approximate 
solutions (such as higher-order quadrature 
formulas) have been abandoned. It may turn 
out, however, that some years from now this 
will be only a minor part of the computers' 
contributions to applied mathematics. By 
extrapolating from the successful applications 
of symbolic computer methods already reported, 
and from the current research in problem- 
solving by computer, one can imagine a 
computer system which serves the mathematician 
as a tireless, capable, knowledgeable servant, 

co-worker, and occasionally, mentor. The 
system would know and be able to apply all of 
the straightforward techniques of mathematical 
analysis. In addition, it would be a 
storehouse of the knowledge accumulated about 
many specific problem areas, such as 
treatments of differential equations or 
series. In some areas, such as symbolic 
integration, it would apply complex and 
tedious algorithms to produce results 
considered to be in the domain of unstructured 
problem-solvlng only a few years ago. 

If such a system can be constructed, its 
impact on applied mathematics would be 
substantial. Books would still be used, but 
only for tutorial exposition. It would be 
possible for the casual mathematician at a 
time-shared computer terminal to bring to bear 
on his problem a wider and more current range 
of methods and information. It seems 
reasonable to expect that a mathematician's 
thinking and productivity would be stimulated 
when he could quickly work out the conse- 
quences of his ideas. The way would be opened 
for the discovery of new problem-solving tech- 
niques. 

These goals are not new, nor are they 
unique to mathematics. There are clear 
parallels in systems design, medical diag- 
nosis, and interactive problem solving in many 
fields. We mention them here because we plan 
to extend the MACSYMA system until it becomes 
clear whether or not such goals can be 
attained. We feel that we will be able to do 
this. Our rough hypothesis is that a mathema- 
tician knows perhaps 10,000 mathematical 
facts. For example, if a student learned four 
facts an hour, four hours a day, five days a 
week, nine months a year for four years, he 
would learn some 12,000 facts. The average 
mathematician may not be able to sustain this 
pace with complete retention, but he has been 
learning for a longer time period. At 
present, the MACSYMA system contains perhaps 
500 mathematical facts. For the system to be 
generally acceptable as a mathematical co- 
worker, we might estimate that it is necessary 
to expand the knowledge content of the current 
system by a factor of 20. The current know- 
ledge is embodied in a program of about 30,000 
computer words, embedded in a 60,000 word 
system. The expanded program might then be 
around b00,000-1,000,000 words, assuming that 
the growth will be roughly linear with the 
number of facts added. 

This roughly linear estimate for 
expansion is based on system programming 
considerations which arise in the construction 
of large systems of this type. If the 
interaction of every fact with every other 
fact had to be explicitly represented, then 
the size of the program would tend to grow as 
the square of the number of facts. Our 
experience to date indicates that this will 
not occur. The MACSYMA system currently 
consists of about 20 principal modules. The 
interactions are of two types, inter-module 
and intra-module. As a module is asked to 
communicate with an increasing number of other 
modules, its internal complexity does 
increase, but the increase does not continue 
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indefinitely as more modules are added. There 
is a limit to the number of really distinct 
and valuable facets which we have been able to 
find for a module to present to the world. 

It may be argued that a system 
consisting of many independent modules will 
lack global understanding; that the facts 
will be in the system, but the mathematician 
will not know how to obtain them. This is 
certainly the case in the large programs which 
have been developed for time-sharlng and 
operating systems. These might be 
characterized as being ineffectively 
hierarchical, with many duplicate functional 
units. The FORTRAN and PL/I subroutine 
libraries may be similar, but incompatible; 
also, there are many possible (perhaps super- 
fluous) communication links between modules. 
These systems are, however, very useful. We 
picture the MACSYMA system as more 
hierarchical and more closely knit than 
current time-sharing or operating systems. 
Just how useful a personality it can be made 
to present to the world is one of the objects 
of our research. 

We have grave doubts about the 
usefulness of large systems constructed 
through the haphazard contributions of unso- 
phisticated users. Every new bit of the 
system must be carefully integrated with the 
old. 

In addition, we rely heavily on the work 
of our colleagues in the field for the 
analysis and development of new symbolic 
algorithms, it is their work which makes us 
feel that our goal of amassing the fastest and 
most powerful techniques can be realized. 

While systems like MACSYMA must be 
carefully integrated, they must not be 
restricted to an inflexible language, a single 
data representation, or a minimal set of 
transformations. A powerful algebraic manipu- 
lation system must respond to a variety of 
demands and constraints, both from internal 
modules, and external users. We attempt to do 
this by providing a small number of carefully 
chosen alternative approaches, rather than one 
very general one. 

The more specifically a data repre- 
sentation and algorithm is tailored to a given 
application, the greater power the program has 
for that application. On the other hand, such 
programs require a great deal of effort to 
write and are less generally applicable. Our 
opinion is that the greatest gain in power 
comes from applying, in each case, an 
algorithm which fully exploits the mathema- 
tical properties of the problem to be solved. 
A smaller gain, which tends to be independent 
of problem size, comes from optimum selection 
of the data representation. We are employing 
a three part approach: (a) We provide a 
general language and data representation so 
that a user may code any algorithm he wishes, 
although the execution may be inefficient; 
(b) We try to provide all of the necessary 
basic algorithms, along with special data rep- 
resentations, if they are appropriate to make 
the algorithms efficient; and (c) We are 
initiating research in automated algorithm and 
data-representation improvement. 

To expand on point (a), our approach to 
user language is also based on a combination 
of, rather than a compromise between, ease of 
use and efficiency. We want to make it 
possible for the user to use notation natural 
to his problem, although we must restrict him 
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somewhat to the framework of notations we have 
chosen for our user-computer interface. On 
the other hand, we are willing to make 
substantial transformations on the input in 
computing the internal form of an expression. 

It is clear that the system we are 
trying to create is a very ambitious one. 
Nevertheless, we think it is appropriate 
because it focuses our thinking and efforts on 
the important computer science questions of 
the day. 

One of these is the creation of 
intelligent systems and the modeling of 
thinking and problem solving. Several years 
ago it was optimistically predicted that 
computers would by now be proving important 
new theorems. This has not come to pass for 
several reasons. The general techniques 
available for improving search strategies have 
not turned out to be very powerful, and it is 
not as easy to invent methods for programs to 
learn new information as had been hoped. 
Nevertheless, the performance of programs 
which have had information added "by hand" has 
been impressive. For example, there are pro- 
grams which converse in English, and answer 
questions concerned with a suitable non- 
trivial data-base. The question of what could 
be done by a program possessing the same 
knowledge of a subject as the best human 
problem solvers has been raised. In the past 
few years the techniques and languages for 
writing such programs have been greatly 
improved. 

The related question of computer aided 
instruction involves bringing people into a 
controlled environment which "understands" 
what they are thinking about. To do this, the 
environment must know something of value which 
the person wishes to learn, so that it can 
interact with him in depth. The MACSYMA 
system already contains features, and has 
solved problems, which have proved of interest 
to applied mathematicians (a group of skilled 
problem solvers) and has experienced contin- 
ually increased demand as more features have 
been added. The MACSYMA system offers a 
concrete example for study of man-machine 
interactive problem solving. 

Another problem area is the management 
of large programs and the automation of the 
programming process. Experience in the design 
of systems of the hierarchical nature of 
algebraic manipulation programs has lead to 
several conclusions discussed earlier. 
Problems of intelligent information retrieval 
and management of large complex data bases 
also arise in this area. 

Finally, the careful analysis of mathe- 
matical algorithms, which has been an 
important input to our design effort, 
constitutes new data for those interested in 
building a useful theory of computation. 

II - An Overview of the Current MACSYMA System 

The principal modules of the current 
MACSYMA system are shown in Figure 1. Modules 
are shown linked to those other modules on 
which they depend heavily. Those modules 
still under development are shown as squares. 

The initial development goal of MACSYMA 
was to combine the results of the doctoral 
research of Martin [6] and Moses [9] with the 
ideas in Engelman's MATHLAB [1]. This 
suggested an interactive system written in 
LISP which emphasized step-by-step problem 



solving. We also wanted to add new algorithms 
for handling arbitrary precision arithmetic, 
polynomials, rational functions, and 
integration. Except for the integration 
algorithm, which does not include all the 
capabilities we know how to implement, this 
initial goal has largely been met, and the 
system has reached new levels of performance 
in the following areas: 

a) Obtaining limits and some cases of 
infinite integrals 
b) Solving equations 
c) Canonical simplification 
d) User-level pattern matching capabilities 
e) User specification of transformations on 

expressions 
f) Programming and bookkeeping assis%ance. 

The ideas used for simplification [8], 
integration [7], display [5], limits [ii] and 
pattern matching [2] have been presented in 
detail in Separate papers. In this paper we 
will give an overview of MACSYMA by 
demonstrating the facilities for user 
specification of transformations, algorithms, 
and simplifications. We will then describe in 
some detail the routines for handling rational 
functions and the solution of equations. 

We expect that one use of MACSYMA will 
be the symbolic recasting of a problem as a 
prelude to numerical solution. Appendix II 
gives a specific example. It outlines the 
steps required to transform some differential 
equations describing a boundary layer so that 
they are expressed in terms of a more inter- 
esting set of independent and dependent 
variables. The recasting involves a knowledge 
of the magnitudes of certain quantities and 
how fast they may vary. We use this 
information to apply truncated series 
expansions (or neglect small terms 
altogether). We also apply various side 
relations. 

Thwaites [i0] suggests that the basic 
concern of applied mathematics is the 
approximate solution of canonical equations 
such as the ones we will be dealing with. The 
approximations can be motivated by either 
mathematical or physical considerations. If a 
machine is to automatically apply 
approximations based on physical 
considerations, it must know the relevant 
physics as well as the mathematics. It seems 
unlikely that such problems will be solved in 
the near future without the step-by-step 
guidance of someone familiar with the relevant 
physical interpretations. In order to work 
with the computer, the mathematician must be 
explicit and precise. The challenge to 
systems designers is to reduce the burden 
which the system places on its users. 

i. Step-by-Step Problem Solutions - Two 
Examples 

Let us preview some of the aspects of problem 
solving which must be considered in designing 
an interactive language. 

First, an error in a command can be 
lexical (e.g. spelling), syntactic or 
semantic. Lexical and syntactic errors are 
often most easily corrected by operations on 
character strings, while semantic errors can 
often be corrected using mathematically 
meaningful operations. 

Second, the user must specify precisely 
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when and how much evaluation of operations is 
to be done. He must also be careful about the 
scope of the assignment of specific values to 
variables or operators. 

Third, a user may extend the system 
language in several ways: 
a) By renaming concepts already known to the 

system, or specifying which of a set of 
alternatives is to apply 
b) By modifying and extending known concepts 

such as supplying the derivatives of certain 
functions 
or c) By defining his own concepts. 

Each of these operations presents special 
problems. 

Finally, the user and the machine must 
be able to discuss the problem solving process 
itself. For example, in MACSYMA, each command 
and result is automatically given a name. The 
user can supply his own names by use of the 
":" assignment. Furthermore, the most recent 
expression can always be referred to as "%". 

To illustrate the difficulties of solving 
a problem interactively, let us carry out a 
few steps of the calculation outlined in 
Appendix II. First we input the physical 
equations. 

MACSYMA types the label (Ci). The user 
then types a command in the MACSYMA input 
language: 

(Ci) RHO*(U*DERIVATIVE(U,X)+V*DERIVATIVE(U,Y)) 
:DERIVATIVE(MU*DERIVATIVE(U,Y),Y)-DERIVATIV 
(P,X)+J*B)@ 

INPUT ERROR AT THE POINT MARKED BY ****** 

RHO*(U*DERIVATIVE(UjX)+V*DERIVATIVE(U,Y))=DERI 
VATIVE(MU*DERIVATIVE(U,Y),Y)-DERIVATIV(F,X)+J* 
B******) 

PLEASE REPHRASE OR EDIT 

The command is terminated by typing an "@" 
which indicates that the command is to be 
read, evaluated, and the result displayed. 
Terminating the command with a "$" instead of 
the "@" suppresses the display of the result. 

The command is incorrect because it has 
an extra right parenthesis at the end. It is 
not necessary to retype the expression, 
because the line may be edited by a string 
editor at the top level of MACSYMA. The 
system retypes the line label, and we respond 
with "#", which loads the previous (erroneous) 
string into a buffer and displays the contents 
of the buffer. The character " " acts as a 
cursor which marks the place currently being 
examined by the editor. We want to delete the 
last ")", so we use a command to search for 
J'B, and delete the character following the 
cursor. Typing an extra "#" exits from the 
editor, and "@" then executes the new command 
string. The rest of the computer conversa- 
tion looks like: 

(Cl) # 
RHO*(U*DERIVATIVE(U,X)+V*DERIVATIVE(U,Y))=DER 

TVATIVE(MU*DERIVATIVE(U,Y),Y)-DERIVATIV(PjX)+J 
*B) 
SJ*B# 
RHO*(U*DERIVATIVE(UjX)+V*DERIVATIVE(UjY))=DERI 
VATIVE(MU*DERIVATIVE(U,Y),Y)-DERIVATIV(PjX)+J* 
B_) 
D 
RHO*(U*DERIVATIVE(U,X)+V*DERIVATIVE(U,Y))=DERI 
VATIVE(MU*DERIVATIVE(UjY),Y)-DERIVATIV(P,X)+J* 



B #I 

RHO* ( U* DERIVATIVE ( U, X ) +V*DERIVATI VE ( U, Y ) ) =DERI 
VATIVE ( MU*DERIVATIVE ( U, Y ), Y )-DERIVATIV (P, X) +J* 
B 
@ 

DU DU D DU 
(Ol) RHO ((--) V + U (--)) = --MU (--) 

DY DX DY DY 

- DERIVATIV(P,X) + B J 

The command has been read in and evaluated as 
a mathematical expression by the MACSYMA 
evaluator. The evaluator lets any symbol 
which has not been assigned a value 
previously, stand for itself. Operations such 
as integration, differentiation, and 
exponentiation are not carried out 
automatically, but they can be evaluated in 
several ways. For example, if we had typed 

DIFF (MU*DERIVATIVE ( U, Y ), Y ) 
instead of 

DERIVATIVE ( MU* DERIVATIVE ( U, Y ), Y ) 
we would have obtained 

2 
D U 

MU ..... 
2 

DY 

since MU has not been declared dependent on X. 
Returning to expression D1, we see that 
DERIVATIVE has been spelled incorrectly. 
There are two ways we can fix this. One is to 
type the command STRING(DI) $, which will 
convert D1 into a character string in the 
input buffer; we can then edit it as before. 
The second way is to use the SUBSTITUTE 
command : 
(C2) SUBSTITUTE(DERIVATIVE,DERIVATIV,%)@ 

DU DU D DU DP 
(D2) RHO ((--) V + U (--)) = --MU (--) - (--) 

DY DX DY DY DX 

+ BJ 
Note that a product is indicated by a 

"*" on input, but by a space on output. The 
user can call for *'s on output by typing 
NOSTAR ( FALSE ) $. 

We have now succeeded in inputting the 
first of our two equations. In order to 
reduced the chance of more typing errors, we 
will tell the input routine that by D we mean 
DERIVATIVE. That is, we give DERIVATIVE the 
alias D. using this alias, we input the second 
equation on llne C4. 

(C3) ALIAS (D, DERIVATIVE) $ 

(C4) RHO*C [P ]* (U*D(T,X) +V*D (T,Y)) = 
D(K*D(T,Y) ,Y)+MU*(D(U,Y) )**2+U*D(P,X) 
+J**2/SIGMA@ 

DT DT D DT 
(D4) C RHO ((--) U + (--) V) =--K (--) 

P DX DY DY DY 
2 2 

DU DP J 
+ Mu (--) + (--) u + ..... 

DY DX SIGMA 

The next step in the calculation, 
deriving the free stream equations, consists 
of setting the derivatives with respect to Y 
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equal to zero. We can define an operator 
which will do just that by using the pattern 
matching subsystem. 

(C5) DECLARE(AA,TRUE)$ 

(C6) DEFRULE(DYZERO,D(AA,Y),0)$ 

We first declare that AA should match 
any expression. We then define the rule 
DYZERO to match any subexpression which is a 
derivative with respect to Y, and replace it 
with zero. We now apply this rule to our 
equations. 

(C7) APPLYi(D2,DYZERO)@ 
DU DP 

(D7) RHO U (--) = B J - (--) 
DX DX 

(C8) APPLYi(D4,DYZERO)@ 

(DS) 

2 
DT J DP 

C RHO (--) U = + (--) U 
P DX SIGMA DX 

Equations D7 and D8 are satisfied by the 
free stream values of RHO, SIGMA, U, and T. 
Let us call these values RHO[INF], SIGMA[INF], 
U[INF], and T[INF]. To avoid confusion, we 
should substitute the latter values for the 
former in D7 and D8. There are several ways 
we can do this; one of them is the SUBSTITUTE 
command illustrated earlier. To make a point 
about the interaction between variables and 
the environment, we will use the EV or 
"evaluate" command to perform an evaluation in 
a local environment. If we wished to make a 
global substitution, we would type the com- 
mands RHO:RHO[INF]$, SIGMA:SIGMA[INF]$, 
U:U[INF]$, and T:T[INF]$. Then by evaluating 
D7 and D8, we can cause the new values of RHO 
(etc.) to be substituted in. The disadvantage 
of this method is that we have set values in 
the top level environment which will remain 
after the time we have used them. We could 
remove the values by executing ATOM(RHO):TRUE$ 
(etc.), which would return RHO (etc.) to the 
status of standing for itself; but, since we 
will be working further with both RHO and 
RHO[INF] this could lead to confusion. Let us 
therefore evaluate D7 and D8 in a local 
environment: 
(C9) EV(D7,RHO=RHO[INF],U=U[INF])@ 

(D9) 
D DP 

RHO U (--U ) = B J - (--) 
INF INF DX INF DX 

(Ci0) EV(D8,RH0=RHO[INF],U=U[INF],SIGMA 
=SIGMA[INF],T=T[INF])@ 

2 
D J 

(D10) RHO U C (--T ) - 
INF INF P DX INF SIGMA 

INF 

DP 
+ u (--) 

INF DX 

The next step is to substitute the left 
side of D10 for the last two terms of D2. We 
can talk about the left side of D2 by using 
the PART command. PART(exp,nl,...,nk) obtains 
a subexpresslon of exp which is specified 
through the indices (ni). The index nl 



selects the nlth argument of the top level 
operator; the index n2 picks up the n2th 
argument of the result of PART(exp,nl). Thus 
PART(D2,1) is the left side of D2, while 
PART(D2,2) is the right side. In order to use 
PART on, for example, a quotient, we must know 
that the numerator is considered the first 
argument. The function DPART will display the 
expression with the specified subexpression 
enclosed in a box. This gives the user a 
simple method of verifying his specification. 
To check our specification of the last two 
terms of D2 we type: 
(Cll) DPART(D2,2,(2,3))@ 

DU DU 
(Dii) RHO ((--) V + U (--)) = 

DY DX 

D DU ! DP ! 
--MU (--) + I - (--) + B J l 
DY DY ! DX ! 

(C12) SUBSTPART(PART(Di0,1),D2,2,(2,3))@ 

DU DU D DU 
(Di2) RHO ((--) V + U (--)) = --MU (--) 

DY DX DY DY 

D 
+ RHO U (--U ) 

INF INF DX INF 

We leave the problem at this stage, 
because we have illustrated our points; 
further steps in the solution can be found in 
[6]. 

By now the reader has probably observed 
that these operations might be carried out 
more easily by hand. This is true for these 
first few steps, but as the calculation pro- 
gresses, the size of the expressions grow, (so 
that the hand solution of the rest of the 
problem required three months) while the com- 
mands remain at about the same level of 
complexity. We feel that the commands shown 
above are actually quite easy to use, provided 
that the user has a thorough knowledge of the 
MACSYMA language. Since it may not be 
possible for a mathematician to work closely 
with a system without knowledge of a suitable 
language, our goal has been to make that 
language natural, expressive, and powerful. 

Some less obvious aspects of MACSYMA 
should also be noted. To avoid filling fast 
core memory with previous results, the system 
automatically moves old data to secondary 
storage. The user can control the rate of 
transfer of expressions, and can, if he 
wishes, move all but the current command 
string out of core. At the end of a session 
with MACSYMA, the user may want to create a 
file containing the main steps in a 
calculation which has been performed. MACSYMA 
gives him facilities to do this. Furthermore, 
the data can be translated into "human- 
readable" form and displayed on high-speed 
line printers with a larger line width. Many 
parts of this text were produced directly by 
MACSYMA, and altered only slightly for the 
sake of the text Justification program used 
for printing this paper. 

Our next example is the solution of a 
classical problem in algebraic manipulation, 
the so-called F and G series problem of 

dynamical astronomy. The series Fi and Gi are 
given by recursion relations and initial 
values. The results are polynomials in 
EPSILON, MU, and SIGMA. 

In MACSYMA, subscripted variables and 
functions are represented by arrays. The 
arrays need not have their dimensions 
declared, and may have the value of their 
entries defined by some function. The 
function will be evaluated whenever the value 
of a specific entry is called for, and that 
value has not been found previously. At any 
time the value of an entry is specified by the 
user or found by evaluating the function, it 
is saved. Thus to specify the F and G 
computation we use lines C1 through C5 to 
specify the derivatives and initial values, 
and C6 and C7 to define the recursion 
relations. Line D8 prints out one of the 
values. 
(Cl) D(MU,T):-3*MU*SIGMA$ 

(C2) D(SIGMA,T):EPSILON-2*SIGMA**2$ 

(C3) D(EPSILON,T):-SIGMA*(MU+2*EPSILON)$ 

(C4) F[O]:i$ 

(c5) G[O]:0$ 

(C6) F[I]:=EXPAND(-MU*G[I-I]+DIFF(F[I-i],T))$ 

(C7) G[I]:=EXPAND(F[I-i]+DIFF(G[I-I],T))$ 

(c8) F[5]@ 
3 

(D8) 105 MU SIGMA - 15 MU 2 SIGMA 

- 45 EPSILON MU SIGMA 

Rather than continue this inrormal 
discussion to include all of the currently 
implemented and proposed commands and 
facilities, we have relegated most of these 
details to a brief treatment in Appendix I. 
Detailed discussions of many commands can be 
found in the other MACSYMA papers in these 
proceedings. We will, however, touch upon a 
few commands to make some points about our 
philosophy, and then proceed to discuss in 
detail a major set of facilities not treated 
elsewhere. 

2. Extension of facilities 

One of the most difficult problems of 
designing algebraic manipulation systems is 
allowing for new knowledge to be added to old. 
Several efforts along these lines which 
demonstrate our approaches deserve some 
attention. 

The TELLSIMP [2] facility allows the 
user to define new simplification rules which 
will be applied by the built in simplification 
routine. It is expected that most of these 
new rules will specify the simplification of 
expressions containing functions previously 
unknown to MACSYMA. Thus the MACSYMA 
environment can be significantly altered in 
response to new problem areas. 

In a similar vein, the assignment 
operation ":" checks to see if its left 
operand is an operator or a function. For 
example, if it is a derivative, it is assumed 
that a value is being assigned for future use 
by the differentiator. Thus derivatives of 
variables or arbitrary functions may be 
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defined in a simple manner. We have already 
seen this used in the F and G series 
calculation example, where derivatives of 
EPSILON, MU, and SIGMA were defined. 

As was pointed out in the Introduction, 
MACSYMA seeks to make available most basic 
algorithms implemented in the most efficient 
manner possible. Many of the modular 
arithmetic algorithms described in this 
proceedings have been or are currently being 
implemented in MACSYMA, some to replace their 
traditional, inefficient predecessors. Among 
these Berlekamp's polynomial factorization 
algorithm, and the modular greatest common 
divisor algorithm are foremost. 

New developments and extensions in the host 
language for MACSYMA, LISP, will further 
influence our product. A new LISP compiler 
which approaches in the quality of its 
generated code an optimizing FORTRAN compiler 
will allow us to prove to the legions of LISP 
nay-sayers that, properly done, LISP is an 
entirely appropriate programming formalism and 
system for this type of work. 

III- Rational Function Commands 

This section concerns one of the 
critical design decision in MACSYMA which we 
believe contribute greatly to its usefulness. 
This decision was that algorithms should have 
special data types when it is necessary for 
their proper operation. The rational function 
package embodies the essentials of a special 
data type, which, by suitable treatment, has 
yielded a number of new results. Because of 
their significance in the design and 
philosophy of MACSYMA, and in their practical 
implications, the rational function commands 
are treated in greater detail here. 

Moses [8] distinguishes between the 
"radical" approach to algebraic manipulation, 
and the "conservative" approach. According to 
this classification, a radical system will 
transform a user-supplied expression into an 
internal format which consists of an encoding 
of the expression in a special unique simpli- 
fied form. This transformation generally 
destroys superficial resemblances between the 
input and output. The only attribute 
necessarily preserved is the functional value 
of the expression. Polynomial and rational 
function systems generally fall in the 
"radical" category. The contrasting 
"conservative" approach does almost nothing 
but that which is specified by the user; it 
keeps the internal form as nearly the same as 
the external form as is possible, and 
generally accepts a wide variety of expres- 
sions (wider than polynomials and rational 
functions). 

The top-level (i.e. "libera~'in Moses' 
terminology) "general" simplifier in MACSYMA 
takes a stance in the middle, yet allows 
certain subsystems to explore the far reaches 
of the "political" spectrum. Because of the 
conjunction of different approaches, radical 
simplification algorithms can be applied to 
expressions which would not ordinarily be 
considered proper inputs. For example, the 
ability to manipulate e**(2*x) + 2*e**x + 1 as 
a quadratic in e**x (and apply polynomial 
"radical" processing) is quite useful, even 
though the expression is not quite fair game 
for ordinary polynomial systems. MACSYMA is 
capable of factoring the above expression into 
(e**x+l)**2, and treating it as a polynomial 

in general; however, it is also capable of 
noticing that e**x can reduce to y when 
x=log(y). Polynomial or rational function 
systems are rarely aware of such possibilities 
in their data. 

1. Data types and conventional rational 
simplification. Th~sesectlons discuss the 
"radical" data handling facilities of MACSYMA, 
and their relation to the MACSYMA command 
level. In one particular instance (the SOLVE 
command) we show how radical and conservative 
handling of different parts of the same ex- 
pression can lead to an end result which could 
not be produced with either approach alone. 
Other commands where rational simplification 
or other radical approaches are essential to 
programming effective algorithms are also dis- 
cussed. 

In order to clarify the discussion, it 
is necessary to distinguish between the two 
major internal forms for expressions in 
MACSYMA. Ordinary MACSYMA form is a variant 
of the Polish prefix form which is typical of 
many list-processing implementations of 
algebraic manipulation systems. For example, 
3"x*'2 would be represented (glossing over 
inessential details) as (times 3 (expt x 2)), 
and x+y as (plus x y). By contrast, the 
canonical rational expression (CRE) form in 
MACSYMA is an internal form especially 
suitable for rapid manipulation of sparse 
polynomials and rational functions. In CRE 
form, 3"x*'2 is represented, (again, glossing 
over details) as (x 2 3). The first element 
of the llst is the variable, the second is its 
highest exponent, and the third, the coef- 
ficient of the just preceedlng exponent. Thus 
6"x*'2+4 is represented as (x 2 6 0 4), and, 
allowing coefficients themselves to be poly- 
nomials, x**2*y +7*x*z is (x 2 (y 1 l) 1 (z 1 
7)). Since (y 1 (x 2 l) 0 (x 1 (z 1 7))) is 
an equivalent CRE representation, it should be 
clear that the ordering of variables must be 
specified to insure that equivalent CRE's are 
identical, that is, they are in canonical 
form. 

CRE's in general represent rational ex- 
pressions, that is, ratios of polynomials, 
where the numerator and denominator have no 
common factors, and the denominator is 
positive. Thus a CRE has three essential 
parts: a variable list (VARLIST), specifying 
the ordering of the variables, and two poly- 
nomial parts. With these preliminaries, we 
can describe the actions of the rational func- 
tion commands. 

RATVARS(a,b,...) orders the variables 
listed in its argument list on a global 
variable list (VARLIST) so that the rightmost 
element of the list a,b,.., will be the main 
variable of future rational expressions in 
which it occurs, and the other variables will 
follow in sequence. If a variable is missing 
from the RATVARS list, it will be given lower 
priority than the leftmost element. If 
several variables are missing, they will be 
ordered by the MACSYMA function GREAT, which 
uses an implementation of the ordering 
algorithm described in [8]. The arguments to 
RATVARS can be either variables or non- 
rational functions (e.g. SIN(X)). 

RATSIMP(EXP) rationally simplifies the 
expression EXP. That is, EXP is converted 
into a single fraction, whose numerator and 
denominator are polynomials over the integers, 
with no common factors. EXP is written in a 
recursive form: a polynomial in the main 
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variable whose coefficients are polynomials in 
the next-higher-order variable, ..., whose 
coefficients are integers. This is 
accomplished by converting EXP into CRE, and 
then converting back to ordinary MACSYMA form 
for display. 

For example: 

(C1) (X**2-Y**2)*(Z**2+2*Z)/((X+Y)*W)@ 

(D1) 

2 2 2 
(X - Y ) (Z + 2 Z) 

w (Y + x) 

(C2) RATSIMP(Di)@ 
2 

(X - Y) Z + (2 X - 2 Y) Z- 
(D2) 

W 

(C3) RATVARS(X)$ 

(C4) RAT~IMP(D1)@ 
2 2 

X (Z + 2 Z) - Y Z 
(04) 

W 

- 2 Y Z 

FACTOR(EXP) factors the expression EXP 
into factors irreducible over the integers. 
If EXP is a rational expression (with a denom- 
inator not l) both numerator and denominator 
are factored. If FACTORFLAG is set to TRUE, 
the integer multiplier, if any, is factored 
also. The algorithm can be used to factor 
polynomials in any number of variables; 
however, factorization with respect to some of 
the variables can be avoided by setting the 
global variable DONTFACTOR to a list of such 
variables. 

For example, 

(C5) FACTOR(X**6+1)@ 

2 4 2 
(05) (X + l) (X - X + i) 

SQFR(EXP) is similar to FACTOR except 
that the polynomial factors are "square-free" 
that is, have no multiple roots. This 
algorithm, which is also used by the first 
stage of FACTOR, utilizes the fact that a 
polynomial has in common with its nth 
derivative all its factors of degree > n. Thus 
by taking derivatives with respect to each 
variable in the polynomial, all factors of 
degree ) 1 can be found. 

PARTFRAC(EXP,VAR) expands the expression 
EXP in partial fractions with respect to the 
main variable, VAR. The algorithm employed is 
based on the fact that the denominators of the 
partial fraction expansion (the factors of the 
original denominator) are relatively prime. 
The numerators can be written as linear com- 
binations of denominators, and the expansion 
falls out. 

(C6) PARTFRAC(X/(X**2-1),X)@ 

1 1 
(06) + 

2 X- 2 2 X+ 2 

2. Contagiou 9 CRE Commands. The above 
commands represent no new capabilities; 
MATHLAB [5] has almost identical facilities, 
although its internal equivalent of our CRE's 
is less efficient for sparse polynomials. 
Other systems, by limiting their universe of 
discourse to canonical representations, make 
these commands unnecessary. 

The commands in this and the following 
sub-sectlons represent significant departures 
from the usual use of rational function 
routines. 

RAT(EXP) is indistinguishable on command 
level from RATSIMP; however, RAT leaves its 
internal result in rati6nal funct~---~CRE) 
form, so that operations used by the rational 
function commands described here can be more 
rapidly performed on it. Furthermore, any 
time the user adds to or multiplies by a CRE, 
the result is a CRE. That is, the CRE form is 
"contagious." This enables a user to easily 
force his entire calculation to be done in CRE 
form by converting one of his inputs into CRE 
by simply multiplying by RAT(l). Some 
problems require excessive amounts of storage 
and/or time if intermediate results are 
converted back into prefix form at each step 
of the calculation. The RAT facility, by 
being integrated into the simplifier, permits 
a user to compose a program and try it out 
(without any changes) on ordinary prefix form 
arguments or on CRE arguments. 

RATD~REP(EXP), which appears to do 
nothing on the command level, changes its 
argument from rational function form (CRE) to 
ordinary MACSYMA form. This is sometimes 
necessary in order to use some of the other 
MACSYMA commands. If RATDISREP is not given a 
CRE for an argument, it does nothing. 

3. The Rational Coefficent Program. 
RATCOEF(EXP,PART) returns the coefficient, C, 
of the expression PART in the expression EXP. 
C will be free (except possibly in a non-ra- 
tional sense) of the variables in PART. If no 
coefficient of this type exists, zero will be 
returned. RATCOEF will give reasonable 
answers to reasonable requests, and will often 
produce reasonable answers to poorly stated 
requests. Generally, when PART includes a 
"+" or a "/" results may seem odd. (see 
lines D7, D8, D10, and Dll in the examples to 
follow). Since EXP is rationally simplified 
before it is examined, coefficients may not 
appear quite the way they were envisioned. 
The effect of RATCOEF should be clarified by 
the following examples. 

(el) S:A*B*X**2+B*X+2*X+5@ 
2 

(Di) A B X + B X + 2 X + 5 

(C2) RATCOEF(S,X) 

(D2) B + 2 

(C3) RATCOEF(S,A*B)@ 
2 

(03) X 

(C4) RATCOEF(S,B)@ 
2 

(D4) A X + X 

(C5) RATCOEF(S,2*X)@ 
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(D5) 
B+ 2 

2 

(C6) RATCOEF(S,B/2)@ 
2 

(D6) 2 A X + 2 X 

(C7) RATCOEF(A*X+B*X+C,A+B)@ 
(O7) X 

(C8) RATCOEF(3*A+2*B,A+B)@ 
(08) 2 

(C9) RATCOEF(S,-A)@ 
2 

(D9) - B X 

(C10) RATCOEF( (A*B+C)/D,B/D)@ 
(D10) A 

(Cll) RATCOEF(3*A/D+A/D**2, A/D**2)@ 
(Dii) 0 

Let us first define RATCOEF(EXP,PART) 
where EXP is a polynomial and PART has the 
form v**k for v a variable, k a number. This 
case is clear: we expand EXP as a CRE, and 
pick off the coefficent of v**k. If there is 
no occurrence of v**k, the coefficent is 0. 
If EXP is not a polynomial, but a ratio of 
polynomials, then we must make a decision 
about how to treat occurrences of v in the 
denominator. 

Let EXP =num/denom, where num= 
Zai*v**i. If the coefficient of v**k, namely 
a k, is zero or if ak/denom depends on any 
variable in the original PART, then the 
response is zero. Otherwise the response is 
ak/denom. 

RATCOEF of a product can be defined 
recursively as follows. Consider 
RATCOEF(EXP,PART). If PART = 
vl**nl*v2**n2*...*vk**nk, then 
RATCOEF(EXP,PART) = 
RATCOEF(RATCOEF(EXP,vk**nk),vl**ni*...*v(k-~ 
**n(k-1)). 

If PART = A/B then RATCOEF(EXP,PART) = 
RATCOEF(EXP*B,A). 

If PART = 
RATCOEF(-EXP, A). 

-A, RATCOEF(EXP,PART) = 

If PART = ZAi**i (possibly after 
removing multipliers, as above), then EXP is 
divided by PART with respect to the main 
variable in PART. If the quotient depends on 
any variable in the original PART, the 
response is zero. Otherwise the answer is the 
quotient. 

The coefficient produced in this manner 
may depend, in the last case, on the ordering 
of the variables within EXP. For example, the 
coefficient of (Y+Z)*X in Z**2*X**2+(Y+Z)*X+A 
is clearly 1. The similar problem of finding 
the coefficient of X*Z+X*Y in 
X**2*Z**2+X*Z+X*Y+A yields the answer 0, since 
X**2*Z**2+X*Y+A divided by X*Z+X*Y is X*Z+l, 
with remainder -X**2*Y*Z+A. The quotient 
depends on X, and thus the coefficient is 
taken to be zero. 

This illustrates both the ability of the 
user to ask for coefficients of sums, and the 
ability of RATCOEF to sometimes answer 
correctly. We could have defined RATCOEF only 
for products, but it seems more in keeping 

with the spirit of an interactive system to 
avoid such restrictions on the user. Note 
that if the user were disappointed with the 
answer 0 to the above request, first executing 
RATVARS(X) would correct the situation. 

In summary, RATCOEF will find the coef- 
ficient of PART when PART is a factor of the 
expression, or of some part of the expression 
such that the other factor has none of the 
same variables. RATCOEF cannot be used to 
pick out the coefficient of a number. 

The returned value is in CRE form. 
An alternative to RATCOEF is available 

in situations where its flexibility is not 
needed. The COEFF command can operate on CRE 
forms or on ordinary MACSYMA forms which have 
been expanded. COEFF(EXP,VAR,POWER) will 
extract the coefficient of VAR**POWER (where 
POWER may be 0) from EXP. COEFF returns a CRE 
form if and only if it is given a CRE form. 

4. Extensions to Rational Simplifica- 
tion. FULLRATSIMP(EXP) is an expanded version 
of RATSIMP which is recursive on the arguments 
of non-rational functions. It also removes 
zero exponents, and converts forms like 
(x**y)**z to x**(y*z). Although these last 
two operations are generally performed by the 
simplification program, FULLRATSIMP must 
repeatedly simplify the results of such 
transformations until no more rational simpli- 
fications can be made. FULLRATSIMP is no more 
time-consuming than RATSIMP if EXP is an 
algebraic expression with no non-rational 
functions. 

Since any equation has a non-rational 
function, namely "=", in it, FULLRATSIMP, 
rather than RATSIMP should be used on equa- 
tions. 

A more extensive expansion of the 
concept of global simplification is embodied 
in RADCAN. While FULLRATSIMP does not apply 
any identities concerning logs, radicals, and 
non-numeric exponents, RADCAN does. 

RADCAN(EXP) converts the expression EXP 
into a form which is canonical over a large 
class of expressions and a given ordering of 
variables; that is, all functionally 
equivalent forms are mapped into a unique 
form. For a somewhat larger class of expres- 
sions, RADCAN produces a normal form; that 
is, all forms equivalent to zero are mapped 
into zero. For purely rational expressions, 
RADCAN is no more time-consumlng than RATSIMP 
or FULLRATSIMP; however, for more general ex- 
pressions including radicals, logs, and non- 
integer exponents, RADCAN can be quite 
expensive. This is the cost of exploring 
certain relationships among the components of 
the expression for simplifications based on 
factoring and partlal-fractlon expansions of 
exponents. 

A description of the method, and proofs 
of the canonical properties of the RADCAN 
algorithm are discussed in [6]. Examples 
should give a rough feel for the capabilities 
of RADCAN (% always refers to the Just- 
previously displayed expression, %E is the 
base of the natural logarithms): 

(C1) SQRT(98)@ 
(01) SQRT(98) 

(C2) RADCAN(%)@ 
(D2) 7 SQRT(2) 
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(C3) (SQRT(X**2-1))/(SQRT(X-1))@ 
2 

SQRT(X - l) 
(D3) 

SQRT(X - l) 

(C4) RADCAN(%)@ 
(D4) SQRT(X + l) 

(C5) (LOG(A**(2*X)+2*A**X+i))/(LOG(A**X+I))@ 
2 X X 

LOG(A + 2 A + l) 
(D5) 

X 
LOG(A + l) 

(C6) RADCAN(%)@ 
(D6) 2 

(C7) (%E**X-1)/(%E**(X/2)+i)@ 
X 

%E - 1 
(D7) 

X/2 
%E + i 

(C8) RADCAN(%)@ 
X/2 

(D8) %E - 1 

~. The RATSUBST (rational 
substitution) Commands. RATSUBSTn(A,B,C) 
where n = l, 2, 3, 4 is a set of similar com- 
mands to substitute A for each occurrence of B 
in the expression C. In those cases where it 
is clear where B occurs, the result will 
correspond to the intuitive notion of 
substitution. 

If B is an atom, occurrences of B are 
obvious. The action taken is simply substitu- 
tion followed by simplification. 

If B is a quotient, say bl/b2, then 
RATSUBSTn(A,B,C) is entirely equivalent to 
RATSUBSTn(A*b2,bl,C). 

If B is a product, all coefficients of 
powers of B can be detected in C by a 
technique similar to that used by RATCOEF. 
(Hearn [4] suggests this approach) If B is a 
sum, we must define what we mean by an 
occurrence of an expression B in a polynomial 
expression C. (If C is not a polynomial, we 
can consider its numerator and denominator 
separately.) 

If C = ~Si*B**i, then B is said to 
occur in C with coefficient S1 and exponent l, 
coefficient $2 and exponent 2, ..., and 
remainder SO. If B occurs in such a fashion 
we wish to replace C by ~Si*A**i. 
Unfortunately, finite power series expansions 
for an expression in terms of a non-atomic 
subexpression are not unique. For example, C 
= x**2+3*x*y+y**2 has (among others) the 
following expansions in (x+y): 

1. l*(x+y)**2 + 0*(x+y)**l + x*y*(x+y)**0 

2. l*(x+y)**2 + x*(x+y)**l - x**2*(x+y)**0 

3. l*(x+y)**2 + y*(x+y)**l - y**2*(x+y)**0 

What is needed is a set of restrictions 
on the coefficients Si so that the expansion 
is unique and appropriate to the problem at 
hand. This is the basic problem in substitu- 

tion for simplification, and this solution is 
based on a set of heuristics for achieving 
what appear to be, in some instances, more 
desirable results than have been possible in 
the past. We will separate out only the 
highest power of B, and discuss at each stage 
(recursively on lower powers of B) the situa- 
tion C = S*B**n + r, where r contains the 
lower order terms. 

As we have pointed out earlier in our 
discussion of RATCOEF, the ordering of 
variables is sometimes quite critical. "Sum"- 
hood, which is a property of a form, not of a 
function, sometimes depends on orderlng. For 
example, x*z+y*x is a sum, but (z+y)*x is (for 
purposes of RATSUBST) no~ a sum, but a 
product, although the two expressions are 
functionally equivalent. 

Let B be a polynomial containing 
variables vl,v2,...,vn, where the highest 
power of each vi is mi. For all but condition 
2 below, the only restriction on r, the 
remainder consisting of lower order terms, is 
that it has lower degree than C does in some 
particular variable (namely, the most 
important on the varlist that is also in B). 
The conditions below are embodied in the com- 
mands RATSUBST1,2,3, and 4, respectively. 
Their effects can best be gauged by frequent 
reference to the examples in figure 2. 

i. The highest power of some vi in S that 
appears in B is less than the corresponding 
mi. 
2. The highest power of eac h vi in S that 

appears in B is less than the corresponding 
mi, and the highest power of each vi in r that 
appears in B is less than the corresponding 
mi**n. 
3. S is a polynomial 
4. S contains no sum. 

The value of n ranges from the highest 
possible (the ratio of the highest coefficient 
of some vi in C which is also present in B, to 
the corresponding maximum coefficient of that 
vi in B, namely mi) to the lowest possible 
(when some vi in B is no longer present in C 
to a power as high as it is in B, or 1.). To 
avoid the possibility of looping, occurrences 
of B in C are replaced, as found, by a special 
dummy variable, which is subsequently replaced 
by A. Cases in which B occurs in A (probably 
an error on the user's part) or where simpli- 
fication of C results in new occurrences of B 
can be treated with repeated calls to 
RATSUBST. This can be easily programmed in 
MACSYMA. 

If C contains non-rational functions, 
substitution proceeds on the arguments of the 
non-rational functions, recursively. Thus A, 
B, and C need not be rational expressions. 

By noting when B has non-rational 
components (e. g., e**x, or x**(1/2)), RADCAN 
can be called on B and C, and they can be left 
in a special expanded format, which tends to 
reflect more clearly the similarities of the 
two expressions. Thus 
RATSUBST(A,E**X,E**(2*X)) is A**2. 

An example of an extension to the 
RATSUBST framework might serve to illustrate 
its generality. If there is a canonical 
ordering on all expressions submitted to 
RATSUBST, and on all intermediate expressions, 
then a RATSUBST5 could be programmed with the 
following condition: 
5. S*A**n + r has a lower canonical order 
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("is simpler") than S*B**n + r. 
By using the RATSUBST commands (E2) 

selectively, such substitutions as sin(x)**2 + 
cos(x)**2 -~> 1 can be performed more nearly in 
the sense in which they are intended. If one (D2) 
RATSUBST command does not do the Job, perhaps 
another will. 

6. The SOLVE Program. The SOLVE command 
in MACSYMA uses several techniques for solving 
for a given variable in an equation. Each of 
these techniques is open to extension in a 
straightforward manner. The roots and their 
multiplicities are available to other pro- 
grams, and are used as building blocks for 
more complicated facilities, such as contour 
integration. 

The format of the SOLVE command is: 

SOLVE(equation, variable)@ 

where the equation may also be an expression 
(which is assumed to be set equal to zero). 

SOLVE(E,X) puts its first argument E, in 
radical canonical form, and attempts to factor 
it with respect to the variable X, and all 
non-rational functions in E containing X. Each 
factor is examined for being linear, 
quadratic, cubic, or biquadratic with respect 
to X and the non-rational functions containing 
it. If the factor is of degree five or more, 
then it is considered unsolvable. Such 
unsolved factors and their multiplicities are 
put on a list which is returned along with the 
roots. 

Linear terms of the form F(X)-C are 
examined to see if C, the constant term, is 
actually free of elements containing X; if so, 
USOLVE is called. Otherwise the term is added 
to the list of unsolved factors. USOLVE knows 
the inverses of SIN, COS, ARCSIN, ARCCOS, TAN, 
ARCTAN, LOG, and powers of e. It could be 
extended to other functions. Once the inverse 
has been applied, a new equation results. It 
may be of the form X = FINVERSE(C), in which 
case the term has been solved, or it may be of 
the form G(X) = FINVERSE(C), in which case 
SOLVE is called again. This recursive 
algorithm allows for solution of, for example, 
SIN(COS(X)) = 0 for X. 

The quadratic (cubic, biquadratic) 
formula is applied to quadratic (etc.) 
factors, and the same sort of recursive 
treatment as described above is used if the 
equation is, for example, quadratic in SIN(X) 
instead of X. 

The simplification done by the quadratic 
(etc.) routines is of some interest, in that 
the roots in the formulae are simplified by a 
special program (SIMPNRT) which takes out 
perfect n*k powers of a kth root. (i.e. even 
powers in a square root, multlples-of-three 
powers in a cube root, etc.) Thus SQRT(8) is 
simplified to 2*SQRT(2). SIMPNRT calculates a 
square-free factorization of the radicand, and 
takes appropriate multiple factors, if any, 
outside the radical. 

The following examples illustrate the 
capabilities of SOLVE: 

(Ci) SOLVE(Y**(2*X)-3*Y**X+2=0,X)@ 
SOLUTION 

(El) X -- 0 

LOG(2) 
X = 

LOG(Y) 

(El,E2) 

(C3) A:X**2-12*X+3@ 
2 

(D3) X - 12 X + 3 

(C4) SOLVE(SIN(A)**2-5*SIN(A)+3jX)@ 

SOLUTION 
5 

(E4) X = 6 - SQRT(ARCSIN( 
2 

SQRT(13) 
) + 33) 

(E5) 
5 SQRT(13) 

X = SQRT(ARCSIN(- 
2 2 

) + 33) + 6 

(E6) 
SQRT(13) 5 

X = 6 - SQRT(ARCSIN( + -) + 33) 
2 2 

(E7) 
SQRT(13) 5 

X = SQRT(ARCSIN( ........ + -) + 33) + 6 
2 2 

(D7) (E4,E5,E6,ET) 

(C8) SOLVE(ARCSIN(COS(3*X))*(F(X)-I),X)@ 

SOLUTION 

ARCCOS(0) 
(E8) X - 

3 
THE ROOTS OF 

(E9) F(X) = 1 

(Dg) (E8,Eg) 

(Ci0) SOLVE(5**X=125,X)@ 

(OlO) X=3 
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Note that SOLVE has taken advantage of 
radical approaches but is still able to step 
back and treat fairly general expressions. In 
order to use the "radical" polynomial 
factoring program, it uses RADCAN to expand 
unlikely-looking expressions into polynomials. 
Thus the expression Y**(2*X)-3*Y**X+2 in C1 is 
expanded into a polynomial in Z, where Z=Y**X 
(actually Z=e**(X*log(Y))), which is then 
factored into (Z-i)*(Z-2). By setting each of 
these factors equal to zero, the following 
sequence of steps is followed: 
i. e**(X*log(Y))-i = 0 is converted by USOLVE 

to X*log(Y) = log(l) 
2. The simplifier changes this to X*log(Y) = 

0. 
3. SOLVE is called recursively, and factors 

X*log(Y): 
a. SOLVE throws out the log(Y) factor since 

it does not depend on X, and 
b. the factor "X" is recognized as a linear 

expression of the form a*X+b where a=l and 
b=0, which has solution X=-a/b, or in this 
case, X=0. 

The other root is handled in an 
analogous fashion. 
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T. Williams. 

Of the other major modules in MACSYMA, 
W. A. Martin designed and programmed the 
polynomial arithmetic package; R. Fateman 
designed and programmed the rational function 
package and its extensions (including the 
radical simplifier); J. Moses designed and 
programed the simplifier (a major overhaul of 
the Korsvold program), many of the commands 
(e.g. differentiation, substitution), and the 
integration facility. E. Tsiang and W.A. 
Martin designed and programmed the power 
series expansion routines. 

P. Wang designed and implemented the 
limit programs, and the secondary storage 
control. R. Fateman designed and implemented 
the semantic pattern matching system. The 
improved LISP compiler is the work of J. 
Golden. Others who have contributed to the 
programming include D. Hill and S. Saunders. 

In debugging these programs and in 
interfacing the different modules, it often 
became necessary for one programmer to add to 
or considerably modify another's work. In 
this sense, many of the modules are joint 
efforts. 

Within this paper, sections I, II, and 
the Appendix are the work of W. A. Martin and 
R. Fateman; the section on rational function 
commands is by R. Fateman. 
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Calculation of 

Appendix I: The Language and Commands 
of MACSYMA 

Commands to MACSYMA are strings of 
characters representing mathematical expres- 
sions, equations, arrays, functions, and pro- 
grams. Spaces and carriage returns are 
ignored. Commands are terminated by @ or $. 
@ causes the command to be evaluated and the 
result displayed. $ causes the command to be 
evaluated but the display of the result is 
suppressed. When typing commands, "rubout" 
deletes (and echoes back) the previous 
character; ?? deletes the whole command, and 
causes the line number to be redisplayed. 

The Input Stream Editor 

At any point while he is inputting a 
comand, the MACSYMA user can enter the input- 
stream editor by typing #. The editor is 
given the string of characters typed so far in 
the current command. In the case of a 
detected syntax error, the entire previous 
command string will be given to the editor. 

All the commands to the editor reference 
a cursor which is displayed within (or at 
either end of) the string of characters under 
edit. In the description to follow, n stands 
for a positive or negative integer. The 
default value of n is +i. If n is positive, 
the commands operate toward the right of the 
cursor; if n is negative, they operate toward 
the left. 

nC moves the cursor n characters. 
nL moves the cursor to the right of the 

nth carriage return (e.g. L moves to 
the next line) 

Sstring# moves the cursor to the right of the 
first occurrence of the string of 
characters "string" searching toward 
the right. (-S implies left) 

nD deletes n characters. 
nK deletes all the characters through 

the nth carriage return. (e. g., K 
deletes the remainder of this line) 

Istring# inserts tl~e characters "string" 
# leaves the editor and returns to 

inputting from the user's console. 
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System Control 

Lines are consecutively numbered, except 
that the input line Ci will be followed by an 
output line (if one is generated) named Di. 
The next input-output pair will be labelled 
C(i+l) and D(i+l), respectively. If one 
command produces several lines of output, the 
llne number will be incremented for each 
additional line. A user can refer to any com- 
mand or expression by its line label. The 
most recently outputted expression may be 
referred to as "%". 

The system automatically writes old ex- 
pressions onto secondary storage. The process 
is controlled by the following variables which 
can be set by the user. (e.g. FILESIZE:10$ 
would set FILESIZE.) 

variable default value purpose 

FILESIZE l0 Expressions are 
written out with 
FILESIZE expressions 
in each file. 

RETAINNUM 8 When the number of 
expressions in core 
reaches FILESIZE + 
RETAINNUM, a file is 
written. 

FILENAME username The first name of the 
file written out. 
The second names (our 
filing system 
requires two names 
for a file) are 
1,2,.... 

INCHAR C The prefix character 
for inputted line 
numbers. 

OUTCHAR D The prefix character 
for outputted line 
numbers. 

When an expression is written out, the 
name of the file containing it is attached to 
the expression name in core. Thus when the 
expression is referenced in a later step, it 
can be automatically retrieved from the file. 

At the end of the session, the 
secondary storage files can be deleted by the 
command FINISH(). The command FINISH(TRUE) 
allows the user to retain some or all of the 
expressions on his file. In order to specify 
the form and contents of the retained file, he 
must answer a series of questions: 

question response meaning 

OUTPUT DEVICE?(file spec) The name of the file 
on which the output 
will be saved. 

EDIT? N Save the files as 
they are. This 
response will cut off 
further questions. 

Y Read the files back 
into memory, one ex- 
pression at a timer 
so that selected ex- 
pressions can be 
saved on the 
previously specified 
file. 

INTERNAL? Y Save the expressions 
in machine readable 
form. In this form 

SAVE? Y 

they may be read back 
into a fresh system 
using RESUME. 

Save only the two 
dimensional display 
forms. 
(This is asked for 
each expression.) 
Include the expres- 
sion currently dis- 
played. 
Do not include it. 

RESUME (file specification) reads a 
file previously outputted through FINISH, dis- 
playing the commands and recomputing the 
results. BATCH(file specification) reads an 
input text from the designated file, command 
by command. When the end of the file is 
reached, further commands may be supplied by 
the user at his console. This batch- 
processing mode in time-sharing has been 
surprisingly useful in generating 
demonstrations free from typing errors. 

Rules for Expression Evaluation 

The philosophy of evaluation used in 
MACSYMA is that expressions should be 
evaluated as much as the user would normally 
desire, given the information available at 
evaluation time. 

A:X assigns A the value of X. This is 
the way a user would typically assign a value 
to a variable. Values are also assigned when 
the variables are used as labels for expres- 
sions on input and output. 

A variable which does not have a value 
stands for itself. Numbers always stand for 
themselves. The functions DERIVATIVE, 
INTEGRAL, SUM, and the transcendental 
functions are not automatically evaluated. 
Other defined functions are evaluated unless 
their names are quoted. The arguments of 
undefined functions are evaluated, but, 
obviously, the function itself cannot be 
evaluated. As an expression is evaluated, it 
is also simplified. 

If a name is subscripted (a subscript, 
recall, is enclosed in square brackets on 
input), then its value is stored in an array. 
The size of an array may be declared by the 
command ARRAYSIZE(name,size)$. An array need 
not have its dimensions declared, but if it 
has been declared, it will be permitted to 
have only numerical subscripts. At the first 
attempt to store a value in an undeclared 
array, a mechanism will be set up to describe 
the entries and their values in terms of a 
hash-coded list. The hash code can be 
computed from the subscripts whether or not 
they are numerical. If an array is 
subsequently declared, the values in the hash 
table are transferred to the new (true array) 
organization. The value of an array entry can 
be a number, expression, equation (etc.) 
regardless of whether it is a hash array or a 
true array. A hashed array is organized as 
follows: It is initially allocated a hash 
table with four entries. Each table entry 
contains a list of subscripts and values which 
hashes into that entry. Whenever the number 
of entries with values is equal to the size of 
the hash table, the size of the hash table is 
doubled. Whenever the operation ":" is 
executed, a check is made to see if the name 
is subscripted. If so, the appropriate array 
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entry is set. 
A::X assigns the value of A the value of 

X. The value of A must be a variable in this 
situation. 

Function Definitions and Arrays 

MACSYMA incorporates a programming syn- 
tax resembling Algol-60 for use on the top 
(command) level and in function definitions. 
The parser is entirely syntax directed, so 
that modifications to the grammar can be 
easily included; also, an exact definition of 
the acceptable forms (and their 
interpretations in terms of LISP and MACSYMA 

functions) can (but will not) be given. The 
syntax is illustrated in figure 3. Each of 
these constructions has fairly conventional 
interpretation, except when symbolic and 
traditional numeric notions conflict. One 
such instance is in inequalities, ~and is 
discussed in the next section in more detail. 

The first argument to ":=" (the function 
definition operator) may take one of three 

LIMIT(exR,var,val,dir) finds the limit of exp 
as the real variable var approaches the 
value val from the direction dir. Dir may 
have the value PLUS for a limit from 
above, MINUS for a limit from below, or 
may be omitted (implying a two-sided limit 
is to be computed). LIMIT uses the 
following special symbols: INF (positive 
infinity) and MINF (negative infinity). 
On output it may also use UND (undefined) 
and IND (indefinite but bounded). 

SUBSTITUTE(~,~,~) substitutes ~ for ~ in ~. 
must be an atom or a function with argu- 
ments, rather than a function with only 
some of its arguments. When ~ does not 
have these characteristics, one may 
sometimes use SUBSTPART or RATSUBST. 
SUBSTITUTE((eQ1,...,eqk),exp) is another 
permissible form. The eqi are equations 
indicating substitutions to be made. For 
each equation, the right side will be 
substituted for the left in the expression 
exp (if the left side is non-atomlc, and 
the right side is, the equation will be 

forms: f(x), f[i] or f[i](x). Let the second "flipped") 
argument to ":=" (that is, the right hand EXPAND(exp) will cause an expansion of the 
side) be y. In the first case, the variable f argument. The MACSYMA variables MAXNEGEX 
denotes a function, with value lambda(x)y. In and MAXPOSEX (originally set to 6) control 
the second case, a function definition is the maximum negative and positive 
being associated with an array. The name f is exponents, respectively, which will 
denoted an AEXPR with value lambda(i)y. An expand. EXPAND(exp,~,~) expands exp, but 
AEXPR is used as follows. If a particular uses £ for MAXPOSEX and n for MAXNEGEX. 
value of an undeclared array (it is an array SIMPLIFY(exp) simplifies it~ argument, thus 
if the variable is subscripted or if the name overriding the value of the MACSYMA 
has previously been subscripted and assigned a variable SIMP which if set to FALSE stops 
value) is not present in the associated hash simplification. 
table, a check is made to see if the name also PART(exp,nl,...,nk) obtains a subexpression of 
denotes an AEXPR. If so, this function is 
evaluated and the resulting value is stored in 
the hash table and also returned. If no value 
is present and no AEXPR is present, the ex- 
pression is handled as though it were an 
undefined function. 

If the first argument of ":=" is 
f[i](x), the third case, then f is denoted an 
AEXPR as above, but this AEXPR evaluates to a 
function of x. For example, given 
f[i](x):=x**i, evaluating f[3](5) would cause 
the AEXPR to be evaluated to lambda(x)x**3 and 
this value would be stored as the value of 
f[3] and also applied to 5 to yield 5**3. A 
subsequent evaluation of f[3](7) would cause 
the value lambda(x)x**3 of f[3] to be 
retrieved and applied to 7. 

Predicates and Conditionals 

The comparison operators ">" "<" and J 

"=" are not evaluated in ordinary contexts; 
however, these operators, along with AND and 
OR are evaluated when they are in the 
predicate position of the IF-THEN-ELSE 
construction. If the predicate (the IF 
clause) evaluates to TRUE, the THEN clause is 
evaluated and returned. If the predicate 
evaluates to FALSE, the ELSE clause is 
evaluated and returned. 
cannot be 

exp which is specified by the indices ni. 
The index nl which (like all the indies 
is a non-negative integer) selects the 
argument of the top level operator of exp 
corresponding to its value. Thus 
PART(Z+Y,2) yields Y. The index n2 (if 
specified) picks up an argument of the 
result of PART(exp,nl). Thus 
PART(Z+2*Y,2,1) yields 2. The operator is 
considered to be argument 0. 

In exponentiatlon, the base is 
considered argument l, and the exponent 
argument 2. In a quotient, the numerator 
is argument l, and the denominator is 
argument 2. A minus sign appearing in the 
display is considered as an operator. For 
example 

comparison operator was given a non-numeric 
argument), the construction is returned 
unevaluated. 

General Purpose Commands 

INTEGRATE(exp,var) integrates exp with respect 
to var or returns an integral expression 
if it cannot perform the integration. 

returning that subexpression as its value, 
it returns the whole expression with the 
selected subexpression displayed inside a 
box. Thus in the example above, 

(C2) DPART(Di,2,2,1)@ 
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If the predicate DPART(exp,nl,...,nk) selects the same subex- 
evaluated completely (e.g. a pressi~ as ~RT, but instead of Just 

(C2) PART(Di,1,2,2)@ 

(D2) 

Y 
-- + X 
2 

Z 

(Ci) X+Y/Z**2@ 

(Di) 



(D2) 
Y 

.... + X 
2 

[ ]  

SUBSTPART(~,exp,nl,...,nk) substitutes x for 
the subexpression picked out by th~ rest 
of the arguments. It returns the new 
value of exp. 

DERIVDO(exp,varl,...,varn ) forces the 
derivatives of exp with respect to the 
vari to be evaluated. 

DIFFe~,var___~,n!,...jvark,n__k) differentiates 
exp with respect to vari ni times. If k=l 
and nl=l, nl may be omitted: 
DIFF(e~,var). 

DEPENDENCIES(f~,. ,fn) declares functional 
dependencies used by DIFF. Each fi 
(i=l,n) has the format f(v_!,...,vm ) whe~ 
each v~ (j=l,m) is a variable on which f 
depends. Thus DIFF(Y,X) is 0, initially. 
Executing DEPENDENCIES(Y(X))$ causes fu- 
ture differentiations of Y with respect to 
X to be displayed as 

DY 

DX 
KILL (argl,...,ar~n) eliminates its arguments 

from the MACSYMA system. If argi is a 
variable, a function name, or an array 
name, the designated item is removed from 
core and the storage it occupies is 
reclaimed, arsi = "HISTORY" eliminates 
all input and output lines to date (but 
not other named items), arsi = a number, 
n, deletes the last n lines. 

STORE(ars1...,arsn) is similar to KILL in that 
it reclaims core storage (but not quite as 
much). The values of the arguments to 
STORE are removed from core and saved on a 
secondary storage device. Special 
indicators left in core allow MACSYMA to 
read back these items whenever refer- 
fenced. The arguments can be variables, 
function names, or array references. 
Numbers or "I{ISTORY" are not acceptable, 
since storage of the input and output 
lines is automatic and controlled by 
RETAINNUM. 

COEFF(ex~,var,n) obtains the coefficient of 
var**~ in-- exp. For best results, exp 
should be expanded. Coefficients of 
var**n which are functions of var are 
ignored. This command is less powerful 
than RATCOEF, but is sometimes convenient 
in interactive situations. 

(C2) COEFF(Y+X*%E**X+i,X,0)@ 
(D2) Y + 1 

DOSUM(ind,lo,hi,exp) performs a summation of 
the values of exp as the index ind varies 
from io to hi. "" 

(C3) DOSUM(I,i,4,I!)@ 
(D3) 33 

EV(exp,ar~l,...,arsn) causes the expression 
exp to be evaluated and simplified with 
switches set according to the values of 
the ar~i. 

EVAL reevaluates the expression so 
that variables in it which have values 
will be evaluated. 

SIMP overrides the setting of the 
SIMP switch. 

EXPAND causes expansion. 
EXPAND(~,~) set the values of EXPOP and 
EXPON. 

DIFF causes all differentiations 
indicated to be performed. 
DIFF(varl,...,vark) causes only 
differentiations with respect to the 
indicated variables. 

NUMER causes SIN, COS, LOG, and "**" 
with numerical arguments to be evaluated. 

z=exp causes the substitution of ex~ 
for v. v must be an atom. 

-- Th~ arguments following the first 
(exp) may be given in any order. It 
should be understood that EV performs a 
single evaluation and simplification; 
thus all of the functions are performed in 
one scan. This is possible because the 
simplifier is used to perform expansions, 
differentiation, and numerical evaluations 
by the setting of switches. For example: 

(C4) SIN(X)+COS(Y)+(W+i)**2 
+DERIVATIVE(W,i,SIN(W))@ 

D 
(D4) COS(Y) + SIN(X) + --SIN(W) + (W + l) 

DW 

(C5) EV(%,NUMER,EXPAND,DIFF,X=2,Y=i)@ 

2 
(D5) COS(W) + W + 2 W + 1.425324 

WHEN conditional DO identifier = expression 
e.g., WHEN I=2 DO K=%@. The value of the 
identifier is determined by evaluating the 
conditional. If it evaluates to TRUE, 
then the expression is evaluated and used 
for the value of that use of the 
identifier. If the conditional evaluates 
to FALSE, then the identifier's value is 
itself. In effect, the identifier becomes 
a function of no arguments which evaluates 
the conditional, and if TRUE, returns the 
expression as its value. 

SOLVEX((lhsl,...,lhsn),(vl,...,vn)) solves a 
system of linear algebraic equations. It 
takes two lists as arguments. The first 
list (lhsi, i=l,n) represents the left- 
hand-sides of the equations to be solved; 
the right-hand sides are 0. The second 
list is a list of the unknowns to be 
determined. If the given equations are 
not compatible, the message SINGULAR will 
be displayed. The solutions are exact, 
not subject to round-off error, and may 
involve symbolic variables. The solution 
set consists of a list of numbered 
equations and an index to the llst, as in 
the SOLVE command. 

DISPLAY(expl,...,exR~ prints equations whose 
left-hand-sides are the e xpi, and whose 
rlght-hand-sides are the values of each 
expression. The value of DISPLAY is a 
list of the labels of the equations 
displayed. 
(C7) DISPLAY(D3,I)@ 
(E7) D3 = X + Y 
(ES) I = 5 
(D9) (E7,E8) 

Rational Function Commands 

The rational function commands have been 
discussed earlier. For the sake of 
completeness, we briefly list them, along with 
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an indication of their purposes. 
RATVARS provides a method for specifying the 

ordering of variables in CRE form. 
RAT converts an expression to CRE form. 
RATDISREP converts a CRE to a normal prefix 

expression. 
RATSIMP, FULLRATSIMP, and RADCAN are 

simplifiers. 
FACTOR factors a polynomial or rational 

function (numerator and denominator). 
PARTFRAC expands a rational function in 

partial fractions. 
RATCOEF picks out coefficients. 
RATSUBST substitutes. 
SOLVE solves an equation for a variable. 

The Matching Subsystem 

(for details, see [2]) 

DECLARE(var,pred) declares var to match only 
expressions satisfying the predicate pred, 
when var is used in a pattern. 

DEFMATCH -~ame,exp, varl,...,vark) defines a 
pattern matching program with name name. 

DEFRULE(name,exp,repl) defines a trans- 
formation rule with name name which 
matches the pattern exp and transforms it 
to the replacement re~. 

APPLYl(exp,rl,...,rk) Cand similarly for 
APPLY2) applies the rules r_!,...,r] ~ to the 
expression exp, and returns the 
transformed expression. The difference 
between APPLY1 and APPLY2 is in the 
sequencing through the expression and 
rules. 

TELLSIMP (~_~,re~) (and similarly for 
TELLSIMPAFTER) changes the simplifier, so 
that in all subsequently simplified 
expressions, an occurrence of the pattern 
pat will be replaced by the expression 
repl. 

Several additional predicates and 
testing programs are provided for use in 
constructing patterns and their predicates. 
SIGNUM(~) returns -I,0, or +i, depending on 
whether the sign of ~ is negative, zero, or 
positive. If x is not a number, its signum 
is computed from the coefficient of the 
leading term in a rationally simplified 
expression equivalent to x. FREEOF(~,~) 
returns TRUE if ~ does not [epend explicitly 
on ~. This is accomplished by searching 
through [ for an occurrence of ~, and assumes 
that x is not, for example, used as a dummy 
varia[le of integration. INTEGER(i) returns 
TRUE if x is an integer. 

Appendix II 

This problem is taken from Chapter 3 of a 
1963 Masters Thesis by J. S. Draper for the 
MIT Department of Aeronautics and Astronautics. 
This thesis investigates the la~minar compres- 
sible boundary layer on the electrode walls of 
a direct-current crossed field plasma acceler- 
ator under very special physical conditions. 

The solution procedure begins as follows. 

I. Write down 5 non-linear partial differential 
equations for momentum, ~tate, continuity, en- 
ergy, and electron mobility as a function of 
temperature. These equations relate 
U, the stream velocity 
V, the lateral velocity 
t, the temperature 
0, the density 
~, the electron mobility 
P, the pressure 

in terms of the independent variables, x 
and y. The constants are 
J, the current 
B, the magnetic field 
Cp, the specific heat 

K, the compressibility 
G, the conductivity 
R, the gas constant 

2. The absence of variation in the y direction 
in the free stream is used to find the momentum 
and state equations there. These two reduced 
equations are solved for D P which is elimi- 

X 
nated from the five main equatlons, since P 
is not a function of y. 

Further steps in the solution procedure 
are discussed by Martin in [6]. 
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Figure 2. Examples of RATSUBST 

Arsument i Argument 2 Argument 3 

A X ~ X 4Y8+X4Y3 

RATSUBST Versions Result 

i, 2 X 4~+A3 

3,4 A X3y+A 4 

i S+C S i ,3,4 -C+I 

2 S 

A B (X+Y) B 2+BX+BY+I 1,3,4 B 2+A+I 

2 ,with RATVARS (Y) BY +BX+B2+I 

2 ,with RATVARS (X) BX +BY+B2+I 

2 ,with RATVARS (B) B2+A+ I 

A x x2Y 1,2,3 x2Y 
4 ,with RATVARS (X) A 2/y3 

4,with RATVARS (Y) X2y 

A X+Y (X+Y) (Z+W) 1,2,3 (Z+W) A 
4 (Z+W) Y+ (Z+W)X 

-i 12 14+1 1,2,3,4 2 
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Figure 3. Syntax of Expressions: Examples of the legal input expressions and the 

corresponding two dimensional display form are shown below. W, X, Y, and Z 

stand for any expressions; U and V for variables. (Some of these forms can be 

extended to take an arbitrary number of arguments in the obvious manner.) 

input display meaning 

AB AB 

' AB ' AB 

1 1 

1.2 1.2 

F [X,Y] FX, Y 

F (X,X) F(X,Y) 

F [X,Y] (W,Z) Fx,y (W, Z) 

X! X: 

X**Y X Y 

x/Y x or X/Y 

-X -X 

X+Y X+Y 

X-Y X-Y 

X*Y X*Y 

X=Y X=Y 

X <Y X <Y 

X >y X >y 

X AND Y X AND Y 

X OR Y X OR Y 

'X 'X 

(X,Y) (X,Y) 

IF X THEN Y IF X THEN Y 

IF X THEN Y ELSE W IF X THEN Y ELSE W 

FOR I:l STEP 1 UNTIL FOR I:l STEP 1 UNTIL 

1 > 3 DO X I > 3 DO X 

A:X A:X 

A(V) :=X A(V) :=X 

A(V) :Y FOR ALL W A(V) :Y FOR ALL W 

i00 
SUM (I, i, 100,X) X 

/ 
I=l 

variable 

quoted variable 

integer 

floating point.number 

subscripted variable 

function invocation 

subscripted function invocation 

factorial 

exponentiation 

quotient 

negation 

sum 

difference 

product 

equality predicate or equation 

less than predicate or inequality 

greater than predicate or inequality 

logical AND or Boolean operator 

logical OR or Boolean operator 

quoted expression 

list of expressions 

conditional 

conditional 

DO loop 

assign A value X 

define function A(V) 

define function A(V) 

summation 

INTEGRAL (Y,V,W,X) 

DERIVATIVE (Z,U, 2,V, 3) 

X.Y 

X 

Y DV 

W 

D5Z 

DU2DV3 or 

X.Y 

ZUUVVV 

integration 

differentiation 

non-commutative product 

An example of a program: F(V) := BLOCK (IF V > 0 GO (A), 
RETURN (0), 
A, RETURN (i)) 
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