
296 Chapter 5 Evaluation

5.5.4 Interpreter with continuations

We have experienced the power of call/cc: it allows us to escape
the expression evaluation structure of the language. It gives us
the ability to implement “hairy control structures,” such as back-
tracking with amb and coroutines. Let’s now look at how call/cc

can implemented in the language.
But we have almost already done this. We implemented an amb

in section 5.4.2 by changing the form of the execution procedures
to continuation-passing style, with success and failure continua-
tions. The transformation of the execution procedures to support
call/cc is similar but easier: we need only one continuation pro-
cedure for each execution procedure, and call/cc is implemented
by just providing that continuation to the interpreted program!

The general pattern of an execution procedure will be:

(lambda (environment continue)
;; continue = (lambda (value) ...)
;; "return" a value by (continue value)
)

So we start with a new version of eval:32

(define (c:eval expression environment continue)
((analyze expression) environment continue))

(define (analyze expression)
(make-executor (c:analyze expression)))

(define (default-analyze expression)
(cond ((application? expression)

(analyze-application expression))
(else (error "Unknown expression type" expression))))

(define c:analyze
(simple-generic-procedure ’c:analyze 1 default-analyze))

So we see that the result of (analyze expression) is an exe-
cution procedure that takes an environment and a continuation
procedure.

We transform analyze-application in the same way:

32 In this evaluator we use the c: prefix to distinguish analogous procedures,
as explained in footnote 19 on page 260.



5.5.4 Interpreter with continuations 297

(define (analyze-application expression)
(let ((operator-exec (analyze (operator expression)))

(operand-execs (map analyze (operands expression))))
(lambda (environment continue)
(c:execute-strict operator-exec environment

(lambda (proc)
(c:apply proc

operand-execs
environment
continue))))))

where we have factored out execute-strict, as in our implemen-
tation of codeamb, because it is shared by other parts of the code:

(define (c:execute-strict executor env continue)
(executor env

(lambda (value)
(c:advance value continue))))

All the simple expressions are handled as before, but returning
by calling the provided continuation:

(define (analyze-self-evaluating expression)
(lambda (environment continue)

(continue expression)))

(define (analyze-variable expression)
(lambda (environment continue)

(continue
(lookup-variable-value expression environment))))

(define (analyze-quoted expression)
(let ((qval (text-of-quotation expression)))

(lambda (environment continue)
(continue qval))))

In this interpreter the analysis of lambda expressions is a bit
more sophisticated. We separated the procedures with simple
Scheme-like parameter lists from more general procedures with
declarations, like lazy on the parameters. This simplifies the code
for apply, allowing us to break it into smaller pieces



298 Chapter 5 Evaluation

(define (analyze-lambda expression)
(let ((vars (lambda-parameters expression))

(body-exec (analyze (lambda-body expression))))
(if (simple-parameter-list? vars)

(lambda (environment continue)
(continue
(make-simple-compound-procedure vars

body-exec
environment)))

(lambda (environment continue)
(continue
(make-complex-compound-procedure vars

body-exec
environment))))))

We distinguish simple lambda expressions by a simple test:

(define (simple-parameter-list? vars)
(or (null? vars)

(symbol? vars)
(and (pair? vars)

(symbol? (car vars))
(simple-parameter-list? (cdr vars)))))

And the handler for conditionals is as in the interpreter for amb,
but with only one continuation.

(define (analyze-if expression)
(let ((predicate-exec (analyze (if-predicate expression)))

(consequent-exec (analyze (if-consequent expression)))
(alternative-exec (analyze (if-alternative expression))))

(lambda (environment continue)
(define (decide predicate-value continue)

(if predicate-value
(consequent-exec environment continue)
(alternative-exec environment continue)))

(c:execute-strict predicate-exec environment
(lambda (pval)

(decide pval continue))))))

So the pattern is clear, and there is no reason to go further
into the details, except for call/cc. The way this works is that
call/cc is the name of a unique object that can be distinguished:

(define call/cc (list ’call/cc-tag))

(define (call/cc? p) (eq? p call/cc))



5.6 Power and responsibility 299

This object is treated as a special strict primitive procedure:

(define (c:apply-strict procedure args continue)
(cond ((strict-primitive-procedure? procedure)

(continue (apply-primitive-procedure procedure args)))
((call/cc? procedure)
(c:deliver-continuation (car args) continue))

((simple-compound-procedure? procedure)
(c:compound-apply procedure args continue))

(else (error "Bad strict procedure" procedure args)
’to-retain-stack)))

where the application of call/cc to a receiver procedure applies
the receiver procedure to the continuation, as its argument.

(define (c:deliver-continuation receiver continue)
(c:apply-strict receiver

(list continue)
continue))

Isn’t that simple?!

5.6 Power and responsibility

In this chapter we have seen that we have great power from the
Church-Turing universality of computation. We can never com-
plain: “I cannot express this in the language I must use.” If
we know the tricks of interpretation and compilation we can al-
ways escape from the confines of any language because it is always
possible to build an appropriate domain-specific language for the
problem at hand. The exposition here uses Scheme as the un-
derlying language and builds powerful Lisp-based languages on
top of Scheme. The reason we use Lisp syntax here is because it
greatly simplifies the exposition of these ideas. (See exercise 5.7
on infix notations. If we had to do this in a language with a com-
plicated syntax the exposition would be many times longer and
more tedious.) But the power of interpretation is available in any
Turing-universal language.

It is important for future flexibility that the languages we build
be simple and general. They must have very few mechanisms:
primitives, means of combination, and means of abstraction. We
want to be able to extend them as needed and to be able to mix
and match the parts of programs. And, most important, when


