r ef man. t xt Wed Jan 15 01: 01: 54 2003 1

SCMUTI LS Ref erence Manua

This is a description of the Scrmutils system an integrated library of
procedures, enbedded in the progranm ng | anguage Schene, and intended
to support teaching and research in mathematical physics and el ectrica
engi neering. Scrutils and Schenme are particularly effective in work
where the al nost-functional nature of Schenme is advantageous, such as
cl assi cal mechanics, where many of the procedures are nost easily
fornul ated as quite abstract nanipul ati ons of functions.

Many people contributed to the devel opnment of the Scnutils library
over many years, so we may mss sonme of them The principa
contributors have been:

Ceral d Jay Sussnan, Harold Abel son, Jack Wsdom Jacob Katzenel son
Hardy Mayer, Christopher P. Hanson, Mtthew Halfant, Bill Siebert,
Qui Il l erno Juan Rozas, Panayotis Skordos, Kleanthes Koniaris, Kevin
Li n, Dan Zuras

Scheme and Functi onal Progranmi ng

Schene is a sinple conputer |anguage in the Lisp fanmly of |anguages,
with inmportant structural features derived fromAl gol-60. W wll not
attenpt to docunent Schenme here, as it is adequately docunented in the
| EEE standard (I EEE-1178) and in nunerous articles and books. The
R'RS is a terse docunent describing Schenme in detail. It is included
with this document. W assune that a reader of this document is
famliar with Scheme and has read a book such as

Harol d Abel son, Gerald Jay Sussman and Julie Sussman

Structure and Interpretation of Conputer Prograns

MT Press and McGrawHi || (1985, 1996)
As a rem nder, Scheme is an expression-oriented | anguage. Expressions
have val ues. The value of an expression is constructed fromthe

val ues of the constituent parts of the expression and the way the
expression is constructed. Thus, the val ue of

(+ (* :pi (squarer)) 1)
is constructed fromthe val ues of the synbols
+, *, :pi, square, r, 1

and by the parenthetical organization

r ef man. t xt Wed Jan 15 01: 01: 54 2003 2

In any Lisp-based | anguage, an expression is constructed fromparts
wi th parentheses. The first subexpresson always denotes a procedure
and the rest of the subexpressions denote argunents. So in the case
of the expression above, "square" is a synbol whose value is a
procedure that is applied to a thing (probably a nunber) denoted by
“r". That value of the application of square to r is then conbi ned
with the nunber denoted by ":pi" using the procedure denoted by "*"
to make an object (again probably a nunber) that is combined with the
nunber denoted by "1" using the procedure denoted by "+". Indeed, if
t he synbol s have the val ues we expect fromtheir (hopefully menonic)
nanes,

+ = a nmeans of addition

* = a neans of multiplication

. pi = a nunber approximately equal to 3.14159265358979
squar e = a neans of squaring

1 =the multiplicative identity in the reals

r sonme nunber, say for exanple 4

then this expression would have the approxi mate val ue denoted by the
numeral 51.26548245743669.

W can wite expressions denoting procedures. For exanple the
procedure for squaring can be witten

(lanbda (x) (* x x)) ,
whi ch may be read

"the procedure of one argunent x that nultiplies x by x"
W may bind a synbol to a value by definition

(define square
(lanbda (x) (* x x))) ,

or equivalently, by
(define (square x) (* x x))
The application of a defined procedure to operands will bind the
synbol s that are the fornmal paraneters to the actual arguments that
are the val ues of the operands:

(+ (square 3) (square 4)) => 25
Thi s concludes the reni nders about Scheme. You must consult an

alternate source for nore infornation

One caveat: unlike the Schene standard the Scrmutils systemis case
sensitive

r ef man. t xt Wed Jan 15 01: 01: 54 2003 3

CGeneric Arithnetic

In the Scrutils library arithnetic operators are generic over a

vari ety of mathematical datatypes. For exanple, addition nakes sense
when applied to such diverse data as nunbers, vectors, natrices, and
functions. Additionally, many operations can be given a nmeani ng when
applied to different datatypes. For exanple, nultiplication nakes
sense when applied to a nunber and a vector

The traditional operator synbols, such as "+" and "*" are bound to
procedures that inplenment the generic operations. The details of
whi ch operations are defined for which datatypes is described bel ow,
organi zed by the dat atype.

In addition to the standard operations, every piece of mathematica
data, x, can give answers to the followi ng questions:

(type x) o
Returns a synbol describing the type of x. For exanple,
(type 3.14) => *nunber *
(type (vector 1 2 3)) => *yector*

(type-predicate x)
Returns a predicate that is true on objects that
are the same type as x

(arity p)
Returns a description of the nunber of argunents that p
interpreted as a procedure, accepts, conpatible with the MT
Schene procedure-arity procedure, except that it is extended for
dat atypes that are not usually interpreted as procedures. A
structured object, |like a vector, may be applied as a vector of
procedures, and its arity is the intersection of the arities of
t he conponents.

An arity is a newy allocated pair whose car field is the m nimum
nunber of argunments, and whose cdr field is the maxi mum nunber of
argunents. The minimumis an exact non-negative integer. The
maxi mumis either an exact non-negative integer, or ‘#f’' neaning
that the procedure has no maxi nrum nunber of argunents. In our
version of Scheme #f is the sane as the enpty list, and a pair
with the enpty list inthe cdr field is a singleton list, so the

arity will print as shown in the second col um.
(arity (lanmbda () 3)) = (0. 0) = (0. 0
(arity (lanmbda (x) x)) = (1. 1 = (1. 1)
(arity car) = (1. 1) = (1. 1)
(arity (lanmbda x x)) => (0. #f) = (0)
(arity (lanmbda (x . y) x)) = (1. #f) = (1)
(arity (lanmbda (x #'optional y) x)) => (1 . 2) = (1. 2)
(arity (vector cos sin)) = (1. 1 = (1. 1)

r ef man. t xt Wed Jan 15 01: 01: 54 2003 4

W will now describe each of the generic operations. These operations
are defined for many but not all of the nmathematical datatypes. For
particul ar datatypes we will list and discuss the operations that only
make sense for them
(i nexact? x)

This procedure is a predicate -- a bool ean-val ued procedure.

See the R'4RS for an expl anation of exactness of nunbers.

A conmpound obj ect, such as a vector or a matrix, is

inexact if it has inexact conponents.
(zero-like x)

In general, this procedure returns the additive identity of the

type of its argunent, if it exists. For nunbers this is O.
(one-1ike x)

In general, this procedure returns the nultiplicative identity of

the type of its argument, if it exists. For nunbers this is 1

(zero? x)

Is true if x is an additive identity.

(one? x)

Is true if x is a multiplicative identity.

(negat e x) = (- (zero-like x) Xx)

G ves an object that when added to x yields zero.

(invert x) = (/ (one-like x) x)

G ves an object that when nmultiplied by x yields one.

r ef man. t xt Wed Jan 15 01: 01: 54 2003 5

Most of the numerical functions have been generalized to many of the
dat at ypes, but the neani ng may depend upon the particul ar datatype.
Some are defined for numerical data only.

X1l x2 ..
X1l x2 ..
X1l x2 ..
X1l x2 ..
X1l x2 ..

==> <bool ean>

e ||

(
(
(
(
(

~ 1
N N N N

(expt x1 x2)

(gcd n1 n2 ...)

(sqrt x) G ves a square root of x, or an approximation to it.
(exp x) = s enx

(expl0 x) = 107x

(exp2 x) = 27X

(log x)

(10910 x) (/ (log x) (log 10))

(1092 x) (/ (log x) (log 2))

(sin x), (cos x), (tan x)
(sec x), (csc x)

(asin x), (acos x), (atan x)
(atan x1 x2) = (atan (/ x1 x2)) but retains quadrant information

(sinh x), (cosh x), (tanh x)
(sech x), (csch x)

al+i a2
al*:en(* +i a2)

(make-rectangul ar al a2)
(rmake-pol ar al a2)

(real -part 2z)

(i mag-part 2z)

(magni tude 2z)

(angl e 2)

(conj ugate z)

If Mis a quantity that can be interpreted as a square nmatri x,

(determ nant M
(trace M

r ef man. t xt Wed Jan 15 01: 01: 54 2003 6

Schene Numbers

Operations on the Schene Number datatype that are part of standard
Schene are listed here without conment; those that are not part of
standard Schene are described. |In the following <n>is (any
expression that denotes) an integer. <a> is any real nunber, <z>is
any conpl ex nunber, and <x> and <y> are any kind of nunber

(type <x>) = *nunber*

(i nexact? <x>) ==> <bool ean>
(zero-1like <x>) =0

(one-1ike <x>) =1

(zero? <x>) ==> <bool ean>
(one? <x>) ==> <bool ean>

(negate <x>), (invert <x>), (sqrt <x>)

(exp <x>), (expl0 <x>), (exp2 <x>)

(log <x>), (lo0ogl0 <x>), (log2 <x>)

(sin <x>), (cos <x>), (tan <x>), (sec <x>), (csc <x>)

(asin <x>), (acos <x>), (atan <x>)

(atan <x1> <x2>)

(sinh <x>), (cosh <x>), (tanh <x>), (sech <x>), (csch <x>)
<xX1> <x2> ... ==> <hool ean>
<x1> <x2> ..
<X1> <x2> ..

<x1> <x2> ..
<X1> <x2> ..

* 4+ 1l

(
(
(
(
(

~ 1
— N N e

(expt <x1> <x2>)
(gcd <nl> <n2> ...)

<al>+i <a2>
<al>*:e(* +i <a2>)

(make-rectangul ar <al> <a2>)
(make- pol ar <al> <a2>)

(real -part <z>)

(i mag-part <z>)

(magni t ude <z>)

(angl e <z>)

(conj ugat e <z>)

r ef man. t xt Wed Jan 15 01: 01: 54 2003 7

Structured Objects

Scmutils supports a variety of structured object types, such as
vectors, up and down tuples, matrices, and power series.

The explicit constructor for a structured object is a procedure whose
nane is what we call objects of that type. For exanple, we nake
explicit vectors with the procedure naned "vector", and explicit lists

with the procedure naned "list". For exanple

(list 12345 alist of the first five positive integers
(vector 1 2 3 45) a vector of the first five positive integers
(down 10 3 4) a down tuple with three conmponents

There is no natural way to notate a matrix, except by giving its rows
(or colums). To nake a matrix with three rows and five col ums:

(define M
(matrix-by-rows (list 1 2 3 4 5)
(list 6 7 8 9 10)
(list 11 12 13 14 15)))

A power series may be constructed froman explicit set of coefficients

(series 1 2 3 4 5)
is the power series whose first five coefficients are the first five
positive integers and all of the rest of the coefficients are zero.

Al t hough each datatype has its own specialized procedures, there are a
vari ety of generic procedures for selecting the conponents from
structured objects. To get the n-th conponent froma linear data
structure, v, such as a vector or a list, one may in general use the
generic selector, "ref":

(ref x n)

Al'l structured objects are accessed by zero-based indexing, as is the
customin Schene progranms and in relativity. For exanple, to get the
third elenment (index = 2) of a vector or a list we can use

3

(ref (vector 1 2 3 45) 2)
12 4 3

(ref (list 3 45) 2

If Mis a matrix, then the conponent in the i-th row and j-th col umm
can be obtained by (ref Mi j). For the matrix given above

(ref M1 3) =9
O her structured objects are nore nagi ca

(ref cos-series 6) = -1/720

r ef man. t xt Wed Jan 15 01: 01: 54 2003 8

The nunber of conponents of a structured object can be found with the
"size" generic operator

(size (vector 1 2 345)) =5

Besi des t he extensional constructors, nost structured-object datatypes
can be intentionally constructed by giving a procedure whose val ues
are the conmponents of the object. These "generate" procedures are

(list:generate n proc)
(vector:generate n proc)
(matrix:generate mn proc)
(series:generate proc)

For exanple, one may nake a 6 conponent vector each of whose
conponents is :pi tines the index of that conmponent, as foll ows:

(vector:generate 6 (lanbda (i) (* :pi 1)))

O a 3X5 matri x whose conponents are the sumof :pi tinmes the row
nunber and the speed of light tinmes the columm nunber:

(matrix:generate 3 5 (lanbda (i j) (+ (* :pi i) (* :cj))))

Al'so, it is commonly useful to deal with a structured object in an

el ementwi se fashion. W provide special conbinators for nmany
structured datatypes that allow one to make a new structure, of the
same type and size of the given ones, where the conponents of the new
structure are the result of applying the given procedure to the
correspondi ng conponents of the given structures.

((list:elenentwise proc) <I1> ... <ln>)
((vector:elementwi se proc) <vi> ... <vn>)
((structure:elenentwi se proc) <sl> ... <sn>)
((matrix:elementwi se proc) <ML> ... <M>)
((series:elenmentwi se proc) <pl> ... <pn>)

Thus, vector addition is equivalent to (vector:elenentw se +).

r ef man. t xt Wed Jan 15 01: 01: 54 2003 9

Schene Vectors

We identify the Scheme vector data type with mathematica
n-di mensi onal vectors. These are interpreted as up tuples when a
di stinction between up tuples and down tuples is nade.

We inherit from Schenme the constructors VECTOR and MAKE- VECTOR, the
sel ectors VECTOR- LENGTH and VECTOR- REF, and zero-based i ndexing. W
al so get the iterator MAKE-IN Tl ALI ZED- VECTOR, and the type predicate
VECTOR? In the docunentation that follows, <v> will stand for a

vect or-val ued expression.

(vector? <any>) ==> <bool ean>
(type <v>) ==> *vector*
(i nexact? <v>) ==> <bhool ean>

Is true if any conponent of <v> is inexact, otherwise it is false.

(vector-length <v>) ==> <+i nt eger >
gets the nunber of conponents of <v>

(vector-ref <v> <i>)
gets the <i>th (zero-based) conponent of vector <v>

(make-initialized-vector <n> <procedure>)
this is also called (v:generate <n> <procedure>)
and (vector:generate <n> <procedure>)

generates an <n>-di nensi onal vector whose <i>th conponent is the
result of the application of the <procedure> to the nunber <i>.

(zero-like <v>) ==> <vector>
G ves the zero vector of the dinension of vector <v>.

(zero? <v>) ==> <bool ean>
(negate <v>) ==> <vector>
(conj ugat e <v>) ==> <vector>

El enent wi se conpl ex- conj ugate of <v>

Sinple arithnetic on vectors is conponentw se

(= <vl> <v2> .. .) ==> <bool ean>
(+ <vl> <v2> ...) ==> <vector>
(- <vl> <v2> . ..) ==> <vector>

r ef man. t xt Wed Jan 15 01: 01: 54 2003 10

There are a variety of products defined on vectors.
(dot - pr oduct <vl> <v2>) ==> <x>
(cross-product <vl> <v2>)

Cross product only makes sense for 3-dinensional vectors.

(* <x> <v>)
(* <v> <x>)

(scal ar*vector <x> <v>) ==> <vector>
(vector*scal ar <v> <x>) ==> <vector>

(/ <v> <x>)

(vector*scalar <v> (/ 1 <x>)) ==> <vector>

The product of two vectors nakes an outer product structure.

(* <v> <v>) = (outer-product <v> <v>) ==> <structure>

(eucl i dean-norm <v>)
(abs <v>)

(sqgrt (dot-product <v> <v>))
(eucl i dean-norm <v>)

(v:inner-product <vl1> <v2>) = (dot-product (conjugate <v1>) <v2>)

(compl ex- norm <v>)
(rmagni tude <v>)

(sqrt (v:inner-product <v> <v>))
(compl ex- norm <v>)

(maxnorm <v>)
gi ves the maxi mum of the nagnitudes of the conponents of <v>

(v:make-unit <v>) = (/ <v> (euclidean-norm <v>))
(v:unit? <v>) = (one? (euclidean-norm <v>))
(v: make-basi s-unit <n> <i>)
Makes the n-di mensional basis unit vector with zero in al

conmponents except for the ith conponent, which is one.

(v:basis-unit? <v>)
Is true if and only if <v>is a basis unit vector

r ef man. t xt Wed Jan 15 01: 01: 54 2003 11

Up Tupl es and Down Tupl es

Sonetinmes it is advantageous to distinguish down tuples and up tuples.
If the elenents of up tuples are interpreted to be the conponents of
vectors in a particular coordi nate system the elenents of the down
tupl es may be thought of as the conponents of the dual vectors in that
coordi nate system The union of the up tuple and the down tuple data
types is the data type we call "structures."

Structures may be recursive and they need not be uniform Thus it is
possi ble to have an up structure with three conponents: the first is a
nunber, the second is an up structure with two nunerical conponents,
and the third is a down structure with two nunerical conponents. Such
a structure has size (or length) 3, but it has five di nensions.

In Scnutils, the Schene vectors are interpreted as up tuples, and

the down tuples are distinguished. The predicate "structure?" is true
of any down or up tuple, but the two can be distinguished by the

predi cates "up?" and "down?".

(up? <any>) ==> <bool ean>
(down? <any>) ==> <bool ean>

(structure? <any>) = (or (down? <any>) (up? <any>))

In the follow ng, <s> stands for any structure-val ued expression; <up>
and <down> will be used if necessary to make the distinction

The generic type operation distinguishes the types:

(type <s>) ==> *vector* or *down*

We reserve the right to change this inplenentation to distinguish
Schene vectors fromup tuples. Thus, we provide (null) conversions

bet ween vectors and up tuples.

(vector->up <schene-vect or>) ==> <up>
(vector->down <scheme-vector>) ==> <down>

(up->vector <up>) ==> <schene-vect or >
(down- >vect or <down>) ==> <schene-vect or>
Constructors are provided for these types, analogous to list and

vector.

(up . args) ==> <up>
(down . args) ==> <down>

r ef man. t xt Wed Jan 15 01: 01: 54 2003 12

The di nension of a structure is the nunber of entries, adding up the
nunbers of entries fromsubstructures. The dinension of any structure
can be deterni ned by

(s:di nensi on <s> ==> <+i nt eger >

Processes that need to traverse a structure need to know the nunber of

components at the top level. This is the length of the structure,

(s:length <s>) ==> <+i nt eger >

The ith conponent (zero-based) can be accessed by
(s:ref <s> i)
For exanpl e,

(s:ref (up 3 (up 5 6) (down 2 4)) 1)

(up 5 6)

As usual, the generic ref procedure can recursively access
substructure

(ref (up 3 (up 5 6) (down 2 4)) 1 0)

5

G ven a structure <s> we can nake a new structure of the sane type with
<x> substituted for the <n>th conponent of the given structure using
(s:wth-substituted-coord <s> <n> <x>)

We can construct an entirely new structure of |ength <n> whose
conponents are the values of a procedure using s:generate:

(s:generate <n> up/down <procedure>)

The up/down argunent may be either up or down.

r ef man. t xt Wed Jan 15 01: 01: 54 2003 13

The followi ng generic arithmetic operations are defined for
structures.

(zero? <s>) ==> <bool ean>

is true if all of the conponents of the structure are zero.

(zero-like <s>) ==> <s>

produces a new structure with the sane shape as the given structure
but with all conponents being zero-like the correspondi ng conponent in
the given structure

(negate <s>) ==> <s>
(magni tude <s>) ==> <s>
(abs <s>) ==> <s>

(conjugate <s>) ==> <s>

produce new structures which are the result of applying the generic
procedure el enmentwi se to the given structure

(= <s1> ... <sn>) ==> <bool ean>
is true only when the correspondi ng conmponents are =.

(+ <s1> ... <sn>) ==> <s>
(- <s1> ... <sn>) ==> <s>

These are conponentw se addition and subtraction

(* <sl1l> <s2>) ==> <s> or <x>, a structure or a numnber

magi cal | y does what you want: |f the structures are conpatible for
contraction the product is the contraction (the sumof the products of
t he correspondi ng conponents.) |If the structures are not conpatible
for contraction the product is the structure of the shape and | ength
of <s2> whose conponents are the products of <s1> with the
correspondi ng conponents of <s2>,

Structures are conpatible for contraction if they are of the sane
Il ength, of opposite type, and if their corresponding el enents are
conpati ble for contraction.

It is not obvious why this is what you want, but try it, you'll like
it!

r ef man. t xt Wed Jan 15 01: 01: 54 2003 14

For exanple, the following are conpatible for contraction

(print-expression (* (up (up 2 3) (down 5 7 11))
(down (down 13 17) (up 19 23 29))))
652

Two up tuples are not conpatible for contraction.
Their product is an outer product:

(print-expression (* (up 2 3) (up 5 7 11)))
(up (up 10 15) (up 14 21) (up 22 33))

(print-expression (* (up 57 11) (up 2 3)))
(up (up 10 14 22) (up 15 21 33))

This product is not generally associative or comutative. It is
conmmutative for structures that contract, and it is associative for
structures that represent l|inear transfornmations.

To yield additional flavor, the definition of square for structures is
i nconsistent with the definition of product. It is possible to square
an up tuple or a down tuple. The result is the sumof the squares of
the conponents. This nakes it convenient to wite such things as

(/ (square p) (* 2 m), but it is sonetinmes confusing.

Some structures, such as the ones that represent inertia tensors, mnust
be inverted. (The "nt' above may be an inertia tensor!) Division is
arranged to nake this work, when possible. The details are too hairy
to explain in this short docunent. W probably need to wite a book
about this!

r ef man. t xt Wed Jan 15 01: 01: 54 2003 15

Matrices

There is an extensive set of operations for manipul ating matrices.
Let <M>, <N> be natrix-val ued expressions. The follow ng operations
are provided

(matrix? <any>) ==> <bool ean>
(type <M>) ==> *matrix*
(i nexact? <M>) ==> <bool ean>
(mnumrows <M>) ==> <n>,

the nunber of rows in natrix M

(mnumcols <Wv) ==> <n>,
t he nunber of colums in matrix M

(m di mensi on <M>) ==> <n>
t he nunber of rows (or columms) in a square matrix M
It is an error to try to get the dinmension of a matrix
that is not square.

(colum-matri x? <M>)
is trueif Mis a natrix with one col um.
Note: neither a tuple nor a schene vector is a colum matriXx.

(rowmatrix? <M)
is trueif Mis a matrix with one row
Note: neither a tuple nor a scheme vector is a row matri Xx.

There are general constructors for matrices:

(matrix-by-rows <rowlist-1> ... <rowlist-n>)
where the row lists are lists of elenents that are to appear in the
correspondi ng row of the matrix

(matrix-by-cols <col-list-1> ... <col-list-n>)
where the colum lists are lists of elenents that are to appear in
the correspondi ng columm of the matrix

(colum-matrix <x1> ... <xn>)

returns a colum matrix with the given el enments
(rownmatrix <x1> ... <xn>)

returns a row matrix with the given el enments
And a standard selector for the elements of a matrix
(matrix-ref <M> <n> <np)

returns the elenent in the mth colum and the n-th row of matrix M
Remenber, this is zero-based indexing.

r ef man. t xt Wed Jan 15 01: 01: 54 2003 16

W can access various parts of a matrix

(mnth-col <M <n>) ==> <schene-vect or >
returns a Schene vector with the elenents of the n-th colum of M

(mnth-row <M> <n>) ==> <schene-vect or>
returns a Schenme vector with the elenents of the n-th row of M

(m di agonal <M>) ==> <schene-vect or >
returns a Schene vector with the el enents of the diagonal of the
square natrix M

(msubmatrix <M> <fromrow> <upto-row> <fromcol > <upto-col >)
extracts a submatrix fromM as in the follow ng exanple

(print-expression
(m submatri x
(mgenerate 3 4
(lambda (i j)
(* (square i) (cube j))))
131 4))
(matrix-by-rows (list 1 8 27)
(list 4 32 108))

(m generate <n> <> <procedure>) ==> <M>
returns the nXm (n rows by mcolums) matrix whose ij-th elenent is
the val ue of the procedure when applied to argunents i, j.

(sinplify
(mgenerate 3 4
(lanbda (i j)
(* (square i) (cube j)))))
=> (matrix-by-rows (list 0 0 0 0)
(list 018 27)
(list 0 4 32 108))

(matrix-with-substituted-row <M> <n> <schene-vect or >)
returns a new matrix constructed fromM by substituting the Schene
vector v for the n-th rowin M

W can transpose a matrix (producing a new matri x whose colums are
the rows of the given matrix and whose rows are the colums of the
given matrix wth:

(mtranspose <M>)

r ef man. t xt Wed Jan 15 01: 01: 54 2003 17

There are coercions between Schene vectors and matri ces:

(vector->colum-matri x <schene-vector>) ==> <M>

(col um-matri x->vect or <M>) ==> <schene-vect or>
(vector->row matri x <scheme-vect or>) => <Mp
(row matrix->vector <M>) ==> <schene-vect or >

And simlarly for up and down tuples:

(up->col um-matrix <up>) ==> <MW
(colum-matri x->up <M>) ==> <up>
(down->row mat ri x <down>) => <M
(row matrix->down <M) ==> <down>

Matrices can be tested with the usual tests:

(zero? <M)
(identity? <Mm>)
(di agonal ? <Wp)

(m nmake-zero <n>) => <M>
returns an nxXn (square) matrix of zeros

(m make-zero <n> <nPp) ==> <Mb
returns an nXmnmatri x of zeros
Useful matrices can be nade easily

(zero-like <) ==> <N>
returns a zero matrix of the sane dinensions as the given matrix

(m nmake-identity <n>) => <M>
returns an identity matrix of dinmension n

(m make- di agonal <schemne-vect or>) ==> <Mp
returns a square matrix with the given vector elements on the
di agonal and zeros everywhere el se.

r ef man. t xt Wed Jan 15 01: 01: 54 2003 18

Matri ces have the usual unary generic operators:

negate, invert, conjugate,

However the generic operators
exp, sin, cos,
yield a power series in the given matrix.

Square natrices nmay be exponentiated to any exact positive integer
power :
(expt <M> <n>)

W nay also get the determinant and the trace of a square matrix:

(determ nant <M>)
(trace <Mm)

The usual binary generic operators nake sense when applied to
matrices. However they have been extended to interact w th other
datatypes in a few useful ways. The conponentw se operators

are extended so that if one argunment is a square matrix, M and the
other is a scalar, x, then the scalar is pronoted to a diagonal matrix
of the correct dinension and then the operation is done on those:

(= <M> <x>) and (= <x> <Mb) tests if M= xl
(+ <M> <x>) and (+ <x> <Mr) = MxI
(- <M <x>) = Mxl and (- <x> <Mr) = xI-M

Mul tiplication, *, is extended to allow a matrix to be multiplied on
either side by a scalar. Additionally, a matrix may be multiplied on
the left by a conform ng down tuple, or on the right by a conforning
up tuple.

Division is interpreted to nmean a nunmber of different things dependi ng
on the types of the arguments. For any matrix M and scal ar Xx
(/ <M <x>) = (* <M (/ 1 <x>))

If Mis a square matrix then it is possible that it is invertible, so
if <x>is either a scalar or a matrix, then

(/ <x> <Mr) = (* <x> <N>), where Nis the matrix inverse of M

In general, if Mis a square matrix and v is either an up tuple or a
colum matrix, then

(/ <v> <Mr) = <w>, where wis of the sane type as v and where v=Mw.

Simlarly, for v a down tuple
(/ <v> <Mr) = <w>, where wis a down tuple and where v=wM

r ef man. t xt Wed Jan 15 01: 01: 54 2003 19

Functi ons

In Scnutils, functions are data just |ike other mathematical objects,
and the generic arithnetic systemis extended to include them |If
<f> is an expression denoting a function then

(function? <any>) ==> <bool ean>
(type <f>) ==> *functi on*

Operations on functions generally construct new functions that are the
conposition of the operation with its argunents, thus applying the
operation to the value of the functions: if Uis a unary operation, if
f is a function, and if x is argunments appropriate to f, then

((Uf) x) = (U(f x))

If Bis a binary operation, if f and g are functions, and if X is
argunents appropriate to both f and g, then

((Bf g) x) =(B(f x) (g x))

Al'l of the usual unary operations are available. So if <f>is an
expression representing a function, and if <x> is any kind of argunent
for <f> then, for exanple,

((negate <f>) <x>)
((invert <f>) <x>)
((sart <f>) <x>)

(negate (f <x>))
(invert (f <x>))
(sart (f <x>))

The ot her operations that behave this way are:

exp, log, sin, cos, asin, acos, sinh, cosh, abs,
real -part, imag-part, magnitude, angle, conjugate, atan

The binary operations are sinmlar, with the exception that
mat henati cal objects that nmay not be nornmally viewed as functions are
coerced to constant functions for conbination with functions.

((+ <f> <g>) <x>)
((-

(+ (f <x>) (g <x>))
<f> <g>) <x>) (-

(f <x>) (g <x>))
For exanpl e:

((+ sin 1) x) = (+ (sin x) 1)

The ot her operations that behave in this way are:

* |, expt, gcd, make-rectangul ar, nake-pol ar

r ef man. t xt Wed Jan 15 01: 01: 54 2003 20

Operators
Operators are a special class of functions that manipul ate functions.
They differ fromother functions in that nultiplication of operators
i s understood as their conposition, rather than the product of their
val ues for each input. The prototypical operator is the derivative,
D. For an ordinary function, such as "sin"
((expt sin 2) x) = (expt (sin x) 2),
but derivative is treated differently:
((expt D 2) f) = (D (Df))

New operators can be nade by conbining others. So, for exanple,
(expt D 2) is an operator, as is (+ (expt D2) (* 2 D) 3).

W start with a few primitive operators, the total and parti al
derivatives, which will be explained in detail |ater

oidentity
derivative (al so named D)

(partial <conponent-sel ectors>)

If <O> is an expression representing an operator then

(operator? <any>) ==> <bool ean>
(type <O) ==> *gperator*
Qperators can be added, subtracted, nultiplied, and scaled. |If they

are conbined with an object that is not an operator, the non-operator
is coerced to an operator that nultiplies its input by the
non- oper at or.

The transcendental functions exp, sin, and cos are extended to take
operator argunents. The resulting operators are expanded as power
series.

r ef man. t xt Wed Jan 15 01: 01: 54 2003 21

Power Series

Power series are often needed in mathenatical conputations.

There are a few prinmtive power series, and new power series can be
fornmed by operations on existing power series. If <p>is an
expression denoting a power series then

(series? <any>) ==> <bool ean>
(type <p>) ==> *geri es*
Series can be constructed in a variety of ways. |If one has a

procedure that inplenents the general formof a coefficient then this
gi ves the nost direct nethod:

For exanple, the n-th coefficient of the power series for the
exponential functionis 1/n!l. W can wite this as

(series:generate (lanbda (n) (/ 1 (factorial n))))
Sonetimes we have a finite nunmber of coefficients and we want to make
a series with those given coefficients (assum ng zeros for al
hi gher-order coefficients). W can do this with the extensiona
constructor. Thus

(series 1 2 3 4 5)
is the series whose first coefficients are the argunents given

There are sone nice initial series:

series: zero
is the series of all zero coefficients

series:one
is the series of all zero coefficients except for the first
(constant), which is one.

(constant -series c)
is the series of all zero coefficients except for the first
(constant), which is the given constant.

((binom al -series a) x) = (1+x)"a

In addition, we provide the following initial series:

exp-series, cos-series, sin-series, tan-series,
cosh-series, sinh-series, atan-series

r ef man. t xt Wed Jan 15 01: 01: 54 2003 22

Series can also be forned by processes such as exponentiation of an
operator or a square matrix. For exanple, if f is any function of one
argunent, and if x and dx are nunerical expressions, then this
expression denotes the Tayl or expansion of f around x.

(((exp (* dx D)) f) x)
= (+ (f x) (* dx ((Df) x)) (* 1/2 (expt dx 2) (((expt D 2) f) x))

We often want to show a few (n) terns of a series
(series:print <p> <n>)

For exanple, to show eight coefficients of the cosine series we m ght
wite:

(series:print (((exp D) cos) 0) 8)
1

0

-1/2

0

1/ 24

0

-1/ 720

0

; Val ue:

W can nake the sequence of partial suns of a series.
The sequence is a stream not a series.

(streamfor-each wite-line (partial-sunms (((exp D) cos) 0.)) 10)
1

1

.5

.5
.5416666666666666
.5416666666666666
. 540277777TTT77777
. 54027777T7TTTI7777
. 5403025793650793
. 5403025793650793
;' Val ue:

Not e that the sequence of partial suns approaches (cos 1).

(cos 1)

; Val ue: .5403023058681398

In addition to the special operations for series, the follow ng

generic operations are defined for series

negate, invert, +, -, * [, expt

r ef man. t xt Wed Jan 15 01: 01: 54 2003 23

CGeneri c extensions

In addition to ordinary generic operations, there are a few inportant
generic extensions. These are operations that apply to a whol e cl ass
of datatypes, because they are defined in terms of nore prinitive
generi c operations.

(identity x) = x

(square x) = (* x x)

(cube x) = (* X X X)
(arg-shift <f> <kl1> ... <kn>)
(arg-scale <f> <k1> ... <kn>)

Takes a function, f, of n argunents and returns a new function of
n argunents that is the old function with argunents shifted or scal ed
by the given offsets or factors:

((arg-shift square 3) 4) ==> 49
((arg-scale square 3) 4) ==> 144

(sigma <f> <l o> <hi>)
Produces the sum of the values of the function f when called with
t he nunbers between | o and hi inclusive.

(sigma square 1 5) ==> 55
(sigma identity 1 100) ==> 5050
(compose <f1> ... <fn>)

Produces a procedure that conmputes conposition of the functions
represented by the procedures that are its argunents.

((conpose square sin) 3) ==> ,01991485667481699
(square (sin 3)) ==> .01991485667481699

r ef man. t xt Wed Jan 15 01: 01: 54 2003 24

Differentiation

In this systemwe work in terns of functions; the derivative of a
function is a function. The procedure for producing the derivative of
a function is nanmed "derivative", though we also use the single-letter
synbol "D' to denote this operator

We start with functions of a real variable to a real vari able:
((D cube) 5) ==> 75

It is possible to conpute the derivative of any conposition of
functions,

((D (+ (square sin) (square cos))) 3) ==> 0

(define (unityl x)
(+ (square (sin x)) (square (cos x))))

((Dunityl) 4) ==>0

(define unity2
(+ (conpose square sin) (conmpose square co0s)))

((Dunity2) 4) ==>0

except that the conmputation of the value of the function may not
require evaluating a conditional

These derivatives are not nunerical approxinations estimted by sone
l[imting process. However, as usual, sone of the procedures that are
used to conpute the derivative nay be numnerical approxi mations.

((D sin) 3) ==> -, 9899924966004454
(cos 3) ==> -.9899924966004454

O course, not all functions are sinple conpositions of univariate
real -val ued functions of real argunments. Sone functions have nultiple
argunents, and sone have structured val ues.

First we consider the case of nmultiple argunents. |f a function naps
several real argunents to a real value, then its derivative is a
representation of the gradient of that function -- we nust be able to

multiply the derivative by an increnmental up tuple to get a |inear
approxi mation to an increnent of the function, if we take a step
descri bed by the increnental up tuple. Thus the derivative nust be a
down tuple of partial derivatives. W wll talk about conputing
partial derivatives |ater.

r ef man. t xt Wed Jan 15 01: 01: 54 2003 25

Let’s understand this in a sinple case. Let f(x,y) = x*3 y"5.

(define (f x vy)
(* (expt x 3) (expt y 5)))

Then Df (x,y) is a down tuple with conponents [2 x"2 y"5, 5 x"3 y"4].
(sinplify ((Df) 2 3)) ==> (down 2916 3240)

And the inner product with an increnental up tuple is the appropriate
i ncrement.

(* ((Df) 23) (up .1 .2)) ==>939.6

This is exactly the sane as if we had a function of one up-tuple
argunent. O course, we nust supply an up-tuple to the derivative in
this case:

(define (g v)
(let ((x (ref v 0))
(y (ref v 1)))
(* (expt x 3) (expt y 5))))

(simplify ((Dg) (up 2 3))) ==> (down 2916 3240)
(* ((Dg) (up 23)) (up .1 .2)) ==> 939.6

Thi ngs get sonmewhat nore conplicated when we have functions with

mul tiple structured argunments. Consider a function whose first

argument is an up tuple and whose second argunment is a nunmber, which adds
the cube of the number to the dot product of the up tuple with itself.

(define (h v x)
(+ (cube x) (square v)))

What is its derivative? Well, it had better be sonething that can
multiply an increment in the argunents, to get an increnent in the
function. The increment in the first argunent is an increnental up
tuple. The increnment in the second argunent is a small nunber. Thus
we need a down-tuple of two parts, a row of the values of the partial
derivatives with respect to each conponent of the first argunment and
the value of the partial derivative with respect to the second
argunent. This is easier to see synbolically:

(sinmplify ((derivative h) (up "a 'b) 'c))
==> (down (down (* 2 a) (* 2 b)) (* 3 (expt c 2)))

The idea generalizes.

r ef man. t xt Wed Jan 15 01: 01: 54 2003 26

Partial derivatives are just the conmponents of the derivative of a
function that takes multiple argunments or structured argunments or both.
Thus, a partial derivative of a function is a conposition of a
conponent selector and the derivative of that function

The procedure that makes a partial derivative operator given a
sel ection chain is naned "partial"

(simplify (((partial 0) h) (up "a 'b) 'c))
==> (dovm (* 2 a) (* 2 b))

(simplify (((partial 1) h) (up "a 'b) 'c))
==> (* 3 (expt c 2))

(simplify (((partial 0 0) h) (up "a 'b) 'c))
a)

==> (* 2

(simplify (((partial 0 1) h) (up "a 'b) 'c))
==> (* 2 b)

This nami ng schene is consistent, except for one special case. If a
function takes exactly one up-tuple argunent then one |evel of the
hierarchy is elimnated, allowing one to naturally wite:

(sinplify ((Dg) (up 'a’'b)))
==> (down (* 3 (expt a 2) (expt b 5))
(* 5 (expt a 3) (expt b 4)))

(sinmplify (((partial 0) g) (up "a 'b)))
==> (* 3 (expt a 2) (expt b 5))

(sinplify (((partial 1) g) (up "a 'b)))
==> (* 5 (expt a 3) (expt b 4))

r ef man. t xt Wed Jan 15 01: 01: 54 2003 27

Synbol i ¢ Ext ensi ons
Al primtive mathematical procedures are extended to be generic over
synbolic argunents. Wen given synbolic argunents these procedures
construct a synbolic representation of the required answer. There are
primitive literal nunbers. W can nake a literal nunber that is
represented as an expression by the synmbol "a" as foll ows:
(literal - number ' a) ==> (*nunber* (expression a))

The literal nunber is an object that has the type of a nunber, but its
representation as an expression is the synbol "

a".
(type (literal -number ’"a)) ==> “*nunber*

(expression (literal-nunber ’a)) => a

Literal nunbers nay be nmanipul ated, using the generic operators.

(sin (+ (literal -nunmber "a) 3))
==> (*nunber* (expression (sin (+ 3 a))))

To nake it easy to work with literal nunbers, Schene synbols are
interpreted by the generic operations as literal nunbers.

(sin (+'a 3)) ==> (*nunber* (expression (sin (+ 3 a))))

We can extract the nunerical expression fromits type-tagged
representation with the "expressi on" procedure

(expression (sin (+ 'a 3))) ==> (sin (+ 3 a))
but usually we really don’t want to | ook at raw expressions
(expression ((D cube) "x)) ==> (+ (* x (+ x X)) (* x x))

because they are unsinplified. W wll talk about sinplification
later, but "sinplify" will usually give a better form

(sinmplify ((D cube) '"x)) ==> (* 3 (expt x 2))

and "print-expression", which incorporates "sinplify", will attenpt to
format the expression nicely.

r ef man. t xt Wed Jan 15 01: 01: 54 2003 28

Besides literal nunbers, there are other literal mathenatical objects,
such as vectors and matrices, that can be constructed with appropriate
constructors:

(literal -vector <name>)
(literal -down-tuple <nane>)
(literal -up-tuple <name>)
(literal-matrix <name>)
(literal -function <name>)

There are currently no sinplifiers that can manipulate literal objects
of these types into a nice form

W often need literal functions in our conmputations. The object
produced by "(literal-function 'f)" acts as a function of one rea
vari abl e that produces a real result. The nane (expression

representation) of this function is the synbol "f". This litera
function has a derivative, which is the literal function with
expression representation "(D f)". Thus, we may nake up and

mani pul at e expressions involving literal functions:
(expression ((literal-function 'f) 3)) ==> (f 3)

(sinplify ((D (* (literal-function 'f) cos)) 'a))
==> (+ (* (cos a) ((Df) a)) (* -1 (f a) (sin a)))

(simplify ((conpose (D (* (literal-function 'f) cos))
(literal-function 'g))
"a))

==> (+ (* (cos (g a)) ((Df) (g a)))
(* -1 (f (g &) (sin(ga))))

W nay use such a literal function anywhere that an explicit function
of the sane type nay be used.

r ef man. t xt Wed Jan 15 01: 01: 54 2003 29

The Literal function descriptor |anguage.

We can al so specify literal functions with multiple argunments and with
structured argunents and results. For exanple, to denote a

literal function naned g that takes two real argunents and

returns a real value (g:RXR-> R) we may wite:

(define g (literal-function 'g (-> (X Real Real) Real)))

(print-expression (g 'x 'vy))
(g xy)

The descriptors for literal functions ook |ike prefix versions of
the standard function types. Thus, we wite:
(literal-function "g (-> (X Real Real) Real))

The base types are the real nunbers, designated by "Real". W
will later extend the systemto include conplex nunbers,
desi gnat ed by "Conpl ex".

Types can be conbined in several ways. The cartesian product of
types is designated by:

(X <typel> <type2> ...)
W use this to specify an argunent tuple of objects of the given
types arranged in the given order

Simlarly, we can specify an up tuple or a down tuple wth:
(UP <typel> <type2> ...)
(DOWN <typel> <type2> ...)

W can al so specify a uniformtuple of a nunber of elenments of the
sanme type using

(UP* <type> [n])

(DOMNNF <type> [n])

So we can wite specifications of nore general functions:
(define H
(literal-function "H
(-> (UP Real (UP Real Real) (DOWN Real Real)) Real)))

(define s (up 't (up "x 'y) (down "p_x "p_y)))

(print-expression (H s))
(H (up t (up x y) (down p_x p_y)))

(print-expression ((D H s))
(down

(((partial 0) H (up t (up x y) (down p_x p_y)))
(down (((partial 1.0) H (up t (up x y) (down p_x p_y)))
(((partial 1 1) H (upt (up x y) (down p_x p_y))))
(up (((partial 2 0) H (up t (up x y) (down p_x p_y)))
(((partial 2 1) H (up t (up x y) (down p_x p_y)))))}

r ef man. t xt Wed Jan 15 01: 01: 54 2003 30

Nuneri cal Met hods

There are a great variety of numerical nmethods that are coded in
Schene and are available in the Scnutils system Here we give a
a short description of a few that are needed in the Mechani cs course.

Uni variate M nim zation

One nay search for local ninima of a univariate function in a nunber
of ways. The procedure "mnimze", used as foll ows,

(mnimze f | owx highx)

is the default minimzer. |t searches for a mninumof the univariate
function f in the region of the argunent delinted by the val ues | owx
and highx. Qur univariate optimization prograns typically return a
list (x fx ...) where x is the argmunent at which the extremal value
fx is achieved. The follow ng hel ps destructure this list.

(define extremal -arg car)
(define extrenal -val ue cadr)

The procedure ninimze uses Brent's nethod (don’t ask how it works!).
The actual procedure in the systemis:

(define (mnimze f | owx highx)
(brent-min f I owx highx brent-error))

(define brent-error 1.0e-5)

W personally like Brent’s algorithmfor univariate mnimzation, as
found on pages 79-80 of his book "Algorithns for Mnimnmzation Wthout
Derivatives". It is pretty reliable and pretty fast, but we cannot
explain how it works. The paraneter "eps" is a neasure of the error
to be tolerated.

(brent-min f a b eps)

(brent-max f a b eps)
Thus, for exanple, if we nake a function that is a quadratic
pol ynomial with a minimmof 1 at 3,
(define foo (Lagrange-interpolation-function (2 1 2) "(2 3 4)))

we can find the minimumaquickly (in five iterations) with Brent's
net hod:

(brent-min foo 0 5 1le-2) ==> (3. 1. 5)

Pretty good, eh?

r ef man. t xt Wed Jan 15 01: 01: 54 2003 31

Gol den Section search is sonetines an effective nmethod, but it nust be
supplied with a convergence-test procedure, called good-enuf?.

(gol den-section-mn f | owx highx good-enuf ?)
(gol den-section-max f | owx hi ghx good-enuf ?)

The predi cate good-enuf? takes seven argunents. It is true if
convergence has occured. The argunments to good-enuf? are

| owx, mnx, highx, flowx, fmnx, fhighx, count

where | owx and hi ghx are values of the argunment that the m ni num has
been |l ocalized to be between, and nminx is the argument currently being
tendered. The values flowx, fminx, and fhighx are the values of the
function at the correspondi ng points; count is the nunber of
iterations of the search. For exanple, suppose we want to squeeze the
m ni mum of the polynom al function foo to a difference of argunent

posi tions of .001.

(gol den-section-min foo 0 5
(lambda (lowx m nx highx flowx fmnx fhighx count)
(< (abs (- highx low)) .001)))

==> (13.0001322139227034 1. 0000000174805213 17)

This is not so nice. It took 17 iterations and we didn't get anywhere
near as good an answer as we got with Brent. On the other hand, we
under st and how t hi s works!

We can find a nunmber of local nminima of a nultinodal function using a
search that divides the initial interval up into a nunber of
subinterval s and then does Gol den Section search in each interval.

For exanple, we may nmake a quartic pol ynom al

(define bar
(Lagrange-interpolation-function '(2 120 3) '(23 45 6)))

Now we can | ook for local mnima of this function in the range -10 to
+10, breaking the region up into 15 intervals as foll ows:

(local -m ninma bar -10 10 15 . 0000001)
==> ((5.303446964995252 -.32916549541536905 18)
(2.5312725379910592 . 42583263999526233 18))

The search has found two | ocal mninma, each requiring 18 iterations to
| ocalize. The local nmaxima are al so worth chasing:

(1 ocal -maxi ma bar -10 10 15 .0000001)
==> ((3.8192274368217713 2. 067961961032311 17)
(10 680 31)
(-10 19735 29))

Here we found three maxi na, but two are at the endpoints of the
sear ch.

r ef man. t xt Wed Jan 15 01: 01: 54 2003 32

Multivariate mnin zation

The default multivariate mnimzer is multidinensional-mnimnmze, which
is a heavily sugared call to the Nelder-Mead nminimzer. The function
f being minimzed is a function of a Schene list. The search starts
at the given initial point, and proceeds to search for a point that is
a local mininmumof f. Wen the process terninates, the continuation
function is called with three arguments. The first is true if the
process converged and false if the mininzer gave up. The second is
the actual point that the mnimzer has found, and the third is the
val ue of the function at that point.

(rmultidinmensional-nmininmze f initial-point continuation)
Thus, for exanple, to find a m nimum of the function

(define (baz v)
(* (foo (ref v 0)) (bar (ref v 1))))

made fromthe two pol ynomi als we constructed before, near the point
(4 3), we can try:

(rmul tidimensional -ninimze baz '(4 3) list)
==> (#t #(2.9999927603607803 2.5311967755369285) .4258326193383596)

I ndeed, a m ni mumwas found, at about #(3 2.53) with value .4258..

O course, we usually need to have nore control of the mninizer when
searching a | arge space. Wthout the sugar, the ninimzers act on
functions of Schenme vectors (not lists, as above). The sinplest
mnimzer is the Nelder Mead downhill sinplex nethod, a slow but
reasonably reliable nethod.

(nelder-nmead f start-pt start-step epsilon nmaxiter)

W give it a function, a starting point, a starting step, a neasure of
the acceptable error, and a maxi mum nunber of iterations we want it to
try before giving up. It returns a nessage telling whether it found a
m ni mum the place and val ue of the purported m nimum and the nunber
of iterations it performed. For exanple, we can allow the al gorithm
an initial step of 1, and it will find the mninmumafter 21 steps

(nel der-nmead baz #(4 3) 1 .00001 100)
==> (ok (#(2.9955235887900926 2.5310866303625517) . .4258412014077558)

21)

r ef man. t xt Wed Jan 15 01: 01: 54 2003 33

or we can let it take steps of size 3, which will allowit to wander
off into oblivion

(nel der-mead baz #(4 3) 3 .00001 100)
==> (maxcount
(#(-1219939968107. 8127 5.118445485647498) . -2.908404414767431e23)
100)

The default minimzer uses the val ues:
(define nelder-start-step .01)

(define nel der-epsilon 1.0e-10)
(define nel der-nmaxiter 1000)

If we know nore than just the function to mnimnmze we can use that
information to obtain a better mininumfaster than with the
Nel der - Mead al gorithm

In the Davi don-Fl etcher-Powell algorithm f is a function of a single
vector argunent that returns a real value to be minimzed, g is the
vector-val ued gradient of f, x0 is a (vector) starting point, and
estimate is an estimate of the mininmumfunction value. ftol is the
convergence criterion: the search is stopped when the relative change
inf falls below ftol or when the maxi mum nunber of iterations is
exceeded.

The procedure dfp uses Davidon’s line search algorithm which is
efficient and would be the nornmal choice, but dfp-brent uses Brent’'s
line search, which is less efficient but nore reliable. The procedure
bf gs, due to Broyden, Fletcher, Goldfarb, and Shanno, is said to be
nore i mMmune than dfp to inprecise |line search

(dfp f g x0 estimate ftol nmaxiter)
(df p-brent f g x0 estimate ftol naxiter)
(bfgs f g x0 estimate ftol naxiter)

These are all used in the same way:

(df p baz (conpose down->vector (D baz)) #(4 3) .4 .00001 100)
==> (ok (#(2.9999717563962305 2.5312137271310036) . .4258326204265246) 4)

They all converge very fast, four iterations in this case.

r ef man. t xt Wed Jan 15 01: 01: 54 2003 34

Quadrature

Quadrature is the process of computing definite integrals of
functions. A sugared default procedure for quadrature is provided,
and we hope that it is adequate for npbst purposes.

(definite-integral <integrand>
<lower-limt> <upper-linmt>
[compil e? #t/#f])

The integrand nust be a real -valued function of a real argunent. The
limts of integration are specified as additional argunents. There is
an optional fourth argunment that can be used to suppress conpilation
of the integrand, thus forcing it to be interpreted. This is usually
to be ignored.

Because of the many additional features of nunerical quadrature that
can be independently controlled we provide a special uniforminterface
for a variety of nechanisns for conmputing the definite integrals of
functions. The quadrature interface is organized around
definite-integrators. A definite integrator is a nessage-acceptor
that organi zes the options and defaults that are necessary to specify
an integration plan

To make an integrator, and to give it the nanme |, do:
(define I (make-definite-integrator))

You may have as nmany definite integrators outstanding as you like. An
definite integrator can be given the foll ow ng commands:

(I "integrand)

returns the integrand assigned to the integrator |
(I "set-integrand! <f>)

sets the integrand of | to the procedure <f>.

The integrand nust be a real -valued function of one real argunent.

(I "lower-limt)
returns the lower integration limt.
(I "set-lower-linmt!)
sets the lower integration linmt of the integrator to <[>,

(I "upper-limt)
returns the upper integration limt.
(I "set-upper-limt!)
sets the upper integration [imt of the integrator to .

The Iinmts of integration may be nunbers, but they may al so be the
special values :+infinity or :-infinity.

r ef man. t xt Wed Jan 15 01: 01: 54 2003 35

(I "integral)
perfornms the integral specified and returns its val ue.

(I "error)
returns the value of the allowable error of integration
(I "set-error! <epsilon>)
sets the allowable error of integration to <epsilon>.
The default value of the error is 1.0e-11

(1 " nmethod)
returns the integration nethod to be used.
(I " set-method! <nethod>)
sets the integration nmethod to be used to <nethod>.
The default method is open-open.
O her nethods are open-cl osed, cl osed-open, closed-closed
ronberg, bulirsch-stoer

The quadrature nmethods are all based on extrapol ati on. The Ronberg
method is a Richardson extrapol ation of the trapezoid rule. It is
usual Iy worse than the other nethods, which are adaptive rationa
function extrapol ations of trapezoid and Eul er-NMacLaurin formul as.

Closed integrators are best if we can include the endpoints of
integration. This cannot be done if the endpoint is singular: thus
the open formulas. Also, open forrmulas are forced when we have
infinite limts.

Let’s do an exanple, it is as easy as pi

(define witch
(I ambda (x)
(/ 4.0 (+ 1.0 (* xx)))))

(define integrator (nmake-definite-integrator))

(integrator ’'set-method! ’'ronberg)
(integrator ’set-error! 1le-12)
(integrator 'set-integrand! witch)
(integrator 'set-lower-limt! 0.0)
(integrator 'set-upper-limt! 1.0)
(integrator ’integral)

; Val ue: 3.141592653589793

r ef man. t xt Wed Jan 15 01: 01: 54 2003 36

Programming with optional argunments

Definite integrators are so common and inportant that, to make
the programming a bit easier we allow one to be set up slightly
differently. |In particular, we can specify the inportant paraneters
as optional argunents to the nmaker. The specification of the naker
is:

(make-definite-integrator #!optional integrand
lower-limt upper-limt
al | owabl e-error
met hod)

So, for exanple, we can investigate the following integral easily:
(define (foo n)

((make-definite-integrator
(lanmbda (x) (expt (log (/ 1 x)) n))

0.0 1.0
le-12 ' open-cl osed)
“integral))
(foo 0)
; Val ue: 1.
(foo 1)

; Val ue: .9999999999979357

(foo 2)
; Val ue: 1.9999999999979101

(foo 3)
; Val ue: 5.99999999999799

(foo 4)
; Val ue: 23.999999999997893

(foo 5)
; Val ue: 119.99999999999828

Do you recogni ze this function? Wat is (foo 6)?

r ef man. t xt Wed Jan 15 01: 01: 54 2003 37

ODE Initial Value Probl ens

Initial-value problens for ordinary differential equations can be
attacked by a great nany specialized nethods. Nunerical analysts
agree that there is no best nmethod. Each has situations where it
wor ks best and other situations where it fails or is not very good.
Al so, each techni que has numerous paraneters, options and defaults.
The default integration nethod is Bulirsch-Stoer. Usually, the
Bulirsch-Stoer algorithmw Il give better and faster results than
others, but there are applications where a quality-controlled
trapezoi dal method or a quality-controlled 4th order Runge-Kutta
nmet hod is appropriate. The algorithmused can be set by the user

(set-ode-integration-nethod! 'qcrk4)
(set-ode-integration-nethod! ’bulirsch-stoer)
(set-ode-integration-nethod! 'qcctrap2)
(set-ode-integration-method! "explicit-gear)

The integration nethods all autonmatically select the step sizes to

mai ntain the error tolerances. But if we have an exceptionally stiff
system or a bad discontinuity, for npbst integrators the step size
will go down to zero and the integrator will nake no progress. |If you
encounter such a disaster try explicit-gear

We have progranms that inplenment other nmethods of integration, such as
an inplicit version of Gear’s stiff solver, and we have a whol e

| anguage for describing error control, but these features are not
avai | abl e through this interface.

The two main interfaces are "evol ve" and "state-advancer"

The procedure "state-advancer"” is used to advance the state of a
system according to a systemof first order ordinary differenti al
equations for a specified interval of the independent variable. The
state may have arbitrary structure, however we require that the first
conponent of the state is the independent variable.

The procedure "evol ve" uses "state-advancer" to repeatedly advance the
state of the systemby a specified interval, exam ning aspects of the
state as the evol ution proceeds.

In the follow ng descriptions we assune that "sysder" is a user

provi ded procedure that gives the paranetric system derivative. The
paranmetric system derivative takes paraneters, such as a nass or

| ength, and produces a procedure that takes a state and returns the
derivative of the state. Thus, the systemderivative takes argunents
in the followi ng way:

((sysder paraneter-1 ... paranmeter-n) state)
There may be no parameters, but then the system derivative procedure

nmust still be called with no argunents to produce the procedure that
takes states to the derivative of the state

r ef man. t xt Wed Jan 15 01: 01: 54 2003 38

For exanple, if we have the differential equations for an ellipse
centered on the origin and aligned with the coordi nate axes:

Dx(t)
Dy(t)

We can neke a paranetric systemderivative for this systemas follows:

-a y(t)
+b x(t)

(define ((ellipse-sysder a b) state)
(let ((t (ref state 0))
(x (ref state 1))
(y (ref state 2)))

(up 1 . dt/dt
(* -1 ay) dx/ dt
(* bx)))) . dy/ dt

The procedure "evolve" is invoked as foll ows:
((evol ve sysder . paraneters) initial-state nonitor dt final-t eps)

The user provides a procedure (here naned "nmonitor") that takes the
state as an argunent. The nonitor is passed successive states of the
system as the evolution proceeds. For exanple it might be used to
print the state or to plot some interesting function of the state.

The interval between calls to the nmonitor is the argunent "dt". The
evol ution stops when the independent variable is larger than
"final-t". The paraneter "eps" specifies the allowable error

For exanple, we can draw our ellipse in a plotting w ndow
(define win (frame -2 2 -2 2 500 500))

(define ((nonitor-xy win) state)
(plot-point win (ref state 1) (ref state 2)))

((evolve ellipse-sysder 0.5 2.)

(up 0. .5 .5) ; initial state
(rmoni tor-xy win) ; the nonitor
0.01 ; plotting step

10.) final value of t
To take nore control of the integration one may use the state advancer
directly.

The procedure "state-advancer" is invoked as foll ows:
((state-advancer sysder . paraneters) start-state dt eps)

The state advancer will give a new state resulting fromevolving the
start state by the increment dt of the independent variable. The
al l oned | ocal truncation error is eps.

For exanpl e,
((state-advancer ellipse-sysder 0.5 2.0) (up 0. .5 .5) 3.0 1le-10)
; Val ue: #(3. -.5302762503146702 -.3538762402420404)

r ef man. t xt Wed Jan 15 01: 01: 54 2003 39

For a nore conpl ex exanple that shows the use of substructure in the
state, consider two-di nensional harnonic oscillator

(define ((harnonic-sysder mk) state)
(let ((q (coordinate state)) (p (nonmentum state)))
(let ((x (ref g 0)) (y (ref g 1))

(px (ref p 0)) (py (ref p 1)))
(up 1 : dt / dt

(up (/ px m (/ py m) ; dg/ dt
(down (* -1 k x) (* -1 k y)) ;dp/dt

))))

We coul d nonitor the energy (the Haniltonian):

(define ((H mk) state)
(+ (/ (square (nonentum state))
* 2

(* /2 k
(square (coordinate state)))))

(let ((m0.5) (k 2.0))
((evol ve harnoni c-sysder m k)

(up O. ; initial state
(up .5 .5)
(down 0.1 0.0))

(lanbda (state) ; the nmonitor

(wite-line
(list (time state) ((HmKk) state))))
1.0 ; output step
10.))
(0. .51)
(1. .5099999999999999)
(2. .5099999999999997)
(3. .5099999999999992)
(4. .509999999999997)
(5. .509999999999997)
(6. .5099999999999973)
(7. .5099999999999975)
(8. .5100000000000032)
(9. .5100000000000036)
(10. .5100000000000033)

r ef man. t xt Wed Jan 15 01: 01: 54 2003 40

Const ant s

There are a few constants that we find useful, and are thus provided
in Scrmutils. Mny constants have multiple nanes.

There are purely mathemati cal constants:

(define zero 0) (define :zero zero)
(define one 1) (define :one one)
(define -one -1) (define :-one -one)
(define two 2) (define :two two)
(define three 3) (define :three three)

(define pi (* 4 (atan 1 1))) (define :pi pi)
(define -pi (- pi)) (define :+pi pi)
(define :-pi -pi)

(define pi/6 (/ pi 6)) (define :pi/6 pil/6)
(define -pi/6 (- pi/6)) (define :+pi/6 pi/6)
(define :-pi/6 -pi/6)
(define pi/4 (/I pi 4)) (define :pi/4 pil4)
(define -pi/4 (- pil4)) (define :+pi/4 pil4)
(define :-pi/4 -pil4)
(define pi/3 (/ pi 3)) (define :pi/3 pil/3)
(define -pi/3 (- pi/3)) (define :+pi/3 pil/3)
(define :-pi/3 -pi/3)
(define pi/2 (/ pi 2)) (define :pi/2 pil2)
(define -pi/2 (- pil2)) (define :+pi/2 pil2)
(define :-pi/2 -pi/2)
(define 2pi (+ pi pi)) (define :2pi 2pi)
(define -2pi (- 2pi)) (define :+2pi 2pi)

(define :-2pi -2pi)

For nunerical analysis, we provide the snallest nunber that when added
to 1.0 nakes a difference

(define *machi ne- epsil on*
(let loop ((e 1.0))
(if (=1.0 (+e 1.0))
(* 2 e)
(loop (/ e 2)))))

(define *sqrt-machi ne-epsil on*
(sqrt *machi ne-epsil on*))

r ef man. t xt Wed Jan 15 01: 01: 54 2003 41

Useful units conversions

(define arcsec/radian
(/ (* 60 60 360) :+2pi))
Physi cal Units

(define kg/anu
1. 661e-27)

(define joul eleV
1.602e-19)

(define joulelcal
4.1840)
Uni versal Physical constants

(define |ight-speed
2.99792458e8)

(define :c light-speed)
(define esu/ coul
(* 10 light-speed))

(define gravitation
6. 6732e-11)

(define : G gravitation)
(define el ectron-charge
1.602189e- 19)
;5 =4.80324e-10 esu

(define :e el ectron-charge)

(define el ectron-mass
9. 10953e- 31)

(define :me el ectron-nass)

e
;meter/sec

;G
; (Newt on* et er ~2) / kg2

;e
; Coul onb

;yme
; kg

r ef man. t xt Wed Jan 15 01: 01: 54 2003 42

(define proton-nass
1.672649e- 27)

(define :mp proton-nass)

(define neutron-mass
1.67492e- 27)
(define :mn neutron-nass)
(define planck
6. 62618e- 34)
(define :h planck)
(define h-bar
(/ planck :+2pi))
(define :h-bar h-bar)
(define permttivity
8. 85419e-12)
(define :epsilon_ 0 permttivity)
(define boltzman
1. 38066e- 23)
(define :k boltzman)
(defi ne avogadaro
6. 02217e23)

(define : N _A avogadar o)

;mp
; kg

;mn
; kg

:h
;Joul e*sec

; \ bar { h}
;Joul e*sec

;\epsilon_0
; Coul onb/ (vol t *net er)

Tk
;Joul e/ Kel vin

r ef man. t xt

(define faraday
9. 64867¢e4)

(define gas
8. 31434)

(define :R gas)

(define gas-atm
8. 2054e- 2)

(define radiation

(/ (* 8 (expt pi 5) (expt boltzman 4))
(* 15 (expt light-speed 3) (expt

(define stefan-boltzman
(/ (* light-speed radiation) 4))

(define thonson-cross-section
6. 652440539306967¢e- 29)

;75 (define thomson-cross-section

Wed Jan 15 01:01: 54 2003 43

' F
; Coul onb/ nol

' R
; Joul e/ (nol *Kel vi n)

'R
;(liter*atm/ (ol *Kel vi n)

pl anck 3))))

2

(/ (* 8 pi (expt electron-charge 4))
(* 3 (expt electron-nmass 2) (expt light-speed 4)))

;;; in the SI version of ESU

;;, Cbserved and neasured

(defi ne background-tenperature
2.726)

;75 Thernodynani c

(define water-freezing-tenperature
273.15)

(define roomtenperature
300. 00)

(define water-boiling-tenperature
373.15)

: Cobe 1994
:+-.005 Kelvin

; Kel vin

; Kel vin

; Kel vin

r ef man. t xt Wed Jan 15 01: 01: 54 2003 44

;:; Astronom cal

(define nm AU
1.49597892e11)

(define nm pc
(/ mau (tan (/ 1 arcsec/radian))))

(define AU pc
(/ 648000 pi))

(define sec/sidereal -yr
3.1558149984e7)

(define sec/tropical-yr
31556925. 9747)

(define mlyr
(* light-speed sec/tropical-yr))

(define AU lyr (/ milyr m AU))
(define lyr/pc (/ mpc nlyr))

(define nifparsec
3. 084el6)

(define nilight-year
9. 46el5)

(define sec/ day
86400)

;=(/ mpc m AU)

; 1900

; 1900

r ef man. t xt Wed Jan 15 01: 01: 54 2003 45

;o Earth

(define earth-orbital -velocity
29. 8e3) ;meter/sec

(define earth-mass

5.976e24) ; kg
(define earth-radi us

6371e3) ;meters
(define earth-surface-area

5.101el4) ;meter”2
(define earth-escape-velocity

11. 2e3) ;meter/sec
(define earth-grav-accel i g

9. 80665) ; met er/sec”2

(define earth-mean-density
5. 52e3) ; kg/ m3

Do This is the average anount of
;75 sunlight available at Earth on an
;;; element of surface normal to a

;;; radius fromthe sun. The actua
;;; power at the surface of the earth,
;;; for a panel in full sunlight, is
;;; not very different, because, in
;;; absence of clouds the atnosphere
;. 1s quite transparent. The nunber
;;; differs fromthe obvious geonetric
;. number

v7. (I sun-luminosity (* 4 :pi (square m AU)))
;5 Value: 1360.454914748201

;;; because of the eccentricity of the
;;; Earth's orbit.

(define earth-incident-sunlight

1370.) ;watts/ meter”2
(define vol @tp

2.24136e- 2) ; (meter”~3)/ nol
(define sound-speed@t p ;C_S

331. 45) ; meter/sec

(define pressure@tp
101. 325) ; kPa

(define earth-surface-tenperature
(+ 15 water-freezing-tenperature))

r ef man. t xt Wed Jan 15 01: 01: 54 2003 46
;o Sun
(define sun-mass

1. 989e30) ; kg

(define :msun sun-nass)
(define sun-radius
6. 9599e8)

(define :r_sun sun-radi us)

(define sun-lumnosity
3. 826e26)

(define :1 _sun sun-1lum nosity)

(define sun-surface-tenperature
5770. 0)

(define sun-rotation-period
2. 14€6)
;;; The Gaussi an const ant

(define Gvsun
1.32712497e20)

; et er

ywatts

;Kelvin

, Sec

;=(* gravitation sun-nass)

r ef man. t xt Wed Jan 15 01: 01: 54 2003 47

MORE TO BE DOCUMENTED

Sol uti ons of Equations

Li near Equations (lu, gauss-jordan, full-pivot)
Li near Least Squares (svd)
Root s of Pol ynom al s

Searching for roots of other nonlinear disasters

Matrices

Ei genval ues and Ei genvectors

Series and Sequence Extrapol ation

Speci al Functi ons

Di splaying results

Lots of other stuff that we cannot renenber.

