
THE MACSYMA SYSTEM ~

W. A. Martin and R. J. Fateman
Project MAC, M.I.T, and HarVard University

Cambridge, Mass.

Summary

MACSYMA is a system for symbolic
manipulation of algebraic expressions which is
being developed at Project MAC, M.I.T. This
paper discusses its philosophy, goals, and
current achievements.

Drawing on the past work of Martin [6],
Moses [9], and Engelman [I], it extends the
capabilities of automated algebraic manipula-
tion systems in several areas, including
a) limit calculations
b) symbolic integration
c) solution of equations
d) canonical simplification
e) user-level pattern matching
f) user-specified expression manipulation
g) programming and bookkeeping assistance

MACSYMA makes extensive use of the power
of its rational function subsystem. The
facilities derived from this are discussed in
considerable detail.

An appendix briefly notes some
highlights of the overall system.

Contents

I - Introduction - Philosophy and Goals

II - An Overview of the Current MACSYMA System
1. Step-by-step Problem Solutions
2. Extension of facilities

III- Rational Function Commands
i. Data types and rational simplification
2. Contagious CRE commands
3. The rational coefficient program
4. Extensions to rational simplification
5. The rational substitution commands
6. The SOLVE program

References

Appendix - The Language and Commands of
MACSYMA

Figure 1 - Principal modules of MACSYMA

Figure 2 - Examples of RATSUBST

Figure 3 - Syntax of Expressions

I -Introduction and Goals

Computers have an important role to play
in applied mathematics. Their ability to
accurately carry out large numbers of
computational steps has revolutionized the
field of numerical analysis. Many classical
methods for hand calculation of approximate
solutions (such as higher-order quadrature
formulas) have been abandoned. It may turn
out, however, that some years from now this
will be only a minor part of the computers'
contributions to applied mathematics. By
extrapolating from the successful applications
of symbolic computer methods already reported,
and from the current research in problem-
solving by computer, one can imagine a
computer system which serves the mathematician
as a tireless, capable, knowledgeable servant,

co-worker, and occasionally, mentor. The
system would know and be able to apply all of
the straightforward techniques of mathematical
analysis. In addition, it would be a
storehouse of the knowledge accumulated about
many specific problem areas, such as
treatments of differential equations or
series. In some areas, such as symbolic
integration, it would apply complex and
tedious algorithms to produce results
considered to be in the domain of unstructured
problem-solvlng only a few years ago.

If such a system can be constructed, its
impact on applied mathematics would be
substantial. Books would still be used, but
only for tutorial exposition. It would be
possible for the casual mathematician at a
time-shared computer terminal to bring to bear
on his problem a wider and more current range
of methods and information. It seems
reasonable to expect that a mathematician's
thinking and productivity would be stimulated
when he could quickly work out the conse-
quences of his ideas. The way would be opened
for the discovery of new problem-solving tech-
niques.

These goals are not new, nor are they
unique to mathematics. There are clear
parallels in systems design, medical diag-
nosis, and interactive problem solving in many
fields. We mention them here because we plan
to extend the MACSYMA system until it becomes
clear whether or not such goals can be
attained. We feel that we will be able to do
this. Our rough hypothesis is that a mathema-
tician knows perhaps 10,000 mathematical
facts. For example, if a student learned four
facts an hour, four hours a day, five days a
week, nine months a year for four years, he
would learn some 12,000 facts. The average
mathematician may not be able to sustain this
pace with complete retention, but he has been
learning for a longer time period. At
present, the MACSYMA system contains perhaps
500 mathematical facts. For the system to be
generally acceptable as a mathematical co-
worker, we might estimate that it is necessary
to expand the knowledge content of the current
system by a factor of 20. The current know-
ledge is embodied in a program of about 30,000
computer words, embedded in a 60,000 word
system. The expanded program might then be
around b00,000-1,000,000 words, assuming that
the growth will be roughly linear with the
number of facts added.

This roughly linear estimate for
expansion is based on system programming
considerations which arise in the construction
of large systems of this type. If the
interaction of every fact with every other
fact had to be explicitly represented, then
the size of the program would tend to grow as
the square of the number of facts. Our
experience to date indicates that this will
not occur. The MACSYMA system currently
consists of about 20 principal modules. The
interactions are of two types, inter-module
and intra-module. As a module is asked to
communicate with an increasing number of other
modules, its internal complexity does
increase, but the increase does not continue

59

indefinitely as more modules are added. There
is a limit to the number of really distinct
and valuable facets which we have been able to
find for a module to present to the world.

It may be argued that a system
consisting of many independent modules will
lack global understanding; that the facts
will be in the system, but the mathematician
will not know how to obtain them. This is
certainly the case in the large programs which
have been developed for time-sharlng and
operating systems. These might be
characterized as being ineffectively
hierarchical, with many duplicate functional
units. The FORTRAN and PL/I subroutine
libraries may be similar, but incompatible;
also, there are many possible (perhaps super-
fluous) communication links between modules.
These systems are, however, very useful. We
picture the MACSYMA system as more
hierarchical and more closely knit than
current time-sharing or operating systems.
Just how useful a personality it can be made
to present to the world is one of the objects
of our research.

We have grave doubts about the
usefulness of large systems constructed
through the haphazard contributions of unso-
phisticated users. Every new bit of the
system must be carefully integrated with the
old.

In addition, we rely heavily on the work
of our colleagues in the field for the
analysis and development of new symbolic
algorithms, it is their work which makes us
feel that our goal of amassing the fastest and
most powerful techniques can be realized.

While systems like MACSYMA must be
carefully integrated, they must not be
restricted to an inflexible language, a single
data representation, or a minimal set of
transformations. A powerful algebraic manipu-
lation system must respond to a variety of
demands and constraints, both from internal
modules, and external users. We attempt to do
this by providing a small number of carefully
chosen alternative approaches, rather than one
very general one.

The more specifically a data repre-
sentation and algorithm is tailored to a given
application, the greater power the program has
for that application. On the other hand, such
programs require a great deal of effort to
write and are less generally applicable. Our
opinion is that the greatest gain in power
comes from applying, in each case, an
algorithm which fully exploits the mathema-
tical properties of the problem to be solved.
A smaller gain, which tends to be independent
of problem size, comes from optimum selection
of the data representation. We are employing
a three part approach: (a) We provide a
general language and data representation so
that a user may code any algorithm he wishes,
although the execution may be inefficient;
(b) We try to provide all of the necessary
basic algorithms, along with special data rep-
resentations, if they are appropriate to make
the algorithms efficient; and (c) We are
initiating research in automated algorithm and
data-representation improvement.

To expand on point (a), our approach to
user language is also based on a combination
of, rather than a compromise between, ease of
use and efficiency. We want to make it
possible for the user to use notation natural
to his problem, although we must restrict him

6O

somewhat to the framework of notations we have
chosen for our user-computer interface. On
the other hand, we are willing to make
substantial transformations on the input in
computing the internal form of an expression.

It is clear that the system we are
trying to create is a very ambitious one.
Nevertheless, we think it is appropriate
because it focuses our thinking and efforts on
the important computer science questions of
the day.

One of these is the creation of
intelligent systems and the modeling of
thinking and problem solving. Several years
ago it was optimistically predicted that
computers would by now be proving important
new theorems. This has not come to pass for
several reasons. The general techniques
available for improving search strategies have
not turned out to be very powerful, and it is
not as easy to invent methods for programs to
learn new information as had been hoped.
Nevertheless, the performance of programs
which have had information added "by hand" has
been impressive. For example, there are pro-
grams which converse in English, and answer
questions concerned with a suitable non-
trivial data-base. The question of what could
be done by a program possessing the same
knowledge of a subject as the best human
problem solvers has been raised. In the past
few years the techniques and languages for
writing such programs have been greatly
improved.

The related question of computer aided
instruction involves bringing people into a
controlled environment which "understands"
what they are thinking about. To do this, the
environment must know something of value which
the person wishes to learn, so that it can
interact with him in depth. The MACSYMA
system already contains features, and has
solved problems, which have proved of interest
to applied mathematicians (a group of skilled
problem solvers) and has experienced contin-
ually increased demand as more features have
been added. The MACSYMA system offers a
concrete example for study of man-machine
interactive problem solving.

Another problem area is the management
of large programs and the automation of the
programming process. Experience in the design
of systems of the hierarchical nature of
algebraic manipulation programs has lead to
several conclusions discussed earlier.
Problems of intelligent information retrieval
and management of large complex data bases
also arise in this area.

Finally, the careful analysis of mathe-
matical algorithms, which has been an
important input to our design effort,
constitutes new data for those interested in
building a useful theory of computation.

II - An Overview of the Current MACSYMA System

The principal modules of the current
MACSYMA system are shown in Figure 1. Modules
are shown linked to those other modules on
which they depend heavily. Those modules
still under development are shown as squares.

The initial development goal of MACSYMA
was to combine the results of the doctoral
research of Martin [6] and Moses [9] with the
ideas in Engelman's MATHLAB [1]. This
suggested an interactive system written in
LISP which emphasized step-by-step problem

solving. We also wanted to add new algorithms
for handling arbitrary precision arithmetic,
polynomials, rational functions, and
integration. Except for the integration
algorithm, which does not include all the
capabilities we know how to implement, this
initial goal has largely been met, and the
system has reached new levels of performance
in the following areas:

a) Obtaining limits and some cases of
infinite integrals
b) Solving equations
c) Canonical simplification
d) User-level pattern matching capabilities
e) User specification of transformations on

expressions
f) Programming and bookkeeping assis%ance.

The ideas used for simplification [8],
integration [7], display [5], limits [ii] and
pattern matching [2] have been presented in
detail in Separate papers. In this paper we
will give an overview of MACSYMA by
demonstrating the facilities for user
specification of transformations, algorithms,
and simplifications. We will then describe in
some detail the routines for handling rational
functions and the solution of equations.

We expect that one use of MACSYMA will
be the symbolic recasting of a problem as a
prelude to numerical solution. Appendix II
gives a specific example. It outlines the
steps required to transform some differential
equations describing a boundary layer so that
they are expressed in terms of a more inter-
esting set of independent and dependent
variables. The recasting involves a knowledge
of the magnitudes of certain quantities and
how fast they may vary. We use this
information to apply truncated series
expansions (or neglect small terms
altogether). We also apply various side
relations.

Thwaites [i0] suggests that the basic
concern of applied mathematics is the
approximate solution of canonical equations
such as the ones we will be dealing with. The
approximations can be motivated by either
mathematical or physical considerations. If a
machine is to automatically apply
approximations based on physical
considerations, it must know the relevant
physics as well as the mathematics. It seems
unlikely that such problems will be solved in
the near future without the step-by-step
guidance of someone familiar with the relevant
physical interpretations. In order to work
with the computer, the mathematician must be
explicit and precise. The challenge to
systems designers is to reduce the burden
which the system places on its users.

i. Step-by-Step Problem Solutions - Two
Examples

Let us preview some of the aspects of problem
solving which must be considered in designing
an interactive language.

First, an error in a command can be
lexical (e.g. spelling), syntactic or
semantic. Lexical and syntactic errors are
often most easily corrected by operations on
character strings, while semantic errors can
often be corrected using mathematically
meaningful operations.

Second, the user must specify precisely
61

when and how much evaluation of operations is
to be done. He must also be careful about the
scope of the assignment of specific values to
variables or operators.

Third, a user may extend the system
language in several ways:
a) By renaming concepts already known to the

system, or specifying which of a set of
alternatives is to apply
b) By modifying and extending known concepts

such as supplying the derivatives of certain
functions
or c) By defining his own concepts.

Each of these operations presents special
problems.

Finally, the user and the machine must
be able to discuss the problem solving process
itself. For example, in MACSYMA, each command
and result is automatically given a name. The
user can supply his own names by use of the
":" assignment. Furthermore, the most recent
expression can always be referred to as "%".

To illustrate the difficulties of solving
a problem interactively, let us carry out a
few steps of the calculation outlined in
Appendix II. First we input the physical
equations.

MACSYMA types the label (Ci). The user
then types a command in the MACSYMA input
language:

(Ci) RHO*(U*DERIVATIVE(U,X)+V*DERIVATIVE(U,Y))
:DERIVATIVE(MU*DERIVATIVE(U,Y),Y)-DERIVATIV
(P,X)+J*B)@

INPUT ERROR AT THE POINT MARKED BY ******

RHO*(U*DERIVATIVE(UjX)+V*DERIVATIVE(U,Y))=DERI
VATIVE(MU*DERIVATIVE(U,Y),Y)-DERIVATIV(F,X)+J*
B******)

PLEASE REPHRASE OR EDIT

The command is terminated by typing an "@"
which indicates that the command is to be
read, evaluated, and the result displayed.
Terminating the command with a "$" instead of
the "@" suppresses the display of the result.

The command is incorrect because it has
an extra right parenthesis at the end. It is
not necessary to retype the expression,
because the line may be edited by a string
editor at the top level of MACSYMA. The
system retypes the line label, and we respond
with "#", which loads the previous (erroneous)
string into a buffer and displays the contents
of the buffer. The character " " acts as a
cursor which marks the place currently being
examined by the editor. We want to delete the
last ")", so we use a command to search for
J'B, and delete the character following the
cursor. Typing an extra "#" exits from the
editor, and "@" then executes the new command
string. The rest of the computer conversa-
tion looks like:

(Cl) #
RHO*(U*DERIVATIVE(U,X)+V*DERIVATIVE(U,Y))=DER

TVATIVE(MU*DERIVATIVE(U,Y),Y)-DERIVATIV(PjX)+J
*B)
SJ*B#
RHO*(U*DERIVATIVE(UjX)+V*DERIVATIVE(UjY))=DERI
VATIVE(MU*DERIVATIVE(U,Y),Y)-DERIVATIV(PjX)+J*
B_)
D
RHO*(U*DERIVATIVE(U,X)+V*DERIVATIVE(U,Y))=DERI
VATIVE(MU*DERIVATIVE(UjY),Y)-DERIVATIV(P,X)+J*

B #I

RHO* (U* DERIVATIVE (U, X) +V*DERIVATI VE (U, Y)) =DERI
VATIVE (MU*DERIVATIVE (U, Y), Y)-DERIVATIV (P, X) +J*
B
@

DU DU D DU
(Ol) RHO ((--) V + U (--)) = --MU (--)

DY DX DY DY

- DERIVATIV(P,X) + B J

The command has been read in and evaluated as
a mathematical expression by the MACSYMA
evaluator. The evaluator lets any symbol
which has not been assigned a value
previously, stand for itself. Operations such
as integration, differentiation, and
exponentiation are not carried out
automatically, but they can be evaluated in
several ways. For example, if we had typed

DIFF (MU*DERIVATIVE (U, Y), Y)
instead of

DERIVATIVE (MU* DERIVATIVE (U, Y), Y)
we would have obtained

2
D U

MU
2

DY

since MU has not been declared dependent on X.
Returning to expression D1, we see that
DERIVATIVE has been spelled incorrectly.
There are two ways we can fix this. One is to
type the command STRING(DI) $, which will
convert D1 into a character string in the
input buffer; we can then edit it as before.
The second way is to use the SUBSTITUTE
command :
(C2) SUBSTITUTE(DERIVATIVE,DERIVATIV,%)@

DU DU D DU DP
(D2) RHO ((--) V + U (--)) = --MU (--) - (--)

DY DX DY DY DX

+ BJ
Note that a product is indicated by a

"*" on input, but by a space on output. The
user can call for *'s on output by typing
NOSTAR (FALSE) $.

We have now succeeded in inputting the
first of our two equations. In order to
reduced the chance of more typing errors, we
will tell the input routine that by D we mean
DERIVATIVE. That is, we give DERIVATIVE the
alias D. using this alias, we input the second
equation on llne C4.

(C3) ALIAS (D, DERIVATIVE) $

(C4) RHO*C [P]* (U*D(T,X) +V*D (T,Y)) =
D(K*D(T,Y) ,Y)+MU*(D(U,Y))**2+U*D(P,X)
+J**2/SIGMA@

DT DT D DT
(D4) C RHO ((--) U + (--) V) =--K (--)

P DX DY DY DY
2 2

DU DP J
+ Mu (--) + (--) u +

DY DX SIGMA

The next step in the calculation,
deriving the free stream equations, consists
of setting the derivatives with respect to Y

6Z

equal to zero. We can define an operator
which will do just that by using the pattern
matching subsystem.

(C5) DECLARE(AA,TRUE)$

(C6) DEFRULE(DYZERO,D(AA,Y),0)$

We first declare that AA should match
any expression. We then define the rule
DYZERO to match any subexpression which is a
derivative with respect to Y, and replace it
with zero. We now apply this rule to our
equations.

(C7) APPLYi(D2,DYZERO)@
DU DP

(D7) RHO U (--) = B J - (--)
DX DX

(C8) APPLYi(D4,DYZERO)@

(DS)

2
DT J DP

C RHO (--) U = + (--) U
P DX SIGMA DX

Equations D7 and D8 are satisfied by the
free stream values of RHO, SIGMA, U, and T.
Let us call these values RHO[INF], SIGMA[INF],
U[INF], and T[INF]. To avoid confusion, we
should substitute the latter values for the
former in D7 and D8. There are several ways
we can do this; one of them is the SUBSTITUTE
command illustrated earlier. To make a point
about the interaction between variables and
the environment, we will use the EV or
"evaluate" command to perform an evaluation in
a local environment. If we wished to make a
global substitution, we would type the com-
mands RHO:RHO[INF]$, SIGMA:SIGMA[INF]$,
U:U[INF]$, and T:T[INF]$. Then by evaluating
D7 and D8, we can cause the new values of RHO
(etc.) to be substituted in. The disadvantage
of this method is that we have set values in
the top level environment which will remain
after the time we have used them. We could
remove the values by executing ATOM(RHO):TRUE$
(etc.), which would return RHO (etc.) to the
status of standing for itself; but, since we
will be working further with both RHO and
RHO[INF] this could lead to confusion. Let us
therefore evaluate D7 and D8 in a local
environment:
(C9) EV(D7,RHO=RHO[INF],U=U[INF])@

(D9)
D DP

RHO U (--U) = B J - (--)
INF INF DX INF DX

(Ci0) EV(D8,RH0=RHO[INF],U=U[INF],SIGMA
=SIGMA[INF],T=T[INF])@

2
D J

(D10) RHO U C (--T) -
INF INF P DX INF SIGMA

INF

DP
+ u (--)

INF DX

The next step is to substitute the left
side of D10 for the last two terms of D2. We
can talk about the left side of D2 by using
the PART command. PART(exp,nl,...,nk) obtains
a subexpresslon of exp which is specified
through the indices (ni). The index nl

selects the nlth argument of the top level
operator; the index n2 picks up the n2th
argument of the result of PART(exp,nl). Thus
PART(D2,1) is the left side of D2, while
PART(D2,2) is the right side. In order to use
PART on, for example, a quotient, we must know
that the numerator is considered the first
argument. The function DPART will display the
expression with the specified subexpression
enclosed in a box. This gives the user a
simple method of verifying his specification.
To check our specification of the last two
terms of D2 we type:
(Cll) DPART(D2,2,(2,3))@

DU DU
(Dii) RHO ((--) V + U (--)) =

DY DX

D DU ! DP !
--MU (--) + I - (--) + B J l
DY DY ! DX !

(C12) SUBSTPART(PART(Di0,1),D2,2,(2,3))@

DU DU D DU
(Di2) RHO ((--) V + U (--)) = --MU (--)

DY DX DY DY

D
+ RHO U (--U)

INF INF DX INF

We leave the problem at this stage,
because we have illustrated our points;
further steps in the solution can be found in
[6].

By now the reader has probably observed
that these operations might be carried out
more easily by hand. This is true for these
first few steps, but as the calculation pro-
gresses, the size of the expressions grow, (so
that the hand solution of the rest of the
problem required three months) while the com-
mands remain at about the same level of
complexity. We feel that the commands shown
above are actually quite easy to use, provided
that the user has a thorough knowledge of the
MACSYMA language. Since it may not be
possible for a mathematician to work closely
with a system without knowledge of a suitable
language, our goal has been to make that
language natural, expressive, and powerful.

Some less obvious aspects of MACSYMA
should also be noted. To avoid filling fast
core memory with previous results, the system
automatically moves old data to secondary
storage. The user can control the rate of
transfer of expressions, and can, if he
wishes, move all but the current command
string out of core. At the end of a session
with MACSYMA, the user may want to create a
file containing the main steps in a
calculation which has been performed. MACSYMA
gives him facilities to do this. Furthermore,
the data can be translated into "human-
readable" form and displayed on high-speed
line printers with a larger line width. Many
parts of this text were produced directly by
MACSYMA, and altered only slightly for the
sake of the text Justification program used
for printing this paper.

Our next example is the solution of a
classical problem in algebraic manipulation,
the so-called F and G series problem of

dynamical astronomy. The series Fi and Gi are
given by recursion relations and initial
values. The results are polynomials in
EPSILON, MU, and SIGMA.

In MACSYMA, subscripted variables and
functions are represented by arrays. The
arrays need not have their dimensions
declared, and may have the value of their
entries defined by some function. The
function will be evaluated whenever the value
of a specific entry is called for, and that
value has not been found previously. At any
time the value of an entry is specified by the
user or found by evaluating the function, it
is saved. Thus to specify the F and G
computation we use lines C1 through C5 to
specify the derivatives and initial values,
and C6 and C7 to define the recursion
relations. Line D8 prints out one of the
values.
(Cl) D(MU,T):-3*MU*SIGMA$

(C2) D(SIGMA,T):EPSILON-2*SIGMA**2$

(C3) D(EPSILON,T):-SIGMA*(MU+2*EPSILON)$

(C4) F[O]:i$

(c5) G[O]:0$

(C6) F[I]:=EXPAND(-MU*G[I-I]+DIFF(F[I-i],T))$

(C7) G[I]:=EXPAND(F[I-i]+DIFF(G[I-I],T))$

(c8) F[5]@
3

(D8) 105 MU SIGMA - 15 MU 2 SIGMA

- 45 EPSILON MU SIGMA

Rather than continue this inrormal
discussion to include all of the currently
implemented and proposed commands and
facilities, we have relegated most of these
details to a brief treatment in Appendix I.
Detailed discussions of many commands can be
found in the other MACSYMA papers in these
proceedings. We will, however, touch upon a
few commands to make some points about our
philosophy, and then proceed to discuss in
detail a major set of facilities not treated
elsewhere.

2. Extension of facilities

One of the most difficult problems of
designing algebraic manipulation systems is
allowing for new knowledge to be added to old.
Several efforts along these lines which
demonstrate our approaches deserve some
attention.

The TELLSIMP [2] facility allows the
user to define new simplification rules which
will be applied by the built in simplification
routine. It is expected that most of these
new rules will specify the simplification of
expressions containing functions previously
unknown to MACSYMA. Thus the MACSYMA
environment can be significantly altered in
response to new problem areas.

In a similar vein, the assignment
operation ":" checks to see if its left
operand is an operator or a function. For
example, if it is a derivative, it is assumed
that a value is being assigned for future use
by the differentiator. Thus derivatives of
variables or arbitrary functions may be

63

defined in a simple manner. We have already
seen this used in the F and G series
calculation example, where derivatives of
EPSILON, MU, and SIGMA were defined.

As was pointed out in the Introduction,
MACSYMA seeks to make available most basic
algorithms implemented in the most efficient
manner possible. Many of the modular
arithmetic algorithms described in this
proceedings have been or are currently being
implemented in MACSYMA, some to replace their
traditional, inefficient predecessors. Among
these Berlekamp's polynomial factorization
algorithm, and the modular greatest common
divisor algorithm are foremost.

New developments and extensions in the host
language for MACSYMA, LISP, will further
influence our product. A new LISP compiler
which approaches in the quality of its
generated code an optimizing FORTRAN compiler
will allow us to prove to the legions of LISP
nay-sayers that, properly done, LISP is an
entirely appropriate programming formalism and
system for this type of work.

III- Rational Function Commands

This section concerns one of the
critical design decision in MACSYMA which we
believe contribute greatly to its usefulness.
This decision was that algorithms should have
special data types when it is necessary for
their proper operation. The rational function
package embodies the essentials of a special
data type, which, by suitable treatment, has
yielded a number of new results. Because of
their significance in the design and
philosophy of MACSYMA, and in their practical
implications, the rational function commands
are treated in greater detail here.

Moses [8] distinguishes between the
"radical" approach to algebraic manipulation,
and the "conservative" approach. According to
this classification, a radical system will
transform a user-supplied expression into an
internal format which consists of an encoding
of the expression in a special unique simpli-
fied form. This transformation generally
destroys superficial resemblances between the
input and output. The only attribute
necessarily preserved is the functional value
of the expression. Polynomial and rational
function systems generally fall in the
"radical" category. The contrasting
"conservative" approach does almost nothing
but that which is specified by the user; it
keeps the internal form as nearly the same as
the external form as is possible, and
generally accepts a wide variety of expres-
sions (wider than polynomials and rational
functions).

The top-level (i.e. "libera~'in Moses'
terminology) "general" simplifier in MACSYMA
takes a stance in the middle, yet allows
certain subsystems to explore the far reaches
of the "political" spectrum. Because of the
conjunction of different approaches, radical
simplification algorithms can be applied to
expressions which would not ordinarily be
considered proper inputs. For example, the
ability to manipulate e**(2*x) + 2*e**x + 1 as
a quadratic in e**x (and apply polynomial
"radical" processing) is quite useful, even
though the expression is not quite fair game
for ordinary polynomial systems. MACSYMA is
capable of factoring the above expression into
(e**x+l)**2, and treating it as a polynomial

in general; however, it is also capable of
noticing that e**x can reduce to y when
x=log(y). Polynomial or rational function
systems are rarely aware of such possibilities
in their data.

1. Data types and conventional rational
simplification. Th~sesectlons discuss the
"radical" data handling facilities of MACSYMA,
and their relation to the MACSYMA command
level. In one particular instance (the SOLVE
command) we show how radical and conservative
handling of different parts of the same ex-
pression can lead to an end result which could
not be produced with either approach alone.
Other commands where rational simplification
or other radical approaches are essential to
programming effective algorithms are also dis-
cussed.

In order to clarify the discussion, it
is necessary to distinguish between the two
major internal forms for expressions in
MACSYMA. Ordinary MACSYMA form is a variant
of the Polish prefix form which is typical of
many list-processing implementations of
algebraic manipulation systems. For example,
3"x*'2 would be represented (glossing over
inessential details) as (times 3 (expt x 2)),
and x+y as (plus x y). By contrast, the
canonical rational expression (CRE) form in
MACSYMA is an internal form especially
suitable for rapid manipulation of sparse
polynomials and rational functions. In CRE
form, 3"x*'2 is represented, (again, glossing
over details) as (x 2 3). The first element
of the llst is the variable, the second is its
highest exponent, and the third, the coef-
ficient of the just preceedlng exponent. Thus
6"x*'2+4 is represented as (x 2 6 0 4), and,
allowing coefficients themselves to be poly-
nomials, x**2*y +7*x*z is (x 2 (y 1 l) 1 (z 1
7)). Since (y 1 (x 2 l) 0 (x 1 (z 1 7))) is
an equivalent CRE representation, it should be
clear that the ordering of variables must be
specified to insure that equivalent CRE's are
identical, that is, they are in canonical
form.

CRE's in general represent rational ex-
pressions, that is, ratios of polynomials,
where the numerator and denominator have no
common factors, and the denominator is
positive. Thus a CRE has three essential
parts: a variable list (VARLIST), specifying
the ordering of the variables, and two poly-
nomial parts. With these preliminaries, we
can describe the actions of the rational func-
tion commands.

RATVARS(a,b,...) orders the variables
listed in its argument list on a global
variable list (VARLIST) so that the rightmost
element of the list a,b,.., will be the main
variable of future rational expressions in
which it occurs, and the other variables will
follow in sequence. If a variable is missing
from the RATVARS list, it will be given lower
priority than the leftmost element. If
several variables are missing, they will be
ordered by the MACSYMA function GREAT, which
uses an implementation of the ordering
algorithm described in [8]. The arguments to
RATVARS can be either variables or non-
rational functions (e.g. SIN(X)).

RATSIMP(EXP) rationally simplifies the
expression EXP. That is, EXP is converted
into a single fraction, whose numerator and
denominator are polynomials over the integers,
with no common factors. EXP is written in a
recursive form: a polynomial in the main

64

variable whose coefficients are polynomials in
the next-higher-order variable, ..., whose
coefficients are integers. This is
accomplished by converting EXP into CRE, and
then converting back to ordinary MACSYMA form
for display.

For example:

(C1) (X**2-Y**2)*(Z**2+2*Z)/((X+Y)*W)@

(D1)

2 2 2
(X - Y) (Z + 2 Z)

w (Y + x)

(C2) RATSIMP(Di)@
2

(X - Y) Z + (2 X - 2 Y) Z-
(D2)

W

(C3) RATVARS(X)$

(C4) RAT~IMP(D1)@
2 2

X (Z + 2 Z) - Y Z
(04)

W

- 2 Y Z

FACTOR(EXP) factors the expression EXP
into factors irreducible over the integers.
If EXP is a rational expression (with a denom-
inator not l) both numerator and denominator
are factored. If FACTORFLAG is set to TRUE,
the integer multiplier, if any, is factored
also. The algorithm can be used to factor
polynomials in any number of variables;
however, factorization with respect to some of
the variables can be avoided by setting the
global variable DONTFACTOR to a list of such
variables.

For example,

(C5) FACTOR(X**6+1)@

2 4 2
(05) (X + l) (X - X + i)

SQFR(EXP) is similar to FACTOR except
that the polynomial factors are "square-free"
that is, have no multiple roots. This
algorithm, which is also used by the first
stage of FACTOR, utilizes the fact that a
polynomial has in common with its nth
derivative all its factors of degree > n. Thus
by taking derivatives with respect to each
variable in the polynomial, all factors of
degree) 1 can be found.

PARTFRAC(EXP,VAR) expands the expression
EXP in partial fractions with respect to the
main variable, VAR. The algorithm employed is
based on the fact that the denominators of the
partial fraction expansion (the factors of the
original denominator) are relatively prime.
The numerators can be written as linear com-
binations of denominators, and the expansion
falls out.

(C6) PARTFRAC(X/(X**2-1),X)@

1 1
(06) +

2 X- 2 2 X+ 2

2. Contagiou 9 CRE Commands. The above
commands represent no new capabilities;
MATHLAB [5] has almost identical facilities,
although its internal equivalent of our CRE's
is less efficient for sparse polynomials.
Other systems, by limiting their universe of
discourse to canonical representations, make
these commands unnecessary.

The commands in this and the following
sub-sectlons represent significant departures
from the usual use of rational function
routines.

RAT(EXP) is indistinguishable on command
level from RATSIMP; however, RAT leaves its
internal result in rati6nal funct~---~CRE)
form, so that operations used by the rational
function commands described here can be more
rapidly performed on it. Furthermore, any
time the user adds to or multiplies by a CRE,
the result is a CRE. That is, the CRE form is
"contagious." This enables a user to easily
force his entire calculation to be done in CRE
form by converting one of his inputs into CRE
by simply multiplying by RAT(l). Some
problems require excessive amounts of storage
and/or time if intermediate results are
converted back into prefix form at each step
of the calculation. The RAT facility, by
being integrated into the simplifier, permits
a user to compose a program and try it out
(without any changes) on ordinary prefix form
arguments or on CRE arguments.

RATD~REP(EXP), which appears to do
nothing on the command level, changes its
argument from rational function form (CRE) to
ordinary MACSYMA form. This is sometimes
necessary in order to use some of the other
MACSYMA commands. If RATDISREP is not given a
CRE for an argument, it does nothing.

3. The Rational Coefficent Program.
RATCOEF(EXP,PART) returns the coefficient, C,
of the expression PART in the expression EXP.
C will be free (except possibly in a non-ra-
tional sense) of the variables in PART. If no
coefficient of this type exists, zero will be
returned. RATCOEF will give reasonable
answers to reasonable requests, and will often
produce reasonable answers to poorly stated
requests. Generally, when PART includes a
"+" or a "/" results may seem odd. (see
lines D7, D8, D10, and Dll in the examples to
follow). Since EXP is rationally simplified
before it is examined, coefficients may not
appear quite the way they were envisioned.
The effect of RATCOEF should be clarified by
the following examples.

(el) S:A*B*X**2+B*X+2*X+5@
2

(Di) A B X + B X + 2 X + 5

(C2) RATCOEF(S,X)

(D2) B + 2

(C3) RATCOEF(S,A*B)@
2

(03) X

(C4) RATCOEF(S,B)@
2

(D4) A X + X

(C5) RATCOEF(S,2*X)@

65

(D5)
B+ 2

2

(C6) RATCOEF(S,B/2)@
2

(D6) 2 A X + 2 X

(C7) RATCOEF(A*X+B*X+C,A+B)@
(O7) X

(C8) RATCOEF(3*A+2*B,A+B)@
(08) 2

(C9) RATCOEF(S,-A)@
2

(D9) - B X

(C10) RATCOEF((A*B+C)/D,B/D)@
(D10) A

(Cll) RATCOEF(3*A/D+A/D**2, A/D**2)@
(Dii) 0

Let us first define RATCOEF(EXP,PART)
where EXP is a polynomial and PART has the
form v**k for v a variable, k a number. This
case is clear: we expand EXP as a CRE, and
pick off the coefficent of v**k. If there is
no occurrence of v**k, the coefficent is 0.
If EXP is not a polynomial, but a ratio of
polynomials, then we must make a decision
about how to treat occurrences of v in the
denominator.

Let EXP =num/denom, where num=
Zai*v**i. If the coefficient of v**k, namely
a k, is zero or if ak/denom depends on any
variable in the original PART, then the
response is zero. Otherwise the response is
ak/denom.

RATCOEF of a product can be defined
recursively as follows. Consider
RATCOEF(EXP,PART). If PART =
vl**nl*v2**n2*...*vk**nk, then
RATCOEF(EXP,PART) =
RATCOEF(RATCOEF(EXP,vk**nk),vl**ni*...*v(k-~
**n(k-1)).

If PART = A/B then RATCOEF(EXP,PART) =
RATCOEF(EXP*B,A).

If PART =
RATCOEF(-EXP, A).

-A, RATCOEF(EXP,PART) =

If PART = ZAi**i (possibly after
removing multipliers, as above), then EXP is
divided by PART with respect to the main
variable in PART. If the quotient depends on
any variable in the original PART, the
response is zero. Otherwise the answer is the
quotient.

The coefficient produced in this manner
may depend, in the last case, on the ordering
of the variables within EXP. For example, the
coefficient of (Y+Z)*X in Z**2*X**2+(Y+Z)*X+A
is clearly 1. The similar problem of finding
the coefficient of X*Z+X*Y in
X**2*Z**2+X*Z+X*Y+A yields the answer 0, since
X**2*Z**2+X*Y+A divided by X*Z+X*Y is X*Z+l,
with remainder -X**2*Y*Z+A. The quotient
depends on X, and thus the coefficient is
taken to be zero.

This illustrates both the ability of the
user to ask for coefficients of sums, and the
ability of RATCOEF to sometimes answer
correctly. We could have defined RATCOEF only
for products, but it seems more in keeping

with the spirit of an interactive system to
avoid such restrictions on the user. Note
that if the user were disappointed with the
answer 0 to the above request, first executing
RATVARS(X) would correct the situation.

In summary, RATCOEF will find the coef-
ficient of PART when PART is a factor of the
expression, or of some part of the expression
such that the other factor has none of the
same variables. RATCOEF cannot be used to
pick out the coefficient of a number.

The returned value is in CRE form.
An alternative to RATCOEF is available

in situations where its flexibility is not
needed. The COEFF command can operate on CRE
forms or on ordinary MACSYMA forms which have
been expanded. COEFF(EXP,VAR,POWER) will
extract the coefficient of VAR**POWER (where
POWER may be 0) from EXP. COEFF returns a CRE
form if and only if it is given a CRE form.

4. Extensions to Rational Simplifica-
tion. FULLRATSIMP(EXP) is an expanded version
of RATSIMP which is recursive on the arguments
of non-rational functions. It also removes
zero exponents, and converts forms like
(x**y)**z to x**(y*z). Although these last
two operations are generally performed by the
simplification program, FULLRATSIMP must
repeatedly simplify the results of such
transformations until no more rational simpli-
fications can be made. FULLRATSIMP is no more
time-consuming than RATSIMP if EXP is an
algebraic expression with no non-rational
functions.

Since any equation has a non-rational
function, namely "=", in it, FULLRATSIMP,
rather than RATSIMP should be used on equa-
tions.

A more extensive expansion of the
concept of global simplification is embodied
in RADCAN. While FULLRATSIMP does not apply
any identities concerning logs, radicals, and
non-numeric exponents, RADCAN does.

RADCAN(EXP) converts the expression EXP
into a form which is canonical over a large
class of expressions and a given ordering of
variables; that is, all functionally
equivalent forms are mapped into a unique
form. For a somewhat larger class of expres-
sions, RADCAN produces a normal form; that
is, all forms equivalent to zero are mapped
into zero. For purely rational expressions,
RADCAN is no more time-consumlng than RATSIMP
or FULLRATSIMP; however, for more general ex-
pressions including radicals, logs, and non-
integer exponents, RADCAN can be quite
expensive. This is the cost of exploring
certain relationships among the components of
the expression for simplifications based on
factoring and partlal-fractlon expansions of
exponents.

A description of the method, and proofs
of the canonical properties of the RADCAN
algorithm are discussed in [6]. Examples
should give a rough feel for the capabilities
of RADCAN (% always refers to the Just-
previously displayed expression, %E is the
base of the natural logarithms):

(C1) SQRT(98)@
(01) SQRT(98)

(C2) RADCAN(%)@
(D2) 7 SQRT(2)

66

(C3) (SQRT(X**2-1))/(SQRT(X-1))@
2

SQRT(X - l)
(D3)

SQRT(X - l)

(C4) RADCAN(%)@
(D4) SQRT(X + l)

(C5) (LOG(A**(2*X)+2*A**X+i))/(LOG(A**X+I))@
2 X X

LOG(A + 2 A + l)
(D5)

X
LOG(A + l)

(C6) RADCAN(%)@
(D6) 2

(C7) (%E**X-1)/(%E**(X/2)+i)@
X

%E - 1
(D7)

X/2
%E + i

(C8) RADCAN(%)@
X/2

(D8) %E - 1

~. The RATSUBST (rational
substitution) Commands. RATSUBSTn(A,B,C)
where n = l, 2, 3, 4 is a set of similar com-
mands to substitute A for each occurrence of B
in the expression C. In those cases where it
is clear where B occurs, the result will
correspond to the intuitive notion of
substitution.

If B is an atom, occurrences of B are
obvious. The action taken is simply substitu-
tion followed by simplification.

If B is a quotient, say bl/b2, then
RATSUBSTn(A,B,C) is entirely equivalent to
RATSUBSTn(A*b2,bl,C).

If B is a product, all coefficients of
powers of B can be detected in C by a
technique similar to that used by RATCOEF.
(Hearn [4] suggests this approach) If B is a
sum, we must define what we mean by an
occurrence of an expression B in a polynomial
expression C. (If C is not a polynomial, we
can consider its numerator and denominator
separately.)

If C = ~Si*B**i, then B is said to
occur in C with coefficient S1 and exponent l,
coefficient $2 and exponent 2, ..., and
remainder SO. If B occurs in such a fashion
we wish to replace C by ~Si*A**i.
Unfortunately, finite power series expansions
for an expression in terms of a non-atomic
subexpression are not unique. For example, C
= x**2+3*x*y+y**2 has (among others) the
following expansions in (x+y):

1. l*(x+y)**2 + 0*(x+y)**l + x*y*(x+y)**0

2. l*(x+y)**2 + x*(x+y)**l - x**2*(x+y)**0

3. l*(x+y)**2 + y*(x+y)**l - y**2*(x+y)**0

What is needed is a set of restrictions
on the coefficients Si so that the expansion
is unique and appropriate to the problem at
hand. This is the basic problem in substitu-

tion for simplification, and this solution is
based on a set of heuristics for achieving
what appear to be, in some instances, more
desirable results than have been possible in
the past. We will separate out only the
highest power of B, and discuss at each stage
(recursively on lower powers of B) the situa-
tion C = S*B**n + r, where r contains the
lower order terms.

As we have pointed out earlier in our
discussion of RATCOEF, the ordering of
variables is sometimes quite critical. "Sum"-
hood, which is a property of a form, not of a
function, sometimes depends on orderlng. For
example, x*z+y*x is a sum, but (z+y)*x is (for
purposes of RATSUBST) no~ a sum, but a
product, although the two expressions are
functionally equivalent.

Let B be a polynomial containing
variables vl,v2,...,vn, where the highest
power of each vi is mi. For all but condition
2 below, the only restriction on r, the
remainder consisting of lower order terms, is
that it has lower degree than C does in some
particular variable (namely, the most
important on the varlist that is also in B).
The conditions below are embodied in the com-
mands RATSUBST1,2,3, and 4, respectively.
Their effects can best be gauged by frequent
reference to the examples in figure 2.

i. The highest power of some vi in S that
appears in B is less than the corresponding
mi.
2. The highest power of eac h vi in S that

appears in B is less than the corresponding
mi, and the highest power of each vi in r that
appears in B is less than the corresponding
mi**n.
3. S is a polynomial
4. S contains no sum.

The value of n ranges from the highest
possible (the ratio of the highest coefficient
of some vi in C which is also present in B, to
the corresponding maximum coefficient of that
vi in B, namely mi) to the lowest possible
(when some vi in B is no longer present in C
to a power as high as it is in B, or 1.). To
avoid the possibility of looping, occurrences
of B in C are replaced, as found, by a special
dummy variable, which is subsequently replaced
by A. Cases in which B occurs in A (probably
an error on the user's part) or where simpli-
fication of C results in new occurrences of B
can be treated with repeated calls to
RATSUBST. This can be easily programmed in
MACSYMA.

If C contains non-rational functions,
substitution proceeds on the arguments of the
non-rational functions, recursively. Thus A,
B, and C need not be rational expressions.

By noting when B has non-rational
components (e. g., e**x, or x**(1/2)), RADCAN
can be called on B and C, and they can be left
in a special expanded format, which tends to
reflect more clearly the similarities of the
two expressions. Thus
RATSUBST(A,E**X,E**(2*X)) is A**2.

An example of an extension to the
RATSUBST framework might serve to illustrate
its generality. If there is a canonical
ordering on all expressions submitted to
RATSUBST, and on all intermediate expressions,
then a RATSUBST5 could be programmed with the
following condition:
5. S*A**n + r has a lower canonical order

67

("is simpler") than S*B**n + r.
By using the RATSUBST commands (E2)

selectively, such substitutions as sin(x)**2 +
cos(x)**2 -~> 1 can be performed more nearly in
the sense in which they are intended. If one (D2)
RATSUBST command does not do the Job, perhaps
another will.

6. The SOLVE Program. The SOLVE command
in MACSYMA uses several techniques for solving
for a given variable in an equation. Each of
these techniques is open to extension in a
straightforward manner. The roots and their
multiplicities are available to other pro-
grams, and are used as building blocks for
more complicated facilities, such as contour
integration.

The format of the SOLVE command is:

SOLVE(equation, variable)@

where the equation may also be an expression
(which is assumed to be set equal to zero).

SOLVE(E,X) puts its first argument E, in
radical canonical form, and attempts to factor
it with respect to the variable X, and all
non-rational functions in E containing X. Each
factor is examined for being linear,
quadratic, cubic, or biquadratic with respect
to X and the non-rational functions containing
it. If the factor is of degree five or more,
then it is considered unsolvable. Such
unsolved factors and their multiplicities are
put on a list which is returned along with the
roots.

Linear terms of the form F(X)-C are
examined to see if C, the constant term, is
actually free of elements containing X; if so,
USOLVE is called. Otherwise the term is added
to the list of unsolved factors. USOLVE knows
the inverses of SIN, COS, ARCSIN, ARCCOS, TAN,
ARCTAN, LOG, and powers of e. It could be
extended to other functions. Once the inverse
has been applied, a new equation results. It
may be of the form X = FINVERSE(C), in which
case the term has been solved, or it may be of
the form G(X) = FINVERSE(C), in which case
SOLVE is called again. This recursive
algorithm allows for solution of, for example,
SIN(COS(X)) = 0 for X.

The quadratic (cubic, biquadratic)
formula is applied to quadratic (etc.)
factors, and the same sort of recursive
treatment as described above is used if the
equation is, for example, quadratic in SIN(X)
instead of X.

The simplification done by the quadratic
(etc.) routines is of some interest, in that
the roots in the formulae are simplified by a
special program (SIMPNRT) which takes out
perfect n*k powers of a kth root. (i.e. even
powers in a square root, multlples-of-three
powers in a cube root, etc.) Thus SQRT(8) is
simplified to 2*SQRT(2). SIMPNRT calculates a
square-free factorization of the radicand, and
takes appropriate multiple factors, if any,
outside the radical.

The following examples illustrate the
capabilities of SOLVE:

(Ci) SOLVE(Y**(2*X)-3*Y**X+2=0,X)@
SOLUTION

(El) X -- 0

LOG(2)
X =

LOG(Y)

(El,E2)

(C3) A:X**2-12*X+3@
2

(D3) X - 12 X + 3

(C4) SOLVE(SIN(A)**2-5*SIN(A)+3jX)@

SOLUTION
5

(E4) X = 6 - SQRT(ARCSIN(
2

SQRT(13)
) + 33)

(E5)
5 SQRT(13)

X = SQRT(ARCSIN(-
2 2

) + 33) + 6

(E6)
SQRT(13) 5

X = 6 - SQRT(ARCSIN(+ -) + 33)
2 2

(E7)
SQRT(13) 5

X = SQRT(ARCSIN(........ + -) + 33) + 6
2 2

(D7) (E4,E5,E6,ET)

(C8) SOLVE(ARCSIN(COS(3*X))*(F(X)-I),X)@

SOLUTION

ARCCOS(0)
(E8) X -

3
THE ROOTS OF

(E9) F(X) = 1

(Dg) (E8,Eg)

(Ci0) SOLVE(5**X=125,X)@

(OlO) X=3

68

Note that SOLVE has taken advantage of
radical approaches but is still able to step
back and treat fairly general expressions. In
order to use the "radical" polynomial
factoring program, it uses RADCAN to expand
unlikely-looking expressions into polynomials.
Thus the expression Y**(2*X)-3*Y**X+2 in C1 is
expanded into a polynomial in Z, where Z=Y**X
(actually Z=e**(X*log(Y))), which is then
factored into (Z-i)*(Z-2). By setting each of
these factors equal to zero, the following
sequence of steps is followed:
i. e**(X*log(Y))-i = 0 is converted by USOLVE

to X*log(Y) = log(l)
2. The simplifier changes this to X*log(Y) =

0.
3. SOLVE is called recursively, and factors

X*log(Y):
a. SOLVE throws out the log(Y) factor since

it does not depend on X, and
b. the factor "X" is recognized as a linear

expression of the form a*X+b where a=l and
b=0, which has solution X=-a/b, or in this
case, X=0.

The other root is handled in an
analogous fashion.

Acknowledgements

Work reported herein was supported in
part by Project MAC, an M.I.T. research pro-
ject sponsored by the Advanced Research
Projects Agency (ARPA), Department of Defense,
under Office of Naval Research Contract
N00014-70-A-0362-0002. One of the authors
(Fateman) has been supported by Harvard
University, sponsored by ARPA under Air Force
contract F19628-68-0101, and by the National
Science Foundation under their Graduate
Traineeship program.

The Project MAC Artificial Intelligence
Group tlme-sharing system was of immeasurable
assistance in preparing and debugging the
programs, and incidentally, in preparing this
paper.

Participating in the original design
work for MACSYMA (beginning in July, 1968)
were W. A. Martin, C. Engelman, and J. Moses.

Programming began in July, 1969. The
expression evaluator and input-output (i.e.
string editor, parser, 2-D display, language)
were programmed by W. A. Martin, P. Loewe, and
T. Williams.

Of the other major modules in MACSYMA,
W. A. Martin designed and programmed the
polynomial arithmetic package; R. Fateman
designed and programmed the rational function
package and its extensions (including the
radical simplifier); J. Moses designed and
programed the simplifier (a major overhaul of
the Korsvold program), many of the commands
(e.g. differentiation, substitution), and the
integration facility. E. Tsiang and W.A.
Martin designed and programmed the power
series expansion routines.

P. Wang designed and implemented the
limit programs, and the secondary storage
control. R. Fateman designed and implemented
the semantic pattern matching system. The
improved LISP compiler is the work of J.
Golden. Others who have contributed to the
programming include D. Hill and S. Saunders.

In debugging these programs and in
interfacing the different modules, it often
became necessary for one programmer to add to
or considerably modify another's work. In
this sense, many of the modules are joint
efforts.

Within this paper, sections I, II, and
the Appendix are the work of W. A. Martin and
R. Fateman; the section on rational function
commands is by R. Fateman.

References

1. Engelman, C., "MATHLAB 68," in A. J. H.
Morrell (Ed.) Information Processin5 68,
North-Holland, Amsterdam, 1969, pp. 462-4~.

2. Fateman, R., "The User-level Semantic
Matching Capability in MACSYMA," these
proceedings.

3. --- "Essays in Algebraic Manipulation,"
doctoral dissertation, Harvard University,
Div. of Engineering and Appl. Physics, 1971.

4. A. Hearn, "The Problem of Substitution,"
Stanford Artificial Intelligence Report, Memo
No. AI-?0, Stanford University, Stanford
Calif., Dec., 1968. (Also appears in
Proceedinss of the 1968 Summer Institute on
SFmbolic Mathematical Computation, R. Tobey,
editor, IBM Boston Programming Center,

Cambridge, Mass., pp. 3-19, 1969.)

5. Martin, W.A., "Computer Input/Output of
Mathematical Expressions," these proceedings.

6. --- "Symbolic Mathematical Laboratory,"
doctoral dissertation, M.I.T,, E. E. Dep't,
1967.

7. Moses, J., "Symbolic Integration: The
Stormy Decade," these proceedings.

8. --- "Algebraic Simplification: A Guide
for the Perplexed," these proceedings.

9. --- "Symbolic Integration," doctoral
dissertation, M. I. T., Math Dep't, 1967.

10. Thwaites, B., "1984: Mathematics <~-)
Computers?" Presidential Address to the
Institute of Mathematics and its Applications,
Bull. ~. ~. ~., Dec. 1967.

ii. Wang, P., "Automatic
Limits," these proceedings.

Calculation of

Appendix I: The Language and Commands
of MACSYMA

Commands to MACSYMA are strings of
characters representing mathematical expres-
sions, equations, arrays, functions, and pro-
grams. Spaces and carriage returns are
ignored. Commands are terminated by @ or $.
@ causes the command to be evaluated and the
result displayed. $ causes the command to be
evaluated but the display of the result is
suppressed. When typing commands, "rubout"
deletes (and echoes back) the previous
character; ?? deletes the whole command, and
causes the line number to be redisplayed.

The Input Stream Editor

At any point while he is inputting a
comand, the MACSYMA user can enter the input-
stream editor by typing #. The editor is
given the string of characters typed so far in
the current command. In the case of a
detected syntax error, the entire previous
command string will be given to the editor.

All the commands to the editor reference
a cursor which is displayed within (or at
either end of) the string of characters under
edit. In the description to follow, n stands
for a positive or negative integer. The
default value of n is +i. If n is positive,
the commands operate toward the right of the
cursor; if n is negative, they operate toward
the left.

nC moves the cursor n characters.
nL moves the cursor to the right of the

nth carriage return (e.g. L moves to
the next line)

Sstring# moves the cursor to the right of the
first occurrence of the string of
characters "string" searching toward
the right. (-S implies left)

nD deletes n characters.
nK deletes all the characters through

the nth carriage return. (e. g., K
deletes the remainder of this line)

Istring# inserts tl~e characters "string"
leaves the editor and returns to

inputting from the user's console.

69

System Control

Lines are consecutively numbered, except
that the input line Ci will be followed by an
output line (if one is generated) named Di.
The next input-output pair will be labelled
C(i+l) and D(i+l), respectively. If one
command produces several lines of output, the
llne number will be incremented for each
additional line. A user can refer to any com-
mand or expression by its line label. The
most recently outputted expression may be
referred to as "%".

The system automatically writes old ex-
pressions onto secondary storage. The process
is controlled by the following variables which
can be set by the user. (e.g. FILESIZE:10$
would set FILESIZE.)

variable default value purpose

FILESIZE l0 Expressions are
written out with
FILESIZE expressions
in each file.

RETAINNUM 8 When the number of
expressions in core
reaches FILESIZE +
RETAINNUM, a file is
written.

FILENAME username The first name of the
file written out.
The second names (our
filing system
requires two names
for a file) are
1,2,....

INCHAR C The prefix character
for inputted line
numbers.

OUTCHAR D The prefix character
for outputted line
numbers.

When an expression is written out, the
name of the file containing it is attached to
the expression name in core. Thus when the
expression is referenced in a later step, it
can be automatically retrieved from the file.

At the end of the session, the
secondary storage files can be deleted by the
command FINISH(). The command FINISH(TRUE)
allows the user to retain some or all of the
expressions on his file. In order to specify
the form and contents of the retained file, he
must answer a series of questions:

question response meaning

OUTPUT DEVICE?(file spec) The name of the file
on which the output
will be saved.

EDIT? N Save the files as
they are. This
response will cut off
further questions.

Y Read the files back
into memory, one ex-
pression at a timer
so that selected ex-
pressions can be
saved on the
previously specified
file.

INTERNAL? Y Save the expressions
in machine readable
form. In this form

SAVE? Y

they may be read back
into a fresh system
using RESUME.

Save only the two
dimensional display
forms.
(This is asked for
each expression.)
Include the expres-
sion currently dis-
played.
Do not include it.

RESUME (file specification) reads a
file previously outputted through FINISH, dis-
playing the commands and recomputing the
results. BATCH(file specification) reads an
input text from the designated file, command
by command. When the end of the file is
reached, further commands may be supplied by
the user at his console. This batch-
processing mode in time-sharing has been
surprisingly useful in generating
demonstrations free from typing errors.

Rules for Expression Evaluation

The philosophy of evaluation used in
MACSYMA is that expressions should be
evaluated as much as the user would normally
desire, given the information available at
evaluation time.

A:X assigns A the value of X. This is
the way a user would typically assign a value
to a variable. Values are also assigned when
the variables are used as labels for expres-
sions on input and output.

A variable which does not have a value
stands for itself. Numbers always stand for
themselves. The functions DERIVATIVE,
INTEGRAL, SUM, and the transcendental
functions are not automatically evaluated.
Other defined functions are evaluated unless
their names are quoted. The arguments of
undefined functions are evaluated, but,
obviously, the function itself cannot be
evaluated. As an expression is evaluated, it
is also simplified.

If a name is subscripted (a subscript,
recall, is enclosed in square brackets on
input), then its value is stored in an array.
The size of an array may be declared by the
command ARRAYSIZE(name,size)$. An array need
not have its dimensions declared, but if it
has been declared, it will be permitted to
have only numerical subscripts. At the first
attempt to store a value in an undeclared
array, a mechanism will be set up to describe
the entries and their values in terms of a
hash-coded list. The hash code can be
computed from the subscripts whether or not
they are numerical. If an array is
subsequently declared, the values in the hash
table are transferred to the new (true array)
organization. The value of an array entry can
be a number, expression, equation (etc.)
regardless of whether it is a hash array or a
true array. A hashed array is organized as
follows: It is initially allocated a hash
table with four entries. Each table entry
contains a list of subscripts and values which
hashes into that entry. Whenever the number
of entries with values is equal to the size of
the hash table, the size of the hash table is
doubled. Whenever the operation ":" is
executed, a check is made to see if the name
is subscripted. If so, the appropriate array

70

entry is set.
A::X assigns the value of A the value of

X. The value of A must be a variable in this
situation.

Function Definitions and Arrays

MACSYMA incorporates a programming syn-
tax resembling Algol-60 for use on the top
(command) level and in function definitions.
The parser is entirely syntax directed, so
that modifications to the grammar can be
easily included; also, an exact definition of
the acceptable forms (and their
interpretations in terms of LISP and MACSYMA

functions) can (but will not) be given. The
syntax is illustrated in figure 3. Each of
these constructions has fairly conventional
interpretation, except when symbolic and
traditional numeric notions conflict. One
such instance is in inequalities, ~and is
discussed in the next section in more detail.

The first argument to ":=" (the function
definition operator) may take one of three

LIMIT(exR,var,val,dir) finds the limit of exp
as the real variable var approaches the
value val from the direction dir. Dir may
have the value PLUS for a limit from
above, MINUS for a limit from below, or
may be omitted (implying a two-sided limit
is to be computed). LIMIT uses the
following special symbols: INF (positive
infinity) and MINF (negative infinity).
On output it may also use UND (undefined)
and IND (indefinite but bounded).

SUBSTITUTE(~,~,~) substitutes ~ for ~ in ~.
must be an atom or a function with argu-
ments, rather than a function with only
some of its arguments. When ~ does not
have these characteristics, one may
sometimes use SUBSTPART or RATSUBST.
SUBSTITUTE((eQ1,...,eqk),exp) is another
permissible form. The eqi are equations
indicating substitutions to be made. For
each equation, the right side will be
substituted for the left in the expression
exp (if the left side is non-atomlc, and
the right side is, the equation will be

forms: f(x), f[i] or f[i](x). Let the second "flipped")
argument to ":=" (that is, the right hand EXPAND(exp) will cause an expansion of the
side) be y. In the first case, the variable f argument. The MACSYMA variables MAXNEGEX
denotes a function, with value lambda(x)y. In and MAXPOSEX (originally set to 6) control
the second case, a function definition is the maximum negative and positive
being associated with an array. The name f is exponents, respectively, which will
denoted an AEXPR with value lambda(i)y. An expand. EXPAND(exp,~,~) expands exp, but
AEXPR is used as follows. If a particular uses £ for MAXPOSEX and n for MAXNEGEX.
value of an undeclared array (it is an array SIMPLIFY(exp) simplifies it~ argument, thus
if the variable is subscripted or if the name overriding the value of the MACSYMA
has previously been subscripted and assigned a variable SIMP which if set to FALSE stops
value) is not present in the associated hash simplification.
table, a check is made to see if the name also PART(exp,nl,...,nk) obtains a subexpression of
denotes an AEXPR. If so, this function is
evaluated and the resulting value is stored in
the hash table and also returned. If no value
is present and no AEXPR is present, the ex-
pression is handled as though it were an
undefined function.

If the first argument of ":=" is
f[i](x), the third case, then f is denoted an
AEXPR as above, but this AEXPR evaluates to a
function of x. For example, given
f[i](x):=x**i, evaluating f[3](5) would cause
the AEXPR to be evaluated to lambda(x)x**3 and
this value would be stored as the value of
f[3] and also applied to 5 to yield 5**3. A
subsequent evaluation of f[3](7) would cause
the value lambda(x)x**3 of f[3] to be
retrieved and applied to 7.

Predicates and Conditionals

The comparison operators ">" "<" and J

"=" are not evaluated in ordinary contexts;
however, these operators, along with AND and
OR are evaluated when they are in the
predicate position of the IF-THEN-ELSE
construction. If the predicate (the IF
clause) evaluates to TRUE, the THEN clause is
evaluated and returned. If the predicate
evaluates to FALSE, the ELSE clause is
evaluated and returned.
cannot be

exp which is specified by the indices ni.
The index nl which (like all the indies
is a non-negative integer) selects the
argument of the top level operator of exp
corresponding to its value. Thus
PART(Z+Y,2) yields Y. The index n2 (if
specified) picks up an argument of the
result of PART(exp,nl). Thus
PART(Z+2*Y,2,1) yields 2. The operator is
considered to be argument 0.

In exponentiatlon, the base is
considered argument l, and the exponent
argument 2. In a quotient, the numerator
is argument l, and the denominator is
argument 2. A minus sign appearing in the
display is considered as an operator. For
example

comparison operator was given a non-numeric
argument), the construction is returned
unevaluated.

General Purpose Commands

INTEGRATE(exp,var) integrates exp with respect
to var or returns an integral expression
if it cannot perform the integration.

returning that subexpression as its value,
it returns the whole expression with the
selected subexpression displayed inside a
box. Thus in the example above,

(C2) DPART(Di,2,2,1)@

71

If the predicate DPART(exp,nl,...,nk) selects the same subex-
evaluated completely (e.g. a pressi~ as ~RT, but instead of Just

(C2) PART(Di,1,2,2)@

(D2)

Y
-- + X
2

Z

(Ci) X+Y/Z**2@

(Di)

(D2)
Y

.... + X
2

[]

SUBSTPART(~,exp,nl,...,nk) substitutes x for
the subexpression picked out by th~ rest
of the arguments. It returns the new
value of exp.

DERIVDO(exp,varl,...,varn) forces the
derivatives of exp with respect to the
vari to be evaluated.

DIFFe~,var___~,n!,...jvark,n__k) differentiates
exp with respect to vari ni times. If k=l
and nl=l, nl may be omitted:
DIFF(e~,var).

DEPENDENCIES(f~,. ,fn) declares functional
dependencies used by DIFF. Each fi
(i=l,n) has the format f(v_!,...,vm) whe~
each v~ (j=l,m) is a variable on which f
depends. Thus DIFF(Y,X) is 0, initially.
Executing DEPENDENCIES(Y(X))$ causes fu-
ture differentiations of Y with respect to
X to be displayed as

DY

DX
KILL (argl,...,ar~n) eliminates its arguments

from the MACSYMA system. If argi is a
variable, a function name, or an array
name, the designated item is removed from
core and the storage it occupies is
reclaimed, arsi = "HISTORY" eliminates
all input and output lines to date (but
not other named items), arsi = a number,
n, deletes the last n lines.

STORE(ars1...,arsn) is similar to KILL in that
it reclaims core storage (but not quite as
much). The values of the arguments to
STORE are removed from core and saved on a
secondary storage device. Special
indicators left in core allow MACSYMA to
read back these items whenever refer-
fenced. The arguments can be variables,
function names, or array references.
Numbers or "I{ISTORY" are not acceptable,
since storage of the input and output
lines is automatic and controlled by
RETAINNUM.

COEFF(ex~,var,n) obtains the coefficient of
var**~ in-- exp. For best results, exp
should be expanded. Coefficients of
var**n which are functions of var are
ignored. This command is less powerful
than RATCOEF, but is sometimes convenient
in interactive situations.

(C2) COEFF(Y+X*%E**X+i,X,0)@
(D2) Y + 1

DOSUM(ind,lo,hi,exp) performs a summation of
the values of exp as the index ind varies
from io to hi. ""

(C3) DOSUM(I,i,4,I!)@
(D3) 33

EV(exp,ar~l,...,arsn) causes the expression
exp to be evaluated and simplified with
switches set according to the values of
the ar~i.

EVAL reevaluates the expression so
that variables in it which have values
will be evaluated.

SIMP overrides the setting of the
SIMP switch.

EXPAND causes expansion.
EXPAND(~,~) set the values of EXPOP and
EXPON.

DIFF causes all differentiations
indicated to be performed.
DIFF(varl,...,vark) causes only
differentiations with respect to the
indicated variables.

NUMER causes SIN, COS, LOG, and "**"
with numerical arguments to be evaluated.

z=exp causes the substitution of ex~
for v. v must be an atom.

-- Th~ arguments following the first
(exp) may be given in any order. It
should be understood that EV performs a
single evaluation and simplification;
thus all of the functions are performed in
one scan. This is possible because the
simplifier is used to perform expansions,
differentiation, and numerical evaluations
by the setting of switches. For example:

(C4) SIN(X)+COS(Y)+(W+i)**2
+DERIVATIVE(W,i,SIN(W))@

D
(D4) COS(Y) + SIN(X) + --SIN(W) + (W + l)

DW

(C5) EV(%,NUMER,EXPAND,DIFF,X=2,Y=i)@

2
(D5) COS(W) + W + 2 W + 1.425324

WHEN conditional DO identifier = expression
e.g., WHEN I=2 DO K=%@. The value of the
identifier is determined by evaluating the
conditional. If it evaluates to TRUE,
then the expression is evaluated and used
for the value of that use of the
identifier. If the conditional evaluates
to FALSE, then the identifier's value is
itself. In effect, the identifier becomes
a function of no arguments which evaluates
the conditional, and if TRUE, returns the
expression as its value.

SOLVEX((lhsl,...,lhsn),(vl,...,vn)) solves a
system of linear algebraic equations. It
takes two lists as arguments. The first
list (lhsi, i=l,n) represents the left-
hand-sides of the equations to be solved;
the right-hand sides are 0. The second
list is a list of the unknowns to be
determined. If the given equations are
not compatible, the message SINGULAR will
be displayed. The solutions are exact,
not subject to round-off error, and may
involve symbolic variables. The solution
set consists of a list of numbered
equations and an index to the llst, as in
the SOLVE command.

DISPLAY(expl,...,exR~ prints equations whose
left-hand-sides are the e xpi, and whose
rlght-hand-sides are the values of each
expression. The value of DISPLAY is a
list of the labels of the equations
displayed.
(C7) DISPLAY(D3,I)@
(E7) D3 = X + Y
(ES) I = 5
(D9) (E7,E8)

Rational Function Commands

The rational function commands have been
discussed earlier. For the sake of
completeness, we briefly list them, along with

72

an indication of their purposes.
RATVARS provides a method for specifying the

ordering of variables in CRE form.
RAT converts an expression to CRE form.
RATDISREP converts a CRE to a normal prefix

expression.
RATSIMP, FULLRATSIMP, and RADCAN are

simplifiers.
FACTOR factors a polynomial or rational

function (numerator and denominator).
PARTFRAC expands a rational function in

partial fractions.
RATCOEF picks out coefficients.
RATSUBST substitutes.
SOLVE solves an equation for a variable.

The Matching Subsystem

(for details, see [2])

DECLARE(var,pred) declares var to match only
expressions satisfying the predicate pred,
when var is used in a pattern.

DEFMATCH -~ame,exp, varl,...,vark) defines a
pattern matching program with name name.

DEFRULE(name,exp,repl) defines a trans-
formation rule with name name which
matches the pattern exp and transforms it
to the replacement re~.

APPLYl(exp,rl,...,rk) Cand similarly for
APPLY2) applies the rules r_!,...,r] ~ to the
expression exp, and returns the
transformed expression. The difference
between APPLY1 and APPLY2 is in the
sequencing through the expression and
rules.

TELLSIMP (~_~,re~) (and similarly for
TELLSIMPAFTER) changes the simplifier, so
that in all subsequently simplified
expressions, an occurrence of the pattern
pat will be replaced by the expression
repl.

Several additional predicates and
testing programs are provided for use in
constructing patterns and their predicates.
SIGNUM(~) returns -I,0, or +i, depending on
whether the sign of ~ is negative, zero, or
positive. If x is not a number, its signum
is computed from the coefficient of the
leading term in a rationally simplified
expression equivalent to x. FREEOF(~,~)
returns TRUE if ~ does not [epend explicitly
on ~. This is accomplished by searching
through [for an occurrence of ~, and assumes
that x is not, for example, used as a dummy
varia[le of integration. INTEGER(i) returns
TRUE if x is an integer.

Appendix II

This problem is taken from Chapter 3 of a
1963 Masters Thesis by J. S. Draper for the
MIT Department of Aeronautics and Astronautics.
This thesis investigates the la~minar compres-
sible boundary layer on the electrode walls of
a direct-current crossed field plasma acceler-
ator under very special physical conditions.

The solution procedure begins as follows.

I. Write down 5 non-linear partial differential
equations for momentum, ~tate, continuity, en-
ergy, and electron mobility as a function of
temperature. These equations relate
U, the stream velocity
V, the lateral velocity
t, the temperature
0, the density
~, the electron mobility
P, the pressure

in terms of the independent variables, x
and y. The constants are
J, the current
B, the magnetic field
Cp, the specific heat

K, the compressibility
G, the conductivity
R, the gas constant

2. The absence of variation in the y direction
in the free stream is used to find the momentum
and state equations there. These two reduced
equations are solved for D P which is elimi-

X
nated from the five main equatlons, since P
is not a function of y.

Further steps in the solution procedure
are discussed by Martin in [6].

73

Figure I.

Input
Parser

MACSYMA
Supervisor Two

Dimens iona I
Express ion
Display

String
Editor

General
Simplifier

Programming
LanguaBe
Evaluator

Graphical
Display of
Functions

Pattern
Match

Subsystem

Commands:
EXPAND
DIFF
etc.

Variable
Dimension
Arrays

Manipulation
of

Power
Series

Polynomial,
Rational
Function

Subsystem

Limits

Canonical
Simplification

Integration
Subsystem

Definite I
Integration

Matrix
Routines;
of Linear
Equations

Riseh
Integration
Algorithm

Figure 2. Examples of RATSUBST

Arsument i Argument 2 Argument 3

A X ~ X 4Y8+X4Y3

RATSUBST Versions Result

i, 2 X 4~+A3

3,4 A X3y+A 4

i S+C S i ,3,4 -C+I

2 S

A B (X+Y) B 2+BX+BY+I 1,3,4 B 2+A+I

2 ,with RATVARS (Y) BY +BX+B2+I

2 ,with RATVARS (X) BX +BY+B2+I

2 ,with RATVARS (B) B2+A+ I

A x x2Y 1,2,3 x2Y
4 ,with RATVARS (X) A 2/y3

4,with RATVARS (Y) X2y

A X+Y (X+Y) (Z+W) 1,2,3 (Z+W) A
4 (Z+W) Y+ (Z+W)X

-i 12 14+1 1,2,3,4 2

74

Figure 3. Syntax of Expressions: Examples of the legal input expressions and the

corresponding two dimensional display form are shown below. W, X, Y, and Z

stand for any expressions; U and V for variables. (Some of these forms can be

extended to take an arbitrary number of arguments in the obvious manner.)

input display meaning

AB AB

' AB ' AB

1 1

1.2 1.2

F [X,Y] FX, Y

F (X,X) F(X,Y)

F [X,Y] (W,Z) Fx,y (W, Z)

X! X:

X**Y X Y

x/Y x or X/Y

-X -X

X+Y X+Y

X-Y X-Y

X*Y X*Y

X=Y X=Y

X <Y X <Y

X >y X >y

X AND Y X AND Y

X OR Y X OR Y

'X 'X

(X,Y) (X,Y)

IF X THEN Y IF X THEN Y

IF X THEN Y ELSE W IF X THEN Y ELSE W

FOR I:l STEP 1 UNTIL FOR I:l STEP 1 UNTIL

1 > 3 DO X I > 3 DO X

A:X A:X

A(V) :=X A(V) :=X

A(V) :Y FOR ALL W A(V) :Y FOR ALL W

i00
SUM (I, i, 100,X) X

/
I=l

variable

quoted variable

integer

floating point.number

subscripted variable

function invocation

subscripted function invocation

factorial

exponentiation

quotient

negation

sum

difference

product

equality predicate or equation

less than predicate or inequality

greater than predicate or inequality

logical AND or Boolean operator

logical OR or Boolean operator

quoted expression

list of expressions

conditional

conditional

DO loop

assign A value X

define function A(V)

define function A(V)

summation

INTEGRAL (Y,V,W,X)

DERIVATIVE (Z,U, 2,V, 3)

X.Y

X

Y DV

W

D5Z

DU2DV3 or

X.Y

ZUUVVV

integration

differentiation

non-commutative product

An example of a program: F(V) := BLOCK (IF V > 0 GO (A),
RETURN (0),
A, RETURN (i))

75

