6.5 Implementing layers: a second pass. 325

when it is necessary to provide an explanation, or even temporar-
ily, to track a difficult-to-catch bug.

Exercise 6.5: Justifications

Sketch out the issues involved in carrying justifications for data. Notice
that the reason for a value depends on the values that it was derived
from and the way those values were combined. What do we do if the
reason for a value is some numerically weighted combination of many
factors, as in a deep neural network? This is a research question that
we need to address to make the systems that affect us accountable.

6.5 Implementing layers: a second pass.

The layering idea seems to be good. The implementation (un-
der MIT/GNU Scheme) shown earlier (section 6.2) is sufficient to
illustrate the ideas and to support dependency tracking for the
propagator system to be developed in Chapter 7. But the imple-
mentation has serious problems.

Conditionals are not explicitly handled in the implementation.

» The support of the value of an if expression must include the
support of the value of the predicate expression and the support
of the value of the selected consequent expression or alternative
expression.

The implementation breaks tail-call optimization.

» The result of applying a layered procedure is a new layered data
item that must be put together from the values of the compo-
nent layers of the layered procedure, after those components
return their values. Thus, tail calls in a layered procedure’s
layers cannot be optimized.

These problems cannot be easily addressed in the underlying
Scheme. To make conditionals sensitive to a layered datum as
the value of the predicate expression would require changes to the
underlying interpreter and compiler, or perhaps some magic macro
that changes the meaning of if: the consequent or alternative
expression chosen by the base value of the predicate expression
would then need its (perhaps layered) value merged with the layers



326 Chapter 6 Layering

of the value of the predicate expression, also breaking tail-call
optimization.

However, it is possible to make an interpreter (and thus a com-
piler) that solves these problems in a way that correctly imple-
ments if and respects tail-call optimization. The key observation
is that the continuations (whose job is waiting for a value from a
subexpression evaluation) can be enhanced to collect the results
from multiple layers, and combine them to make a layered datum
after all of the layer contributions have been accumulated.

Using the same mechanism, a continuation waiting for the value
of an if expression can accept and hold informtion developed
when evaluating the predicate and combine that information with
the value of the chosen consequent or alternative.

6.5.1 Interpreter with extended continuations

Some Scheme systems [35] have extended continuations to allow
the implementation of continuation marks [94], which allow con-
tinuations to be decorated with key-value pairs. The continuation
mark mechanism can be used to implement exactly what is needed
to allow the accumulation of results of multiple layers without
breaking tail-call optimization. But this does not, in itself, solve
the if problem. So, to make things more clear we will provide an
entire interpreter that has extended continuations and also allows
if to combine layers from the predicate with the layers from the
selected consequent or alternative.

We start with the interpreter of section 5.5.4. This interpreter
was written in continuation-passing style, with explicit continu-
ations that could be provided to the interpreted program using
call/cc. Here we will extend each continuation that appears in
this interpreter so that it can do more than just receive a value for
a subexpression: it will support a continuation-marks-like feature.

The new version of eval is mostly the same:”

" In this evaluator we use the 1: prefix (for layered) to distinguish analogous
procedures, as explained in footnote 19 on page 260.



6.5.1 Interpreter with extended continuations 327

(define (l:eval expression environment continue)
((analyze expression) environment continue))

(define (analyze expression)
(make-executor (c:analyze expression)))

(define (default-analyze expression)
(cond ((application? expression)
(analyze-application expression))
(else (error "Unknown expression type" expression))))

(define l:analyze
(simple-generic-procedure ’l:analyze 1 default-analyze))

As before the result of (analyze expression) is an execution pro-
cedure that takes an environment and a continuation procedure.

The first significant change is in analyze-application. The
bare continuation (lambda (proc) ...) is wrapped with the pro-
cedure extend-continuation:

(define (analyze-application expression)
(let ((operator-exec (analyze (operator expression)))
(operand-execs (map analyze (operands expression))))
(lambda (environment continue)
(1:execute-strict operator-exec environment
(extend-continuation
(lambda (proc) ; The continuation to be extended
(1:apply proc

operand-execs
environment
continue)))))))

The procedure extend-continuation produces an extended con-
tinuation that is just its argument, enhanced with the key-value
association mechanism that is part of the continuation marks
mechanism.

And, as before, we have 1:execute-strict, which forces the
operator (which may be lazy) to produce its value:

(define (1l:execute-strict executor env continue)
(executor env
(extend-continuation
(lambda (value)
(1:advance value continue)))))

Its continuation must be extended as well.



328 Chapter 6 Layering

But most expression handlers do not make new continuations,
so there are no extensions required:

(define (analyze-self-evaluating expression)
(lambda (environment continue)
(continue expression)))

(define (analyze-variable expression)
(lambda (environment continue)
(continue
(lookup-variable-value expression environment))))

(define (analyze-quoted expression)
(let ((gval (text-of-quotation expression)))
(lambda (environment continue)
(continue qval))))

Of course, each of these handlers must be installed as the handler
for the appropriate kind of expression:

(define-generic-procedure-handler l:analyze
(match-args self-evaluating?)
analyze-self-evaluating)

(define-generic-procedure-handler 1:analyze
(match-args variable?)
analyze-variable)

(define-generic-procedure-handler 1l:analyze
(match-args quoted?)
analyze-quoted)

Note that the execution procedures produced by these handlers for
simple expressions do not make new continutions. They just use
the continuation passed to them, which is a continuation extended
by the ultimate creator of that continuation.

The execution procedure produced by the analysis of a lambda
expression is also simple. It just produces an appropriate com-
pound procedure and passes that procedure to the continuation
passed to it:



6.5.2 Handling if 329

(define (analyze-lambda expression)
(let ((vars (lambda-parameters expression))
(body-exec (analyze (lambda-body expression))))
(if (simple-parameter-list? vars)
(lambda (environment continue)
(continue
(make-simple-compound-procedure vars
body-exec
environment)))
(lambda (environment continue)
(continue
(make-complex-compound-procedure vars
body-exec
environment))))))

And, as usual, we need to declare this handler:

(define-generic-procedure-handler 1l:analyze
(match-args lambda?)
analyze-lambda)

We will not show any more of these, unless they are not obvious.

6.5.2 Handling if

The first real use of the continuation extensions appears in the
execution procedure produced by the handler for if, the basic
conditional.

The analyze-if handler is extended with a hook 1:if-hook
to allow the interpolation of work between the evaluation of the
predicate part of the expression and the choice of consequent or
alternative to be evauated.

This special mechanism is needed to satisfy requirement to al-
low the layers of the predicate value to contribute to the layers
of the value of the consequent or the alternative. For example,
provenance of the predicate value must be combined with the
provenance of the value of the consequent or the alternative to
produce the provenance of the answer.

To preserve proper tail-recursion the collection of values from
the layers of the predicate and the chosen consequent or alterna-
tive must be done without creating a new continuation. So we
extend continuations to allow them to accumulate the values from
the contributing layers without interpolating new continuations.



330 Chapter 6 Layering

(define (analyze-if expression)
(let ((predicate-exec
(analyze (if-predicate expression)))
(consequent-exec
(analyze (if-consequent expression)))
(alternative-exec
(analyze (if-alternative expression))))
(lambda (environment continue)
(1:execute-strict predicate-exec environment
(extend-continuation
(lambda (p-value)
(1:if-hook p-value continue
(lambda (p-value* continuex*)
((if p-valuex
consequent-exec
alternative-exec)
environment continue*)))))))))

The execution procedure produced by this handler forces the value
of the predicate expression, as expected. However, the value of
the predicate expression p-value may be a layered object rather
than just a bare boolean value. To accomodate this possibility we
pass the predicate expression value to a generic procedure. It will
extract the base value p-value* and use it to select the consequent
or alternative. It will also produce an appropriate continuation
continue* to combine the results of the predicate evaluation with
the results of the consequent or alternative evaluation.

(define 1:if-hook
(simple-generic-procedure ’1l:if-hook 3
(lambda (p-value continue receiver)
(receiver p-value continue))))

The 1:if-hook is a generic procedure that allows special handlers
for things like layering (or perhaps something more interesting
that we have not yet thought of!). If the predicate value is not
some special thing, like a layered object, the default is just to
proceed to the receiver with the predicate value and the usual
continuation.

Note that the change to if is quite subtle, but it is not necessar-
ily expensive. Compiled code may need to deal with the 1:if-hook
only if the p-value is not an explicit boolean. Of course, this will
put pressure on programmers to decrease the use of non-false val-
ues of predicates as true values, but this may be a good thing.



6.5.3 Handling layered procedures 331

All the rest of the special forms, like begin, set!, and define,
and macros like let and cond are uninteresting. They are not
changed from the basic interpreter.

6.5.3 Handling layered procedures

The more interesting stuff is application of procedures (possibly
layered procedures!). A layered procedure does the work of using
the continuation of its calling expression to do the required com-
bination of the results of its component layers. But this is not a
significant change in the interpreter. A layered procedure is just
a different kind of strict procedure (an applyer) from the point of
view of the interpreter. All that is needed is to add this case to
the strict procedure apply.

(define (1l:apply-strict procedure args continue)
(cond ((strict-primitive-procedure? procedure)
(continue (apply-primitive-procedure procedure args)))
((simple-compound-procedure? procedure)
(1:compound-apply procedure args continue))
((call/cc? procedure)
(1:deliver-continuation (car args) continue))
((applyer? procedure) ; Layered procedures caught here.
((applyer-procedure procedure)
procedure args continue))

(else
(error "Bad strict procedure" procedure args)
’to-retain-stack)))

In a more serious system, we would make this a simple generic
procedure that does the dispatch, allowing easy addition of more
kinds of strict procedures.

The applyer idea is itself rather general. It is an object that
can be applied as a procedure, but which carries metadata that it
and other code can use. In MIT/GNU Scheme we have entitys
and apply-hooks for this purpose.

The application of a layered procedure is very interesting, but
it will be easier to understand, after we build up an understanding
of the fundamental mechanisms, and how if might work. We will
get back to this in section 6.5.6.



332 Chapter 6 Layering

6.5.4 Continuation Extensions

Let’s understand this from the bottom up. Just what is an ex-
tended continuation? It is just the continuation with the addition
of the continuation marks association mechanism:

(define (extend-continuation continuation)
(set-cont-marks! continuation (empty-marks))
continuation)

The code set-cont-marks! just attaches the empty marks to the
continuation as metadata.

(define (marks-subproblem superproblem)
(if superproblem
(cons ’() (cont-marks superproblem))
(root-marks)))

Where cont-marks gets the marks from the superproblem contin-
uation.

A continuation mark is just a key-value pair that is can be as-
sociated with a continuation. In implementing layers we will need
two continuation-mark keys, mark-key:dict and mark-key:nested-applications.
The mark-key:dict will be used to obtain an association from lay-
ers to values. We could have avoided that extra layer by using the
marks directly, but we were trying to isolate the layer-specific ma-
terial from the continuation marks. The mark-key:nested-applications
is just a counter for the number of outstanding applications, which
will become zero when the continuation is allowed to proceed.

6.5.5 Layers and if

Now, let’s look at how 1:if-hook actually works if the predicate
value is actually a layered object:

(define-generic-procedure-handler 1:if-hook
(match-args
layered-thing? extended-continuation? any-object?)
(lambda (p-value continue receiver)
(receiver (base-value p-value)
(merge-predicate-layer-values p-value
continue))))

It calls the receiver (from analyze-if):



6.5.5 Layers and if 333

(lambda (p-value* continuex*)
((if p-valuex
consequent-exec
alternative-exec)
environment continuex))

with the base value of the predicate value, that the receiver can
use to do the selection of consequent or alternative, and the con-
tinuation, which will be a mechanism for merging the predicate
values layers with the results of executing the chosen consequent
or alternative in the continuation of the if expression.

The procedure merge-predicate-layer-values merges the ap-
propriate predicate value layers into the continuation cont of the
if expression and then returns a continuation that will merge in
the chosen consequent or alternative values into the same contin-
uation. If there is no more to be done the continuation is then
allowed to proceed.

(define (merge-predicate-layer-values p-value cont)
(accept-values p-merge p-value cont)
(extend-continuation

(lambda (c/a-value)
(accept-values c/a-merge c/a-value cont)
(return-if-complete cont))))

The real work is done by accept-values. For every layer in the
value passed in it uses a layer-specific merge procedure to combine
the value for that layer stored in the continuation with the value
for that layer in the value.

(define (accept-values get-merger value cont)
(for-each
(lambda (layer-name)
(value-receiver layer-name
((get-merger layer-name)
(((cont-dict cont) ’get-value) layer-name)
(get-layer-value-or-default layer-name
value))
cont))
(available-layers value)))

Notice that there needs to be a merge procedure and a possible
default value for each layer. This must be set up in the description
of a layer. So, for example, for tracking provenance the merger
will be a union of the support sets.



334 Chapter 6 Layering

The merged result is passed to the value-receiver, which then
stashes it, under than layer name, into the waiting continuation.

(define (value-receiver layer-name new-value cont)
(cond ((ignore-value? new-value)
’nothing-to-do)
(else
(((cont-dict cont) ’update!) layer-name new-value)
’updated-layer-with-new-value)))

When all nested applications have completely finished with this
continuation, the continuation is allowed to proceed, with a newly
constructed layered object as its result:

(define (return-if-complete cont)
(if (= (cont-nested-apps cont) 0)
(cont
(make-layered-thing (((cont-dict cont) ’filled-entries))))
’multiple-nested-applications))

So this is how if is extended for predicate values that are lay-
ered.

6.5.6 Application of layered procedures

When an object of type applyer is the procedure sent to 1:apply-strict
the applyer-procedure of the object is extracted. For a layered
procedure the applyer procedure is layered-procedure-dispatch:

(define (layered-procedure-dispatch procedure args continue)
(layers-processor procedure
args
(apply lset-union eq?
(available-layers procedure)
(map available-layers args))
(process-layers continue))
(end-of-layers continue))

This procedure has to coordinate the processing of each of the
layers that are present in the arguments or the procedure. The
process-layers procedure returns a processor for each layer, such
that the results are targeted to the continuation of the calling ex-
pression of the layered procedure. It starts by incrementing the
nested applications counter for the continuation. This will be
decremented by the end-of-layers procedure after all the lay-



6.5.6 Application of layered procedures 335

ers are processed. The procedure process-layers returns the
process-a-layer to be used for each layer:

(define (process-layers cont)
(cont-increment-nested-apps cont)
(define (process-a-layer layer-name updater)
(updater (((cont-dict cont) ’get-value) layer-name)
(extend-continuation
(lambda (new-value)
(if (and (eq? layer-name ’base)
(layered-thing? new-value))
(accept-values apply-merge new-value cont)
(value-receiver layer-name new-value
cont))))))

process-a-layer)

The process-a-layer procedure grabs the current value stored in
the continuation with the given layer name and passes that value
with a procedure that will take the new value from running the
procedure layer handler and stash it in the continuation, to the
updater that will actually run the procedure layer. This is a pretty
baroque handshake, so it probably can be simplified.

The layers-processor procedure iterates through the layers,
processing each layer with the target continuation given to process-layers.

(define (layers-processor procedure args relevant-layers
process-a-layer)
(for-each (lambda (layer-name)
(process-a-layer layer-name
(layer-applicator procedure args layer-name)))
relevant-layers))

The layer applicator is actually where the procedure layer code
is executed. The base layer is treated separately, because the other
layer handlers may need the current value from the continuation
to merge with the new information. This value is passed in as an
extra first argument to the handler for the layer.



336 Chapter 6 Layering

(define (layer-applicator procedure args layer-name)

(define (base-layer-applicator procedure args continue)
(let ((base-proc (base-value procedure)))
(1:apply-strict base-proc
(if (strict-primitive-procedure? base-proc)
(map base-value args)
args)
continue)))

(lambda (cont-layer-value continue)
(cond ((eq? layer-name ’base)
(base-layer-applicator procedure
args
continue))
((any (lambda (arg) ; A changeable policy.
(memq layer-name
(available-layers arg)))
args)
(1:apply-strict (get-layer-value-or-default
layer-name procedure)
(cons cont-layer-value args)
continue))
(else ’0K))))

Notice that both for application and for if we keep track of
the number of nested applications that have to be finished for the
continuation of the expression to proceed.

(define (end-of-layers cont)
(cont-decrement-nested-apps cont)
(return-if-complete cont))

This is still a bit mysterious.

6.6 The promise of layering

We have only scratched the surface of what can be done with an
easy and convenient mechanism for layering of data and programs.
It is an open area of research. The development of systems to
support such layering can have huge consequence for the future.
Sensitivity analysis is an important feature that can be built
using annotated data and layered procedures. For example, in me-
chanics, if we have a system that evolves the solution of a system of
differential equations from some initial conditions, it is often valu-



6.6 The promise of layering 337

able to understand the way a tube of trajectories that surround a
reference trajectory deforms. This is usually accomplished by in-
tegrating a variational system along with the reference trajectory.
Similarly, it may be possible to carry a probability distribution of
values around a nominal value along with the nominal value com-
puted in some analyses. This may be accomplished by annotating
the values with distributions and providing the operations with
overlaying procedures to combine the distributions, guided by the
nominals, perhaps implementing Bayesian analysis. Of course, to
do this well is not easy.

An even more exciting but related idea is that of perturbational
programming. By analogy with the differential equations example,
can we program symbolic systems to carry a “tube” of variations
around a reference trajectory, thus allowing us to consider small
variations of a query? Consider, for example, the problem of doing
a search. Given a set of keywords, the system does some magic
that comes up with a list of documents that match the keywords.
Suppose we incrementally change a single keyword. How sensitive
is the search to that keyword? More important, is it possible to
reuse some of the work that was done getting the previous result
in the incrementally different search? We don’t know the answers
to these questions, but if it is possible, we want to be able to
capture the methods by a kind of perturbational program, built
as an overlay on the base program.

Dependencies mitigate inconsistency

Dependency annotations on data give us a powerful tool for orga-
nizing human-like computations. For example, all humans harbor
mutually inconsistent beliefs: an intelligent person may be com-
mitted to the scientific method yet have a strong attachment to
some superstitious or ritual practices; a person may have a strong
belief in the sanctity of all human life, yet also believe that capital
punishment is sometimes justified. If we were really logicians this
kind of inconsistency would be fatal: if we really were to simulta-
neously believe both propositions P and NOT P, then we would
have to believe all propositions! But somehow we manage to keep
inconsistent beliefs from inhibiting all useful thought. Our per-
sonal belief systems appear to be locally consistent, in that there
are no contradictions apparent. If we observe inconsistencies we
do not crash; we may feel conflicted or we may chuckle.



338 Chapter 6 Layering

We can attach to each proposition a set of supporting assump-
tions, allowing deductions to be conditional on the assumption
set. Then, if a contradiction occurs, a process can determine the
particular “nogood set” of inconsistent assumptions. The system
can then “chuckle,” realizing that no deductions based on any
superset of those assumptions can be believed. This chuckling
process, dependency-directed backtracking, can be used to opti-
mize a complex search process, allowing a search to make the best
use of its mistakes. But enabling a process to simultaneously hold
beliefs based on mutually inconsistent sets of assumptions without
logical disaster is revolutionary.

Restrictions on the use of data

Data is often encumbered by restrictions on the ways it may be
used. These encumberances may be determined by statute, by
contract, by custom, or by common decency. Some of these re-
strictions are intended to control the diffusion of the data, while
others are intended to delimit the consequences of actions predi-
cated on that data.

The allowable uses of data may be further restricted by the
sender: “I am telling you this information in confidence. You may
not use it to compete with me, and you may not give it to any of
my competitors.” Data may also be restricted by the receiver: “I
don’t want to know anything about this that I may not tell my
spouse.”

Although the details may be quite involved, as data is passed
from one individual or organization to another, the restrictions on
the uses to which it may be put are changed in ways that can often
be formulated as algebraic expressions. These expressions describe
how the restrictions on the use of a particular data item may be
computed from the history of its transmission: the encumberances
that are added or deleted at each step. When parts of one data set
are combined with parts of another data set, the restrictions on
the ways that the extracts may be used and the restrictions on the
ways that they may be combined must determine the restrictions
on the combination. A formalization of this process is a data-
purpose algebra [54] description.

Data-purpose algebra layers can be helpful in building systems
that track the distribution and use of sensitive data to enable au-
diting and to inhibit the misuse of that data. But this kind of
application is much larger than just a simple matter of layering.



6.6 The promise of layering 339

To make it effective requires ways of ensuring the security of the
process, to prevent leakage through uncontrolled channels or com-
promise of the tracking layers. There is a great deal of research

to be done here.



